[go: up one dir, main page]

JP7632143B2 - Silicone resin composition - Google Patents

Silicone resin composition Download PDF

Info

Publication number
JP7632143B2
JP7632143B2 JP2021116681A JP2021116681A JP7632143B2 JP 7632143 B2 JP7632143 B2 JP 7632143B2 JP 2021116681 A JP2021116681 A JP 2021116681A JP 2021116681 A JP2021116681 A JP 2021116681A JP 7632143 B2 JP7632143 B2 JP 7632143B2
Authority
JP
Japan
Prior art keywords
component
resin composition
silicone resin
molecular weight
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021116681A
Other languages
Japanese (ja)
Other versions
JP2023012918A (en
Inventor
雄斗 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Priority to JP2021116681A priority Critical patent/JP7632143B2/en
Publication of JP2023012918A publication Critical patent/JP2023012918A/en
Application granted granted Critical
Publication of JP7632143B2 publication Critical patent/JP7632143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱伝導性を付与するために熱伝導性充填剤を高充填した場合であっても、流動性を保持し、取扱い性に優れたシリコーン樹脂組成物に関する。 The present invention relates to a silicone resin composition that maintains fluidity and is easy to handle, even when highly filled with a thermally conductive filler to impart thermal conductivity.

電子部品の多くは使用中に熱を発生させるため、機能の維持には熱の除去が必要である。特に最近の電子部品では回路基板の高集積化、高出力化に伴い発熱量も多くなっているため、熱対策は重要な課題となっている。 Many electronic components generate heat during use, and heat removal is necessary to maintain their functionality. In particular, the amount of heat generated by recent electronic components increases with the increasing integration and power output of circuit boards, making heat countermeasures an important issue.

電子部品から熱を除去する手段としては、例えば電子部品とヒートシンクなどの冷却部材との間に熱伝導性のグリースやシートなどの熱伝導性材料を介在させることにより電子部品から熱を逃がす方法が提案されている。このような熱伝導性材料の一つとして、オルガノポリシロキサンおよび酸化アルミニウム粉末、酸化亜鉛粉末などの熱伝導性充填剤からなるシリコーン樹脂組成物が利用されている(特許文献1、特許文献2、または特許文献3を参照)。 As a means of removing heat from electronic components, a method has been proposed in which a thermally conductive material such as thermally conductive grease or sheet is placed between the electronic component and a cooling member such as a heat sink to allow heat to escape from the electronic component. One such thermally conductive material is a silicone resin composition made of organopolysiloxane and a thermally conductive filler such as aluminum oxide powder or zinc oxide powder (see Patent Document 1, Patent Document 2, or Patent Document 3).

上記の熱伝導材料においては、熱伝導性を予測する式として、Bruggmanのモデルが知られている。この式においては、熱伝導性充填剤の充填率が低いと充填率に関わらず熱伝導率がほとんど変化しない一方、一定以上の充填率で急激に上昇することが示されている。つまり、熱伝導材料において熱伝導率を上昇させるためには、いかに多くの熱伝導性充填剤を充填するかが重要となる。 In the above thermally conductive materials, the Brugman model is known as a formula for predicting thermal conductivity. This formula shows that when the filling rate of the thermally conductive filler is low, the thermal conductivity hardly changes regardless of the filling rate, but when the filling rate exceeds a certain level, it increases rapidly. In other words, in order to increase the thermal conductivity of a thermally conductive material, it is important to fill it with as much thermally conductive filler as possible.

一方で、熱伝導性充填剤の充填率を増加させると、熱伝導材料に使用される樹脂組成物の流動性が著しく低下し、樹脂組成物の吐出や塗布が困難となるだけでなく、電子部品やヒートシンク表面の細かな凹凸に追従できなくなり、接触熱抵抗が大きくなる問題がある。この問題を解決する方法として、樹脂組成物に熱伝導性充填剤の分散性を向上させるための添加剤を使用する方法が知られている。 On the other hand, increasing the filling rate of the thermally conductive filler significantly reduces the fluidity of the resin composition used in the thermally conductive material, making it difficult to eject or apply the resin composition, and it also becomes unable to conform to the fine irregularities on the surfaces of electronic components and heat sinks, resulting in increased contact thermal resistance. A known method of solving this problem is to use an additive in the resin composition to improve the dispersibility of the thermally conductive filler.

