JP7639314B2 - Battery separator - Google Patents
Battery separator Download PDFInfo
- Publication number
- JP7639314B2 JP7639314B2 JP2020201584A JP2020201584A JP7639314B2 JP 7639314 B2 JP7639314 B2 JP 7639314B2 JP 2020201584 A JP2020201584 A JP 2020201584A JP 2020201584 A JP2020201584 A JP 2020201584A JP 7639314 B2 JP7639314 B2 JP 7639314B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- porous layer
- resistant porous
- battery separator
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 44
- 229920000098 polyolefin Polymers 0.000 claims description 43
- 239000010954 inorganic particle Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 15
- 239000012982 microporous membrane Substances 0.000 claims description 2
- 239000012528 membrane Substances 0.000 description 43
- 238000000034 method Methods 0.000 description 20
- 239000011148 porous material Substances 0.000 description 17
- -1 polyethylene Polymers 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 229920002451 polyvinyl alcohol Polymers 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 229920000573 polyethylene Polymers 0.000 description 10
- 239000011324 bead Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000035699 permeability Effects 0.000 description 8
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 8
- 229920003169 water-soluble polymer Polymers 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 239000002612 dispersion medium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 229920002401 polyacrylamide Polymers 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 5
- 239000002390 adhesive tape Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 230000010220 ion permeability Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229920003086 cellulose ether Polymers 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000007756 gravure coating Methods 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001179 medium density polyethylene Polymers 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000009782 nail-penetration test Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 102220043159 rs587780996 Human genes 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 241000984084 Helianthemum nummularium subsp. grandiflorum Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910017569 La2(CO3)3 Inorganic materials 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 229910019089 Mg-Fe Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 229910001588 amesite Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- CJDPJFRMHVXWPT-UHFFFAOYSA-N barium sulfide Chemical compound [S-2].[Ba+2] CJDPJFRMHVXWPT-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 229910001649 dickite Inorganic materials 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- NZPIUJUFIFZSPW-UHFFFAOYSA-H lanthanum carbonate Chemical compound [La+3].[La+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O NZPIUJUFIFZSPW-UHFFFAOYSA-H 0.000 description 1
- 229960001633 lanthanum carbonate Drugs 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000010446 mirabilite Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011990 phillips catalyst Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Description
本発明は、ポリオレフィン多孔質膜の少なくとも片面に耐熱性多孔層を有する電池用セパレータに関するものである。 The present invention relates to a battery separator having a heat-resistant porous layer on at least one side of a polyolefin porous membrane.
熱可塑性樹脂多孔質膜は、物質の分離や選択透過及び隔離材等として広く用いられている。例えば、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、及びポリマー電池等に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、及び精密濾過膜等の各種フィルター、透湿防水衣料、及び
医療用材料等である。
Thermoplastic resin porous membranes are widely used as separation, selective permeation and isolation materials for substances, etc. Examples of such membranes include battery separators used in lithium ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, etc., separators for electric double layer capacitors, various filters such as reverse osmosis filtration membranes, ultrafiltration membranes, and microfiltration membranes, moisture-permeable waterproof clothing, and medical materials.
特に、リチウムイオン二次電池用セパレータとしては、電解液含浸によりイオン透過性を有し、電気絶縁性、耐電解液性及び耐酸化性に優れ、電池異常昇温時に120~150℃
程度の温度において電流を遮断し、過度の昇温を抑制する孔閉塞効果をも備えているポリ
オレフィン多孔質膜が好適に使用されている。
In particular, as a separator for a lithium ion secondary battery, it has ion permeability due to impregnation with an electrolyte, is excellent in electrical insulation, electrolyte resistance and oxidation resistance, and can withstand an abnormal temperature rise of 120 to 150°C.
A polyolefin porous membrane is preferably used, which cuts off the electric current at a temperature of about 1000 .ANG. and also has a pore-closing effect to suppress excessive temperature rise.
しかしながら、何らかの原因で孔閉塞後も昇温が続く場合、ポリオレフィン多孔質膜は
破膜を生じることがある。この現象はポリオレフィンを用いた場合に限定される現象では
なく、その多孔質膜を構成する樹脂の融点以上では避けることができない。
However, if the temperature continues to rise even after the pores are blocked for some reason, the polyolefin porous membrane may break. This phenomenon is not limited to the case of using polyolefin, and cannot be avoided above the melting point of the resin that constitutes the porous membrane.
これに対し、ポリオレフィン多孔質膜に対して、無機粒子とバインダー樹脂を主として
構成する耐熱性多孔層を被覆した耐熱性セパレータが採用されている。この耐熱性セパレータを用いることで、ポリオレフィン多孔質膜の昇温による収縮が耐熱性多孔層により抑
制されている。
このようなセパレータにおいて、無機粒子と、ポリビニルアルコール(PVA)と、ホウ酸および/またはPVA架橋性を有する有機金属化合物と、カルボキシル基および/またはスルホン酸基を有する水溶性化合物から形成された耐熱層を備えるセパレータ(特許文献1)、アルミナ水和物と、バインダーポリマーの水性分散液と、水溶液性分散剤を含む塗工液を不織布に塗工、乾燥して成るリチウムイオン電池用セパレータ(特許文献2)が提案されているが、耐熱性多孔層が薄い場合でも、耐熱収縮性に優れ、かつ耐熱性多孔層の脱落が少ないセパレータではなかった。
In response to this, a heat-resistant separator is used in which a heat-resistant porous layer mainly composed of inorganic particles and a binder resin is coated on the polyolefin porous membrane. By using this heat-resistant separator, the shrinkage of the polyolefin porous membrane due to temperature rise is suppressed by the heat-resistant porous layer.
Among such separators, a separator having a heat-resistant layer formed from inorganic particles, polyvinyl alcohol (PVA), boric acid and/or an organometallic compound having PVA crosslinkability, and a water-soluble compound having a carboxyl group and/or a sulfonic acid group (Patent Document 1), and a lithium-ion battery separator formed by applying a coating liquid containing an alumina hydrate, an aqueous dispersion of a binder polymer, and an aqueous dispersant to a nonwoven fabric and drying the coating liquid, have been proposed (Patent Document 2). However, these separators did not have excellent heat shrinkage resistance and little shedding of the heat-resistant porous layer even when the heat-resistant porous layer was thin.
本発明の課題は、耐熱性多孔層が薄い場合でも、耐熱収縮性に優れ、かつ耐熱性多孔層の脱落が少ないセパレータセパレータの提供である。 The objective of the present invention is to provide a separator that has excellent heat shrink resistance and is less susceptible to shedding of the heat-resistant porous layer, even when the heat-resistant porous layer is thin.
本発明者らは、従来の技術を鑑み、鋭意検討し、ポリオレフィン多孔質膜の少なくとも片面に耐熱性多孔層を有する電池用セパレータであって、150℃/1h熱収縮率が5%以下であり、かつ耐熱性多孔層の脱落量が0.6mg以下であり、前記耐熱性多孔層に含まれる無機粒子の含有量は、耐熱性多孔質層を形成する組成物の合計を100質量%として92質量%以上、94.2質量%以下であることを特徴とする電池用セパレータにより、本課題を解決することを見出した。
更に好ましい様態は、
(1)前記耐熱性多孔層はBET比表面積が11.1m2/g以上、30m2/g以下である沈降性硫酸バリウム粒子を含むこと
(2)前記耐熱性多孔層の180°剥離強度が350N/m以上であること
(3)前記耐熱性多孔層の厚さが0.5μm以上、4μm以下であることを特徴とする電池用セパレータである。
The present inventors have conducted intensive research in light of the conventional technology and have found that the above-mentioned problem can be solved by a battery separator having a heat-resistant porous layer on at least one side of a polyolefin porous membrane, the battery separator being characterized in that the 150°C/1h heat shrinkage rate is 5% or less, the amount of the heat-resistant porous layer that falls off is 0.6 mg or less, and the content of inorganic particles contained in the heat-resistant porous layer is 92 mass% or more and 94.2 mass% or less, assuming that the total composition that forms the heat-resistant porous layer is 100 mass%.
A more preferred embodiment is
(1) The heat-resistant porous layer contains precipitated barium sulfate particles having a BET specific surface area of 11.1 m2 /g or more and 30 m2 /g or less. ( 2 ) The heat-resistant porous layer has a 180° peel strength of 350 N/m or more. ( 3 ) The heat-resistant porous layer has a thickness of 0.5 μm or more and 4 μm or less.
本発明のポリオレフィン多孔質膜の少なくとも片面に耐熱性多孔層を有する電池用セパレータは、耐熱収縮性に優れ、耐熱性多孔層の脱落が少ないため、電池の安全性や歩留まりが向上する。 The battery separator of the present invention, which has a heat-resistant porous layer on at least one side of the polyolefin porous membrane, has excellent heat shrinkage resistance and is less susceptible to shedding of the heat-resistant porous layer, improving the safety and yield of the battery.
以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下に説明する実
施形態に限定されるものではない。
[ポリオレフィン多孔質膜]
本発明の実施形態におけるポリオレフィン多孔質膜の厚さは、電池用セパレータの機能を有する限りにおいて特に制限されるものではないが、25μm以下が好ましい。より好ましくは3μm以上、20μm以下であり、さらに好ましくは5μm以上、16μm以下である。ポリオレフィン多孔質膜の厚さが25μm以下であると、実用的な膜強度と孔閉塞機能を両立させることが出来、電池ケースの単位容積当たりの面積が制約されず、電池の高容量化に適する。
Hereinafter, an embodiment of the present invention will be described in detail. Note that the present invention is not limited to the embodiment described below.
[Polyolefin porous membrane]
The thickness of the polyolefin porous membrane in the embodiment of the present invention is not particularly limited as long as it has the function of battery separator, but is preferably 25 μm or less.More preferably, it is 3 μm or more and 20 μm or less, and even more preferably, it is 5 μm or more and 16 μm or less.When the thickness of the polyolefin porous membrane is 25 μm or less, it can achieve both practical membrane strength and pore blocking function, and the area per unit volume of the battery case is not restricted, which is suitable for increasing the capacity of the battery.
ポリオレフィン多孔質膜の透気抵抗度は30sec/100mlAir以上、200
sec/100mlAir以下が好ましい。より好ましくは40sec/100mlA
ir以上、150sec/100mlAir以下であり、さらに好ましくは50sec/
100mlAir以上、100sec/100mlAir以下である。透気抵抗度が
30sec/100cmlAir以上であると、十分な機械的強度と絶縁性が得られることで電池の充放電時に短絡が起こる可能性が低くなる。200sec/100mlAir以下であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)及び電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮することができる。
The air resistance of the polyolefin porous membrane is 30 sec/100 ml Air or more, 200
sec/100ml Air or less is preferable. More preferably, 40 sec/100ml Air
ir or more, and 150 sec/100 ml Air or less, and more preferably 50 sec/
The air permeability resistance is 100 ml Air or more and 100 sec/100 ml Air or less. If the air permeability resistance is 30 sec/100 cml Air or more, sufficient mechanical strength and insulation are obtained, reducing the possibility of short circuit during charging and discharging of the battery. If the air permeability resistance is 200 sec/100 ml Air or less, the battery has sufficient charge and discharge characteristics, particularly ion permeability (charge and discharge operating voltage) and battery life (closely related to the amount of electrolyte retained), and can fully function as a battery.
ポリオレフィン多孔質膜の空孔率は20%以上、70%以下が好ましい。より好ましく
は30%以上、60%以下であり、さらに好ましくは55%以下である。空孔率が20%
以上、70%以下であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電
圧)及び電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮することができ、十分な機械的強度と絶縁性が得られることで充放
電時に短絡が起こる可能性が低くなる。
The porosity of the polyolefin porous membrane is preferably 20% or more and 70% or less, more preferably 30% or more and 60% or less, and even more preferably 55% or less.
When the ratio is 70% or less, the battery has sufficient charge/discharge characteristics, particularly ion permeability (charge/discharge operating voltage) and battery life (closely related to the amount of electrolyte retained), and can fully exhibit its functions as a battery. Furthermore, sufficient mechanical strength and insulating properties are obtained, reducing the possibility of a short circuit occurring during charge/discharge.
ポリオレフィン多孔質膜の平均孔径は、孔閉塞性能に大きく影響を与えるため、0.0
1μm以上、1.0μm以下が好ましい。より好ましくは0.02μm以上、0.5μm
以下であり、さらに好ましくは0.03μm以上、0.3μm以下である。ポリオレフィ
ン多孔質膜の平均孔径が0.01μm未満であると、耐熱性多孔層を積層した際に有機合
成成分による孔の目詰まりが発生し、透気抵抗度および電気抵抗度が悪化する。1μm以
上であると、耐熱性多孔層組成物による孔の目詰まりが発生し、透気抵抗度および電気抵
抗度が悪化する場合や微短絡の発生のため電池の安全性が低下する場合がある。
The average pore size of the polyolefin porous membrane has a large effect on the pore blocking performance.
Preferably, the thickness is 1 μm or more and 1.0 μm or less. More preferably, the thickness is 0.02 μm or more and 0.5 μm or less.
The average pore size of the polyolefin porous membrane is less than 0.01 μm, and more preferably 0.03 μm or more and 0.3 μm or less. When the average pore size of the polyolefin porous membrane is less than 0.01 μm, the clogging of the pores occurs due to organic synthesis components when the heat-resistant porous layer is laminated, and the air resistance and electrical resistance are deteriorated. When the average pore size of the polyolefin porous membrane is more than 1 μm, the clogging of the pores occurs due to the heat-resistant porous layer composition, and the air resistance and electrical resistance are deteriorated, or the safety of the battery may be reduced due to the occurrence of a micro-short circuit.
また、ポリオレフィン多孔質膜の平均孔径が0.01μm以上、1.0μm以下である
と、組成物のアンカー効果により、ポリオレフィン多孔質膜に対する、十分な耐熱性多孔
層の密着強度が得られ、耐熱性多孔層を積層した際に透気抵抗度及び電気抵抗度が大幅に
悪化せず、かつ、孔閉塞現象の温度に対する応答が緩慢になることもなく、昇温速度による孔閉塞温度がより高温側にシフトすることも少ない。本発明で言う平均孔径とはJIS
K 3832:1990で規定されるバブルポイント法にて得た測定値である。
In addition, when the average pore size of the polyolefin porous membrane is 0.01 μm or more and 1.0 μm or less, the anchor effect of the composition can provide sufficient adhesion strength of the heat-resistant porous layer to the polyolefin porous membrane, and when the heat-resistant porous layer is laminated, the air resistance and electrical resistance are not significantly deteriorated, the response of the pore blocking phenomenon to temperature is not slowed, and the pore blocking temperature due to the heating rate is not shifted to a higher temperature side.
The measured value was obtained by the bubble point method defined in I.K 3832:1990.
ポリオレフィン多孔質膜を構成するポリオレフィン樹脂は特に制限されるものではない
が、ポリエチレンやポリプロピレンが好ましい。また、単一物又は2種以上の異なるポリ
オレフィン樹脂の混合物、例えばポリエチレンとポリプロピレンとの混合物であってもよいし、異なるオレフィンの共重合体であってもよい。電気絶縁性、及びイオン透過性等の
基本特性に加え、電池異常昇温時において、電流を遮断し、過度の昇温を抑制する孔閉塞
効果を具備しているからである。
The polyolefin resin that constitutes the polyolefin porous membrane is not particularly limited, but is preferably polyethylene or polypropylene.In addition, it may be a single material or a mixture of two or more different polyolefin resins, for example, a mixture of polyethylene and polypropylene, or a copolymer of different olefins.Because, in addition to the basic characteristics such as electrical insulation and ion permeability, it has the pore blocking effect that cuts off the current and suppresses excessive temperature rise when the battery temperature rises abnormally.
なかでもポリエチレンが優れた孔閉塞性能の観点から特に好ましい。以下、本発明で用
いるポリオレフィン樹脂としてポリエチレンを例に詳述するが、本発明の実施形態はこれ
に限定されるものではない。
Among these, polyethylene is particularly preferred from the viewpoint of excellent pore-blocking performance. Hereinafter, the polyolefin resin used in the present invention will be described in detail using polyethylene as an example, but the embodiment of the present invention is not limited thereto.
ポリエチレンとしては、例えば、超高分子量ポリエチレン、高密度ポリエチレン、中密
度ポリエチレン及び低密度ポリエチレン等が挙げられる。また重合触媒にも特に制限はなく、チーグラー・ナッタ系触媒やフィリップス系触媒やメタロセン系触媒等が挙げられる。これらのポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量
含有する共重合体であってもよい。エチレン以外のα-オレフィンとしてはプロピレン、
1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、
(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適である。
Examples of polyethylene include ultra-high molecular weight polyethylene, high density polyethylene, medium density polyethylene, and low density polyethylene. There is no particular limitation on the polymerization catalyst, and examples include Ziegler-Natta catalysts, Phillips catalysts, and metallocene catalysts. These polyethylenes may be not only homopolymers of ethylene, but also copolymers containing small amounts of other α-olefins. Examples of α-olefins other than ethylene include propylene,
1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene,
(Meth)acrylic acid, esters of (meth)acrylic acid, styrene, and the like are preferred.
ポリエチレンは単一物でもよいが、2種以上のポリエチレンからなる混合物であること
が好ましい。ポリエチレン混合物としては重量平均分子量(Mw)の異なる2種類以上の
超高分子量ポリエチレン同士の混合物、同様な高密度ポリエチレン、中密度ポリエチレン
及び低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポ
リエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれる2種以
上ポリエチレンの混合物を用いてもよい。
The polyethylene may be a single substance, but is preferably a mixture of two or more kinds of polyethylene. The polyethylene mixture may be a mixture of two or more kinds of ultra-high molecular weight polyethylenes having different weight average molecular weights (Mw), a mixture of similar high density polyethylenes, medium density polyethylenes, and low density polyethylenes, or a mixture of two or more kinds of polyethylenes selected from the group consisting of ultra-high molecular weight polyethylenes, high density polyethylenes, medium density polyethylenes, and low density polyethylenes.