特開2005-054099号公報JP 2005-054099 A 特開2004-091743号公報JP 2004-091743 A 特開2000-063873号公報JP 2000-063873 A

本発明の課題は、熱伝導性充填剤を高充填した状態でも流動性を保持し、作業性が良好なだけでなく、電子部品等の表面凹凸に追従して接触熱抵抗を低減することで高い放熱性能を有するシリコーン樹脂組成物を提供することである。 The objective of the present invention is to provide a silicone resin composition that not only maintains fluidity and is easy to work with even when highly filled with a thermally conductive filler, but also conforms to the surface irregularities of electronic components and the like to reduce contact thermal resistance, thereby providing high heat dissipation performance.

本発明者らは上記課題を解決するため鋭意検討した結果、特定の構造を有し、分子量分布(Mw/Mn)が1.20以下であるポリオルガノシロキサンと、熱伝導性充填剤を含有するシリコーン樹脂組成物の組合せが有用であることを見出し、本発明を完成するに至った。 As a result of intensive research conducted by the inventors to solve the above problems, they discovered that a combination of a polyorganosiloxane having a specific structure and a molecular weight distribution (Mw/Mn) of 1.20 or less and a silicone resin composition containing a thermally conductive filler is useful, and thus completed the present invention.

すなわち、本発明によれば、以下に示すシリコーン樹脂組成物が提供される。
項1.(A)式(1):

Figure 0007632143000001
(式(1)中、Rは独立して、一価飽和炭化水素基、または一価芳香族炭化水素基であり、Xは末端に水酸基を有する、式(2)または式(3)で表される基であり、nは1以上の整数である。)
Figure 0007632143000002

Figure 0007632143000003
で表される、分子量分布(Mw/Mn)が、1.20以下であるオルガノポリシロキサンと
(B)熱伝導性充填剤
を含有するシリコーン樹脂組成物。 That is, according to the present invention, there is provided the following silicone resin composition.
Item 1. (A) Formula (1):
Figure 0007632143000001
(In formula (1), R 1 is independently a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group, X is a group having a hydroxyl group at its terminal and represented by formula (2) or (3), and n is an integer of 1 or more.)
Figure 0007632143000002

Figure 0007632143000003
and (B) a thermally conductive filler.

本発明のシリコーン樹脂組成物は、熱伝導性充填剤を高充填した場合でも流動性が保持されるため、作業性に優れる。また、電子部品やヒートシンク表面の凹凸に追従するため、高い放熱性能を有する。 The silicone resin composition of the present invention has excellent workability because it maintains its fluidity even when highly filled with thermally conductive filler. In addition, it conforms to the irregularities on the surfaces of electronic components and heat sinks, providing high heat dissipation performance.

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。 The following describes an embodiment of the present invention, but the present invention is not limited to the following embodiment.

[(A)成分]
(A)成分は、式(1)で表される片末端に水酸基を有するオルガノポリシロキサンである。
[Component (A)]
Component (A) is an organopolysiloxane having a hydroxyl group at one terminal, as represented by formula (1).