ポリオレフィン多孔質膜は、充放電反応の異常時に孔が閉塞する機能を有することが必
要である。従って、構成する樹脂の融点(軟化点)は70℃以上、150℃以下が好まし
い。より好ましくは80℃以上、140℃以下、さらに好ましくは100℃以上、130
℃以下である。構成する樹脂の融点が70℃以上、150℃以下であると、正常使用時に
孔閉塞機能が発現してしまって電池が使用不可になることがなく、また、異常反応時に孔
閉塞機能が発現することで安全性を確保できる。
The polyolefin porous membrane is required to have a function of closing the pores when the charge/discharge reaction is abnormal. Therefore, the melting point (softening point) of the resin constituting the membrane is preferably 70° C. or higher and 150° C. or lower. More preferably, it is 80° C. or higher and 140° C. or lower, and even more preferably, it is 100° C. or higher and 130° C. or lower.
When the melting point of the constituent resin is 70° C. or more and 150° C. or less, the pore blocking function does not appear during normal use, causing the battery to become unusable, and safety can be ensured by the pore blocking function appearing in the event of an abnormal reaction.
[耐熱性多孔層]
本発明の耐熱性多孔層は、前記ポリオレフィン多孔質膜の少なくとも片面に耐熱性多孔層が設けられるものであり、無機粒子、水溶性高分子、添加剤を含有する。片面のみに設ける場合、耐熱性多孔層を形成する工程が少なく、生産コストを抑えることができ、両面に設ける場合、ポリオレフィン多孔質膜の熱による収縮を両面から抑制することで、より効果的に電池用セパレータの熱による収縮を低減することができる。
[Heat-resistant porous layer]
The heat-resistant porous layer of the present invention is provided on at least one side of the polyolefin porous membrane, and contains inorganic particles, water-soluble polymer and additives.When provided on only one side, the process of forming heat-resistant porous layer is reduced, and production cost can be reduced; when provided on both sides, the shrinkage caused by heat of polyolefin porous membrane can be suppressed from both sides, and the shrinkage caused by heat of battery separator can be more effectively reduced.
[無機粒子]
本発明の無機粒子は、電気化学的に安定であれば特に材質を制限するものではない。具
体的には、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化カルシウム、酸化バ
リウム、酸化ランタン、酸化セリウム、酸化ストロンチウム、酸化バナジウム、SiO2
-MgO(ケイ酸マグネシウム)、SiO2-CaO(ケイ酸カルシウム)、ハイドロタ
ルサイト、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バ
リウム、炭酸ランタン、炭酸セリウム、塩基性チタン酸塩、塩基性ケイチタン酸塩、塩基
性酢酸銅、塩基性硫酸鉛、層状複水酸化物(Mg-Alタイプ、Mg-Feタイプ、Ni
-Feタイプ、Li-Alタイプ)、層状複水酸化物-アルミナシリカゲル複合体、ベー
マイト、アルミナ、酸化亜鉛、酸化鉛、酸化鉄、オキシ水酸化鉄、ヘマタイト、酸化ビスマス、酸化スズ、酸化チタン、酸化ジルコニウム等の陰イオン吸着材、リン酸ジルコニウ
ム、リン酸チタニウム、アパタイト、非塩基性チタン酸塩、ニオブ酸塩、ニオブ・チタン
酸塩等の陽イオン吸着材、ゼオライト、硫酸カルシウム、硫酸マグネシウム、硫酸アルミ
ニウム、石膏、硫酸バリウム、アルミナ三水和物(ATH)、ヒュームドシリカ、沈殿シ
リカ、ジルコニア、及びイットリア等の酸化物系セラミックス、窒化ケイ素、窒化チタン、及び窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、カオリナイト、タル
ク、ディカイト、ナクライト、ハロイサイト、パイロ無機粒子イト、モンモリロナイト、セリサイト、アメサイト、ベントナイト等の層状シリケート、アスベスト、ケイ藻土、ガラス繊維、合成層状シリケート、例えば、雲母又はフルオロ雲母、及びホウ酸亜鉛から成る群から選択される。これらは1種単独で用いてもよく、2種以上を併用してもよい。これらのなかでも特に硫酸バリウムが好ましく、より好ましくは、沈降性硫酸バリウムである。具体的には、炭酸バリウム、又は硫化バリウムに硫酸を加えることによって硫酸バリウムを得る方法(硫酸法)、塩化バリウムに硫酸ナトリウムを加えることによって硫酸バリウムを得る方法(芒硝法)で得られる硫酸バリウム粒子である。合成法により作製された硫酸バリウム粒子を用いることにより、無機粒子の体積平均粒子径の制御を精度良く行うことができる。
本発明における無機粒子は、BET比表面積が6.5m2/g以上、30m2/g以下であり、好ましくは10m2/g以上、25m2/g以上であり、より好ましくは15m2/g以上、20m2/g以下である。BET比表面積が6.5m2/gより小さいと、耐熱性多孔層の無機粒子同士の接点が少なくなることで、耐熱性多孔質層の構造がもろくなり、高温時にポリオレフィン多孔質膜の収縮を抑制することが困難となったり、電池の製造工程で耐熱性多孔層が脱落して電池へ混入することで電池の不良率が高くなる場合がある。BET比表面積が30m2/gより大きいと、無機粒子間の空隙が少なくなり、電池内でのリチウムイオンの移動経路が狭くなったり、長くなることで電気抵抗度が大きくなる場合がある。さらに、ポリオレフィン多孔質膜の細孔に無機粒子が目詰まりすることで、電池の性能を著しく低下させる場合もある。BET比表面積が6.5m2/g以上、30m2/g以下の無機粒子であると、耐熱性多孔層の耐熱収縮性が損なわれることなく、耐熱性多孔層の脱落を少なくすることができる。
[Inorganic particles]
The inorganic particles of the present invention are not particularly limited in material as long as they are electrochemically stable. Specifically, sodium oxide, potassium oxide, magnesium oxide, calcium oxide, barium oxide, lanthanum oxide, cerium oxide, strontium oxide, vanadium oxide, SiO 2
-MgO (magnesium silicate), SiO 2 -CaO (calcium silicate), hydrotalcite, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lanthanum carbonate, cerium carbonate, basic titanate, basic silicic titanate, basic copper acetate, basic lead sulfate, layered double hydroxide (Mg-Al type, Mg-Fe type, Ni
-Fe type, Li-Al type), layered double hydroxide-alumina silica gel complex, boehmite, alumina, zinc oxide, lead oxide, iron oxide, iron oxyhydroxide, hematite, bismuth oxide, tin oxide, titanium oxide, zirconium oxide and other anion adsorbents, zirconium phosphate, titanium phosphate, apatite, non-basic titanates, niobates, niobium titanates and other cation adsorbents, zeolite, calcium sulfate, magnesium sulfate, aluminum sulfate, gypsum, barium sulfate, alumina trihydrate (AT H), oxide-based ceramics such as fumed silica, precipitated silica, zirconia, and yttria, nitride-based ceramics such as silicon nitride, titanium nitride, and boron nitride, silicon carbide, kaolinite, talc, dickite, nacrite, halloysite, pyro-inorganic particles, layered silicates such as montmorillonite, sericite, amesite, and bentonite, asbestos, diatomaceous earth, glass fiber, synthetic layered silicates such as mica or fluoromica, and zinc borate. These may be used alone or in combination of two or more. Among these, barium sulfate is particularly preferred, and precipitated barium sulfate is more preferred. Specifically, barium sulfate particles are obtained by a method of obtaining barium sulfate by adding sulfuric acid to barium carbonate or barium sulfide (sulfuric acid method), and a method of obtaining barium sulfate by adding sodium sulfate to barium chloride (mirabilite method). By using barium sulfate particles produced by a synthetic method, the volume average particle size of the inorganic particles can be controlled with high precision.
The inorganic particles in the present invention have a BET specific surface area of 6.5 m 2 /g or more and 30 m 2 /g or less, preferably 10 m 2 /g or more and 25 m 2 /g or more, more preferably 15 m 2 /g or more and 20 m 2 /g or less. If the BET specific surface area is less than 6.5 m 2 /g, the contact points between the inorganic particles in the heat-resistant porous layer are reduced, so that the structure of the heat-resistant porous layer becomes fragile, and it becomes difficult to suppress the shrinkage of the polyolefin porous film at high temperatures, or the heat-resistant porous layer may fall off and be mixed into the battery during the battery manufacturing process, resulting in a high defective rate of the battery. If the BET specific surface area is greater than 30 m 2 /g, the gaps between the inorganic particles are reduced, so that the migration path of lithium ions in the battery may become narrow or long, resulting in a high electrical resistance. Furthermore, the inorganic particles may clog the pores of the polyolefin porous film, which may significantly reduce the performance of the battery. When the inorganic particles have a BET specific surface area of 6.5 m 2 /g or more and 30 m 2 /g or less, the heat-resistant porous layer can be prevented from falling off without impairing the heat shrinkage resistance of the heat-resistant porous layer.
[水溶性高分子]
本発明で用いる水溶性高分子は、高分子骨格に、アミノ基、アミド基、カルボニル基、カルボキシル基、スルホニル基、リン酸基、水酸基、アルキル基およびハロゲン基からなる群から選ばれる少なくとも1つの官能基を含んでいる。この事により耐熱性多孔層を構成する無機粒子同士を結着させる効果、及び耐熱性多孔層をポリオレフィン多孔質膜と密着させる効果を発現することができる。水溶性高分子として、特に限定されるものではないが、具体的には(メタ)アクリル酸共重合樹脂、ポリアクリルアミド樹脂、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリ(メタ)アラミド樹脂、ポリエチレングリコール樹脂、セルロースエーテル樹脂、の群より選ばれる1つ以上を使用することができ、中でも、セルロースエーテル樹脂、ポリビニルアルコール樹脂、ポリアクリルアミド樹脂が好ましく、セルロースエーテル樹脂、ポリアクリルアミド樹脂がさらに好ましい。これらの水溶性高分子は、単独あるいは二種以上を混合して用いてもよい。ここで言う水溶性高分子とは少なくとも150℃以上の耐熱性を持つものである。例えば、市販されている水溶液を使用することができ、アクリル系樹脂として、具体的には、東亜合成株式会社製“ジュリマー”(登録商標)AT-210、ET-410、“アロン”(登録商標)A-104、AS-2000、NW-7060、荒川化学株式会社製“ポリストロン”(登録商標)117、705、1280、昭和電工株式会社製“コーガム”(登録商標)シリーズ等が挙げられる。ポリビニルアルコールとして、クラレ株式会社製“クラレポバール”(登録商標)3-98、3-88、三菱ケミカル株式会社製“ゴーセノール”(登録商標)N-300、GH-20等が挙げられる。セルロース系樹脂として、日本製紙株式会社製“サンローズ”(登録商標)MACシリーズ等が挙げられる。
[その他添加剤]
前記耐熱性多孔層には、無機粒子の分散安定性を向上させる目的の分散剤や、塗工性を
向上させる目的で増粘剤及び濡れ剤等、耐熱性を向上させる目的で熱硬化剤及び架橋剤等
を適宜含んでもよい。市販されている水溶液又は水分散体を使用することができ、アクリ
ル系樹脂として、具体的には、昭和電工株式会社製“ポリゾール”シリーズ、日本ゼオン(
株)製“BM”シリーズ、東亜合成株式会社製“ジュリマー”(登録商標)AT-210、
ET-410、“アロン”(登録商標)A-104、AS-2000、NW-7060、
トーヨーケム株式会社製“LIOAMLUM”(登録商標)シリーズ、JSR株式会社製 TRD202A、TRD102A、荒川化学株式会社製“ポリストロン”(登録商標)117、705、1280、昭和電工株式会社製“コーガム”(登録商標)シリーズ、大成ファインケミカル株式会社製 WEM-200U、及びWEM-3000等が挙げられる。ポリビニルアルコールとして、クラレ株式会社製“クラレポバール”(登録商標)3-98、3-88、三菱ケミカル株式会社製“ゴーセノール”(登録商標)N-300、GH-20等が
挙げられる。
[耐熱性多孔層の重量組成比]
本発明の実施形態における耐熱性多孔層に含まれる無機粒子の含有量は、耐熱性多孔質層を形成する組成物の合計を100質量%として92質量%以上、99質量%以下である。より好ましくは93質量%以上、98質量%以下であり、さらに好ましくは94質量%以上、97質量%以下である。無機粒子の含有量が92質量%より小さいと、高温時にポリオレフィン多孔質膜が収縮するのを抑制することが困難となる場合がある。無機粒子の含有量が99質量%より大きいと、無機粒子同士を結着している組成物が少ないために、耐熱性多孔層の脱落が多くなる場合がある。
[Water-soluble polymer]
The water-soluble polymer used in the present invention contains at least one functional group selected from the group consisting of amino group, amide group, carbonyl group, carboxyl group, sulfonyl group, phosphoric acid group, hydroxyl group, alkyl group and halogen group in the polymer skeleton. This can exert the effect of binding inorganic particles constituting the heat-resistant porous layer together and the effect of adhering the heat-resistant porous layer to the polyolefin porous membrane. The water-soluble polymer is not particularly limited, but specifically, one or more selected from the group consisting of (meth)acrylic acid copolymer resin, polyacrylamide resin, polyvinyl alcohol resin, polyamide resin, poly(meth)aramid resin, polyethylene glycol resin and cellulose ether resin can be used, among which cellulose ether resin, polyvinyl alcohol resin and polyacrylamide resin are preferred, and cellulose ether resin and polyacrylamide resin are more preferred. These water-soluble polymers may be used alone or in combination of two or more. The water-soluble polymer referred to here is one having a heat resistance of at least 150°C or more. For example, commercially available aqueous solutions can be used. Specific examples of acrylic resins include "Jurymer" (registered trademark) AT-210, ET-410, "Aron" (registered trademark) A-104, AS-2000, and NW-7060 manufactured by Toa Gosei Co., Ltd., "Polystron" (registered trademark) 117, 705, and 1280 manufactured by Arakawa Chemical Co., Ltd., and "Kogam" (registered trademark) series manufactured by Showa Denko K.K. Examples of polyvinyl alcohols include "Kuraray Poval" (registered trademark) 3-98 and 3-88 manufactured by Kuraray Co., Ltd., and "Gosenol" (registered trademark) N-300 and GH-20 manufactured by Mitsubishi Chemical Corporation. Examples of cellulose resins include "Sunrose" (registered trademark) MAC series manufactured by Nippon Paper Industries Co., Ltd.
[Other additives]
The heat-resistant porous layer may appropriately contain a dispersant for improving the dispersion stability of inorganic particles, a thickener and a wetting agent for improving coating properties, and a thermosetting agent and a crosslinking agent for improving heat resistance. Commercially available aqueous solutions or aqueous dispersions can be used. Specific examples of acrylic resins include the "Polysol" series manufactured by Showa Denko K.K. and Nippon Zeon Co., Ltd.
"BM" series manufactured by Toa Gosei Co., Ltd., "Jurimer" (registered trademark) AT-210 manufactured by Toa Gosei Co., Ltd.,
ET-410, "Aron" (registered trademark) A-104, AS-2000, NW-7060,
Examples of the polyvinyl alcohol include "LIOAMLUM" (registered trademark) series manufactured by Toyochem Co., Ltd., TRD202A and TRD102A manufactured by JSR Corporation, "Polystron" (registered trademark) 117, 705 and 1280 manufactured by Arakawa Chemical Co., Ltd., "Kogam" (registered trademark) series manufactured by Showa Denko K.K., and WEM-200U and WEM-3000 manufactured by Taisei Fine Chemical Co., Ltd. Examples of the polyvinyl alcohol include "Kuraray Poval" (registered trademark) 3-98 and 3-88 manufactured by Kuraray Co., Ltd., and "GOHSENOL" (registered trademark) N-300 and GH-20 manufactured by Mitsubishi Chemical Corporation.
[Weight composition ratio of heat-resistant porous layer]
The content of inorganic particles contained in the heat-resistant porous layer in the embodiment of the present invention is 92% by mass or more and 99% by mass or less, with the total composition forming the heat-resistant porous layer being 100% by mass.More preferably, it is 93% by mass or more and 98% by mass or less, and even more preferably, it is 94% by mass or more and 97% by mass or less.If the content of inorganic particles is less than 92% by mass, it may be difficult to suppress the shrinkage of polyolefin porous membrane at high temperature.If the content of inorganic particles is more than 99% by mass, the composition that binds inorganic particles together is small, so that the heat-resistant porous layer may fall off more.
[耐熱性多孔層の平均厚さ]
本発明の実施形態における耐熱性多孔層の平均厚さは、0.5μm以上、4.0μm以下であることが好ましい。より好ましくは1.0μm以上、3.0μm以下であり、さらに好ましくは1.5μm以上、2.5μm以下である。耐熱性多孔層の厚さが0.5μmより小さいと、熱によるポリオレフィン多孔質膜の収縮を抑制することができなくなる場合がある。耐熱性多孔層の平均厚さが4.0μmより大きいと、電池セルの正極と負極の極間距離が大きくなるために、電気抵抗度が大きくなったり、電池の体積に占める電池用セパレータの割合が多くなり、電池の体積エネルギー密度が低くなる場合がある。耐熱性多孔質層の平均厚さが0.5μm以上、4.0μm以下であると、耐熱性多孔層によるポリオレフィン多孔質膜の熱収縮抑制効果が得られ、電気抵抗度が大きくなることがない。また、電池用セパレータの厚さに占める耐熱性多孔質の厚さの割合が多いほど、耐熱性多孔層によるポリオレフィン多孔質膜の熱収縮抑制効果は大きくなる。
[Average thickness of heat-resistant porous layer]
The average thickness of the heat-resistant porous layer in the embodiment of the present invention is preferably 0.5 μm or more and 4.0 μm or less. More preferably, it is 1.0 μm or more and 3.0 μm or less, and even more preferably, it is 1.5 μm or more and 2.5 μm or less. If the thickness of the heat-resistant porous layer is smaller than 0.5 μm, it may not be possible to suppress the shrinkage of the polyolefin porous film due to heat. If the average thickness of the heat-resistant porous layer is larger than 4.0 μm, the distance between the positive and negative electrodes of the battery cell increases, so that the electrical resistance increases, or the proportion of the battery separator in the volume of the battery increases, and the volumetric energy density of the battery may decrease. If the average thickness of the heat-resistant porous layer is 0.5 μm or more and 4.0 μm or less, the heat-resistant porous layer can suppress the thermal shrinkage of the polyolefin porous film, and the electrical resistance does not increase. Furthermore, the greater the ratio of the thickness of the heat-resistant porous layer to the thickness of the battery separator, the greater the effect of the heat-resistant porous layer in suppressing the thermal shrinkage of the polyolefin porous membrane.