Figure 0007632143000004
(式(1)中、Rは独立して、一価飽和炭化水素基、または一価芳香族炭化水素基であり、Xは末端に水酸基を二つ有する式(2)で表される基、または末端に水酸基を一つ有する式(3)で表される基であり、nは1以上の整数である。)
Figure 0007632143000005

Figure 0007632143000006
Figure 0007632143000004
(In formula (1), R1 is independently a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group, X is a group represented by formula (2) having two terminal hydroxyl groups or a group represented by formula (3) having one terminal hydroxyl group, and n is an integer of 1 or more.)
Figure 0007632143000005

Figure 0007632143000006

一価飽和炭化水素基としては、直鎖アルキル、分岐鎖アルキル、環状アルキルなどを挙げることができる。直鎖アルキルとしては、例えば、メチル、エチル、プロピル、n-ブチルを挙げることができる。分岐鎖アルキルとしては、例えば、イソプロピル、イソブチル、tert-ブチル、2-エチルヘキシルを挙げることができる。環状アルキルとしては、例えば、シクロペンチル、シクロヘキシルなどを挙げることができる。一価芳香族炭化水素基としては、例えば、フェニルやトリルを挙げることができる。 Examples of monovalent saturated hydrocarbon groups include linear alkyl, branched alkyl, and cyclic alkyl. Examples of linear alkyl groups include methyl, ethyl, propyl, and n-butyl. Examples of branched alkyl groups include isopropyl, isobutyl, tert-butyl, and 2-ethylhexyl. Examples of cyclic alkyl groups include cyclopentyl and cyclohexyl. Examples of monovalent aromatic hydrocarbon groups include phenyl and tolyl.

(A)成分の具体例としては、JNC社製FM-DA11、FM-DA21、FM-DA25、FM-DA26、FM-0411、FM-0421、FM-0425、またはFM-0426(それぞれ商品名)を挙げることができる。 Specific examples of component (A) include FM-DA11, FM-DA21, FM-DA25, FM-DA26, FM-0411, FM-0421, FM-0425, and FM-0426 (each of which is a product name) manufactured by JNC Corporation.

ゲルパーミエーションクロマトグラフ(GPC)法により測定される前記(A)成分のポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)の比を分子量分布(Mw/Mn)とした場合、Mw/Mnが1.20以下である必要がある。分子量分布(Mw/Mn)がこの範囲にあると、分散を阻害する高分子量成分や低分子量成分の含有割合が小さくなり、流動性に優れたシリコーン樹脂組成物を得ることができる。 When the ratio of the weight average molecular weight (Mw) and number average molecular weight (Mn) of the component (A) in terms of polystyrene, measured by gel permeation chromatography (GPC), is taken as the molecular weight distribution (Mw/Mn), Mw/Mn must be 1.20 or less. If the molecular weight distribution (Mw/Mn) is within this range, the content of high molecular weight and low molecular weight components that inhibit dispersion is reduced, and a silicone resin composition with excellent fluidity can be obtained.

[(B)成分]
(B)成分は、本発明のシリコーン樹脂組成物において熱伝導性充填剤として機能する。(B)成分は、一種で使用しても、二種以上を併用してもよい。
[Component (B)]
The component (B) functions as a thermally conductive filler in the silicone resin composition of the present invention. The component (B) may be used alone or in combination of two or more types.

(B)成分の具体例としては、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、酸化亜鉛、ダイヤモンド、グラフェン、グラファイト、カーボンナノチューブ、炭素繊維、ガラス繊維、またはこれらの二種以上の組合せを挙げることができる。(B)成分の結晶形、粒子径、表面状態、表面処理の有無などについては特に限定されない。 Specific examples of component (B) include aluminum oxide, aluminum nitride, boron nitride, zinc oxide, diamond, graphene, graphite, carbon nanotubes, carbon fiber, glass fiber, or a combination of two or more of these. There are no particular limitations on the crystal form, particle size, surface condition, or presence or absence of surface treatment of component (B).