[耐熱性多孔層の形成方法]
本発明における耐熱性多孔層は以下の工程で得ることができる。
(a)無機粒子と水溶性高分子と添加剤と分散媒を用いた耐熱性多孔層用塗工液の作製。
(b)ポリオレフィン多孔質膜の少なくとも片面、又は両面に前記塗工液を塗工する工程。
(c)前記塗工後、分散媒をドライヤーで乾燥させ、耐熱性多孔層を形成する工程。
[Method of forming heat-resistant porous layer]
The heat-resistant porous layer of the present invention can be obtained by the following steps.
(a) Preparation of a coating liquid for a heat-resistant porous layer using inorganic particles, a water-soluble polymer, an additive, and a dispersion medium.
(b) A step of applying the coating liquid to at least one surface or both surfaces of a polyolefin porous membrane.
(c) After the coating, the dispersion medium is dried with a dryer to form a heat-resistant porous layer.
前記工程(a)において、分散媒として水を用いることが好ましい。耐熱性多孔層用塗工液の分散安定性を損なわない範囲であれば、分散媒として水にエタノール、イソプロパノール、N-メチルピロリドンなどの親水性の溶媒を混ぜたものを使用してもよい。耐熱性多孔層用塗工液を分散処理する方法は、公知の方法を用いることができる。例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、プラネタリーミキサーおよび遊星式混練機、超音波分散、撹拌羽根等による機械撹拌等が挙げられる。分散が不十分であると、耐熱性多孔層によるポリオレフィン多孔質膜の熱収縮抑制効果が低下する場合がある。 In the step (a), it is preferable to use water as the dispersion medium. As long as the dispersion stability of the coating liquid for the heat-resistant porous layer is not impaired, a mixture of water and a hydrophilic solvent such as ethanol, isopropanol, or N-methylpyrrolidone may be used as the dispersion medium. The method for dispersing the coating liquid for the heat-resistant porous layer can be a known method. For example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, a roll mill, high-speed impeller dispersion, a disperser, a homogenizer, a planetary mixer and a planetary kneader, ultrasonic dispersion, mechanical stirring with a stirring blade, etc. may be used. If the dispersion is insufficient, the effect of suppressing the thermal shrinkage of the polyolefin porous film by the heat-resistant porous layer may be reduced.
前記工程(b)において、ポリオレフィン多孔質膜の少なくとも片面又は両面に耐熱性
多孔層用塗工液を塗工する方法は公知の方法を用いることができる。例えば、ダイレクトグラビアコート法、リバースグラビアコート法、キスリバースグラビアコート法、ダイレクトバーコート法、ロールブラッシュ法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法及びダイコート法等が挙げられ、これらの方法は単独又は組み合わせて行うことができる。
In the step (b), the method of applying the heat-resistant porous layer coating liquid to at least one side or both sides of the polyolefin porous membrane can be a known method.For example, direct gravure coating method, reverse gravure coating method, kiss reverse gravure coating method, direct bar coating method, roll brush method, air knife coating method, Mayer bar coating method, pipe doctor method, blade coating method and die coating method can be included, and these methods can be performed alone or in combination.
本発明の実施形態に係る電池用セパレータは、ニッケル-水素電池、ニッケル-カドミ
ウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウムイオン二次電池、リチウムポリ
マー二次電池、及びリチウム-硫黄電池等の二次電池等の電池用セパレータとして用いる
ことができる。特に、リチウムイオン二次電池のセパレータとして用いるのが好ましい。
The battery separator according to the embodiment of the present invention can be used as a battery separator for secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium ion secondary batteries, lithium polymer secondary batteries, and lithium-sulfur batteries, etc. In particular, it is preferable to use it as a separator for lithium ion secondary batteries.
以下、実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で得た値である。
なお、以下において、実施例1、5は、参考例1、5と読み替えるものとする。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The measured values in the examples were obtained by the following methods.
In the following, Examples 1 and 5 shall be read as Reference Examples 1 and 5.
1.BET比表面積(m2/g)
JIS Z 8830(2013)に準じ、比表面積測定装置(株式会社マウンテック製、全自動比表面積測定装置“Macsorb”(登録商標)HM Model-1220)を用いて測定した。
1. BET specific surface area (m 2 /g)
The measurement was performed using a specific surface area measuring device (Mountec Co., Ltd., fully automatic specific surface area measuring device “Macsorb” (registered trademark) HM Model-1220) in accordance with JIS Z 8830 (2013).
2.無機粒子の粒子径(μm)
無機粒子の粒子径は、JIS Z 8825(2013)に従いレーザー回折式粒度分布測定装置(株式会社堀場製作所製、LA-960V2)を用いて、体積基準積算率が50%のときの粒子径D50(μm)を測定した。
3.厚さ(μm)
ポリオレフィン多孔質膜及び電池用セパレータを接触式膜厚計(株式会社ミツトヨ製、“ライトマチック”(登録商標))を使用して、超硬球面測定子φ10.5mm、加重0.15Nの条件で測定し、5点の測定値を平均することによって厚さを求めた。さらに、耐熱性多孔層の厚さは、電池用セパレータを前記耐熱性多孔層用塗工液に含まれる分散媒と同じ分散媒で洗浄し、耐熱性多孔層を除去したポリオレフィン多孔質膜を前記接触式膜厚計にて測定し、下記の計算式にて得た。
2. Inorganic particle size (μm)
The particle size of the inorganic particles was measured using a laser diffraction particle size distribution measuring device (LA-960V2, manufactured by Horiba, Ltd.) in accordance with JIS Z 8825 (2013) to measure the particle size D50 (μm) at a volume-based cumulative ratio of 50%.
3. Thickness (μm)
The polyolefin porous membrane and the battery separator were measured using a contact type thickness gauge (manufactured by Mitutoyo Corporation, "Litematic" (registered trademark)) under the conditions of a superhard spherical probe φ10.5 mm and a load of 0.15 N, and the thickness was obtained by averaging the measured values at five points. Furthermore, the thickness of the heat-resistant porous layer was obtained by washing the battery separator with the same dispersion medium as the dispersion medium contained in the coating liquid for the heat-resistant porous layer, removing the heat-resistant porous layer, measuring the polyolefin porous membrane with the contact type thickness gauge, and calculating according to the following formula.
耐熱性多孔層の厚さ=電池用セパレータの厚さ-ポリオレフィン多孔質膜の厚さ
4.透気抵抗度(sec/100mlAir)
JIS P 8117に準じ、王研式透気抵抗度計(旭精工株式会社製、EGO-1T)を使用して、5点の測定値を平均することによって透気抵抗度を求めた。耐熱性多孔層による透気抵抗度上昇量は、電池用セパレータを前記耐熱性多孔層用塗工液に含まれる分散媒と同じ分散媒で洗浄し、耐熱性多孔層を除去したポリオレフィン多孔質膜を前記王研式透気抵抗度計にて測定し、下記の計算式にて得た。
Thickness of heat-resistant porous layer = thickness of battery separator - thickness of polyolefin porous film 4. Air permeability resistance (sec/100 ml Air)
According to JIS P 8117, the air resistance was calculated by averaging the measured values of five points using an Oken air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T). The increase in air resistance due to the heat-resistant porous layer was calculated by washing the battery separator with the same dispersion medium as that contained in the coating liquid for the heat-resistant porous layer, removing the heat-resistant porous layer, measuring the polyolefin porous membrane with the Oken air resistance meter, and calculating the air resistance using the following formula.
透気抵抗度上昇量=電池用セパレータの透気抵抗度-ポリオレフィン多孔質膜の透気抵抗度
5.熱収縮率(%)
電池用セパレータのMD方向(長さ方向)とTD方向(幅方向)の熱収縮率は下記の方法にて測定した。
(1)電池用セパレータをMD方向100mm×TD方向100mmの大きさに3枚切り出し、透明なガラススケール(測定精度0.1mm)を用いて、電池用セパレータの対辺の中点同士の距離をMD方向の長さ、TD方向の長さとして測定し、初期寸法(mm)と
する。
(2)前記電池用セパレータをA3サイズの紙2枚で挟み、温度150℃のオーブンに入れ、1時間放置した後、オーブンから電池用セパレータを取り出して30分間室温で放置した。
(3)前記ガラススケールを用いて、電池用セパレータの対辺の中点同士の距離を再度測定し、収縮後の寸法(mm)とした。この時の測定位置は初期寸法を測定した位置と
同じ位置であり、電池用セパレータの端部がカールしていた場合は、広げて測定を実施し
た。得られた初期寸法と、収縮後の寸法より、下記計算式にてMD方向、及びTD方向の熱収縮率(%)を得た。
Increase in air permeability resistance = air permeability resistance of battery separator - air permeability resistance of polyolefin porous membrane 5. Heat shrinkage rate (%)
The heat shrinkage rates of the battery separator in the MD direction (length direction) and TD direction (width direction) were measured by the following method.
(1) The battery separator is cut into three pieces measuring 100 mm in the MD direction x 100 mm in the TD direction, and using a transparent glass scale (measurement accuracy 0.1 mm), the distance between the midpoints of opposite sides of the battery separator is measured as the length in the MD direction and the length in the TD direction, and these are defined as the initial dimensions (mm).
(2) The battery separator was sandwiched between two sheets of A3 size paper and placed in an oven at 150° C. for 1 hour, after which the battery separator was removed from the oven and left at room temperature for 30 minutes.