[(C)成分]
本発明の組成物には、さらに(C)成分として、前記(A)以外のオルガノポリシロキサンを添加することができる。(C)成分は、本発明の熱伝導性シリコーン樹脂組成物の粘度調整、硬化性付与などを目的として適宜用いられるが、これに限定されるものではない。(C)成分は、一種で使用しても、二種以上を併用してもよく、非硬化性でも、熱、湿気、あるいは活性エネルギー線照射による硬化性を持っていてもよい。
[Component (C)]
The composition of the present invention may further contain an organopolysiloxane other than the above-mentioned (A) as component (C). Component (C) is used appropriately for the purpose of adjusting the viscosity of the thermally conductive silicone resin composition of the present invention, imparting curability, etc., but is not limited thereto. Component (C) may be used alone or in combination of two or more kinds, and may be non-curable or curable by heat, moisture, or active energy radiation.

(C)成分の具体例としては、ジメチルポリシロキサン、メチルフェニルポリシロキサン、メチルハイドロジェンポリシロキサン、アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシ変性ポリシロキサン、カルビノール変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン、またはこれらの二種以上の組合せを挙げることができる。 Specific examples of component (C) include dimethylpolysiloxane, methylphenylpolysiloxane, methylhydrogenpolysiloxane, amino-modified polysiloxane, epoxy-modified polysiloxane, carboxy-modified polysiloxane, carbinol-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, fluorine-modified polysiloxane, or a combination of two or more of these.

本発明のシリコーン樹脂組成物は、(B)成分100質量部に対して、(A)成分の含有量が0.1~50質量部であることが好ましく、0.1~30質量部であることがさらに好ましい。(B)成分100質量部に対する(A)成分の含有量がこの範囲であると、(B)成分が安定して分散した分散液を得ることができ、(B)成分の充填率を十分に確保できるため、十分な放熱性が得られる。(B)成分100質量部に対して、(A)成分と(C)成分の含有量の合計が0.1~50質量部であることが好ましく、1.0~30質量部であることがさらに好ましい。 In the silicone resin composition of the present invention, the content of component (A) is preferably 0.1 to 50 parts by mass, and more preferably 0.1 to 30 parts by mass, per 100 parts by mass of component (B). When the content of component (A) is within this range per 100 parts by mass of component (B), a dispersion in which component (B) is stably dispersed can be obtained, and the filling rate of component (B) can be sufficiently ensured, resulting in sufficient heat dissipation properties. The total content of components (A) and (C) is preferably 0.1 to 50 parts by mass, and more preferably 1.0 to 30 parts by mass, per 100 parts by mass of component (B).

本発明のシリコーン樹脂組成物の25℃における粘度は、好ましくは1000Pa・s以下である。該粘度がこの範囲内にあると、組成物の流動性が良好で、吐出・塗布などの取り扱いが容易になる。 The viscosity of the silicone resin composition of the present invention at 25°C is preferably 1000 Pa·s or less. If the viscosity is within this range, the composition has good fluidity and is easy to handle during dispensing, application, etc.

本発明のシリコーン樹脂組成物には、その目的が損なわれない範囲で、他の界面活性剤、可塑剤、消泡剤、硬化剤などの各種添加剤を配合させることができる。 The silicone resin composition of the present invention can contain various additives such as other surfactants, plasticizers, defoamers, and hardeners, as long as the purpose of the composition is not impaired.

以下、本発明を更に具体的に説明する。なお、実施例における「部」、「%」は特記のない限りいずれも質量基準(質量部、質量%)である。また、本発明は、これらの実施例により何ら限定されるものではない。 The present invention will be described in more detail below. In the examples, "parts" and "%" are all based on mass (parts by mass, % by mass) unless otherwise specified. The present invention is not limited in any way by these examples.

<分子量の測定>
オルガノポリシロキサンの分子量は、ゲルパーミエーションクロマトグラフ(GPC)法により測定し、重量平均分子量(Mw)と数平均分子量(Mn)の比を分子量分布(Mw/Mn)とした。標準試料としてポリスチレンを用い、ポリスチレン換算分子量を測定した。なおGPC法によるポリスチレン換算分子量測定は、以下の測定条件で行ったものとする。
a)測定機器:日本分光製HPLC LC-2000Plus series
b)カラム:Shodex KF-804L ×2本
c)オーブン温度:40℃
d)溶離液:トルエン0.7mL/min
e)標準試料:ポリスチレン
f)注入量:20μL
g)濃度:0.05g/10mL
h)試料調製:トルエンを溶媒として、室温で攪拌して溶解させた。
<Measurement of molecular weight>
The molecular weight of the organopolysiloxane was measured by gel permeation chromatography (GPC), and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) was taken as the molecular weight distribution (Mw/Mn). Polystyrene was used as a standard sample to measure the molecular weight in terms of polystyrene. The measurement of the molecular weight in terms of polystyrene by the GPC method was carried out under the following measurement conditions.
a) Measuring instrument: JASCO HPLC LC-2000Plus series
b) Column: Shodex KF-804L x 2 c) Oven temperature: 40°C
d) Eluent: toluene 0.7 mL/min
e) Standard sample: polystyrene f) Injection volume: 20 μL
g) Concentration: 0.05g/10mL
h) Sample preparation: Toluene was used as a solvent and the sample was dissolved by stirring at room temperature.

<流動性評価用サンプルの調製>
(A)成分として、式(4)で表される(A-1)~(A-4)のポリジメチルシロキサン、および式(5)で表される(A-5)~(A-8)のポリジメチルシロキサンを用いた。
<Preparation of Samples for Fluidity Evaluation>
As the component (A), polydimethylsiloxanes (A-1) to (A-4) represented by formula (4) and polydimethylsiloxanes (A-5) to (A-8) represented by formula (5) were used.

Figure 0007632143000007
(式(4)中、nは表1に示す数平均分子量になるように任意に選択される整数である)
表1
Figure 0007632143000008
Figure 0007632143000007
(In formula (4), n is an integer arbitrarily selected so as to obtain the number average molecular weight shown in Table 1.)
Table 1
Figure 0007632143000008

Figure 0007632143000009
(式(5)中、nは表2に示す数平均分子量になるように任意に選択される整数である)
表2
Figure 0007632143000010
Figure 0007632143000009
(In formula (5), n is an integer arbitrarily selected so as to obtain the number average molecular weight shown in Table 2.)
Table 2
Figure 0007632143000010

(A)~(C)成分を表3および表4に示す組成物比で混合して実施例1~2および比較例1~6の組成物を得た。すなわち、軟膏壺容器に(A)~(C)成分を量り取り、スパチュラを用いて攪拌し、次いでシンキー社 あわとり練太郎 真空タイプ(型式:ARV-310)を用いて、常圧条件下にて2000rpmで1分間、減圧条件下にて2000rpmで1分間、混錬することで流動性評価用組成物を調製した。 The compositions of Examples 1-2 and Comparative Examples 1-6 were obtained by mixing components (A)-(C) in the composition ratios shown in Tables 3 and 4. That is, components (A)-(C) were weighed into an ointment jar container, stirred with a spatula, and then kneaded at 2000 rpm for 1 minute under normal pressure and at 2000 rpm for 1 minute under reduced pressure using a Thinky Corporation Vacuum Type Awatori Rentaro (Model: ARV-310) to prepare a composition for evaluating fluidity.

<流動性評価>
上記のとおり調製した組成物の流動性を目視により評価した。また、レオメーター(アントンパール社製、MCR302)を用い、下記条件にてせん断粘度を測定した。
a)プレート形状:円形平板25mmφ
b)試料厚み:1mm
c)温度:25±1℃
d)せん断速度:0.01s-1
<Liquidity assessment>
The fluidity of the composition prepared as described above was evaluated by visual observation. The shear viscosity was measured under the following conditions using a rheometer (MCR302, manufactured by Anton Paar).
a) Plate shape: circular flat plate 25 mm diameter
b) Sample thickness: 1 mm
c) Temperature: 25±1° C.
d) Shear rate: 0.01 s

表3

Figure 0007632143000011
表4
Figure 0007632143000012
*1 平均径13μmの球形アルミナ(デンカ株式会社製DAW-10)
*2 ポリジメチルシロキサン(信越化学工業株式会社製KF-96-300CS)
Table 3
Figure 0007632143000011
Table 4
Figure 0007632143000012
*1 Spherical alumina with an average diameter of 13 μm (DAW-10 manufactured by Denka Co., Ltd.)
*2 Polydimethylsiloxane (KF-96-300CS manufactured by Shin-Etsu Chemical Co., Ltd.)