(3) Using the glass scale, the distance between the midpoints of the opposite sides of the battery separator was measured again, and this was taken as the dimension after shrinkage (mm). The measurement position was the same as the position where the initial dimension was measured, and if the end of the battery separator was curled, it was spread out and the measurement was performed. From the obtained initial dimension and the dimension after shrinkage, the thermal shrinkage rate (%) in the MD direction and the TD direction was calculated using the following formula.
熱収縮率(%)={初期寸法(mm)-収縮後の寸法(mm)}/初期寸法(mm)×100
6.耐熱性多孔層の脱落量(mg)
電池用セパレータからの耐熱性多孔層の脱落量は摩擦測定機(株式会社トリニティーラボ製、静・動摩擦測定機TL201Ttを用いて、下記の方法にて測定した。
(1)電池用セパレータをTD方向49mm×MD方向110mmの大きさに切り出し、電子天秤(測定精度0.01mg)を用いて、重量(mg)を測定した。
(2)50mm×50mmに切り出した片面粘着クッションテープ(トラスコ中山株式会社製、エッジクッションテープTEC-50BK)を接触面に貼った50mm×50mmの平面接触子に、前記クッションテープとポリオレフィン多孔質膜面(片面に耐熱性多孔層を有する電池用セパレータの場合)もしくは測定しない耐熱性多孔層面(両面に耐熱性多孔層を有する電池用セパレータの場合)が接するように前記電池用セパレータを固定する。
(3)90mm×220mmに切り出した研磨フィルム#6000(3MTM製、フィルム研磨材A3-2SHT)を前記静・動摩擦測定機の摺動部に水平に固定する。
(4)前記研磨フィルムと前記接触子に固定した電池用セパレータの耐熱性多孔層を接触させ、前記接触子に1kgの重りを載せる。この際の研磨フィルムと耐熱性多孔層の接触面積は49mm×50mmとなる。
(5)前記静・動摩擦測定機の摺動部を水平方向に速度10mm/sec、距離25mm、往復5回摺動させた後、前記接触子から電池用セパレータを取り外し、電子天秤(測定精度0.01mg)を用いて、重量(mg)を測定した。
(6)得られた試験前後の電池用セパレータの重量(mg)より、下記計算式にて耐熱性多孔層の脱落量(mg)を得た。
Heat shrinkage rate (%) = {initial dimension (mm) - dimension after shrinkage (mm)} / initial dimension (mm) x 100
6. Amount of heat-resistant porous layer that fell off (mg)
The amount of the heat-resistant porous layer that had fallen off from the battery separator was measured using a friction tester (manufactured by Trinity Lab Co., Ltd., a static and dynamic friction tester TL201Tt) according to the following method.
(1) The battery separator was cut into a size of 49 mm in the TD direction × 110 mm in the MD direction, and the weight (mg) was measured using an electronic balance (measurement accuracy 0.01 mg).
(2) A 50 mm x 50 mm flat contactor having a single-sided adhesive cushion tape (Edge Cushion Tape TEC-50BK, manufactured by TRUSCO NAKAYAMA CORPORATION) cut to a size of 50 mm x 50 mm attached to its contact surface is fixed to the battery separator so that the cushion tape is in contact with the polyolefin porous membrane surface (in the case of a battery separator having a heat-resistant porous layer on one surface) or the heat-resistant porous layer surface not to be measured (in the case of a battery separator having heat-resistant porous layers on both surfaces).
(3) A piece of polishing film #6000 (film abrasive A3-2SHT, manufactured by 3M TM ) cut to a size of 90 mm x 220 mm is fixed horizontally to the sliding portion of the static and dynamic friction measuring device.
(4) The polishing film is brought into contact with the heat-resistant porous layer of the battery separator fixed to the contact, and a weight of 1 kg is placed on the contact. At this time, the contact area between the polishing film and the heat-resistant porous layer is 49 mm x 50 mm.
(5) After the sliding part of the static and dynamic friction tester was slid back and forth five times in the horizontal direction at a speed of 10 mm/sec and a distance of 25 mm, the battery separator was removed from the contact and the weight (mg) was measured using an electronic balance (measurement accuracy 0.01 mg).
(6) From the weights (mg) of the battery separator before and after the test, the amount (mg) of the heat-resistant porous layer that fell off was calculated using the following formula.
耐熱性多孔層の脱落量(mg)=試験前の電池用セパレータの重量(mg)-試験後の電池用セパレータの重量(mg)
7.耐熱性多孔層の180°剥離強度(N/m)
耐熱性多孔層の180°剥離強度は卓上形精密万能試験機(株式会社島津製作所製、オートグラフAGS-X)を用いて、下記の方法にて測定した。
(1)電池用セパレータをTD方向25mm×MD方向100mmの大きさに切り出す。
(2)前記電池用セパレータのポリオレフィン多孔質膜面(片面に耐熱性多孔層を有する電池用セパレータの場合)もしくは測定しない耐熱性多孔層面(両面に耐熱性多孔層を有する電池用セパレータの場合)に、20mm×90mmの大きさに切り出したフィルム両面テープを貼り、ゴムローラー(テスター産業株式会社製、SA-1003-Bテープ圧着ロール手動型、ロール重量2kg、ゴム硬度80±5Hs)を用いて1往復圧着する。(3)前記フィルム両面テープの剥離ライナーを剥がした後、50mm×150mmの金属板に前記電池用セパレータを固定する。
(4)前記金属板に固定した電池用セパレータの耐熱性多孔層面に片面粘着テープ(ニチバン株式会社製、“セロテープ”(登録商標)No.405)15mm幅を貼り、前記ゴムローラーを用いて5往復圧着した。
(5)前記電池用セパレータが固定された金属板を前記卓上形精密万能試験機に垂直に固定し、前記片面粘着テープを圧着してから5分以内に、前記片面粘着テープを180°方向、100mm/secの速度で剥離し、剥離距離40mmから100mmまでの強度の平均値を求めた。
(6)得られた剥離強度と前記片面粘着テープの幅より、下記計算式にて耐熱性多孔層の180°剥離強度(N/m)を得た。
Amount of fallen heat-resistant porous layer (mg)=Weight of battery separator before test (mg)−Weight of battery separator after test (mg)
7. 180° peel strength of heat-resistant porous layer (N/m)
The 180° peel strength of the heat-resistant porous layer was measured by the following method using a table-top precision universal testing machine (Autograph AGS-X, manufactured by Shimadzu Corporation).
(1) A battery separator is cut into a piece measuring 25 mm in the TD direction x 100 mm in the MD direction.
(2) A double-sided film tape cut to a size of 20 mm x 90 mm is applied to the polyolefin porous membrane surface of the battery separator (in the case of a battery separator having a heat-resistant porous layer on one side) or the heat-resistant porous layer surface not to be measured (in the case of a battery separator having a heat-resistant porous layer on both sides), and is pressed back and forth once using a rubber roller (manufactured by Tester Sangyo Co., Ltd., SA-1003-B tape pressing roll manual type, roll weight 2 kg, rubber hardness 80 ± 5 Hs). (3) After peeling off the release liner of the double-sided film tape, the battery separator is fixed to a metal plate of 50 mm x 150 mm.
(4) A 15 mm wide single-sided adhesive tape (Nichiban Co., Ltd., "Cellotape" (registered trademark) No. 405) was applied to the heat-resistant porous layer surface of the battery separator fixed to the metal plate, and the tape was pressed back and forth five times using the rubber roller.
(5) The metal plate to which the battery separator was fixed was fixed vertically to the bench-top precision universal testing machine, and within 5 minutes after the single-sided adhesive tape was applied, the single-sided adhesive tape was peeled off in a 180° direction at a speed of 100 mm/sec, and the average strength was determined from a peel distance of 40 mm to 100 mm.
(6) From the obtained peel strength and the width of the single-sided adhesive tape, the 180° peel strength (N/m) of the heat-resistant porous layer was calculated using the following formula.
耐熱性多孔層の180°剥離強度(N/m)=得られた剥離強度(N)/片面粘着テープの幅(mm)
8.電池の不良率
[正極の作製]
バインダーとしてPVDFを1.2質量部含むNMP溶液を、活物質としてのコバルト
酸リチウム97質量部、カーボンブラック1.8質量部に加えて混合し、正極合剤含有ス
ラリーとした。この正極合剤含有スラリーを、厚みが20μmのアルミ箔からなる正極集
電体の両面に均一に塗布して乾燥して正極層を形成し、その後、ロールプレス機により圧
縮成型して集電体を除いた正極層の密度を3.6g/cm3にして正極を作製した。
180° peel strength of heat-resistant porous layer (N/m)=obtained peel strength (N)/width of single-sided adhesive tape (mm)
8. Battery defect rate [Positive electrode production]
An NMP solution containing 1.2 parts by mass of PVDF as a binder was added to 97 parts by mass of lithium cobalt oxide as an active material and 1.8 parts by mass of carbon black to prepare a positive electrode mixture-containing slurry. The positive electrode mixture-containing slurry was uniformly applied to both sides of a positive electrode current collector made of aluminum foil with a thickness of 20 μm and dried to form a positive electrode layer, which was then compression-molded by a roll press machine to set the density of the positive electrode layer excluding the current collector to 3.6 g/cm 3 to prepare a positive electrode.