分子量分布(Mw/Mn)が1.20以下である(A)成分を添加した組成物(実施例1)は、分子量分布(Mw/Mn)が1.20よりも大きい(A)成分を添加した組成物(比較例1~3)に比べて組成物粘度が低い。また、分子量分布(Mw/Mn)が1.20以下である(A)成分を添加した組成物(実施例2)は、分子量分布(Mw/Mn)が1.20よりも大きい(A)成分を添加した組成物(比較例4~6)に比べて組成物粘度が低い。各対比により、分子量分布(Mw/Mn)が1.20以下である(A)成分を添加した組成物が、流動性が良好な結果となった。以上のことから、本発明のシリコーン樹脂組成物は特性に優れると結論できる。
The composition (Example 1) to which the component (A) having a molecular weight distribution (Mw/Mn) of 1.20 or less is added has a lower composition viscosity than the compositions (Comparative Examples 1 to 3) to which the component (A) having a molecular weight distribution (Mw/Mn) of more than 1.20 is added. Also, the composition (Example 2) to which the component (A) having a molecular weight distribution (Mw/Mn) of 1.20 or less is added has a lower composition viscosity than the compositions (Comparative Examples 4 to 6) to which the component (A) having a molecular weight distribution (Mw/Mn) of more than 1.20 is added. By comparing the compositions, the composition to which the component (A) having a molecular weight distribution (Mw/Mn) of 1.20 or less is added has a good result in terms of fluidity. From the above, it can be concluded that the silicone resin composition of the present invention has excellent properties.

本発明のシリコーン樹脂組成物は、トランジスター、ICチップ、メモリー素子などの発熱性電子部品とヒートシンクなどの冷却部材との間に介在させる熱伝導性材料として利用できる。 The silicone resin composition of the present invention can be used as a thermally conductive material to be interposed between heat-generating electronic components such as transistors, IC chips, and memory elements and cooling members such as heat sinks.

Claims (1)

(A)式(1):
Figure 0007632143000013
(式(1)中、Rは独立して、一価飽和炭化水素基、または一価芳香族炭化水素基であり、Xは末端に水酸基を有する、式(2)または式(3)で表される基であり、nは1以上の整数である。)
Figure 0007632143000014

Figure 0007632143000015
で表される、分子量分布(Mw/Mn)が、1.20以下であるオルガノポリシロキサンと
(B)熱伝導性充填剤
を含有するシリコーン樹脂組成物。
(A) Formula (1):
Figure 0007632143000013
(In formula (1), R 1 is independently a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group, X is a group having a hydroxyl group at its terminal and represented by formula (2) or (3), and n is an integer of 1 or more.)
Figure 0007632143000014

Figure 0007632143000015
and (B) a thermally conductive filler.
JP2021116681A 2021-07-14 2021-07-14 Silicone resin composition Active JP7632143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021116681A JP7632143B2 (en) 2021-07-14 2021-07-14 Silicone resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021116681A JP7632143B2 (en) 2021-07-14 2021-07-14 Silicone resin composition

Publications (2)

Publication Number Publication Date
JP2023012918A JP2023012918A (en) 2023-01-26
JP7632143B2 true JP7632143B2 (en) 2025-02-19

Family

ID=85129801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021116681A Active JP7632143B2 (en) 2021-07-14 2021-07-14 Silicone resin composition

Country Status (1)

Country Link
JP (1) JP7632143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162469A1 (en) * 2023-02-02 2024-08-08 積水化学工業株式会社 Thermally conductive composition and thermally conductive molded body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332352A (en) 2001-05-10 2002-11-22 Chisso Corp Method for producing polyorganosiloxane
JP2004231768A (en) 2003-01-30 2004-08-19 Shin Etsu Chem Co Ltd Dilatant fluid composition
JP2011132486A (en) 2009-11-25 2011-07-07 Panasonic Electric Works Co Ltd Coating composition and coated product
WO2019159753A1 (en) 2018-02-15 2019-08-22 株式会社スリーボンド Thermally conductive moisture-curable resin composition and cured product thereof
JP2020086171A (en) 2018-11-27 2020-06-04 信越ポリマー株式会社 Developing roller, developing device, and image forming apparatus
JP2020143178A (en) 2019-03-04 2020-09-10 信越化学工業株式会社 Non-curable thermally conductive silicone composition
JP2020164755A (en) 2019-03-29 2020-10-08 Jnc株式会社 Composition for heat radiation member, heat radiation member, electronic apparatus, and method for manufacturing heat radiation member
JP2022081264A (en) 2020-11-19 2022-05-31 Jnc株式会社 Silicone-based dispersant and filler dispersion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332352A (en) 2001-05-10 2002-11-22 Chisso Corp Method for producing polyorganosiloxane
JP2004231768A (en) 2003-01-30 2004-08-19 Shin Etsu Chem Co Ltd Dilatant fluid composition
JP2011132486A (en) 2009-11-25 2011-07-07 Panasonic Electric Works Co Ltd Coating composition and coated product
WO2019159753A1 (en) 2018-02-15 2019-08-22 株式会社スリーボンド Thermally conductive moisture-curable resin composition and cured product thereof
JP2020086171A (en) 2018-11-27 2020-06-04 信越ポリマー株式会社 Developing roller, developing device, and image forming apparatus
JP2020143178A (en) 2019-03-04 2020-09-10 信越化学工業株式会社 Non-curable thermally conductive silicone composition
JP2020164755A (en) 2019-03-29 2020-10-08 Jnc株式会社 Composition for heat radiation member, heat radiation member, electronic apparatus, and method for manufacturing heat radiation member
JP2022081264A (en) 2020-11-19 2022-05-31 Jnc株式会社 Silicone-based dispersant and filler dispersion

Also Published As

Publication number Publication date
JP2023012918A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
KR102537150B1 (en) Thermal conductive silicone composition and semiconductor device
JP2986825B2 (en) Thermally conductive organosiloxane composition
JP6708005B2 (en) Thermally conductive silicone putty composition
KR101135369B1 (en) Heat-conductive silicone composition
JP2021138961A (en) Thermally conductive polyorganosiloxane composition
US20200071526A1 (en) One-pack addition curable silicone composition, method for storing same, and method for curing same
JP6705426B2 (en) Thermally conductive silicone composition
JP6933198B2 (en) Thermally conductive silicone composition and its manufacturing method
CN113272386B (en) Thermally conductive silicone composition
CN114846084A (en) Heat conductive silicone composition
TW202242026A (en) Curable organopolysiloxane composition and semiconductor device
JP6372293B2 (en) Thermally conductive silicone grease composition
JP7632143B2 (en) Silicone resin composition
US7396872B2 (en) Greasy silicone composition
WO2006043334A1 (en) Silicone composition for heat dissipation
JP2010013563A (en) Thermally conductive silicone grease
WO2023162636A1 (en) Thermally conductive silicone composition
JPH04202496A (en) Superconductive silicone grease composition
US20240279525A1 (en) Thermally conductive silicone composition
JP2023105550A (en) Silicone resin composition
TW202229459A (en) Aluminum nitride filled thermally conductive silicone composition
WO2023281845A1 (en) Silicone resin composition
CN117098813A (en) Silicone resin composition
WO2024089957A1 (en) Silicone resin composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250120

R150 Certificate of patent or registration of utility model

Ref document number: 7632143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150