[負極の作製]
カルボキシメチルセルロースナトリウムを1.0質量部含む水溶液を、活物質としての
人造黒鉛98質量部に加えて混合し、さらにバインダーとして固形分として1.0質量部
含むスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この
負極合剤含有スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に均一に塗付
して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.45g/cm3にして、負極を作製した。
[試験用電池の作製]
上記正極、負極にタブ付けされたものと各微多孔膜を使用して巻回体を作製した。次に、アルミラミネート袋内に巻回体を入れ、電解液(1.1mol/L,LiPF6,エチレンカーボネート/エチルメチルカーボネート/ジエチレンカーボネート=3/5/2(体積比)に0.5重量%ビニレンカーボネート、2重量%フルオロエチレンカーボネートを添加したもの)を注液し、真空シーラーにて封止した。次に温度35℃、0.2C(Cは電池が1時間で満充電できる電流値をあらわし、本電池の場合300mAとしている)にて全容量の10%を充電し、12時間保管後、ガス抜きのためにラミネートの1辺を開け、すぐに真空シーラーで封止した。次に、温度35℃で、0.1C、4.35V、カットオフ電流0.05Cの定電流定電圧充電した後、0.1Cで3.0Vまで定電流放電した。これら一連の充放電が初回充放電となる。これを300mAh級の試験用電池とした。
[Preparation of negative electrode]
An aqueous solution containing 1.0 part by mass of sodium carboxymethylcellulose was added to and mixed with 98 parts by mass of artificial graphite as an active material, and then styrene butadiene latex containing 1.0 part by mass as a solid content as a binder was added and mixed to prepare a negative electrode mixture-containing slurry. This negative electrode mixture-containing slurry was uniformly applied to both sides of a negative electrode current collector made of copper foil with a thickness of 10 μm and dried to form a negative electrode layer, which was then compression-molded by a roll press machine to set the density of the negative electrode layer excluding the current collector to 1.45 g/cm 3 , thereby preparing a negative electrode.
[Preparation of test batteries]
The positive and negative electrodes were tabbed and each microporous membrane was used to prepare a wound body. Next, the wound body was placed in an aluminum laminate bag, and an electrolyte (1.1 mol/L, LiPF 6 , ethylene carbonate/ethyl methyl carbonate/diethylene carbonate=3/5/2 (volume ratio) to which 0.5 wt% vinylene carbonate and 2 wt% fluoroethylene carbonate were added) was poured, and the bag was sealed with a vacuum sealer. Next, the battery was charged to 10% of its total capacity at a temperature of 35° C. and 0.2 C (C represents the current value at which the battery can be fully charged in 1 hour, and in the case of this battery, it is set to 300 mA), and after storing for 12 hours, one side of the laminate was opened to release gas, and immediately sealed with a vacuum sealer. Next, the battery was charged at a constant current and constant voltage of 0.1 C, 4.35 V, and a cutoff current of 0.05 C at a temperature of 35° C., and then discharged at a constant current of 0.1 C to 3.0 V. This series of charge and discharge was the initial charge and discharge. This was used as a 300 mAh class test battery.
[電池の不良率(%)]
前記試験用電池を100個作製し、下記計算式にて求められる初回充放電効率が95%未満の電池の個数を不良率とした。
[Battery defect rate (%)]
100 test batteries were produced, and the number of batteries having an initial charge/discharge efficiency of less than 95%, calculated according to the following formula, was taken as the defective rate.
初回充放電効率(%)=初回放電容量/初回充電容量×100
9.電池の釘刺し試験
前記試験用電池5個を用いてSAE J2464に準じ、釘刺し試験を実施し、下記の基準により評価した。
発火なし:5個全てで発火なし
発火あり:5個全てで発火あり
(実施例1)
沈降性硫酸バリウム(BET比表面積6.5m2/g、粒子径D50=0.40μm)100重量部に対し、1.0重量部(有効成分)のポリアクリル酸系分散剤(東亜合成株式会社製、アロン(登録商標)A-6114)を用意し、水に加える。次に、ディスパー型の羽根を取り付けた撹拌機(東機産業株式会社製、スリーワンモーター)にて700rpmで撹拌しながら、前記沈降性硫酸バリウムを全量加え、1000rpmで60分攪拌して、固形分が60重量%の混合液を得た。
Initial charge/discharge efficiency (%) = initial discharge capacity / initial charge capacity × 100
9. Nail Penetration Test of Battery A nail penetration test was carried out using five of the test batteries in accordance with SAE J2464, and the battery was evaluated according to the following criteria.
No ignition: None of the five pieces ignited. Ignition: All five pieces ignited. (Example 1)
For 100 parts by weight of precipitated barium sulfate (BET specific surface area 6.5 m2 /g, particle size D50 = 0.40 μm), 1.0 part by weight (active ingredient) of a polyacrylic acid-based dispersant (Aron (registered trademark) A-6114, manufactured by Toa Gosei Co., Ltd.) was prepared and added to water. Next, the entire amount of the precipitated barium sulfate was added while stirring at 700 rpm with a mixer equipped with a disperser-type blade (Three-One Motor, manufactured by Toki Sangyo Co., Ltd.), and the mixture was stirred at 1000 rpm for 60 minutes to obtain a mixed solution with a solid content of 60% by weight.
得られた混合液を、ビーズミル分散機(淺田鉄工株式会社製、ピコミルPCM-LR)、及びビーズ粒径が0.5mmのジルコニアビーズ(東レ株式会社製、トレセラムφ0.5mm)を用い、ビーズ充填率65体積%、周速10m/sec、流速16kg/hの条件で3回行い、マスターバッチ液を得た。 The resulting mixture was milled three times using a bead mill disperser (Asada Iron Works, Picomil PCM-LR) and zirconia beads with a bead diameter of 0.5 mm (Toray Industries, Toray Ceram φ0.5 mm) at a bead filling rate of 65% by volume, a peripheral speed of 10 m/sec, and a flow rate of 16 kg/h to obtain a master batch liquid.
得られたマスターバッチ液を前記撹拌機にて700rpmで撹拌しながら、水溶性高分子として、ポリアクリルアミド(荒川化学工業株式会社製、ポリストロン)、添加剤として、アクリル樹脂(昭和電工株式会社製、ポリゾールAP-4735)2.0重量部(有効成分)、濡れ剤(サンノプコ株式会社製、SNウェット366)0.2重量部、及び水を加えた。その後、700rpmで10分撹拌し、固形分55重量%の塗工液を得た。
得られたスラリーを、厚さ12μmのポリオレフィン多孔質膜の片面に、キスリバースグラビア法にて塗工し、温度60℃で乾燥して、耐熱性多孔層の厚さが3μmの電池用セパレータを得た。
While stirring the obtained master batch liquid at 700 rpm with the stirrer, polyacrylamide (Polystron, manufactured by Arakawa Chemical Industries, Ltd.) as a water-soluble polymer, 2.0 parts by weight (active ingredient) of acrylic resin (Polysol AP-4735, manufactured by Showa Denko K.K.) as an additive, 0.2 parts by weight of a wetting agent (SN Wet 366, manufactured by San Nopco Ltd.), and water were added. Thereafter, the mixture was stirred at 700 rpm for 10 minutes to obtain a coating liquid with a solid content of 55% by weight.
The obtained slurry was applied to one side of a polyolefin porous membrane having a thickness of 12 μm by a kiss reverse gravure method and dried at a temperature of 60° C. to obtain a battery separator having a heat-resistant porous layer having a thickness of 3 μm.
得られた電池用セパレータについて、透気抵抗度上昇量、150℃/1h熱収縮率、耐熱性多孔層の脱落量、耐熱性多孔層の180°剥離強度、電池の不良率、及び電池の釘刺し試験を評価した結果を表1に示す。 The results of evaluating the obtained battery separator in terms of the increase in air permeability resistance, the thermal shrinkage rate at 150°C/1h, the amount of heat-resistant porous layer that fell off, the 180° peel strength of the heat-resistant porous layer, the battery defect rate, and the nail penetration test of the battery are shown in Table 1.
(実施例2)
実施例1の沈降性硫酸バリウムを沈降性硫酸バリウム(BET比表面積11.1m2/g、粒子径D50=0.24μm)、ビーズミル分散機での分散を7回、ポリアクリルアミドの配合量を3.0重量部に変えた以外は、実施例1と同様に電池用セパレータを得た。
Example 2
A battery separator was obtained in the same manner as in Example 1, except that the precipitated barium sulfate in Example 1 was replaced with precipitated barium sulfate (BET specific surface area: 11.1 m2 /g, particle size D50: 0.24 μm), dispersion was performed seven times using a bead mill disperser, and the amount of polyacrylamide was changed to 3.0 parts by weight.
(実施例3)
実施例2のポリオレフィン多孔質膜の厚さを20μmに変えた以外は、実施例2と同様に電池用セパレータを得た。
Example 3
A battery separator was obtained in the same manner as in Example 2, except that the thickness of the polyolefin porous membrane in Example 2 was changed to 20 μm.
(実施例4)
実施例2のポリアクリルアミドの配合量を1.5重量部、アクリル樹脂の配合量を5.0重量部に変えた以外は、実施例2と同様に電池用セパレータを得た。
(実施例5)
実施例1の沈降性硫酸バリウムを沈降性硫酸バリウム(BET比表面積17.9m2/g、粒子径D50=0.15μm)、ビーズミル分散機での分散を10回、耐熱性多孔層の厚さを2.5μmに変えた以外は、実施例1と同様に電池用セパレータを得た。
(実施例6)
実施例2のポリアクリルアミドをカルボキシメチルセルロース(GL CHEM製、SG-L02)、塗工液の固形分を40重量%に変えた以外は、実施例2と同様に電池用セパレータを得た。
Example 4
A battery separator was obtained in the same manner as in Example 2, except that the blending amount of polyacrylamide in Example 2 was changed to 1.5 parts by weight, and the blending amount of acrylic resin was changed to 5.0 parts by weight.
Example 5
A battery separator was obtained in the same manner as in Example 1, except that the precipitated barium sulfate in Example 1 was changed to precipitated barium sulfate (BET specific surface area 17.9 m2 /g, particle size D50 = 0.15 μm), dispersion was performed 10 times using a bead mill disperser, and the thickness of the heat-resistant porous layer was changed to 2.5 μm.
Example 6
A battery separator was obtained in the same manner as in Example 2, except that the polyacrylamide in Example 2 was changed to carboxymethyl cellulose (SG-L02, manufactured by GL CHEM) and the solid content of the coating liquid was changed to 40% by weight.
(比較例1)
実施例1の沈降性硫酸バリウムを沈降性硫酸バリウム(BET比表面積5.5m2/g、粒子径D50=0.50μm)に変えた以外は、実施例1と同様に電池用セパレータを得た。
(Comparative Example 1)
A battery separator was obtained in the same manner as in Example 1, except that the precipitated barium sulfate in Example 1 was changed to precipitated barium sulfate (BET specific surface area: 5.5 m 2 /g, particle size D50: 0.50 μm).
(比較例2)
実施例2の沈降性硫酸バリウムを沈降性硫酸バリウム(BET比表面積31.0m2/g、粒子径D50=0.09μm)、ビーズミル分散機での分散を10回、アクリル樹脂の配合量を4.0重量部に変えた以外は、実施例2と同様に電池用セパレータを得た。
(Comparative Example 2)
A battery separator was obtained in the same manner as in Example 2, except that the precipitated barium sulfate in Example 2 was changed to precipitated barium sulfate (BET specific surface area: 31.0 m2 /g, particle size D50: 0.09 μm), dispersion was performed 10 times using a bead mill disperser, and the amount of acrylic resin was changed to 4.0 parts by weight.
(比較例3)
実施例4のアクリル樹脂の配合量を8.0重量部に変えた以外は、実施例4と同様に電池用セパレータを得た。
(Comparative Example 3)
A battery separator was obtained in the same manner as in Example 4, except that the blending amount of the acrylic resin in Example 4 was changed to 8.0 parts by weight.
(比較例4)
実施例1の沈降性硫酸バリウムを簸性硫酸バリウム(BET比表面積9.1m2/g、粒子径D50=0.40μm)に変えた以外は、実施例1と同様に電池用セパレータを得た。
(Comparative Example 4)
A battery separator was obtained in the same manner as in Example 1, except that the precipitated barium sulfate in Example 1 was changed to elutriated barium sulfate (BET specific surface area 9.1 m 2 /g, particle size D50=0.40 μm).
(比較例5)
実施例1の沈降性硫酸バリウムをアルミナ(BET比表面積6.5m2/g、粒子径D50=0.50μm)、ビーズミル分散機での分散を12回に変えた以外は、実施例1と同様に電池用セパレータを得た。
(Comparative Example 5)
A battery separator was obtained in the same manner as in Example 1, except that the precipitated barium sulfate in Example 1 was replaced with alumina (BET specific surface area 6.5 m 2 /g, particle size D50=0.50 μm) and the dispersion using the bead mill disperser was performed 12 times.
本発明のセパレータは、リチウムイオン電池などの非水電解質電池に好ましく用いられ
るバッテリー用セパレータとして好適に用いることができる。
The separator of the present invention can be suitably used as a battery separator preferably used in non-aqueous electrolyte batteries such as lithium ion batteries.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020201584A JP7639314B2 (en) | 2020-12-04 | 2020-12-04 | Battery separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020201584A JP7639314B2 (en) | 2020-12-04 | 2020-12-04 | Battery separator |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022089292A JP2022089292A (en) | 2022-06-16 |
JP2022089292A5 JP2022089292A5 (en) | 2023-11-29 |
JP7639314B2 true JP7639314B2 (en) | 2025-03-05 |
Family
ID=81989591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020201584A Active JP7639314B2 (en) | 2020-12-04 | 2020-12-04 | Battery separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7639314B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117936947B (en) * | 2024-03-21 | 2024-05-31 | 广州鑫虹兴电子有限公司 | Solid electrolyte of lithium battery and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013064116A (en) | 2011-08-31 | 2013-04-11 | Sumitomo Chemical Co Ltd | Coating liquid, laminated porous film, and method for producing laminated porous film |
JP2014002953A (en) | 2012-06-20 | 2014-01-09 | Sumitomo Chemical Co Ltd | Coating liquid, laminated porous film, and nonaqueous electrolyte secondary battery |
US20170338457A1 (en) | 2015-02-12 | 2017-11-23 | Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. | Composite barium sulfate diaphragm and preparation method therefor, and lithium-ion battery |
US20180034027A1 (en) | 2015-04-13 | 2018-02-01 | Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. | Composite separator, method for making the same, and lithium ion battery using the same |
US20180034029A1 (en) | 2015-04-09 | 2018-02-01 | Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. | Composite separator and preparation method therefor, and lithium-ion battery |
WO2019093498A1 (en) | 2017-11-10 | 2019-05-16 | 旭化成株式会社 | Separator for electricity storage devices, and electricity storage device |
WO2020189796A1 (en) | 2019-03-20 | 2020-09-24 | 帝人株式会社 | Non-aqueous secondary battery separator and non-aqueous secondary battery |
WO2020235508A1 (en) | 2019-05-17 | 2020-11-26 | 帝人株式会社 | Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery |
-
2020
- 2020-12-04 JP JP2020201584A patent/JP7639314B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013064116A (en) | 2011-08-31 | 2013-04-11 | Sumitomo Chemical Co Ltd | Coating liquid, laminated porous film, and method for producing laminated porous film |
JP2014002953A (en) | 2012-06-20 | 2014-01-09 | Sumitomo Chemical Co Ltd | Coating liquid, laminated porous film, and nonaqueous electrolyte secondary battery |
US20170338457A1 (en) | 2015-02-12 | 2017-11-23 | Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. | Composite barium sulfate diaphragm and preparation method therefor, and lithium-ion battery |
US20180034029A1 (en) | 2015-04-09 | 2018-02-01 | Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. | Composite separator and preparation method therefor, and lithium-ion battery |
US20180034027A1 (en) | 2015-04-13 | 2018-02-01 | Jiangsu Huadong Institute Of Li-Ion Battery Co., Ltd. | Composite separator, method for making the same, and lithium ion battery using the same |
WO2019093498A1 (en) | 2017-11-10 | 2019-05-16 | 旭化成株式会社 | Separator for electricity storage devices, and electricity storage device |
WO2020189796A1 (en) | 2019-03-20 | 2020-09-24 | 帝人株式会社 | Non-aqueous secondary battery separator and non-aqueous secondary battery |
WO2020235508A1 (en) | 2019-05-17 | 2020-11-26 | 帝人株式会社 | Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2022089292A (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6171117B1 (en) | Non-aqueous secondary battery separator and non-aqueous secondary battery | |
JP5355823B1 (en) | Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery | |
JP6143992B1 (en) | Non-aqueous secondary battery separator and non-aqueous secondary battery | |
JP6193333B2 (en) | Separator and manufacturing method thereof | |
EP3627586B1 (en) | Separator for non-aqueous secondary batteries, non-aqueous secondary battery, and method for producing non-aqueous secondary battery | |
KR20150091471A (en) | Separator for nonaqueous secondary batteries, and nonaqueous secondary battery | |
JPWO2013133074A1 (en) | Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery | |
CN101796668A (en) | Battery separator and nonaqueous electrolyte battery | |
TW202123512A (en) | Ceramic separator and method for manufacturing thereof | |
JP7639314B2 (en) | Battery separator | |
CN113574732B (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
JP7482935B2 (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
WO2022004148A1 (en) | Separator for batteries | |
JP7577963B2 (en) | Battery separator, electrode assembly, non-aqueous electrolyte secondary battery, and method for manufacturing battery separator | |
WO2021181815A1 (en) | Separator for batteries | |
KR20230065150A (en) | Composite separator, manufacturing method thereof, and electrochemical device comprising same | |
JP7402766B2 (en) | Non-aqueous secondary battery | |
JP7298795B1 (en) | battery separator | |
KR20220027454A (en) | Separator and Electrochemical Device using it | |
TWI871346B (en) | Battery Isolation Materials | |
WO2023127716A1 (en) | Battery separator | |
CN116826312B (en) | High-adhesion heat-resistant diaphragm and preparation method and application thereof | |
JP2023135588A (en) | Laminated porous membrane, battery separator, battery and method for manufacturing laminated porous membrane | |
JP2022059716A (en) | Composition for secondary battery separator and heat resistant separator using it | |
JP2023097402A (en) | Laminated porous membrane and battery separator including laminated porous membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231120 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20241113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7639314 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |