[go: up one dir, main page]

JP7630390B2 - Fluid-filled vibration isolation device - Google Patents

Fluid-filled vibration isolation device Download PDF

Info

Publication number
JP7630390B2
JP7630390B2 JP2021135726A JP2021135726A JP7630390B2 JP 7630390 B2 JP7630390 B2 JP 7630390B2 JP 2021135726 A JP2021135726 A JP 2021135726A JP 2021135726 A JP2021135726 A JP 2021135726A JP 7630390 B2 JP7630390 B2 JP 7630390B2
Authority
JP
Japan
Prior art keywords
pressure
receiving chamber
movable membrane
outer peripheral
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021135726A
Other languages
Japanese (ja)
Other versions
JP2022083392A (en
Inventor
賢治 黒田
恭宣 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to DE112021001891.4T priority Critical patent/DE112021001891T5/en
Priority to PCT/JP2021/037913 priority patent/WO2022113552A1/en
Priority to CN202180069764.4A priority patent/CN116457229A/en
Publication of JP2022083392A publication Critical patent/JP2022083392A/en
Priority to US17/948,645 priority patent/US12188537B2/en
Application granted granted Critical
Publication of JP7630390B2 publication Critical patent/JP7630390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、自動車のエンジンマウントなどに用いられる流体封入式防振装置に関するものである。 The present invention relates to a fluid-filled vibration isolation device used in automobile engine mounts, etc.

従来から、自動車のパワーユニットの防振支持等に用いられる防振装置が知られている。また、防振性能の向上を1つの目的として、特開2013-231480号公報(特許文献1)には、流体封入式防振装置が提案されている。流体封入式防振装置は、流体が封入された主液室と副液室が、仕切部材によって区画された構造を有している。また、特許文献1は、仕切部材に弾性膜が設けられており、振動入力時に弾性膜の変形に基づいた液圧吸収作用による防振効果が発揮される。 Vibration-proof devices used for vibration-proof support of automobile power units have been known for some time. In addition, with the aim of improving vibration-proofing performance, JP 2013-231480 A (Patent Document 1) proposes a fluid-filled vibration-proof device. A fluid-filled vibration-proof device has a structure in which a primary liquid chamber and a secondary liquid chamber filled with fluid are separated by a partition member. In addition, in Patent Document 1, an elastic membrane is provided on the partition member, and when vibration is input, a vibration-proof effect is achieved by the hydraulic pressure absorbing action based on the deformation of the elastic membrane.

ところで、流体封入式防振装置では、キャビテーションに起因する異音の発生が問題となる場合がある。キャビテーションは、主液室の内圧が急激に低下することに起因する。そこで、特許文献1では、キャビテーションを抑制するためのリリーフバルブが、弾性膜の中央部に設けられている。リリーフバルブは、主液室の内圧が大きく低下する際に開くことで、副液室から主液室へ流体を流入させて、主液室の負圧を緩和し、キャビテーションを抑制する。 However, with fluid-filled vibration isolation devices, the generation of abnormal noises due to cavitation can be a problem. Cavitation is caused by a sudden drop in the internal pressure of the main liquid chamber. Therefore, in Patent Document 1, a relief valve for suppressing cavitation is provided in the center of the elastic membrane. The relief valve opens when the internal pressure of the main liquid chamber drops significantly, allowing fluid to flow from the sub-liquid chamber into the main liquid chamber, relieving the negative pressure in the main liquid chamber and suppressing cavitation.

特開2013-231480号公報JP 2013-231480 A

しかしながら、弾性膜の中央部にリリーフバルブを設けた特許文献1の構造では、リリーフバルブの周長を長くし難く、リリーフバルブによって連通と遮断を切り替えられるリリーフ通路の通路断面積を大きくすることが難しい。その結果、特許文献1では、リリーフバルブが開いても、副液室から主液室へ十分な量の流体を流入させることができず、主液室の負圧を緩和する効果が十分に発揮されない場合があるという、新規な課題が明らかとなった。 However, in the structure of Patent Document 1, in which a relief valve is provided in the center of the elastic membrane, it is difficult to increase the circumferential length of the relief valve, and it is also difficult to increase the cross-sectional area of the relief passage, which can be switched between open and closed by the relief valve. As a result, Patent Document 1 has revealed a new problem in that even when the relief valve opens, a sufficient amount of fluid cannot flow from the auxiliary liquid chamber to the main liquid chamber, and the effect of mitigating the negative pressure in the main liquid chamber may not be fully exerted.

本発明の解決課題は、キャビテーションを効果的に抑制することができる、新規な構造の流体封入式防振装置を提供することにある。 The problem to be solved by this invention is to provide a fluid-filled vibration isolation device with a new structure that can effectively suppress cavitation.

以下、本発明を把握するための好ましい態様について記載するが、以下に記載の各態様は、例示的に記載したものであって、適宜に互いに組み合わせて採用され得るだけでなく、各態様に記載の複数の構成要素についても、可能な限り独立して認識及び採用することができ、適宜に別の態様に記載の何れかの構成要素と組み合わせて採用することもできる。それによって、本発明では、以下に記載の態様に限定されることなく、種々の別態様が実現され得る。 The following describes preferred embodiments for understanding the present invention. However, each embodiment described below is merely an example, and may be combined with one another as appropriate. The multiple components described in each embodiment may be recognized and used independently as far as possible, and may also be combined with any of the components described in another embodiment as appropriate. As a result, the present invention is not limited to the embodiments described below, and various alternative embodiments may be realized.

第一の態様は、受圧室と平衡室が仕切部材によって仕切られており、該仕切部材に形成された収容空所内に可動膜が収容されている流体封入式防振装置であって、前記可動膜の外周端部が、前記収容空所の前記受圧室側の壁内面に対して周方向で部分的に当接する当接部と、該収容空所の前記平衡室側の壁内面に対して全周にわたって当接するシール部とを備え、該可動膜の外周端部が該仕切部材によって支持されており、該可動膜の外周面と該収容空所の内周面との対向間に隙間が設けられていると共に、該可動膜の外周端部において該収容空所の該受圧室側の壁内面への該当接部を外れた位置には該隙間に連通された連通路が設けられており、該可動膜の外周端部が該受圧室と該平衡室の圧力差によって該収容空所の該平衡室側の壁内面から離れることによって、該受圧室と該平衡室を連通するリリーフ通路が該隙間と該連通路を含んで構成される一方、前記可動膜の外周端部には、前記受圧室側へ向けて突出する弾性突部が周方向で複数設けられており、該弾性突部が前記仕切部材における前記収容空所の該受圧室側の壁内面に当接して当接部を構成し、複数の該弾性突部の周方向間に前記連通路が形成されており、前記可動膜に対する前記受圧室と前記平衡室の圧力差の作用により、該可動膜の外周端部における前記シール部が前記弾性突部の周方向間において前記収容空所の前記平衡室側の壁内面から離れて、該弾性突部の形成部位では前記収容空所における前記受圧室側の壁内面と該弾性突部、及び前記平衡室側の壁内面と該シール部との各当接状態を維持したままで、前記リリーフ通路が発現されるものである。 In a first aspect, a pressure-receiving chamber and an equilibrium chamber are separated by a partition member, and a movable membrane is accommodated in an accommodation cavity formed in the partition member, and an outer peripheral end of the movable membrane has an abutment portion that abuts partially in the circumferential direction against the inner wall surface of the accommodation cavity on the pressure-receiving chamber side, and a seal portion that abuts over the entire circumference against the inner wall surface of the accommodation cavity on the equilibrium chamber side, the outer peripheral end of the movable membrane is supported by the partition member, a gap is provided between the opposing outer peripheral surface of the movable membrane and the inner peripheral surface of the accommodation cavity, and a communication passage that communicates with the gap is provided at a position of the outer peripheral end of the movable membrane away from the corresponding contact portion with the inner wall surface of the accommodation cavity on the pressure-receiving chamber side, and the outer peripheral end of the movable membrane moves away from the inner wall surface of the accommodation cavity on the equilibrium chamber side due to a pressure difference between the pressure-receiving chamber and the equilibrium chamber, The relief passage connecting the pressure-receiving chamber and the equilibrium chamber is composed of the gap and the communicating passage , while the outer peripheral end of the movable membrane is provided with a plurality of elastic protrusions in the circumferential direction protruding toward the pressure-receiving chamber, and the elastic protrusions abut against the inner wall surface on the pressure-receiving chamber side of the accommodating cavity in the partition member to form an abutment portion, and the communicating passage is formed between the circumferential direction of the plurality of elastic protrusions, and due to the action of the pressure difference between the pressure-receiving chamber and the equilibrium chamber on the movable membrane, the sealing portion at the outer peripheral end of the movable membrane moves away from the inner wall surface on the equilibrium chamber side of the accommodating cavity between the circumferential direction of the elastic protrusions, and the relief passage is manifested at the portion where the elastic protrusions are formed, while maintaining the respective abutment states between the elastic protrusions and the inner wall surface on the pressure-receiving chamber side of the accommodating cavity in the accommodating cavity, and between the sealing portion and the inner wall surface on the equilibrium chamber side .

本態様に従う構造とされた流体封入式防振装置によれば、受圧室の内圧が低下する際に開いて、受圧室と平衡室を相互に連通するリリーフ通路が構成される。これにより、受圧室の内圧低下がリリーフ通路を通じた平衡室から受圧室への流体の流入によって速やかに低減され、受圧室の大幅な内圧低下によるキャビテーションの発生が防止されて、キャビテーションに伴う異音等が防止される。 A fluid-filled vibration-damping device constructed according to this embodiment has a relief passage that opens when the internal pressure of the pressure-receiving chamber drops, connecting the pressure-receiving chamber and the equilibrium chamber. This allows the flow of fluid from the equilibrium chamber to the pressure-receiving chamber through the relief passage to quickly reduce the drop in internal pressure in the pressure-receiving chamber, preventing cavitation caused by a significant drop in the internal pressure of the pressure-receiving chamber and preventing abnormal noise and other issues associated with cavitation.

リリーフ通路は、可動膜の外周端部と収容空所の受圧室側の壁内面との間を延びる連通路と、可動膜の外周面と収容空所の内周面との間に形成される隙間とを含んで構成され、収容空所の外周部分に位置している。それゆえ、リリーフ通路は、流体封入式防振装置の大型化を要することなく、周方向の長さを長く設定し易く、通路断面積を大きく確保することができる。これにより、リリーフ通路を通じた流体流動によって受圧室の内圧低下を速やかに解消して、キャビテーションを効果的に防ぐことができる。 The relief passage is located on the outer periphery of the accommodating cavity and includes a communication passage extending between the outer periphery of the movable membrane and the inner wall surface of the accommodating cavity on the pressure-receiving chamber side, and a gap formed between the outer periphery of the movable membrane and the inner periphery of the accommodating cavity. Therefore, the relief passage can be easily set to a long circumferential length without requiring an increase in size of the fluid-filled vibration-damping device, and a large passage cross-sectional area can be ensured. As a result, the fluid flow through the relief passage can quickly eliminate the drop in internal pressure in the pressure-receiving chamber, effectively preventing cavitation.

キャビテーションが問題にならない通常の振動入力状態では、可動膜のシール部が収容空所の平衡室側の壁内面に当接していることによって、リリーフ通路が閉じており、リリーフ通路を通じた受圧室と平衡室の短絡が防止されている。それゆえ、通常の振動入力時には、受圧室の内圧変動が効率的に惹起されて、流体の流動作用や可動膜の液圧吸収作用などによる防振効果が有効に発揮される。
また、本態様に従う構造とされた流体封入式防振装置によれば、当接部が弾性突部とされていることから、例えば弾性突部や可動膜の変形剛性等によっては、弾性突部の圧縮によって可動膜の外周端部の受圧室側への変位が許容され、例えば周方向の略全周にわたってシール部が収容空所の平衡室側の壁内面から離隔して、リリーフ通路を構成することも可能である。可動膜の周方向で複数の弾性突部が設けられていることから、例えば、弾性突部の周方向幅寸法や間隔等によって弾性突部のバネ定数を調節し、リリーフ通路が開放される受圧室の内圧低下の閾値を設定することもできる。
さらに、本態様に従う構造とされた流体封入式防振装置によれば、例えば弾性突部や可動膜の変形剛性等によっては、受圧室の内圧が低下した際に、可動膜の外周端部において弾性突部の形成位置では、弾性突部とシール部により収容空所の受圧室側と平衡室側の壁内面への各当接状態を維持する一方、可動膜の外周端部において弾性突部の周方向間では、シール部が平衡室側の壁内面から離れることで、リリーフ通路を構成することも可能である。即ち、弾性突部や可動膜の変形剛性等に応じて、後述する第一の実施形態のようにシール部が周方向の略全周にわたって平衡室側の壁内面から離隔してリリーフ通路を構成することも可能であるし、本態様や後述する第三の実施形態のようにシール部が弾性突部の周方向間において平衡室側の壁内面から離隔してリリーフ通路を構成することも可能である。要するに、例えば第二の態様に係る流体封入式防振装置においても、弾性突部や可動膜の変形剛性等に応じて適切な態様でリリーフ通路を構成することができて、弾性突部や可動膜、ひいては流体封入式防振装置の設計自由度の向上が図られる。
Under normal vibration input conditions where cavitation is not an issue, the seal portion of the movable membrane abuts against the inner wall surface of the accommodating cavity on the equilibrium chamber side, closing the relief passage and preventing short-circuiting between the pressure-receiving chamber and the equilibrium chamber through the relief passage. Therefore, during normal vibration input, internal pressure fluctuations in the pressure-receiving chamber are efficiently induced, and vibration-damping effects due to the flow action of the fluid and the liquid pressure absorption action of the movable membrane are effectively demonstrated.
Furthermore, in the fluid-filled vibration-damping device constructed according to this embodiment, since the abutting portion is an elastic protrusion, depending on, for example, the deformation rigidity of the elastic protrusion and the movable membrane, the compression of the elastic protrusion allows the outer peripheral end of the movable membrane to be displaced toward the pressure-receiving chamber, and, for example, the seal portion can be separated from the inner wall surface of the accommodating space on the equilibrium chamber side over substantially the entire circumference in the circumferential direction to form a relief passage. Since multiple elastic protrusions are provided in the circumferential direction of the movable membrane, it is also possible to adjust the spring constant of the elastic protrusions by, for example, the circumferential width dimension or interval of the elastic protrusions, and set the threshold value of the internal pressure drop in the pressure-receiving chamber at which the relief passage is opened.
Furthermore, with a fluid-filled vibration-damping device constructed according to this embodiment, depending on, for example, the deformation rigidity of the elastic protrusions and the movable membrane, when the internal pressure of the pressure-receiving chamber drops, the elastic protrusions and the seal parts maintain their respective contact states with the inner wall surfaces of the accommodating cavity on the pressure-receiving chamber side and the equilibrium chamber side at the positions where the elastic protrusions are formed at the outer peripheral end of the movable membrane, while the seal parts move away from the inner wall surface on the equilibrium chamber side at the circumferential intervals between the elastic protrusions at the outer peripheral end of the movable membrane, thereby forming a relief passage. That is, depending on the deformation rigidity of the elastic protrusions and the movable membrane, it is possible to form a relief passage by separating the seal parts from the inner wall surface on the equilibrium chamber side over substantially the entire circumferential circumference as in the first embodiment described later, or to form a relief passage by separating the seal parts from the inner wall surface on the equilibrium chamber side at the circumferential intervals between the elastic protrusions as in this embodiment and the third embodiment described later. In short, even in the case of a fluid-filled vibration-damping device relating to the second embodiment, for example, the relief passage can be configured in an appropriate manner depending on the deformation rigidity of the elastic protrusion and the movable membrane, thereby improving the design freedom of the elastic protrusion and the movable membrane, and ultimately the fluid-filled vibration-damping device.

の態様は、第の態様に記載された流体封入式防振装置において、前記弾性突部が突出先端に向けて収縮する先細形状とされているものである。 In a second aspect, in the fluid-filled type vibration-damping device described in the first aspect, the elastic projection has a tapered shape that contracts toward the projection tip.

本態様に従う構造とされた流体封入式防振装置によれば、弾性突部の圧縮によるばね定数の変化を非線形にすることができる。それゆえ、受圧室の内圧が大幅に低下する場合に、弾性突部が完全につぶれることによって連通路が遮断されるのを防いで、リリーフ通路の意図しない遮断を防止することができる。 With a fluid-filled vibration-damping device constructed according to this embodiment, the change in spring constant caused by compression of the elastic protrusion can be made nonlinear. Therefore, when the internal pressure of the pressure-receiving chamber drops significantly, the elastic protrusion is prevented from completely collapsing, blocking the communication passage, and unintended blocking of the relief passage can be prevented.

の態様は、第一又は第二の態様に記載された流体封入式防振装置において、前記弾性突部の突出先端面が球冠状湾曲面とされているものである。 In a third aspect, in the fluid-filled type vibration-damping device according to the first or second aspect, the protruding tip surface of the elastic projection is formed into a spherical crown-shaped curved surface.

本態様に従う構造とされた流体封入式防振装置によれば、当接部が収容空所の受圧室側の壁内面に押し当てられる際に、当接部の表面における応力集中が回避されて、当接部の耐久性の向上が図られる。また、例えば、受圧室に大きな正圧が作用して、可動膜の当接部が収容空所の受圧室側の壁内面から離れた後、当該正圧の解除によって当接部が収容空所の受圧室側の壁内面に当接する場合に、打音が低減される。 With a fluid-filled vibration-damping device constructed according to this embodiment, when the abutment portion is pressed against the inner wall surface on the pressure-receiving chamber side of the accommodation cavity, stress concentration on the surface of the abutment portion is avoided, improving the durability of the abutment portion. In addition, for example, when a large positive pressure acts on the pressure-receiving chamber, causing the abutment portion of the movable membrane to move away from the inner wall surface on the pressure-receiving chamber side of the accommodation cavity, and then the release of the positive pressure causes the abutment portion to abut against the inner wall surface on the pressure-receiving chamber side of the accommodation cavity, the impact noise is reduced.

の態様は、受圧室と平衡室が仕切部材によって仕切られており、該仕切部材に形成された収容空所内に可動膜が収容されている流体封入式防振装置であって、前記可動膜の外周端部が、前記収容空所の前記受圧室側の壁内面に対して周方向で部分的に当接する当接部と、該収容空所の前記平衡室側の壁内面に対して全周にわたって当接するシール部とを備え、該可動膜の外周端部が該仕切部材によって支持されており、該可動膜の外周面と該収容空所の内周面との対向間に隙間が設けられていると共に、該可動膜の外周端部において該収容空所の該受圧室側の壁内面への該当接部を外れた位置には該隙間に連通された連通路が設けられており、該可動膜の外周端部が該受圧室と該平衡室の圧力差によって該収容空所の該平衡室側の壁内面から離れることによって、該受圧室と該平衡室を連通するリリーフ通路が該隙間と該連通路を含んで構成される一方、前記仕切部材は、前記収容空所における前記受圧室側の壁内面の外周部分に開口する複数の凹溝を備えており、前記可動膜の外周端部と該収容空所の該受圧室側の壁内面とが、該凹溝を周方向に外れた部分で当接していると共に、前記連通路が該凹溝によって構成されているものである。 A fourth aspect is a fluid-filled vibration-damping device in which a pressure-receiving chamber and an equilibrium chamber are separated by a partition member, and a movable membrane is accommodated in an accommodation space formed in the partition member, wherein an outer peripheral end of the movable membrane is provided with an abutment portion that abuts partially in the circumferential direction against the inner wall surface of the accommodation space on the pressure-receiving chamber side, and a seal portion that abuts over the entire circumference against the inner wall surface of the accommodation space on the equilibrium chamber side, the outer peripheral end of the movable membrane is supported by the partition member, a gap is provided between the opposing outer peripheral surface of the movable membrane and the inner peripheral surface of the accommodation space, and the outer peripheral end of the movable membrane is supported by the partition member, and a gap is provided between the opposing outer peripheral surface of the movable membrane and the inner peripheral surface of the accommodation space, and a communicating passage connected to the gap is provided at a position away from the corresponding contact portion, and the outer peripheral end of the movable membrane moves away from the inner wall surface of the storage cavity on the equilibrium chamber side due to the pressure difference between the pressure-receiving chamber and the equilibrium chamber, thereby forming a relief passage connecting the pressure-receiving chamber and the equilibrium chamber, which includes the gap and the communicating passage, while the partition member has a plurality of grooves opening into the outer peripheral portion of the inner wall surface on the pressure-receiving chamber side of the storage cavity, and the outer peripheral end of the movable membrane and the inner wall surface on the pressure-receiving chamber side of the storage cavity abut at portions circumferentially away from the grooves, and the communicating passage is formed by the grooves.

本態様に従う構造とされた流体封入式防振装置によれば、受圧室の内圧が低下する際に開いて、受圧室と平衡室を相互に連通するリリーフ通路が構成される。これにより、受圧室の内圧低下がリリーフ通路を通じた平衡室から受圧室への流体の流入によって速やかに低減され、受圧室の大幅な内圧低下によるキャビテーションの発生が防止されて、キャビテーションに伴う異音等が防止される。
リリーフ通路は、可動膜の外周端部と収容空所の受圧室側の壁内面との間を延びる連通路と、可動膜の外周面と収容空所の内周面との間に形成される隙間とを含んで構成され、収容空所の外周部分に位置している。それゆえ、リリーフ通路は、流体封入式防振装置の大型化を要することなく、周方向の長さを長く設定し易く、通路断面積を大きく確保することができる。これにより、リリーフ通路を通じた流体流動によって受圧室の内圧低下を速やかに解消して、キャビテーションを効果的に防ぐことができる。
キャビテーションが問題にならない通常の振動入力状態では、可動膜のシール部が収容空所の平衡室側の壁内面に当接していることによって、リリーフ通路が閉じており、リリーフ通路を通じた受圧室と平衡室の短絡が防止されている。それゆえ、通常の振動入力時には、受圧室の内圧変動が効率的に惹起されて、流体の流動作用や可動膜の液圧吸収作用などによる防振効果が有効に発揮される。
また、本態様に従う構造とされた流体封入式防振装置によれば、収容空所の受圧室側の壁内面に凹溝を形成することにより、可動膜の外周端部に突部などを設けることなく、当接部を外れた位置に凹溝による連通路を形成することができる。受圧室の内圧低下に際して、可動膜の当接部が凹溝を外れた位置で収容凹所の受圧室側の壁内面に押し当てられて圧縮されることにより、可動膜の外周端部が受圧室側への変位を許容されることから、シール部が収容空所の平衡室側の壁内面から離隔して、リリーフ通路が構成される。
In a fluid-filled vibration isolation device constructed according to this embodiment, a relief passage is formed which opens when the internal pressure of the pressure-receiving chamber drops, connecting the pressure-receiving chamber and the equilibrium chamber. This allows the flow of fluid from the equilibrium chamber to the pressure-receiving chamber through the relief passage to quickly reduce the drop in internal pressure in the pressure-receiving chamber, preventing the occurrence of cavitation due to a significant drop in the internal pressure of the pressure-receiving chamber and preventing abnormal noise and other problems associated with cavitation.
The relief passage is located on the outer periphery of the cavity and includes a communication passage extending between the outer periphery of the movable membrane and the inner wall surface of the cavity on the pressure-receiving chamber side, and a gap formed between the outer periphery of the movable membrane and the inner periphery of the cavity. Therefore, the relief passage can be easily set to a long circumferential length without requiring an increase in the size of the fluid-filled vibration damping device, and a large passage cross-sectional area can be ensured. As a result, the fluid flow through the relief passage can quickly eliminate the drop in internal pressure of the pressure-receiving chamber, effectively preventing cavitation.
Under normal vibration input conditions where cavitation is not an issue, the seal portion of the movable membrane abuts against the inner wall surface of the accommodating cavity on the equilibrium chamber side, closing the relief passage and preventing short-circuiting between the pressure-receiving chamber and the equilibrium chamber through the relief passage. Therefore, during normal vibration input, internal pressure fluctuations in the pressure-receiving chamber are efficiently induced, and vibration-damping effects due to the flow action of the fluid and the liquid pressure absorption action of the movable membrane are effectively demonstrated.
Furthermore, with a fluid-filled vibration-damping device constructed according to this embodiment, by forming a groove on the inner wall surface on the pressure-receiving chamber side of the accommodation cavity, it is possible to form a communication passage by the groove at a position away from the abutment part without providing a protrusion or the like on the outer peripheral end of the movable membrane. When the internal pressure of the pressure-receiving chamber decreases, the abutment part of the movable membrane is pressed against the inner wall surface on the pressure-receiving chamber side of the accommodation recess at a position away from the groove and compressed, allowing the outer peripheral end of the movable membrane to displace toward the pressure-receiving chamber, and the seal part is separated from the inner wall surface on the equilibrium chamber side of the accommodation cavity, forming a relief passage.

の態様は、第一~第の何れか1つの態様に記載された流体封入式防振装置において、前記シール部は、前記平衡室側へ向けて突出して全周にわたって連続するシールリップを備えており、該シールリップが前記収容空所の該平衡室側の壁内面に全周にわたって当接しているものである。また、本態様は、前記可動膜の外周端部は、前記平衡室側へ向けて突出して全周にわたって連続するシールリップを備えており、該シールリップが前記収容空所の該平衡室側の壁内面に全周にわたって当接しているものであってもよい。 In a fifth aspect, in the fluid-filled vibration damping device according to any one of the first to fourth aspects, the seal portion has a seal lip that protrudes toward the equilibrium chamber and is continuous over the entire circumference, and the seal lip abuts the inner wall surface of the accommodation cavity on the equilibrium chamber side over the entire circumference. In addition, in this aspect, the outer peripheral end of the movable membrane may have a seal lip that protrudes toward the equilibrium chamber and is continuous over the entire circumference, and the seal lip abuts the inner wall surface of the accommodation cavity on the equilibrium chamber side over the entire circumference.

本態様に従う構造とされた流体封入式防振装置によれば、シール部がシールリップを備えることによって、シール部が収容空所の平衡室側の壁内面に当接することによるシール性能の向上が図られて、通常振動の入力に対する防振性能の向上が図られる。
第六の態様は、受圧室と平衡室が仕切部材によって仕切られており、該仕切部材に形成された収容空所内に可動膜が収容されている流体封入式防振装置であって、前記可動膜の外周端部が、前記収容空所の前記受圧室側の壁内面に対して周方向で部分的に当接する当接部と、該収容空所の前記平衡室側の壁内面に対して全周にわたって当接するシール部とを備え、該可動膜の外周端部が該仕切部材によって支持されており、該可動膜の外周面と該収容空所の内周面との対向間に隙間が設けられていると共に、該可動膜の外周端部において該収容空所の該受圧室側の壁内面と該可動膜の受圧室側表面との対向面間には、該受圧室側の壁内面への該当接部を周方向で外れた位置において該隙間に連通された連通路が設けられており、該可動膜の外周端部が該受圧室と該平衡室の圧力差によって該収容空所の該平衡室側の壁内面から離れることによって、該受圧室と該平衡室を連通するリリーフ通路が該隙間と該連通路を含んで構成されると共に、該仕切部材の外周部分には、該リリーフ通路の外周側を周方向に延びて該受圧室と該平衡室を連通するオリフィス通路が設けられているものである。
In a fluid-filled vibration-damping device constructed in accordance with this embodiment, the sealing portion is provided with a sealing lip, which improves sealing performance by abutting the inner wall surface on the equilibrium chamber side of the accommodating space, thereby improving vibration-damping performance against the input of normal vibrations.
A sixth aspect is a fluid-filled vibration-damping device in which a pressure-receiving chamber and an equilibrium chamber are separated by a partition member, and a movable membrane is accommodated in an accommodation space formed in the partition member, wherein an outer peripheral end of the movable membrane is provided with an abutment portion that abuts partially in a circumferential direction against an inner wall surface of the accommodation space on the pressure-receiving chamber side, and a seal portion that abuts over the entire circumference against an inner wall surface of the accommodation space on the equilibrium chamber side, the outer peripheral end of the movable membrane is supported by the partition member, a gap is provided between the opposing outer peripheral surface of the movable membrane and the inner peripheral surface of the accommodation space, and the outer peripheral end of the movable membrane is fixed to the accommodation space. Between the opposing surfaces of the inner wall surface on the pressure-receiving chamber side and the pressure-receiving chamber side surface of the movable membrane, a communication passage is provided which is connected to the gap at a position circumferentially away from the corresponding contact point with the inner wall surface on the pressure-receiving chamber side, and when the outer peripheral end of the movable membrane moves away from the inner wall surface on the equilibrium chamber side of the accommodating space due to the pressure difference between the pressure-receiving chamber and the equilibrium chamber, a relief passage connecting the pressure-receiving chamber and the equilibrium chamber is formed which includes the gap and the communication passage, and an orifice passage is provided in the outer peripheral portion of the partition member which extends circumferentially around the outer periphery of the relief passage and connects the pressure-receiving chamber and the equilibrium chamber.

本発明によれば、キャビテーションを効果的に抑制することができる。 The present invention makes it possible to effectively suppress cavitation.

本発明の第一の実施形態としてのエンジンマウントを示す断面図であって、図3におけるI-I断面に相当する図FIG. 4 is a cross-sectional view showing an engine mount according to a first embodiment of the present invention, which corresponds to the cross-section II in FIG. 図1に示すエンジンマウントを構成する仕切部材の斜視図FIG. 2 is a perspective view of a partition member constituting the engine mount shown in FIG. 1 ; 図2に示す仕切部材の平面図FIG. 3 is a plan view of the partition member shown in FIG. 図1に示すエンジンマウントを構成する可動膜の斜視図FIG. 2 is a perspective view of a movable membrane constituting the engine mount shown in FIG. 1 . 図4の可動膜を別の角度で示す斜視図FIG. 5 is a perspective view showing the movable membrane of FIG. 4 from a different angle; 図4に示す可動膜の断面図5 is a cross-sectional view of the movable membrane shown in FIG. 図1に示すエンジンマウントの断面図であって、リリーフ通路の連通状態を示す図FIG. 2 is a cross-sectional view of the engine mount shown in FIG. 1, showing a communication state of the relief passage; 本発明の第二の実施形態としてのエンジンマウントを示す断面図FIG. 1 is a cross-sectional view showing an engine mount according to a second embodiment of the present invention; 本発明の第三の実施形態としてのエンジンマウントにおける仕切部材をリリーフ通路の連通状態で示す、図7に対応する(第一の実施形態の図3のI-I断面に相当する)断面図FIG. 8 is a cross-sectional view corresponding to FIG. 7 (corresponding to the II cross section of FIG. 3 of the first embodiment), showing a partition member in an engine mount according to a third embodiment of the present invention in a state in which a relief passage is in communication with the partition member; 図9に示す仕切部材において内部に配置される可動膜の変形態様を説明するために当該可動膜について仕切部材を除いた状態で示す断面図FIG. 10 is a cross-sectional view showing a movable film in a state where the partition member is removed in order to explain a deformation mode of the movable film disposed inside the partition member shown in FIG.

以下、本発明の実施形態について、図面を参照しつつ説明する。 The following describes an embodiment of the present invention with reference to the drawings.

図1には、本発明に従う構造とされた流体封入式防振装置の第一の実施形態として、自動車用のエンジンマウント10が示されている。エンジンマウント10は、第一の取付部材12と第二の取付部材14が本体ゴム弾性体16によって弾性連結された構造を有している。以下の説明において、上下方向とは、原則として、マウント軸方向である図1中の上下方向を言う。 Figure 1 shows an engine mount 10 for an automobile as a first embodiment of a fluid-filled vibration isolation device constructed in accordance with the present invention. The engine mount 10 has a structure in which a first mounting member 12 and a second mounting member 14 are elastically connected by a main rubber elastic body 16. In the following description, the up-down direction generally refers to the up-down direction in Figure 1, which is the mount axial direction.

第一の取付部材12は、軸直角方向に延びる矩形筒状のブラケット装着部18と、ブラケット装着部18の下壁部を貫通する円形孔の周囲から下方へ向けて延び出す筒状の固着部20とを、一体で備えている。第一の取付部材12は、例えば、金属板材のプレス加工によって得ることができる。 The first mounting member 12 is integrally provided with a rectangular cylindrical bracket mounting portion 18 extending perpendicular to the axis, and a cylindrical fastening portion 20 extending downward from the periphery of a circular hole penetrating the lower wall of the bracket mounting portion 18. The first mounting member 12 can be obtained, for example, by pressing a metal plate.

第二の取付部材14は、段付きの略円筒形状とされており、上部が大径筒部22とされていると共に、下部が大径筒部22よりも小径の小径筒部24とされている。第二の取付部材14は、第一の取付部材12に対して略同一中心軸上で下方に配されており、それら第一の取付部材12と第二の取付部材14の間に本体ゴム弾性体16が配されている。 The second mounting member 14 has a stepped, generally cylindrical shape, with an upper portion being a large-diameter cylindrical portion 22 and a lower portion being a small-diameter cylindrical portion 24 having a smaller diameter than the large-diameter cylindrical portion 22. The second mounting member 14 is disposed below the first mounting member 12 on generally the same central axis, and a main rubber elastic body 16 is disposed between the first mounting member 12 and the second mounting member 14.

本体ゴム弾性体16は、略円錐台形状とされており、小径側である上部が第一の取付部材12の固着部20に加硫接着されていると共に、大径側である下部の外周面が第二の取付部材14の大径筒部22に加硫接着されている。本体ゴム弾性体16は、下面に開口して上方へ向けて小径となる凹所26を備えている。凹所26は、第一の取付部材12の固着部20よりも下方に位置しており、第二の取付部材14の小径筒部24よりも内周に位置している。 The main rubber elastic body 16 is generally frusto-conical in shape, with the upper portion, which is the smaller diameter side, being vulcanized and bonded to the fastening portion 20 of the first mounting member 12, and the outer peripheral surface of the lower portion, which is the larger diameter side, being vulcanized and bonded to the large diameter tubular portion 22 of the second mounting member 14. The main rubber elastic body 16 has a recess 26 that opens to the underside and becomes smaller in diameter toward the top. The recess 26 is located below the fastening portion 20 of the first mounting member 12 and is located more inward than the small diameter tubular portion 24 of the second mounting member 14.

第一の取付部材12のブラケット装着部18は、本体ゴム弾性体16と一体形成されたストッパゴム28が外周面に固着されていると共に、本体ゴム弾性体16と一体形成された嵌合ゴム30が内周面に固着されている。第二の取付部材14の小径筒部24の内周面は、本体ゴム弾性体16と一体形成されて、凹所26の周囲から下方へ延び出すシールゴム層32によって覆われている。 The bracket mounting portion 18 of the first mounting member 12 has a stopper rubber 28, which is integrally formed with the main rubber elastic body 16, fixed to its outer peripheral surface, and a fitting rubber 30, which is integrally formed with the main rubber elastic body 16, fixed to its inner peripheral surface. The inner peripheral surface of the small diameter tube portion 24 of the second mounting member 14 is covered by a seal rubber layer 32, which is integrally formed with the main rubber elastic body 16 and extends downward from the periphery of the recess 26.

第二の取付部材14の小径筒部24には、可撓性膜34が取り付けられている。可撓性膜34は、可撓性を有する薄肉のゴム膜であって、上下方向の弛みを有している。可撓性膜34の外周端には環状の固定部材36が固着されており、固定部材36が第二の取付部材14の小径筒部24の下端部に固定されている。そして、固定部材36が第二の取付部材14に固定されることによって、可撓性膜34が第二の取付部材14の下側の開口を塞ぐように配されている。固定部材36の第二の取付部材14への固定方法は特に限定されないが、例えば、固定部材36を第二の取付部材14の内周へ挿入した状態で、第二の取付部材14に縮径加工を施すことにより、固定部材36が第二の取付部材14に固定される。なお、第二の取付部材14の小径筒部24と固定部材36の間には、シールゴム層32が介在していることから、第二の取付部材14と固定部材36の間が流体密に封止されている。 A flexible film 34 is attached to the small diameter tube portion 24 of the second mounting member 14. The flexible film 34 is a flexible thin rubber film that has slack in the vertical direction. A ring-shaped fixing member 36 is fixed to the outer peripheral end of the flexible film 34, and the fixing member 36 is fixed to the lower end of the small diameter tube portion 24 of the second mounting member 14. The fixing member 36 is fixed to the second mounting member 14 so that the flexible film 34 closes the lower opening of the second mounting member 14. The method of fixing the fixing member 36 to the second mounting member 14 is not particularly limited, but for example, the fixing member 36 is inserted into the inner circumference of the second mounting member 14 and the second mounting member 14 is subjected to a diameter reduction process to fix the fixing member 36 to the second mounting member 14. In addition, a seal rubber layer 32 is interposed between the small diameter cylindrical portion 24 of the second mounting member 14 and the fixing member 36, so that the gap between the second mounting member 14 and the fixing member 36 is fluid-tight.

本体ゴム弾性体16に固着された第二の取付部材14に可撓性膜34が取り付けられることにより、本体ゴム弾性体16と可撓性膜34の対向間には、流体室38が外部から流体密に画成されている。流体室38は、内部に非圧縮性流体が封入されている。非圧縮性流体は、特に限定されないが、例えば、水、エチレングリコール、アルキレングリコール、ポリアルキレングリコール、シリコーン油、それらの混合液などが採用され得る。 By attaching the flexible membrane 34 to the second mounting member 14 fixed to the main rubber elastic body 16, a fluid chamber 38 is defined between the opposing main rubber elastic body 16 and the flexible membrane 34 in a fluid-tight manner from the outside. The fluid chamber 38 is filled with a non-compressible fluid. The non-compressible fluid is not particularly limited, but may be, for example, water, ethylene glycol, alkylene glycol, polyalkylene glycol, silicone oil, or a mixture thereof.

流体室38には、仕切部材40が配されている。仕切部材40は、図2,図3に示すように、略円板形状とされており、第一の仕切板42と第二の仕切板44とを有している。 A partition member 40 is disposed in the fluid chamber 38. As shown in Figures 2 and 3, the partition member 40 is generally disk-shaped and has a first partition plate 42 and a second partition plate 44.

第一の仕切板42は、全体として円板形状とされており、金属や合成樹脂等で形成された硬質の部材とされている。第一の仕切板42の外周端部には、外周面に開口して周方向に延びる周溝46が形成されている。第一の仕切板42の中央部分には、周溝46よりも内周において上面に開口する円形の中央凹部48が形成されている。中央凹部48の底壁には、中央を上下方向に貫通する円形断面の第一の中央透孔50と、第一の中央透孔50よりも外周を上下方向に貫通する複数の第一の外周透孔52とが、形成されている。第一の仕切板42の中央部分には、下面に開口する円形の収容凹部54が形成されている。収容凹部54は、中央凹部48よりも大径且つ浅底とされており、収容凹部54の外周端が中央凹部48よりも外周に位置している。収容凹部54の上底壁内面である第一の壁内面55は、径方向の中間部分が下方へ突出する第一の狭窄部56とされている。第一の中央透孔50と第一の外周透孔52は、中央凹部48と収容凹部54の底壁部の共通部分を貫通して、中央凹部48と収容凹部54をつないで形成されている。 The first partition plate 42 is generally disk-shaped and is a hard member made of metal, synthetic resin, or the like. A circumferential groove 46 is formed at the outer peripheral end of the first partition plate 42, opening on the outer peripheral surface and extending in the circumferential direction. A circular central recess 48 is formed in the central portion of the first partition plate 42, opening on the upper surface at a position inner than the circumferential groove 46. A first central through hole 50 with a circular cross section penetrating the center in the vertical direction and a plurality of first outer peripheral through holes 52 penetrating the outer periphery in the vertical direction from the first central through hole 50 are formed in the bottom wall of the central recess 48. A circular storage recess 54 is formed in the central portion of the first partition plate 42, opening on the lower surface. The storage recess 54 has a larger diameter and a shallower bottom than the central recess 48, and the outer peripheral end of the storage recess 54 is located on the outer periphery of the central recess 48. The first wall inner surface 55, which is the inner surface of the upper bottom wall of the storage recess 54, has a radially intermediate portion that protrudes downward to form a first narrowed portion 56. The first central through hole 50 and the first outer peripheral through hole 52 are formed by passing through the common portion of the bottom wall portions of the central recess 48 and the storage recess 54, connecting the central recess 48 and the storage recess 54.

第二の仕切板44は、第一の仕切板42と同様に硬質の部材とされており、第一の仕切板42よりも薄肉の略円板形状とされている。第二の仕切板44の中央部分には、上下方向に貫通する円形断面の第二の中央透孔58が形成されている。第二の仕切板44における第二の中央透孔58よりも外周には、上下方向に貫通する複数の第二の外周透孔60が周方向に並んで形成されている。第二の仕切板44における第二の外周透孔60の周方向間には、上方へ突出する第二の狭窄部62が設けられている。第二の仕切板44における第二の狭窄部62よりも外周には、上面に開口して周方向に延びる溝状のシール当接部64が設けられている。シール当接部64及びシール当接部64よりも内周部分で構成される第二の仕切板44の上面は、仕切部材40において第一の壁内面55と上下方向で対向する第二の壁内面65とされている。 The second partition plate 44 is a hard member similar to the first partition plate 42, and is formed in a generally circular plate shape that is thinner than the first partition plate 42. A second central through hole 58 with a circular cross section that penetrates in the vertical direction is formed in the center of the second partition plate 44. A plurality of second outer peripheral through holes 60 that penetrate in the vertical direction are formed in a line in the circumferential direction on the outer periphery of the second central through hole 58 in the second partition plate 44. A second narrowed portion 62 that protrudes upward is provided between the second outer peripheral through holes 60 in the second partition plate 44 in the circumferential direction. A groove-shaped seal abutment portion 64 that opens on the upper surface and extends in the circumferential direction is provided on the outer periphery of the second narrowed portion 62 in the second partition plate 44. The upper surface of the second partition plate 44, which is composed of the seal abutment portion 64 and the inner peripheral portion of the seal abutment portion 64, is the second wall inner surface 65 that faces the first wall inner surface 55 in the vertical direction in the partition member 40.

第一の仕切板42と第二の仕切板44は、上下方向で相互に重ね合わされている。第一の仕切板42の下面に第二の仕切板44が重ね合わされることによって、第一の仕切板42の収容凹部54の開口が第二の仕切板44によって覆われて、第一の仕切板42と第二の仕切板44の間に収容空所66が形成されている。収容空所66の後述する受圧室84側となる上側の壁内面が第一の仕切板42の第一の壁内面55で構成され、収容空所66の後述する平衡室86側となる側の壁内面が第二の仕切板44の第二の壁内面65で構成されている。仕切部材40において、第一の中央透孔50と第一の外周透孔52が収容空所66の上壁部を貫通して収容空所66に連通されていると共に、第二の中央透孔58と第二の外周透孔60が収容空所66の下壁部を貫通して収容空所66に連通されている。第一の中央透孔50と第二の中央透孔58が、上下方向で相互に対応する位置に配されていると共に、第一の外周透孔52と第二の外周透孔60が、上下方向で相互に対応する位置に配されている。 The first partition plate 42 and the second partition plate 44 are overlapped with each other in the up-down direction. By overlapping the second partition plate 44 on the lower surface of the first partition plate 42, the opening of the accommodation recess 54 of the first partition plate 42 is covered by the second partition plate 44, and an accommodation space 66 is formed between the first partition plate 42 and the second partition plate 44. An upper wall inner surface of the accommodation space 66 that faces a pressure-receiving chamber 84 (described later) is formed by a first wall inner surface 55 of the first partition plate 42, and a lower wall inner surface of the accommodation space 66 that faces an equilibrium chamber 86 (described later) is formed by a second wall inner surface 65 of the second partition plate 44. In the partition member 40, the first central through hole 50 and the first outer peripheral through hole 52 penetrate the upper wall portion of the accommodation cavity 66 and communicate with the accommodation cavity 66, and the second central through hole 58 and the second outer peripheral through hole 60 penetrate the lower wall portion of the accommodation cavity 66 and communicate with the accommodation cavity 66. The first central through hole 50 and the second central through hole 58 are disposed at positions corresponding to each other in the up-down direction, and the first outer peripheral through hole 52 and the second outer peripheral through hole 60 are disposed at positions corresponding to each other in the up-down direction.

仕切部材40の収容空所66には、可動膜68が配されている。可動膜68は、図4,図5に示すように、全体として円板形状を有している。可動膜68は、ゴム弾性体によって形成されており、厚さ方向の弾性的な撓み変形が許容されている。なお、要求される防振性能や後述する弾性突部70の変形剛性などに応じて、可動膜68には、例えば金属や樹脂等の硬質プレートが部分的又は全体にわたって埋設されることで部分的又は全体的な変形特性が調節されていてもよい。 A movable membrane 68 is disposed in the accommodation space 66 of the partition member 40. As shown in Figs. 4 and 5, the movable membrane 68 has an overall disk shape. The movable membrane 68 is formed from a rubber elastic body, and is allowed to elastically flex in the thickness direction. Depending on the required vibration-proofing performance and the deformation rigidity of the elastic protrusion 70 described below, the movable membrane 68 may be partially or entirely embedded with a hard plate of, for example, metal or resin, to adjust its partial or overall deformation characteristics.

可動膜68の外周端部には、上方へ突出する弾性突部70が一体形成されている。弾性突部70は、可動膜68の外周端部から後述する受圧室84側となる上方へ向けて突出している。弾性突部70は、周方向で相互に離隔する複数が設けられている。弾性突部70は、略円形断面を有している。弾性突部70は、突出先端に向けて次第に収縮する(小径となる)先細形状とされている。弾性突部70の突出先端面は、平坦面や先鋭形状の凸面等であってもよいが、本実施形態では突出先端に向けて凸の球冠状湾曲面とされている。弾性突部70の数や配置は特に限定されないが、本実施形態では、16個の弾性突部70が周方向で略等間隔に並んで配されている。 The movable membrane 68 has an elastic protrusion 70 integrally formed at its outer peripheral end, which protrudes upward. The elastic protrusion 70 protrudes from the outer peripheral end of the movable membrane 68 toward the pressure-receiving chamber 84 (described later) in the upward direction. A plurality of elastic protrusions 70 are provided, spaced apart from each other in the circumferential direction. The elastic protrusions 70 have an approximately circular cross section. The elastic protrusions 70 are tapered so that they gradually shrink (become smaller in diameter) toward the protruding tip. The protruding tip surface of the elastic protrusions 70 may be a flat surface or a sharp-pointed convex surface, but in this embodiment, it is a spherical crown-shaped curved surface that is convex toward the protruding tip. The number and arrangement of the elastic protrusions 70 are not particularly limited, but in this embodiment, 16 elastic protrusions 70 are arranged at approximately equal intervals in the circumferential direction.

可動膜68の外周端部には、シール部72が設けられている。シール部72は、可動膜68の外周端部における下端部分であって、本実施形態ではシールリップとしての外周リップ74及び内周リップ76を備えている。外周リップ74は、図6に拡大して示すように、可動膜68の外周縁部から後述する平衡室86側である下方へ向けて突出しており、周方向に連続して延びる環状とされている。内周リップ76は、外周リップ74よりも内周において下方へ向けて突出しており、外周リップ74と並列的に周方向へ延びる環状とされている。 A seal portion 72 is provided at the outer peripheral end of the movable membrane 68. The seal portion 72 is the lower end portion at the outer peripheral end of the movable membrane 68, and in this embodiment, it has an outer peripheral lip 74 and an inner peripheral lip 76 as seal lips. As shown in an enlarged view in FIG. 6, the outer peripheral lip 74 protrudes downward from the outer peripheral edge of the movable membrane 68 toward the equilibrium chamber 86 described below, and is an annular shape that extends continuously in the circumferential direction. The inner peripheral lip 76 protrudes downward on the inner circumference than the outer peripheral lip 74, and is an annular shape that extends in the circumferential direction in parallel with the outer peripheral lip 74.

可動膜68の内周部分には、上下両面に複数の緩衝突起78がそれぞれ設けられている。緩衝突起78は、略半球形状とされている。緩衝突起78は、突出高さ寸法及び幅寸法が弾性突部70よりも小さくされている。本実施形態の緩衝突起78は、図4~図6に示すように、微小な突起とされており、複数が略十字状に並んで配されている。 A number of buffer protrusions 78 are provided on both the upper and lower surfaces of the inner periphery of the movable membrane 68. The buffer protrusions 78 are generally hemispherical in shape. The protruding height and width of the buffer protrusions 78 are smaller than those of the elastic protrusions 70. As shown in Figures 4 to 6, the buffer protrusions 78 in this embodiment are minute protrusions, and multiple ones are arranged in a generally cross shape.

可動膜68は、図1に示すように、仕切部材40の収容空所66に配されている。可動膜68は、弾性突部70とシール部72を備える外周端部が第一の外周透孔52及び第二の外周透孔60よりも外周に位置しており、第一の仕切板42と第二の仕切板44の対向間に配されている。そして、可動膜68の外周端部は、弾性突部70が第一の仕切板42の第一の壁内面55に押し当てられていると共に、シール部72が第二の仕切板44の第二の壁内面65(シール当接部64)に押し当てられており、それら第一の仕切板42と第二の仕切板44の上下間に挟持されている。また、収容空所66の内周部分の上下寸法は、可動膜68の内周部分の上下寸法よりも大きくされており、可動膜68の内周部分は弾性変形を伴う上下方向の変位が許容されている。 As shown in FIG. 1, the movable membrane 68 is disposed in the accommodation space 66 of the partition member 40. The outer peripheral end of the movable membrane 68, which is provided with an elastic protrusion 70 and a seal portion 72, is located on the outer periphery of the first outer peripheral through hole 52 and the second outer peripheral through hole 60, and is disposed between the first partition plate 42 and the second partition plate 44. The outer peripheral end of the movable membrane 68 is sandwiched between the top and bottom of the first partition plate 42 and the second partition plate 44, with the elastic protrusion 70 pressed against the first wall inner surface 55 of the first partition plate 42 and the seal portion 72 pressed against the second wall inner surface 65 (seal abutment portion 64) of the second partition plate 44. The vertical dimension of the inner peripheral portion of the accommodation space 66 is larger than the vertical dimension of the inner peripheral portion of the movable membrane 68, and the inner peripheral portion of the movable membrane 68 is allowed to be displaced in the vertical direction accompanied by elastic deformation.

可動膜68の外径寸法は、収容空所66の内径寸法よりも小さくされており、可動膜68が収容空所66に配された状態において、可動膜68の外周面と収容空所66の周壁内面とが径方向で相互に離れて対向している。これにより、可動膜68の外周面と収容空所66の周壁内面との径方向間には、周方向に延びる環状の隙間80が設けられている。本実施形態では、隙間80が周方向の全周にわたって設けられているが、後述するように受圧室84の内圧が低下した際に、隙間を含んで構成されるリリーフ通路によりキャビテーションの発生が十分に防止されるのであれば、可動膜の外周面と収容空所の周壁内面との径方向間の隙間は周方向で部分的であってもよい。 The outer diameter of the movable membrane 68 is smaller than the inner diameter of the accommodation cavity 66, and when the movable membrane 68 is disposed in the accommodation cavity 66, the outer peripheral surface of the movable membrane 68 and the inner peripheral wall surface of the accommodation cavity 66 face each other at a distance in the radial direction. As a result, an annular gap 80 extending in the circumferential direction is provided between the outer peripheral surface of the movable membrane 68 and the inner peripheral wall surface of the accommodation cavity 66 in the radial direction. In this embodiment, the gap 80 is provided around the entire circumference in the circumferential direction, but as long as the relief passage including the gap sufficiently prevents the occurrence of cavitation when the internal pressure of the pressure-receiving chamber 84 decreases as described below, the radial gap between the outer peripheral surface of the movable membrane and the inner peripheral wall surface of the accommodation cavity may be partial in the circumferential direction.

弾性突部70が収容空所66の上壁内面に押し当てられた状態において、周方向で隣り合って配置された弾性突部70,70の周方向間には空隙が維持されている。弾性突部70,70間の空隙によって、可動膜68と仕切部材40の間を延びて隙間80に連通される連通路82が形成されている。本実施形態では、複数の連通路82が放射状に延びているが、連通路は、必ずしも可動膜68の径方向に延びている必要はないし、複数であれば形成数が限定されるものでもない。可動膜68の外周端部は、弾性突部70の形成部分において収容空所66の後述する受圧室84側の壁内面(第一の壁内面55)に当接していると共に、弾性突部70を周方向に外れた位置では第一の壁内面55から離隔している。従って、収容空所66の受圧室84側の壁内面55に当接する当接部が、弾性突部70によって構成されており、周方向で部分的に設けられている。要するに、本実施形態では、可動膜68の外周端部において当接部である弾性突部70を周方向で外れた位置に、隙間80に連通された連通路82が設けられている。 When the elastic protrusion 70 is pressed against the upper wall inner surface of the accommodation cavity 66, a gap is maintained between the elastic protrusions 70, 70 arranged adjacent to each other in the circumferential direction. The gap between the elastic protrusions 70, 70 forms a communication passage 82 that extends between the movable membrane 68 and the partition member 40 and communicates with the gap 80. In this embodiment, multiple communication passages 82 extend radially, but the communication passages do not necessarily need to extend in the radial direction of the movable membrane 68, and the number of communication passages formed is not limited as long as there are multiple communication passages. The outer peripheral end of the movable membrane 68 abuts against the wall inner surface (first wall inner surface 55) of the accommodation cavity 66 on the side of the pressure-receiving chamber 84 described later at the portion where the elastic protrusion 70 is formed, and is separated from the first wall inner surface 55 at a position circumferentially away from the elastic protrusion 70. Therefore, the contact portion that contacts the wall inner surface 55 of the housing cavity 66 on the pressure-receiving chamber 84 side is formed by the elastic protrusion 70, and is provided partially in the circumferential direction. In other words, in this embodiment, a communication passage 82 that communicates with the gap 80 is provided at a position circumferentially away from the elastic protrusion 70, which is the contact portion, at the outer circumferential end of the movable membrane 68.

シール部72は、第二の仕切板44のシール当接部64に全周にわたって押し当てられており、隙間80と第二の中央透孔58及び第二の外周透孔60との連通を防止するシール構造が、シール部72によって構成されている。本実施形態では、シール部72が外周リップ74と内周リップ76を備えており、外周リップ74と内周リップ76の両方が第二の仕切板44に押し付けられることによって、2重のシール構造が設けられている。もっとも、1つのシールリップによるシール構造や、3つ以上のシールリップによる多重のシール構造なども採用され得る。また、シールリップは、なくてもよい。 The seal portion 72 is pressed against the seal abutment portion 64 of the second partition plate 44 over the entire circumference, and the seal portion 72 forms a seal structure that prevents communication between the gap 80 and the second central through hole 58 and the second outer peripheral through hole 60. In this embodiment, the seal portion 72 has an outer peripheral lip 74 and an inner peripheral lip 76, and a double seal structure is provided by pressing both the outer peripheral lip 74 and the inner peripheral lip 76 against the second partition plate 44. However, a seal structure using one seal lip or a multiple seal structure using three or more seal lips may also be used. Also, the seal lip may not be necessary.

このように、弾性突部70とシール部72を備えた可動膜68の外周端部は、仕切部材40によって上下方向で挟み込まれて支持されている。可動膜68の内周部分は、撓み変形を伴う上下方向の微小変位が収容空所66内で許容されている。 In this way, the outer peripheral end of the movable membrane 68, which is equipped with the elastic protrusion 70 and the seal portion 72, is supported by being sandwiched in the vertical direction by the partition member 40. The inner peripheral portion of the movable membrane 68 is allowed to undergo slight vertical displacement accompanied by bending deformation within the accommodation space 66.

可動膜68を収容した仕切部材40は、図1に示すように、流体室38に配されている。流体室38に配された仕切部材40は、軸直角方向に広がっており、外周面が第二の取付部材14の小径筒部24の内周面に重ね合わされて支持されている。仕切部材40の外周面は、第二の取付部材14に対してシールゴム層32を介して重ね合わされていることから、仕切部材40と第二の取付部材14の重ね合わせ面間が流体密に封止されている。第二の取付部材14と仕切部材40の固定方法は、特に限定されないが、例えば、第二の取付部材14の内周へ仕切部材40が挿入された状態で、第二の取付部材14を縮径加工し、第二の取付部材14の内周面と仕切部材40の外周面をシールゴム層32を介して押し当てることによって固定される。なお、第二の取付部材14の縮径加工によって、本体ゴム弾性体16の予圧縮と、可撓性膜34の第二の取付部材14への取付けと、仕切部材40の第二の取付部材14への取付けとを、一度に行うことができる。 As shown in FIG. 1, the partition member 40 containing the movable membrane 68 is disposed in the fluid chamber 38. The partition member 40 disposed in the fluid chamber 38 spreads in the direction perpendicular to the axis, and its outer peripheral surface is supported by being overlapped with the inner peripheral surface of the small diameter cylindrical portion 24 of the second mounting member 14. The outer peripheral surface of the partition member 40 is overlapped with the second mounting member 14 via a seal rubber layer 32, so that the overlapping surfaces of the partition member 40 and the second mounting member 14 are sealed fluid-tight. The method of fixing the second mounting member 14 and the partition member 40 is not particularly limited, but for example, the partition member 40 is inserted into the inner circumference of the second mounting member 14, the second mounting member 14 is subjected to a diameter reduction process, and the inner peripheral surface of the second mounting member 14 and the outer peripheral surface of the partition member 40 are pressed against each other via the seal rubber layer 32 to be fixed. Furthermore, by reducing the diameter of the second mounting member 14, the precompression of the main rubber elastic body 16, the attachment of the flexible membrane 34 to the second mounting member 14, and the attachment of the partition member 40 to the second mounting member 14 can be performed all at once.

流体室38が仕切部材40によって上下に二分されており、受圧室84と平衡室86が画成されている。即ち、流体室38における仕切部材40よりも上側は、壁部の一部が本体ゴム弾性体16によって構成された受圧室84とされている。流体室38における仕切部材40よりも下側は、壁部の一部が可撓性膜34によって構成された平衡室86とされている。受圧室84と平衡室86は、何れも非圧縮性流体が封入されており、受圧室84は振動入力時に内圧変動が惹起され、平衡室86は容積変化が許容されている。なお、例えば、第二の取付部材14に対する可撓性膜34と仕切部材40の取付作業を非圧縮性流体中で行うことによって、受圧室84と平衡室86に非圧縮性流体を封入することができる。 The fluid chamber 38 is divided into two by the partition member 40, and a pressure-receiving chamber 84 and an equilibrium chamber 86 are defined. That is, the upper side of the partition member 40 in the fluid chamber 38 is the pressure-receiving chamber 84, whose wall is partly constituted by the main rubber elastic body 16. The lower side of the fluid chamber 38 below the partition member 40 is the equilibrium chamber 86, whose wall is partly constituted by the flexible membrane 34. Both the pressure-receiving chamber 84 and the equilibrium chamber 86 are filled with a non-compressible fluid, and the pressure-receiving chamber 84 undergoes internal pressure fluctuations upon vibration input, while the equilibrium chamber 86 is allowed to change in volume. For example, the installation work of the flexible membrane 34 and the partition member 40 to the second mounting member 14 can be performed in a non-compressible fluid to fill the pressure-receiving chamber 84 and the equilibrium chamber 86.

仕切部材40が第二の取付部材14に取り付けられることにより、周溝46の開口がシールゴム層32で覆われた第二の取付部材14によって流体密に塞がれて、周方向に延びる流路が形成される。この流路は、一方の端部が第一の仕切板42に形成された第一の連通口88を通じて受圧室84に連通されると共に、他方の端部が第二の仕切板44に形成された第二の連通口90を通じて平衡室86に連通される。これにより、受圧室84と平衡室86を相互に連通するオリフィス通路92が、周溝46を利用して形成されている。オリフィス通路92は、受圧室84の壁部のばねなどを考慮しながら通路長と通路断面積の比を調節することにより、流動流体の共振周波数が防振対象振動の周波数にチューニングされる。本実施形態では、オリフィス通路92のチューニング周波数が、エンジンシェイクに相当する10Hz程度の低周波に設定されている。 When the partition member 40 is attached to the second mounting member 14, the opening of the circumferential groove 46 is fluid-tightly blocked by the second mounting member 14 covered with the seal rubber layer 32, forming a flow path extending in the circumferential direction. One end of this flow path is connected to the pressure receiving chamber 84 through a first communication port 88 formed in the first partition plate 42, and the other end is connected to the equilibrium chamber 86 through a second communication port 90 formed in the second partition plate 44. As a result, an orifice passage 92 that connects the pressure receiving chamber 84 and the equilibrium chamber 86 to each other is formed using the circumferential groove 46. The orifice passage 92 is tuned to the frequency of the vibration to be damped by adjusting the ratio of the passage length and the passage cross-sectional area while taking into account the spring of the wall of the pressure receiving chamber 84. In this embodiment, the tuning frequency of the orifice passage 92 is set to a low frequency of about 10 Hz, which corresponds to engine shake.

仕切部材40の収容空所66は、第一の中央透孔50及び第一の外周透孔52を通じて受圧室84に連通されていると共に、第二の中央透孔58及び第二の外周透孔60を通じて平衡室86に連通されている。そして、収容空所66に配された可動膜68は、上面に受圧室84の液圧が及ぼされていると共に、下面に平衡室86の液圧が及ぼされている。従って、受圧室84と平衡室86に相対的な内圧差が生じると、可動膜68に対して上下方向の力が作用し、可動膜68が変形乃至は変位する。可動膜68は、撓み変形の共振周波数が、オリフィス通路92のチューニング周波数よりも高周波の防振対象振動の周波数に設定されており、当該防振対象振動の入力によって共振状態で積極的に変形するようになっている。 The accommodation cavity 66 of the partition member 40 is connected to the pressure-receiving chamber 84 through the first central through hole 50 and the first outer peripheral through hole 52, and is connected to the equilibrium chamber 86 through the second central through hole 58 and the second outer peripheral through hole 60. The movable membrane 68 arranged in the accommodation cavity 66 is subjected to the liquid pressure of the pressure-receiving chamber 84 on the upper surface and the liquid pressure of the equilibrium chamber 86 on the lower surface. Therefore, when a relative internal pressure difference occurs between the pressure-receiving chamber 84 and the equilibrium chamber 86, a force acts in the vertical direction on the movable membrane 68, and the movable membrane 68 is deformed or displaced. The resonant frequency of the bending deformation of the movable membrane 68 is set to the frequency of the vibration to be damped, which is higher than the tuning frequency of the orifice passage 92, and is actively deformed in a resonant state when the vibration to be damped is input.

可動膜68の外周に設けられた隙間80は、連通路82と第一の中央透孔50及び第一の外周透孔52とを通じて受圧室84に連通されている。 The gap 80 provided on the outer periphery of the movable membrane 68 is connected to the pressure-receiving chamber 84 through the communication passage 82, the first central through hole 50, and the first outer peripheral through hole 52.

可動膜68のシール部72と収容空所66の第二の壁内面65との当接によるシール構造によって、隙間80は平衡室86に連通されておらず、受圧室84と平衡室86が収容空所66を介して連通されることなく、可動膜68で遮断されている。なお、シール部72と第二の壁内面65との当接によるシール構造は、必ずしも流体の流動を完全に阻止するものに限定されず、通常の振動入力時に防振性能の低下を招くほどの流体流動を防ぐものであればよい。 The gap 80 is not connected to the equilibrium chamber 86 due to the sealing structure formed by the contact between the seal portion 72 of the movable membrane 68 and the second wall inner surface 65 of the accommodation cavity 66, and the pressure-receiving chamber 84 and the equilibrium chamber 86 are not connected to each other via the accommodation cavity 66, but are blocked by the movable membrane 68. Note that the sealing structure formed by the contact between the seal portion 72 and the second wall inner surface 65 is not necessarily limited to one that completely blocks the flow of fluid, but may be one that prevents fluid flow to such an extent that it would cause a decrease in vibration-proofing performance during normal vibration input.

かくの如き構造とされたエンジンマウント10は、例えば、第一の取付部材12がブラケット装着部18に嵌め入れられる図示しないインナブラケットを介してパワーユニットに取り付けられると共に、第二の取付部材14が外嵌装着される図示しないアウタブラケットを介して車両ボデーに取り付けられて、車両に装着される。 The engine mount 10 constructed in this manner is attached to the vehicle, for example, by attaching the first mounting member 12 to the power unit via an inner bracket (not shown) that fits into the bracket mounting portion 18, and by attaching the second mounting member 14 to the vehicle body via an outer bracket (not shown) that fits over the outside.

エンジンマウント10の車両への装着状態において、第一の取付部材12と第二の取付部材14の間へエンジンシェイク等に相当する低周波大振幅振動が上下方向に入力されると、壁部の一部が本体ゴム弾性体16によって構成された受圧室84において内圧変化が生じる。そして、受圧室84と平衡室86の相対的な圧力差に基づいて、オリフィス通路92を通じた受圧室84と平衡室86の間の流体流動が共振状態で積極的に生じ、流体の流動作用に基づいた防振効果(振動減衰効果)が発揮される。 When low-frequency, large-amplitude vibrations equivalent to engine shake or the like are input vertically between the first mounting member 12 and the second mounting member 14 while the engine mount 10 is attached to the vehicle, a change in internal pressure occurs in the pressure-receiving chamber 84, part of whose wall is formed by the main rubber elastic body 16. Then, based on the relative pressure difference between the pressure-receiving chamber 84 and the equilibrium chamber 86, fluid flow actively occurs in a resonant state between the pressure-receiving chamber 84 and the equilibrium chamber 86 through the orifice passage 92, and a vibration-proofing effect (vibration damping effect) based on the fluid flow action is exerted.

低周波大振幅振動の入力時には、可動膜68の変形が入力振動の振幅に追従し得ず、可動膜68が実質的に拘束された状態となって、可動膜68の変形による受圧室84の液圧を吸収する作用が十分に発揮されない。それゆえ、受圧室84と平衡室86の内圧差が大きく確保されて、オリフィス通路92を通じた流体流動が効率的に生じ、オリフィス通路92による防振効果を有利に得ることができる。なお、大きく変形した可動膜68が収容空所66の壁内面55,65に打ち当たって拘束される際に、可動膜68の表裏両面に突出する微小な緩衝突起78が収容空所66の壁内面55,65に優先的に当接することから、当接時の打音が低減される。 When low-frequency, large-amplitude vibration is input, the deformation of the movable membrane 68 cannot follow the amplitude of the input vibration, and the movable membrane 68 is essentially constrained, so that the effect of absorbing the liquid pressure in the pressure-receiving chamber 84 due to the deformation of the movable membrane 68 is not fully exerted. Therefore, a large internal pressure difference is ensured between the pressure-receiving chamber 84 and the equilibrium chamber 86, and fluid flow occurs efficiently through the orifice passage 92, and the vibration-damping effect of the orifice passage 92 can be advantageously obtained. In addition, when the greatly deformed movable membrane 68 strikes the inner wall surfaces 55, 65 of the accommodation cavity 66 and is restrained, the minute buffer protrusions 78 protruding from both the front and back sides of the movable membrane 68 preferentially strike the inner wall surfaces 55, 65 of the accommodation cavity 66, reducing the striking sound at the time of strike.

オリフィス通路92のチューニング周波数よりも高周波のアイドリング振動等に相当する中乃至高周波小振幅振動が入力されると、オリフィス通路92は、反共振によって実質的に遮断される。可動膜68は、入力振動に応じて共振状態で積極的に撓み変形し、振動入力によって生じる受圧室84の内圧変動を吸収する。これにより、受圧室84の実質的な密閉化による著しい高度ばね化が回避され、低動ばね化による防振効果(振動絶縁効果)が発揮される。 When medium to high-frequency small-amplitude vibrations equivalent to idling vibrations and the like that are higher than the tuning frequency of the orifice passage 92 are input, the orifice passage 92 is essentially blocked by anti-resonance. The movable membrane 68 actively flexes and deforms in a resonant state in response to the input vibration, absorbing the internal pressure fluctuations in the pressure-receiving chamber 84 caused by the vibration input. This prevents the pressure-receiving chamber 84 from becoming substantially sealed and becomes a highly springy structure, and provides a vibration-proofing effect (vibration isolation effect) by reducing the dynamic springiness.

車両が走行時に段差を乗り越える等して著しく振幅の大きな振動が入力され、受圧室84の内圧が大幅に低下すると、可動膜68には、受圧室84と平衡室86の相対的な内圧差に基づいて、受圧室84側である上側へ向けた力が作用する。この力の作用によって、図7に示すように、可動膜68の弾性突部70が上下方向において圧縮されて縮んで、可動膜68の外周端部の下面が上方へ変位し、可動膜68の外周端部に設けられたシール部72が、収容空所66の第二の壁内面65を構成するシール当接部64から、例えば周方向の略全周にわたって上方へ離隔する。特に、本実施形態では、可動膜68の外周端部において弾性突部70の形成部位以外の変形が比較的抑制されつつ、弾性突部70が上下方向で効率的に圧縮変形されることになる。この結果、可動膜68の外周端部におけるシール部72が、弾性突部70の形成部分を含めて周方向の略全周にわたって上方へ変位して、シール当接部64から離隔する。これにより、可動膜68の外周側に設けられた隙間80が、第二の外周透孔60を通じて平衡室86に連通され、受圧室84と平衡室86を相互に連通するリリーフ通路94が、隙間80と連通路82を含んで構成される。そして、リリーフ通路94を通じて平衡室86から受圧室84へ封入流体が流入することにより、受圧室84の内圧低下が速やかに軽減乃至は解消されて、受圧室84の内圧低下に起因するキャビテーションの発生が防止される。その結果、キャビテーションに起因する異音や振動の発生が防止されて、車両の静粛性や乗り心地の改善が図られる。 When a vehicle goes over a step while traveling and a vibration of a significantly large amplitude is input, the internal pressure of the pressure-receiving chamber 84 drops significantly, and a force acts on the movable membrane 68 toward the pressure-receiving chamber 84, which is the upward side, based on the relative internal pressure difference between the pressure-receiving chamber 84 and the equilibrium chamber 86. Due to the action of this force, as shown in FIG. 7, the elastic protrusion 70 of the movable membrane 68 is compressed and contracted in the vertical direction, the lower surface of the outer peripheral end of the movable membrane 68 is displaced upward, and the seal portion 72 provided on the outer peripheral end of the movable membrane 68 is separated upward, for example, over approximately the entire circumference in the circumferential direction, from the seal abutment portion 64 constituting the second wall inner surface 65 of the accommodation space 66. In particular, in this embodiment, the elastic protrusion 70 is efficiently compressed and deformed in the vertical direction while deformation of the outer peripheral end of the movable membrane 68 other than the portion where the elastic protrusion 70 is formed is relatively suppressed. As a result, the seal portion 72 at the outer peripheral end of the movable membrane 68 is displaced upward over almost the entire circumference, including the portion where the elastic protrusion 70 is formed, and is separated from the seal abutment portion 64. As a result, the gap 80 provided on the outer peripheral side of the movable membrane 68 is connected to the equilibrium chamber 86 through the second outer peripheral through hole 60, and a relief passage 94 that connects the pressure receiving chamber 84 and the equilibrium chamber 86 to each other is formed by including the gap 80 and the communication passage 82. Then, the sealed fluid flows from the equilibrium chamber 86 to the pressure receiving chamber 84 through the relief passage 94, so that the internal pressure drop of the pressure receiving chamber 84 is quickly reduced or eliminated, and the occurrence of cavitation due to the internal pressure drop of the pressure receiving chamber 84 is prevented. As a result, the occurrence of abnormal noise and vibration due to cavitation is prevented, and the quietness and ride comfort of the vehicle are improved.

リリーフ通路94は、可動膜68の外周端部を回り込むように設けられていることから、従来構造のように可動膜の中央部分に設けられる場合に比して、周方向の長さ寸法が大きく、通路断面積が大きく確保されている。これにより、リリーフ通路94の流量が大きくされており、平衡室86から受圧室84へ封入流体が速やかに流入し、受圧室84の負圧が迅速に低減される。また、リリーフ通路94は、オリフィス通路92よりも通路長が短く、通路断面積の通路長に対する比が大きい。リリーフ通路94は、オリフィス通路92よりも流動抵抗が小さく、流量が大きく確保される。 The relief passage 94 is provided so as to wrap around the outer peripheral end of the movable membrane 68, and therefore has a larger circumferential length and a larger passage cross-sectional area than when it is provided in the central part of the movable membrane as in the conventional structure. This increases the flow rate of the relief passage 94, allowing the enclosed fluid to flow quickly from the equilibrium chamber 86 to the pressure-receiving chamber 84, and quickly reducing the negative pressure in the pressure-receiving chamber 84. The relief passage 94 also has a shorter passage length than the orifice passage 92, and a larger ratio of the passage cross-sectional area to the passage length. The relief passage 94 has a smaller flow resistance than the orifice passage 92, and ensures a larger flow rate.

弾性突部70は、先細形状とされていることから、圧縮変形量が大きくなるにしたがって非線形的にばねが大きくなり、更なる圧縮変形が生じ難くなる。それゆえ、受圧室84の内圧が大幅に低下する場合に、弾性突部70の圧縮変形によるリリーフ通路94の速やかな開作動を許容しながら、弾性突部70の過大な潰れによる連通路82の遮断が回避されて、リリーフ通路94の連通状態が維持される。 Because the elastic protrusion 70 has a tapered shape, the spring becomes larger nonlinearly as the amount of compressive deformation increases, making it difficult for further compressive deformation to occur. Therefore, when the internal pressure of the pressure-receiving chamber 84 drops significantly, the elastic protrusion 70 is allowed to compressively deform to quickly open the relief passage 94, while preventing the elastic protrusion 70 from excessively collapsing and blocking the communication passage 82, thereby maintaining the communication state of the relief passage 94.

なお、著しく振幅の大きな振動が入力され、受圧室84の内圧が大幅に上昇すると、シール部72が更に圧縮されて、可動膜68の外周端部が下方へ変位し得る。この場合に、仮に弾性突部70の先端面が収容空所66の第一の壁内面55から離れたとしても、弾性突部70の突出先端面が先細の球冠形状とされていることによって、第一の壁内面55に再び当接する際の打音が低減される。 If vibrations of extremely large amplitude are input and the internal pressure of the pressure-receiving chamber 84 rises significantly, the seal portion 72 may be further compressed and the outer peripheral end of the movable membrane 68 may be displaced downward. In this case, even if the tip surface of the elastic protrusion 70 separates from the first wall inner surface 55 of the accommodation cavity 66, the tapered spherical crown shape of the protruding tip surface of the elastic protrusion 70 reduces the impact sound when it comes into contact with the first wall inner surface 55 again.

図8には、本発明に従う構造とされた流体封入式防振装置の第二の実施形態として、自動車用のエンジンマウント100が示されている。以下の説明において、第一の実施形態と実質的に同一の部材及び部位については、図中に同一の符号を付すことにより、説明を省略する。 Figure 8 shows an engine mount 100 for an automobile as a second embodiment of a fluid-filled vibration-damping device constructed in accordance with the present invention. In the following description, the same components and parts as those in the first embodiment are denoted by the same reference numerals in the figure and will not be described.

エンジンマウント100は、可動膜102が仕切部材104の収容空所66に配された構造を有している。可動膜102は、外周端部において第一の実施形態に示した弾性突部70を備えておらず、外周端部の上面が平坦面とされている。 The engine mount 100 has a structure in which a movable membrane 102 is disposed in a housing space 66 of a partition member 104. The movable membrane 102 does not have the elastic protrusion 70 shown in the first embodiment at its outer peripheral end, and the upper surface of the outer peripheral end is a flat surface.

仕切部材104を構成する第一の仕切板106は、収容空所66の受圧室84側の壁内面(第一の壁内面55)に開口する複数の凹溝108を備えている。凹溝108は、収容空所66の外周部分において径方向に延びており、内周端部が第一の外周透孔52に開放されている。換言すれば、収容空所66の受圧室84側の壁内面(第一の壁内面55)には、径方向に延びて下方に突出する複数の凸条が設けられており、当該複数の凸条の周方向間により相対的に下方に開口する凹溝108が形成されると把握することもできる。即ち、かかる凸条は第一の仕切板106と一体的に形成されており、硬質の凸条とされている。なお、この凸条は弾性を有する凸条でもよく、例えば第一の仕切板106とは別体で形成された弾性を有する凸条が後固着されることで、複数の凹溝108が形成されるようになっていてもよい。 The first partition plate 106 constituting the partition member 104 has a plurality of grooves 108 that open to the wall inner surface (first wall inner surface 55) of the accommodation cavity 66 on the side of the pressure-receiving chamber 84. The grooves 108 extend radially in the outer peripheral portion of the accommodation cavity 66, and the inner peripheral end is open to the first outer peripheral through hole 52. In other words, the wall inner surface (first wall inner surface 55) on the side of the pressure-receiving chamber 84 of the accommodation cavity 66 has a plurality of ridges that extend radially and protrude downward, and the grooves 108 that open relatively downward are formed between the circumferential spaces of the plurality of ridges. That is, the ridges are formed integrally with the first partition plate 106 and are hard ridges. The ridges may be elastic ridges, and for example, the plurality of grooves 108 may be formed by later fixing elastic ridges formed separately from the first partition plate 106.

収容空所66の第一の壁内面55は、凹溝108を周方向に外れた部分が、可動膜102の外周端部の上面に当接している。これにより、可動膜102の外周端部は、凹溝108を周方向に外れた部分で仕切部材104によって上下方向に挟持されている。従って、可動膜102の外周端部において、凹溝108を周方向に外れて第一の仕切板106に当接する部分が、本実施形態の当接部とされている。 The first wall inner surface 55 of the storage cavity 66, at a portion circumferentially outside the groove 108, abuts against the upper surface of the outer peripheral end of the movable membrane 102. As a result, the outer peripheral end of the movable membrane 102 is vertically clamped by the partition member 104 at a portion circumferentially outside the groove 108. Therefore, the portion of the outer peripheral end of the movable membrane 102 that abuts against the first partition plate 106, circumferentially outside the groove 108, is the abutment portion in this embodiment.

収容空所66に可動膜102が配されることによって、凹溝108の下開口が可動膜102に覆われており、径方向に延びる連通路110が凹溝108によって構成されている。連通路110は、内周端部が第一の外周透孔52を通じて受圧室84に連通されていると共に、外周端部が可動膜102の外周側に設けられた隙間80に連通されている。 By disposing the movable membrane 102 in the accommodation cavity 66, the lower opening of the groove 108 is covered by the movable membrane 102, and the groove 108 forms a radially extending communication passage 110. The inner peripheral end of the communication passage 110 is connected to the pressure-receiving chamber 84 through the first outer peripheral through hole 52, and the outer peripheral end is connected to the gap 80 provided on the outer peripheral side of the movable membrane 102.

このような本実施形態に従う構造とされたエンジンマウント100は、第一の実施形態と同様に、振動入力によって受圧室84の内圧が大幅に低下する際に、受圧室84と平衡室86が隙間80と連通路110を含んで構成される図示しないリリーフ通路によって連通される。即ち、受圧室84の内圧が大幅に低下すると、受圧室84と平衡室86の相対的な圧力差によって受圧室84側へ向けた力が可動膜102に作用し、可動膜102の外周端部の当接部が上下方向において圧縮される。これにより、可動膜102の外周端部が受圧室84側へ変位し、可動膜102のシール部72が収容空所66の平衡室86側の壁内面(第二の壁内面65)を構成するシール当接部64から離隔する。その結果、連通路110を通じて受圧室84に連通された隙間80が、シール部72とシール当接部64の間と第二の外周透孔60とを通じて平衡室86に連通され、受圧室84と平衡室86を連通するリリーフ通路が、隙間80と連通路110を含んで構成される。そして、リリーフ通路を通じて平衡室86から受圧室84へ封入流体が流入することにより、受圧室84の内圧低下が抑制されて、キャビテーションの発生が防止される。 In the engine mount 100 constructed according to this embodiment, as in the first embodiment, when the internal pressure of the pressure receiving chamber 84 drops significantly due to vibration input, the pressure receiving chamber 84 and the equilibrium chamber 86 are connected to each other through a relief passage (not shown) including the gap 80 and the communication passage 110. That is, when the internal pressure of the pressure receiving chamber 84 drops significantly, a force toward the pressure receiving chamber 84 acts on the movable membrane 102 due to the relative pressure difference between the pressure receiving chamber 84 and the equilibrium chamber 86, and the contact portion of the outer circumferential end of the movable membrane 102 is compressed in the vertical direction. As a result, the outer circumferential end of the movable membrane 102 is displaced toward the pressure receiving chamber 84, and the seal portion 72 of the movable membrane 102 is separated from the seal contact portion 64 that constitutes the wall inner surface (second wall inner surface 65) on the equilibrium chamber 86 side of the accommodation space 66. As a result, the gap 80, which is connected to the pressure-receiving chamber 84 through the communication passage 110, is connected to the equilibrium chamber 86 through the gap between the seal portion 72 and the seal abutment portion 64 and through the second outer peripheral through hole 60, and the relief passage that connects the pressure-receiving chamber 84 and the equilibrium chamber 86 is composed of the gap 80 and the communication passage 110. Then, the sealed fluid flows from the equilibrium chamber 86 to the pressure-receiving chamber 84 through the relief passage, suppressing the drop in the internal pressure of the pressure-receiving chamber 84 and preventing the occurrence of cavitation.

第一の実施形態では、可動膜68に弾性突部70を設けて、可動膜68の外周部分における第一の壁内面55への重ね合わせ部分に凹凸を設けることにより、連通路82と当接部が形成されていたが、本実施形態のように、仕切部材104における可動膜102の挟持部分に凹凸を設けることによって、連通路110と当接部を形成することもできる。 In the first embodiment, the movable membrane 68 is provided with an elastic protrusion 70, and the contact portion with the communication passage 82 is formed by providing unevenness in the overlapping portion of the outer periphery of the movable membrane 68 with the first wall inner surface 55. However, as in this embodiment, the contact portion with the communication passage 110 can also be formed by providing unevenness in the sandwiched portion of the movable membrane 102 in the partition member 104.

図9には、本発明に従う構造とされた流体封入式防振装置の第三の実施形態としてのエンジンマウントにおける仕切部材120が示されている。なお、本実施形態における流体封入式防振装置において仕切部材120以外の構造は、第一の実施形態と同様の構造が採用され得ることから、図示を省略する。尤も、仕切部材120及び仕切部材120の内部に収容される可動膜122の形状なども第一の実施形態における仕切部材40及び可動膜68と同様であるが、本実施形態における可動膜122は、第一の実施形態における可動膜68に比して、例えば各部位における変形剛性等が異ならされている。これにより、本実施形態では、第一の実施形態とは異なる態様をもってリリーフ通路124が発現するようになっている。 Figure 9 shows a partition member 120 in an engine mount as a third embodiment of a fluid-filled vibration-damping device constructed according to the present invention. Note that the structure of the fluid-filled vibration-damping device in this embodiment other than the partition member 120 is omitted from the illustration because the same structure as in the first embodiment can be adopted. Although the shapes of the partition member 120 and the movable membrane 122 housed inside the partition member 120 are also similar to the partition member 40 and the movable membrane 68 in the first embodiment, the movable membrane 122 in this embodiment has different deformation rigidity at each part, for example, compared to the movable membrane 68 in the first embodiment. As a result, in this embodiment, the relief passage 124 is manifested in a manner different from that in the first embodiment.

具体的には、例えば第一の実施形態では、可動膜68及び弾性突部70などの材質や大きさ、装着状態の圧縮率などが変更調節されることによって、弾性突部70の圧縮変形が容易に生じて可動膜68の外周端部が全体にわたってシール当接部64から浮き上がってリリーフ通路94が発現するようになっていたが、本実施形態では、弾性突部126を含む可動膜122の弾性変形特性が、第一の実施形態とは異ならされている。 Specifically, for example, in the first embodiment, the material, size, and compression ratio of the movable membrane 68 and elastic protrusion 70, etc., were adjusted to change the material, size, and compression ratio of the mounted state, so that the elastic protrusion 70 was easily compressed and deformed, causing the entire outer peripheral end of the movable membrane 68 to rise from the seal abutment portion 64 and create the relief passage 94. However, in this embodiment, the elastic deformation characteristics of the movable membrane 122, including the elastic protrusion 126, are made different from those of the first embodiment.

本実施形態では、可動膜122に対して両側面に相対的な圧力差が及ぼされた際における弾性変形が、可動膜122の面の撓み方向の弾性変形として発現されやすく、弾性突部126の突出方向となる圧縮変形としては発現され難くなっている。それ故、例えば受圧室84の内圧が低下した場合には、受圧室84と平衡室86の相対的な内圧差の作用により可動膜122に対して上側へ向けた力が作用して、図9にも示されるように、可動膜122の外周端部において弾性突部126が設けられていない部分(弾性突部126による変形拘束力が及ぼされ難い、周方向で隣り合う弾性突部126,126の中間部分)が上方へ持ち上がるように弾性的に撓み変形する。かかる変形状態の可動膜122を図10に示す。なお、図10においては、緩衝突起78の図示を省略する。 In this embodiment, when a relative pressure difference is applied to both sides of the movable membrane 122, the elastic deformation is likely to be expressed as an elastic deformation in the bending direction of the movable membrane 122 surface, and is unlikely to be expressed as a compressive deformation in the protruding direction of the elastic protrusion 126. Therefore, for example, when the internal pressure of the pressure-receiving chamber 84 decreases, an upward force acts on the movable membrane 122 due to the action of the relative internal pressure difference between the pressure-receiving chamber 84 and the equilibrium chamber 86, and as shown in FIG. 9, the part at the outer peripheral end of the movable membrane 122 where the elastic protrusion 126 is not provided (the intermediate part between the elastic protrusions 126, 126 adjacent in the circumferential direction, which is not easily affected by the deformation restraining force of the elastic protrusion 126) is elastically bent and deformed so as to rise upward. The movable membrane 122 in such a deformed state is shown in FIG. 10. Note that the buffer protrusion 78 is omitted from FIG. 10.

すなわち、図9に示されるように、可動膜122の外周端部において弾性突部126の形成部位では、弾性突部126が収容空所66における受圧室84側の壁内面(第一の壁内面55)に当接していると共に、シール部72が収容空所66における平衡室86側の壁内面(第二の壁内面65)に当接している(図9の右側参照)。一方、図10にも示されるように、可動膜122の外周端部において弾性突部126,126の周方向間は、シール部72が収容空所66における平衡室86側の壁内面(第二の壁内面65)から上方へ離隔するように変形する。このように、可動膜122の外周端部において弾性突部126,126の周方向間に上方への変形部分128が設けられることで、シール部72において変形部分128と対応する周方向位置に第二の壁内面65から浮き上がる浮き上がり部分130が設けられる。そして、かかる浮き上がり部分130の形成位置では、シール部72によるシール当接部64への当接が解除されることから、浮き上がり部分130により生じる間隙を通じて、隙間80と平衡室86とが連通される。 That is, as shown in Fig. 9, at the portion where the elastic protrusion 126 is formed at the outer peripheral end of the movable membrane 122, the elastic protrusion 126 abuts against the wall inner surface (first wall inner surface 55) on the pressure receiving chamber 84 side of the accommodation cavity 66, and the seal portion 72 abuts against the wall inner surface (second wall inner surface 65) on the equilibrium chamber 86 side of the accommodation cavity 66 (see the right side of Fig. 9). On the other hand, as also shown in Fig. 10, the circumferential space between the elastic protrusions 126, 126 at the outer peripheral end of the movable membrane 122 deforms so that the seal portion 72 is separated upward from the wall inner surface (second wall inner surface 65) on the equilibrium chamber 86 side of the accommodation cavity 66. In this way, by providing an upwardly deformed portion 128 between the elastic protrusions 126, 126 at the outer peripheral end of the movable membrane 122, a raised portion 130 that rises from the second wall inner surface 65 is provided at the circumferential position of the seal portion 72 corresponding to the deformed portion 128. At the position where the raised portion 130 is formed, the seal portion 72 is released from contact with the seal contact portion 64, and the gap 80 and the equilibrium chamber 86 are connected through the gap created by the raised portion 130.

このように、本実施形態では、隙間80と平衡室86とを連通する間隙が、弾性突部126,126の周方向間と同じ周方向位置に設けられることとなり、周方向の全周にわたって断続的に設けられている。これにより、隙間80及び連通路82を含んで構成されるリリーフ通路124を通じて受圧室84と平衡室86とが連通状態とされて、キャビテーションの発生が防止される。 In this manner, in this embodiment, the gap that communicates between the gap 80 and the equilibrium chamber 86 is provided at the same circumferential position as the circumferential space between the elastic protrusions 126, 126, and is provided intermittently around the entire circumference. This allows the pressure-receiving chamber 84 and the equilibrium chamber 86 to communicate with each other through the relief passage 124, which includes the gap 80 and the communication passage 82, preventing the occurrence of cavitation.

上記の如き構造の仕切部材120を有する本実施形態のエンジンマウントにおいても、第一の実施形態と同様の効果が発揮され得る。特に、第一の実施形態とは異なり、可動膜122に比して弾性突部126の変形剛性が比較的に大きい場合でも、可動膜122の外周端部における弾性突部126,126の周方向間(変形部分128)が変形して、シール部72において浮き上がり部分130を生じさせてリリーフ通路124を連通状態とさせることができる。 The engine mount of this embodiment having the partition member 120 of the above-described structure can achieve the same effects as the first embodiment. In particular, unlike the first embodiment, even if the deformation rigidity of the elastic protrusion 126 is relatively large compared to the movable membrane 122, the circumferential space between the elastic protrusions 126, 126 at the outer peripheral end of the movable membrane 122 (deformed portion 128) can be deformed to generate a raised portion 130 in the seal portion 72, thereby opening the relief passage 124.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、弾性突部70は、周方向にある程度の長さを有していてもよく、周方向に所定長さで連続して延びる形状とされ得る。また、例えば、環状の突条に周方向で部分的な溝が複数形成されることにより、それら溝の周方向間を弾性突部とすることもできる。 Although the embodiments of the present invention have been described above in detail, the present invention is not limited to the specific description. For example, the elastic protrusion 70 may have a certain length in the circumferential direction, and may be shaped to extend continuously in the circumferential direction for a predetermined length. Also, for example, a plurality of partial grooves may be formed in the annular protrusion in the circumferential direction, and the space between the grooves in the circumferential direction may be made into an elastic protrusion.

受圧室84と収容空所66をつなぐ透孔は、第一の中央透孔50と第一の外周透孔52を備えていなくてもよく、例えば第一の外周透孔52だけでもよい。平衡室86と収容空所66をつなぐ透孔は、第二の中央透孔58と第二の外周透孔60を備えていなくてもよく、例えば第二の外周透孔60だけでもよい。 The through-hole connecting the pressure-receiving chamber 84 and the storage cavity 66 does not have to have the first central through-hole 50 and the first outer peripheral through-hole 52, and may be, for example, only the first outer peripheral through-hole 52. The through-hole connecting the equilibrium chamber 86 and the storage cavity 66 does not have to have the second central through-hole 58 and the second outer peripheral through-hole 60, and may be, for example, only the second outer peripheral through-hole 60.

シール部のシール当接部への押当てによる具体的なシール構造は、シール部とシール当接部の間が流体密に封止される構造であれば特に限定されない。具体的には、例えば、シール部におけるシール当接部への当接面が平坦面とされており、周方向に連続してシール当接部から突出するシール突起をシール部の平坦面へ押し当てることによって、シール部とシール当接部の間がシールされるようにしてもよい。また、流体密性を確保可能であれば、シール部とシール当接部の両方の当接面が平坦面であってもよい。 The specific sealing structure formed by pressing the seal portion against the seal abutment portion is not particularly limited as long as the structure provides a fluid-tight seal between the seal portion and the seal abutment portion. Specifically, for example, the abutment surface of the seal portion against the seal abutment portion may be a flat surface, and the seal protrusions that protrude continuously in the circumferential direction from the seal abutment portion may be pressed against the flat surface of the seal portion to seal between the seal portion and the seal abutment portion. In addition, as long as fluid-tightness can be ensured, the abutment surfaces of both the seal portion and the seal abutment portion may be flat surfaces.

また、可動膜において変形する部分や具体的な変形態様などは限定されるものではなく、例えば可動膜における中央部分が変形して、かかる変形が外周端部まで伝播することで可動膜の外周端部におけるシール部が第二の仕切板におけるシール当接部から離隔して、受圧室と平衡室とがリリーフ通路により連通されるようになっていてもよい。本発明に係る流体封入式防振装置において、可動膜や弾性突部の変形剛性等は、サイズや形状などを含めて限定されるものではなく、受圧室の内圧が低下した際における可動膜や弾性突部の変形態様も限定されるものではない。それ故、可動膜の形状を所望の防振特性等に応じて任意に設計することができて、本発明では、設計自由度の高い流体封入式防振装置を提供することができる。 In addition, the part of the movable membrane that deforms and the specific deformation mode are not limited. For example, the central part of the movable membrane may deform, and the deformation may propagate to the outer peripheral end, so that the seal portion at the outer peripheral end of the movable membrane is separated from the seal abutment portion of the second partition plate, and the pressure-receiving chamber and the equilibrium chamber are connected by a relief passage. In the fluid-filled vibration-proof device according to the present invention, the deformation rigidity of the movable membrane and the elastic protrusion, including the size and shape, are not limited, and the deformation mode of the movable membrane and the elastic protrusion when the internal pressure of the pressure-receiving chamber decreases is also not limited. Therefore, the shape of the movable membrane can be designed arbitrarily according to the desired vibration-proof characteristics, and the present invention can provide a fluid-filled vibration-proof device with a high degree of design freedom.

なお、前記第三の実施形態において、受圧室84の内圧が低下して可動膜68に対して上側への力が作用した場合に、変形部分128だけでなく、弾性突部126も第一の仕切板42に押し付けられることで上下方向で十分に圧縮されてもよく、シール部72とシール当接部64との間の間隙は、周方向の全周にわたる環状部分を有しつつ、浮き上がり部分130の形成位置(周方向で隣り合う弾性突部126,126間の略中央)において間隙の上下方向寸法が大きくなる、第一の実施形態と第三の実施形態を組み合わせたような態様(発現される間隙の大きさが周方向において変化する態様)が採用されてもよい。
また、本発明は、もともと以下(i)~(vii)に記載の各発明を何れも含むものであり、その構成および作用効果に関して、付記しておく。
本発明は、
(i) 受圧室と平衡室が仕切部材によって仕切られており、該仕切部材に形成された収容空所内に可動膜が収容されている流体封入式防振装置であって、前記可動膜の外周端部が、前記収容空所の前記受圧室側の壁内面に対して周方向で部分的に当接する当接部と、該収容空所の前記平衡室側の壁内面に対して全周にわたって当接するシール部とを備え、該可動膜の外周端部が該仕切部材によって支持されており、該可動膜の外周面と該収容空所の内周面との対向間に隙間が設けられていると共に、該可動膜の外周端部において該収容空所の該受圧室側の壁内面への該当接部を外れた位置には該隙間に連通された連通路が設けられており、該可動膜の外周端部が該受圧室と該平衡室の圧力差によって該収容空所の該平衡室側の壁内面から離れることによって、該受圧室と該平衡室を連通するリリーフ通路が該隙間と該連通路を含んで構成される流体封入式防振装置、
(ii) 前記可動膜の外周端部には、前記受圧室側へ向けて突出する弾性突部が周方向で複数設けられており、該弾性突部が前記仕切部材における前記収容空所の該受圧室側の壁内面に当接して当接部を構成し、複数の該弾性突部の周方向間に前記連通路が形成されている(i)に記載の流体封入式防振装置、
(iii) 前記可動膜に対する前記受圧室と前記平衡室の圧力差の作用により、該可動膜の外周端部における前記シール部が前記弾性突部の周方向間において前記収容空所の前記平衡室側の壁内面から離れて、該弾性突部の形成部位では前記収容空所における前記受圧室側の壁内面と該弾性突部、及び前記平衡室側の壁内面と該シール部との各当接状態を維持したままで、前記リリーフ通路が発現される(ii)に記載の流体封入式防振装置、
(iv) 前記弾性突部が突出先端に向けて収縮する先細形状とされている(ii)又は(iii)に記載の流体封入式防振装置、
(v) 前記弾性突部の突出先端面が球冠状湾曲面とされている(ii)~(iv)の何れか一項に記載の流体封入式防振装置、
(vi) 前記仕切部材は、前記収容空所における前記受圧室側の壁内面の外周部分に開口する複数の凹溝を備えており、前記可動膜の外周端部と該収容空所の該受圧室側の壁内面とが、該凹溝を周方向に外れた部分で当接していると共に、前記連通路が該凹溝によって構成されている(i)~(v)の何れか一項に記載の流体封入式防振装置、
(vii) 前記可動膜の外周端部は、前記平衡室側へ向けて突出して全周にわたって連続するシールリップを備えており、該シールリップが前記収容空所の該平衡室側の壁内面に全周にわたって当接している(i)~(vi)の何れか一項に記載の流体封入式防振装置、
に関する発明を含む。
上記(i)に記載の発明では、受圧室の内圧が低下する際に開いて、受圧室と平衡室を相互に連通するリリーフ通路が構成される。これにより、受圧室の内圧低下がリリーフ通路を通じた平衡室から受圧室への流体の流入によって速やかに低減され、受圧室の大幅な内圧低下によるキャビテーションの発生が防止されて、キャビテーションに伴う異音等が防止される。リリーフ通路は、可動膜の外周端部と収容空所の受圧室側の壁内面との間を延びる連通路と、可動膜の外周面と収容空所の内周面との間に形成される隙間とを含んで構成され、収容空所の外周部分に位置している。それゆえ、リリーフ通路は、流体封入式防振装置の大型化を要することなく、周方向の長さを長く設定し易く、通路断面積を大きく確保することができる。これにより、リリーフ通路を通じた流体流動によって受圧室の内圧低下を速やかに解消して、キャビテーションを効果的に防ぐことができる。キャビテーションが問題にならない通常の振動入力状態では、可動膜のシール部が収容空所の平衡室側の壁内面に当接していることによって、リリーフ通路が閉じており、リリーフ通路を通じた受圧室と平衡室の短絡が防止されている。それゆえ、通常の振動入力時には、受圧室の内圧変動が効率的に惹起されて、流体の流動作用や可動膜の液圧吸収作用などによる防振効果が有効に発揮される。
上記(ii)に記載の発明では、当接部が弾性突部とされていることから、例えば弾性突部や可動膜の変形剛性等によっては、弾性突部の圧縮によって可動膜の外周端部の受圧室側への変位が許容され、例えば周方向の略全周にわたってシール部が収容空所の平衡室側の壁内面から離隔して、リリーフ通路を構成することも可能である。可動膜の周方向で複数の弾性突部が設けられていることから、例えば、弾性突部の周方向幅寸法や間隔等によって弾性突部のバネ定数を調節し、リリーフ通路が開放される受圧室の内圧低下の閾値を設定することもできる。
上記(iii)に記載の発明では、例えば弾性突部や可動膜の変形剛性等によっては、受圧室の内圧が低下した際に、可動膜の外周端部において弾性突部の形成位置では、弾性突部とシール部により収容空所の受圧室側と平衡室側の壁内面への各当接状態を維持する一方、可動膜の外周端部において弾性突部の周方向間では、シール部が平衡室側の壁内面から離れることで、リリーフ通路を構成することも可能である。即ち、弾性突部や可動膜の変形剛性等に応じて、後述する第一の実施形態のようにシール部が周方向の略全周にわたって平衡室側の壁内面から離隔してリリーフ通路を構成することも可能であるし、本態様や後述する第三の実施形態のようにシール部が弾性突部の周方向間において平衡室側の壁内面から離隔してリリーフ通路を構成することも可能である。要するに、例えば第二の態様に係る流体封入式防振装置においても、弾性突部や可動膜の変形剛性等に応じて適切な態様でリリーフ通路を構成することができて、弾性突部や可動膜、ひいては流体封入式防振装置の設計自由度の向上が図られる。
上記(iv)に記載の発明では、弾性突部の圧縮によるばね定数の変化を非線形にすることができる。それゆえ、受圧室の内圧が大幅に低下する場合に、弾性突部が完全につぶれることによって連通路が遮断されるのを防いで、リリーフ通路の意図しない遮断を防止することができる。
上記(v)に記載の発明では、当接部が収容空所の受圧室側の壁内面に押し当てられる際に、当接部の表面における応力集中が回避されて、当接部の耐久性の向上が図られる。また、例えば、受圧室に大きな正圧が作用して、可動膜の当接部が収容空所の受圧室側の壁内面から離れた後、当該正圧の解除によって当接部が収容空所の受圧室側の壁内面に当接する場合に、打音が低減される。
上記(vi)に記載の発明では、収容空所の受圧室側の壁内面に凹溝を形成することにより、可動膜の外周端部に突部などを設けることなく、当接部を外れた位置に凹溝による連通路を形成することができる。受圧室の内圧低下に際して、可動膜の当接部が凹溝を外れた位置で収容凹所の受圧室側の壁内面に押し当てられて圧縮されることにより、可動膜の外周端部が受圧室側への変位を許容されることから、シール部が収容空所の平衡室側の壁内面から離隔して、リリーフ通路が構成される。
上記(vii)に記載の発明では、シール部がシールリップを備えることによって、シール部が収容空所の平衡室側の壁内面に当接することによるシール性能の向上が図られて、通常振動の入力に対する防振性能の向上が図られる。
In the third embodiment, when the internal pressure of the pressure-receiving chamber 84 decreases and an upward force acts on the movable membrane 68, not only the deformed portion 128 but also the elastic protrusion 126 may be pressed against the first partition plate 42, and thus be sufficiently compressed in the vertical direction. The gap between the seal portion 72 and the seal abutment portion 64 may have an annular portion extending around the entire circumferential direction, while the vertical dimension of the gap becomes larger at the position where the raised portion 130 is formed (approximately the center between adjacent elastic protrusions 126, 126 in the circumferential direction), thus combining the first and third embodiments (in which the size of the gap changes in the circumferential direction) may be adopted.
Furthermore, the present invention originally includes each of the inventions described in (i) to (vii) below, and the configurations and effects thereof will be described below.
The present invention relates to
(i) A fluid-filled vibration-damping device in which a pressure-receiving chamber and an equilibrium chamber are separated by a partition member, and a movable membrane is accommodated in an accommodation cavity formed in the partition member, the outer peripheral end of the movable membrane having an abutment portion that abuts partially in the circumferential direction against the inner wall surface of the accommodation cavity on the pressure-receiving chamber side, and a seal portion that abuts over the entire circumference against the inner wall surface of the accommodation cavity on the equilibrium chamber side, the outer peripheral end of the movable membrane is supported by the partition member, a gap is provided between the opposing outer peripheral surface of the movable membrane and the inner peripheral surface of the accommodation cavity, and a communication passage that communicates with the gap is provided at a position of the outer peripheral end of the movable membrane away from the corresponding contact portion with the inner wall surface of the accommodation cavity on the pressure-receiving chamber side, and a relief passage communicating between the pressure-receiving chamber and the equilibrium chamber is configured to include the gap and the communication passage when the outer peripheral end of the movable membrane moves away from the inner wall surface of the accommodation cavity on the equilibrium chamber side due to a pressure difference between the pressure-receiving chamber and the equilibrium chamber;
(ii) a fluid-filled vibration-damping device according to (i), wherein a plurality of elastic protrusions protruding toward the pressure-receiving chamber are provided in the circumferential direction on the outer peripheral end of the movable membrane, the elastic protrusions abut against the inner wall surface of the accommodating space on the pressure-receiving chamber side of the partition member to form a contact portion, and the communication passage is formed between the plurality of elastic protrusions in the circumferential direction;
(iii) A fluid-filled vibration-damping device according to (ii), in which the action of a pressure difference between the pressure-receiving chamber and the equilibrium chamber on the movable membrane causes the seal portion at the outer peripheral end of the movable membrane to separate from the inner wall surface on the equilibrium chamber side of the accommodating space between the circumferential direction of the elastic protrusions, and the relief passage is generated at the portion where the elastic protrusions are formed while maintaining the respective abutment states between the inner wall surface on the pressure-receiving chamber side of the accommodating space and the elastic protrusions, and between the inner wall surface on the equilibrium chamber side and the seal portion.
(iv) The fluid-filled vibration-damping device according to (ii) or (iii), wherein the elastic protrusion has a tapered shape that contracts toward the protruding tip.
(v) A fluid-filled vibration-damping device according to any one of (ii) to (iv), in which the protruding tip surface of the elastic protrusion is a spherical crown-shaped curved surface.
(vi) a fluid-filled vibration-damping device according to any one of (i) to (v), wherein the partition member is provided with a plurality of grooves opening into an outer circumferential portion of the inner wall surface of the accommodating space on the side of the pressure-receiving chamber, the outer circumferential end of the movable membrane and the inner wall surface of the accommodating space on the side of the pressure-receiving chamber are in contact with each other at portions spaced apart from the grooves in the circumferential direction, and the communication passage is constituted by the grooves;
(vii) a fluid-filled vibration-damping device according to any one of (i) to (vi), wherein an outer peripheral end of the movable membrane is provided with a seal lip that protrudes toward the equilibrium chamber and is continuous over the entire circumference, and the seal lip abuts against the inner wall surface of the accommodation space on the equilibrium chamber side over the entire circumference;
This includes inventions relating to.
In the invention described in (i) above, a relief passage is formed that opens when the internal pressure of the pressure receiving chamber drops, and communicates the pressure receiving chamber and the equilibrium chamber. As a result, the internal pressure drop of the pressure receiving chamber is quickly reduced by the inflow of fluid from the equilibrium chamber to the pressure receiving chamber through the relief passage, and the occurrence of cavitation due to a significant internal pressure drop of the pressure receiving chamber is prevented, and abnormal noise and the like associated with cavitation is prevented. The relief passage is configured to include a communication passage extending between the outer peripheral end of the movable membrane and the inner wall surface of the accommodation cavity on the pressure receiving chamber side, and a gap formed between the outer peripheral surface of the movable membrane and the inner peripheral surface of the accommodation cavity, and is located on the outer periphery of the accommodation cavity. Therefore, the relief passage can be easily set to have a long circumferential length without requiring an increase in the size of the fluid-filled vibration damping device, and a large passage cross-sectional area can be ensured. As a result, the internal pressure drop of the pressure receiving chamber can be quickly eliminated by the fluid flow through the relief passage, and cavitation can be effectively prevented. Under normal vibration input conditions where cavitation is not an issue, the seal portion of the movable membrane abuts against the inner wall surface of the accommodating cavity on the equilibrium chamber side, closing the relief passage and preventing short-circuiting between the pressure-receiving chamber and the equilibrium chamber through the relief passage. Therefore, during normal vibration input, internal pressure fluctuations in the pressure-receiving chamber are efficiently induced, and vibration-damping effects due to the flow action of the fluid and the liquid pressure absorption action of the movable membrane are effectively demonstrated.
In the invention described in (ii) above, since the abutting portion is an elastic protrusion, depending on, for example, the deformation rigidity of the elastic protrusion and the movable membrane, the compression of the elastic protrusion allows the displacement of the outer peripheral end of the movable membrane toward the pressure-receiving chamber, and, for example, the sealing portion can be separated from the inner wall surface of the equilibrium chamber side of the accommodation space over substantially the entire circumference in the circumferential direction to form a relief passage. Since a plurality of elastic protrusions are provided in the circumferential direction of the movable membrane, for example, the spring constant of the elastic protrusions can be adjusted by the circumferential width dimension or interval of the elastic protrusions, and a threshold value of the internal pressure drop in the pressure-receiving chamber at which the relief passage is opened can be set.
In the invention described in (iii) above, depending on, for example, the deformation rigidity of the elastic protrusions and the movable membrane, when the internal pressure of the pressure-receiving chamber is reduced, the elastic protrusions and the seal parts maintain their respective contact states with the inner wall surfaces of the accommodating cavity on the pressure-receiving chamber side and the equilibrium chamber side at the outer peripheral end of the movable membrane where the elastic protrusions are formed, while the seal parts separate from the inner wall surface on the equilibrium chamber side at the circumferential intervals of the elastic protrusions at the outer peripheral end of the movable membrane, thereby forming a relief passage. That is, depending on the deformation rigidity of the elastic protrusions and the movable membrane, it is possible to form a relief passage by separating the seal parts from the inner wall surface on the equilibrium chamber side over substantially the entire circumferential circumference as in the first embodiment described later, or to form a relief passage by separating the seal parts from the inner wall surface on the equilibrium chamber side at the circumferential intervals of the elastic protrusions as in this embodiment and the third embodiment described later. In short, even in the case of a fluid-filled vibration-damping device relating to the second embodiment, for example, the relief passage can be configured in an appropriate manner depending on the deformation rigidity of the elastic protrusion and the movable membrane, thereby improving the design freedom of the elastic protrusion and the movable membrane, and ultimately the fluid-filled vibration-damping device.
In the invention described in (iv) above, the change in spring constant due to compression of the elastic protrusion can be made nonlinear, so that when the internal pressure of the pressure receiving chamber drops significantly, the elastic protrusion is prevented from being completely crushed, thereby preventing the communication passage from being blocked, and preventing unintended blocking of the relief passage.
In the invention described in (v) above, when the abutment portion is pressed against the inner wall surface of the accommodating cavity on the pressure-receiving chamber side, stress concentration on the surface of the abutment portion is avoided, improving the durability of the abutment portion. Also, for example, when a large positive pressure acts on the pressure-receiving chamber, causing the abutment portion of the movable membrane to move away from the inner wall surface of the accommodating cavity on the pressure-receiving chamber side, and then the abutment portion abuts against the inner wall surface of the accommodating cavity on the pressure-receiving chamber side due to the release of the positive pressure, the hitting noise is reduced.
In the invention described in (vi) above, by forming a groove on the inner wall surface of the accommodating cavity on the pressure-receiving chamber side, it is possible to form a communication passage by the groove at a position away from the abutment part without providing a protrusion or the like on the outer peripheral end of the movable membrane. When the internal pressure of the pressure-receiving chamber decreases, the abutment part of the movable membrane is pressed against the inner wall surface of the accommodating cavity on the pressure-receiving chamber side at a position away from the groove and compressed, allowing the outer peripheral end of the movable membrane to displace toward the pressure-receiving chamber, and the seal part is separated from the inner wall surface of the accommodating cavity on the equilibrium chamber side to form a relief passage.
In the invention described in (vii) above, the sealing portion is provided with a sealing lip, thereby improving the sealing performance by the sealing portion abutting against the inner wall surface on the equilibrium chamber side of the accommodating space, thereby improving the vibration-damping performance against the input of normal vibrations.

10 エンジンマウント(流体封入式防振装置 第一の実施形態)
12 第一の取付部材
14 第二の取付部材
16 本体ゴム弾性体
18 ブラケット装着部
20 固着部
22 大径筒部
24 小径筒部
26 凹所
28 ストッパゴム
30 嵌合ゴム
32 シールゴム層
34 可撓性膜
36 固定部材
38 流体室
40 仕切部材
42 第一の仕切板
44 第二の仕切板
46 周溝
48 中央凹部
50 第一の中央透孔
52 第一の外周透孔
54 収容凹部
55 第一の壁内面
56 第一の狭窄部
58 第二の中央透孔
60 第二の外周透孔
62 第二の狭窄部
64 シール当接部
65 第二の壁内面
66 収容空所
68 可動膜
70 弾性突部(当接部)
72 シール部
74 外周リップ(シールリップ)
76 内周リップ(シールリップ)
78 緩衝突起
80 隙間
82 連通路
84 受圧室
86 平衡室
88 第一の連通口
90 第二の連通口
92 オリフィス通路
94 リリーフ通路
100 エンジンマウント(流体封入式防振装置 第二の実施形態)
102 可動膜
104 仕切部材
106 第一の仕切板
108 凹溝
110 連通路
120 仕切部材(第三の実施形態)
122 可動膜
124 リリーフ通路
126 弾性突部
128 変形部分
130 浮き上がり部分
10 Engine mount (fluid-filled vibration isolation device, first embodiment)
12 First mounting member 14 Second mounting member 16 Main rubber elastic body 18 Bracket mounting portion 20 Fixing portion 22 Large diameter cylindrical portion 24 Small diameter cylindrical portion 26 Recess 28 Stopper rubber 30 Fitting rubber 32 Seal rubber layer 34 Flexible membrane 36 Fixing member 38 Fluid chamber 40 Partition member 42 First partition plate 44 Second partition plate 46 Circumferential groove 48 Central recess 50 First central through hole 52 First outer peripheral through hole 54 Accommodation recess 55 First wall inner surface 56 First narrowed portion 58 Second central through hole 60 Second outer peripheral through hole 62 Second narrowed portion 64 Seal abutment portion 65 Second wall inner surface 66 Accommodation space 68 Movable membrane 70 Elastic protrusion (abutment portion)
72 Seal portion 74 Outer circumferential lip (seal lip)
76 Inner lip (seal lip)
78 Buffer protrusion 80 Gap 82 Communication passage 84 Pressure receiving chamber 86 Equilibrium chamber 88 First communication port 90 Second communication port 92 Orifice passage 94 Relief passage 100 Engine mount (fluid filled type vibration damping device, second embodiment)
102 Movable membrane 104 Partition member 106 First partition plate 108 Groove 110 Communication passage 120 Partition member (third embodiment)
122 Movable membrane 124 Relief passage 126 Elastic protrusion 128 Deformed portion 130 Lifted portion

Claims (6)

受圧室と平衡室が仕切部材によって仕切られており、該仕切部材に形成された収容空所内に可動膜が収容されている流体封入式防振装置であって、
前記可動膜の外周端部が、前記収容空所の前記受圧室側の壁内面に対して周方向で部分的に当接する当接部と、該収容空所の前記平衡室側の壁内面に対して全周にわたって当接するシール部とを備え、
該可動膜の外周端部が該仕切部材によって支持されており、
該可動膜の外周面と該収容空所の内周面との対向間に隙間が設けられていると共に、
該可動膜の外周端部において該収容空所の該受圧室側の壁内面への該当接部を外れた位置には該隙間に連通された連通路が設けられており、
該可動膜の外周端部が該受圧室と該平衡室の圧力差によって該収容空所の該平衡室側の壁内面から離れることによって、該受圧室と該平衡室を連通するリリーフ通路が該隙間と該連通路を含んで構成される一方、
前記可動膜の外周端部には、前記受圧室側へ向けて突出する弾性突部が周方向で複数設けられており、
該弾性突部が前記仕切部材における前記収容空所の該受圧室側の壁内面に当接して当接部を構成し、
複数の該弾性突部の周方向間に前記連通路が形成されており、
前記可動膜に対する前記受圧室と前記平衡室の圧力差の作用により、該可動膜の外周端部における前記シール部が前記弾性突部の周方向間において前記収容空所の前記平衡室側の壁内面から離れて、該弾性突部の形成部位では前記収容空所における前記受圧室側の壁内面と該弾性突部、及び前記平衡室側の壁内面と該シール部との各当接状態を維持したままで、前記リリーフ通路が発現される流体封入式防振装置。
A fluid-filled vibration-damping device in which a pressure-receiving chamber and an equilibrium chamber are separated by a partition member, and a movable membrane is accommodated in an accommodation space formed in the partition member,
an outer peripheral end portion of the movable membrane includes an abutment portion that is partially in circumferential contact with an inner wall surface of the storage space on the pressure-receiving chamber side, and a seal portion that is in circumferential contact with an inner wall surface of the storage space on the equilibrium chamber side,
The outer peripheral end of the movable film is supported by the partition member,
A gap is provided between the outer circumferential surface of the movable film and the inner circumferential surface of the accommodation space,
a communication passage communicating with the gap is provided at a position at an outer peripheral end of the movable membrane away from a corresponding contact portion with the inner wall surface of the accommodating space on the pressure-receiving chamber side,
The outer peripheral end of the movable membrane is separated from the inner wall surface of the accommodating space on the side of the equilibrium chamber due to the pressure difference between the pressure-receiving chamber and the equilibrium chamber, thereby forming a relief passage connecting the pressure-receiving chamber and the equilibrium chamber, the relief passage including the gap and the communication passage.
A plurality of elastic protrusions protruding toward the pressure-receiving chamber are provided in a circumferential direction on an outer peripheral end of the movable film,
the elastic protrusion abuts against an inner wall surface of the partition member on the pressure-receiving chamber side of the accommodating space to form an abutment portion,
The communication passage is formed between the elastic protrusions in the circumferential direction,
A fluid-filled vibration-damping device in which the action of the pressure difference between the pressure-receiving chamber and the equilibrium chamber on the movable membrane causes the sealing portion at the outer peripheral end of the movable membrane to move away from the inner wall surface on the equilibrium chamber side of the accommodating space between the circumferential direction of the elastic protrusions, and the relief passage is manifested at the location where the elastic protrusions are formed, while maintaining the respective abutment states between the inner wall surface on the pressure-receiving chamber side of the accommodating space and the elastic protrusions, and between the inner wall surface on the equilibrium chamber side and the sealing portion.
前記弾性突部が突出先端に向けて収縮する先細形状とされている請求項に記載の流体封入式防振装置。 2. A fluid-filled vibration-damping device according to claim 1 , wherein the elastic projection has a tapered shape that contracts toward the protruding tip. 前記弾性突部の突出先端面が球冠状湾曲面とされている請求項1又は2に記載の流体封入式防振装置。 3. A fluid-filled vibration-damping device according to claim 1, wherein the protruding tip surface of said elastic projection is formed into a spherical crown-shaped curved surface. 受圧室と平衡室が仕切部材によって仕切られており、該仕切部材に形成された収容空所内に可動膜が収容されている流体封入式防振装置であって、
前記可動膜の外周端部が、前記収容空所の前記受圧室側の壁内面に対して周方向で部分的に当接する当接部と、該収容空所の前記平衡室側の壁内面に対して全周にわたって当接するシール部とを備え、
該可動膜の外周端部が該仕切部材によって支持されており、
該可動膜の外周面と該収容空所の内周面との対向間に隙間が設けられていると共に、
該可動膜の外周端部において該収容空所の該受圧室側の壁内面への該当接部を外れた位置には該隙間に連通された連通路が設けられており、
該可動膜の外周端部が該受圧室と該平衡室の圧力差によって該収容空所の該平衡室側の壁内面から離れることによって、該受圧室と該平衡室を連通するリリーフ通路が該隙間と該連通路を含んで構成される一方、
前記仕切部材は、前記収容空所における前記受圧室側の壁内面の外周部分に開口する複数の凹溝を備えており、
前記可動膜の外周端部と該収容空所の該受圧室側の壁内面とが、該凹溝を周方向に外れた部分で当接していると共に、
前記連通路が該凹溝によって構成されている流体封入式防振装置。
A fluid-filled vibration-damping device in which a pressure-receiving chamber and an equilibrium chamber are separated by a partition member, and a movable membrane is accommodated in an accommodation space formed in the partition member,
an outer peripheral end portion of the movable membrane includes an abutment portion that is partially in circumferential contact with an inner wall surface of the storage space on the pressure-receiving chamber side, and a seal portion that is in circumferential contact with an inner wall surface of the storage space on the equilibrium chamber side,
The outer peripheral end of the movable film is supported by the partition member,
A gap is provided between the outer circumferential surface of the movable film and the inner circumferential surface of the accommodation space,
a communication passage communicating with the gap is provided at a position at an outer peripheral end of the movable membrane away from a corresponding contact portion with the inner wall surface of the accommodating space on the pressure-receiving chamber side,
The outer peripheral end of the movable membrane is separated from the inner wall surface of the accommodating space on the side of the equilibrium chamber due to the pressure difference between the pressure-receiving chamber and the equilibrium chamber, thereby forming a relief passage connecting the pressure-receiving chamber and the equilibrium chamber, the relief passage including the gap and the communication passage.
The partition member has a plurality of grooves that open to an outer circumferential portion of an inner wall surface of the accommodating space on the side of the pressure receiving chamber,
The outer peripheral end of the movable membrane and the inner wall surface of the accommodating space on the side of the pressure-receiving chamber are in contact with each other at a portion that is out of the groove in the circumferential direction,
The fluid- filled vibration-damping device, wherein the communication passage is constituted by the groove.
前記可動膜の外周端部は、前記平衡室側へ向けて突出して全周にわたって連続するシールリップを備えており、
該シールリップが前記収容空所の該平衡室側の壁内面に全周にわたって当接している請求項1~の何れか一項に記載の流体封入式防振装置。
the outer peripheral end of the movable membrane is provided with a seal lip that protrudes toward the equilibrium chamber and is continuous around the entire circumference,
5. The fluid-filled vibration isolation device according to claim 1 , wherein the seal lip is in contact with the inner wall surface of the accommodating space on the equilibrium chamber side over the entire periphery.
受圧室と平衡室が仕切部材によって仕切られており、該仕切部材に形成された収容空所内に可動膜が収容されている流体封入式防振装置であって、A fluid-filled vibration-damping device in which a pressure-receiving chamber and an equilibrium chamber are separated by a partition member, and a movable membrane is accommodated in an accommodation space formed in the partition member,
前記可動膜の外周端部が、前記収容空所の前記受圧室側の壁内面に対して周方向で部分的に当接する当接部と、該収容空所の前記平衡室側の壁内面に対して全周にわたって当接するシール部とを備え、an outer peripheral end portion of the movable membrane includes an abutment portion that is partially in circumferential contact with an inner wall surface of the storage space on the pressure-receiving chamber side, and a seal portion that is in circumferential contact with an inner wall surface of the storage space on the equilibrium chamber side,
該可動膜の外周端部が該仕切部材によって支持されており、The outer peripheral end of the movable film is supported by the partition member,
該可動膜の外周面と該収容空所の内周面との対向間に隙間が設けられていると共に、A gap is provided between the outer circumferential surface of the movable film and the inner circumferential surface of the accommodation space,
該可動膜の外周端部において該収容空所の該受圧室側の壁内面と該可動膜の受圧室側表面との対向面間には、該受圧室側の壁内面への該当接部を周方向で外れた位置において該隙間に連通された連通路が設けられており、a communication passage is provided between an opposing surface of an inner wall surface of the accommodating space on the pressure-receiving chamber side and a surface of the movable membrane on the pressure-receiving chamber side at an outer peripheral end of the movable membrane, the communication passage being connected to the gap at a position circumferentially separated from a corresponding contact portion with the inner wall surface on the pressure-receiving chamber side,
該可動膜の外周端部が該受圧室と該平衡室の圧力差によって該収容空所の該平衡室側の壁内面から離れることによって、該受圧室と該平衡室を連通するリリーフ通路が該隙間と該連通路を含んで構成されると共に、When the outer peripheral end of the movable membrane is separated from the inner wall surface of the accommodating space on the side of the equilibrium chamber due to the pressure difference between the pressure-receiving chamber and the equilibrium chamber, a relief passage communicating between the pressure-receiving chamber and the equilibrium chamber is formed including the gap and the communication passage,
該仕切部材の外周部分には、該リリーフ通路の外周側を周方向に延びて該受圧室と該平衡室を連通するオリフィス通路が設けられている流体封入式防振装置。In the fluid-filled vibration-damping device, an orifice passage is provided in the outer circumferential portion of the partition member, which extends circumferentially on the outer circumferential side of the relief passage and connects the pressure-receiving chamber and the equilibrium chamber.
JP2021135726A 2020-11-24 2021-08-23 Fluid-filled vibration isolation device Active JP7630390B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021001891.4T DE112021001891T5 (en) 2020-11-24 2021-10-13 Fluid-filled vibration damping device
PCT/JP2021/037913 WO2022113552A1 (en) 2020-11-24 2021-10-13 Fluid-filled vibration damping device
CN202180069764.4A CN116457229A (en) 2020-11-24 2021-10-13 Fluid-filled vibration damping device
US17/948,645 US12188537B2 (en) 2020-11-24 2022-09-20 Fluid-filled vibration damping device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020194431 2020-11-24
JP2020194431 2020-11-24

Publications (2)

Publication Number Publication Date
JP2022083392A JP2022083392A (en) 2022-06-03
JP7630390B2 true JP7630390B2 (en) 2025-02-17

Family

ID=81811899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021135726A Active JP7630390B2 (en) 2020-11-24 2021-08-23 Fluid-filled vibration isolation device

Country Status (1)

Country Link
JP (1) JP7630390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023171141A (en) 2022-05-20 2023-12-01 株式会社シマノ Control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145656A1 (en) 2010-05-19 2011-11-24 山下ゴム株式会社 Liquid-enclosed antivibration device
JP2013231480A (en) 2012-04-27 2013-11-14 Yamashita Rubber Co Ltd Liquid-sealing vibration-proof device
JP2014219035A (en) 2013-05-07 2014-11-20 東海ゴム工業株式会社 Fluid sealed type vibration control device
JP2015206401A (en) 2014-04-18 2015-11-19 山下ゴム株式会社 Liquid seal vibration isolator
JP2016169781A (en) 2015-03-12 2016-09-23 東洋ゴム工業株式会社 Liquid-filled vibration isolator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145656A1 (en) 2010-05-19 2011-11-24 山下ゴム株式会社 Liquid-enclosed antivibration device
JP2013231480A (en) 2012-04-27 2013-11-14 Yamashita Rubber Co Ltd Liquid-sealing vibration-proof device
JP2014219035A (en) 2013-05-07 2014-11-20 東海ゴム工業株式会社 Fluid sealed type vibration control device
JP2015206401A (en) 2014-04-18 2015-11-19 山下ゴム株式会社 Liquid seal vibration isolator
JP2016169781A (en) 2015-03-12 2016-09-23 東洋ゴム工業株式会社 Liquid-filled vibration isolator

Also Published As

Publication number Publication date
JP2022083392A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
JP5248645B2 (en) Liquid-filled vibration isolator
JP5095763B2 (en) Liquid-filled vibration isolator
JP5882125B2 (en) Liquid-filled vibration isolator
JP4842086B2 (en) Fluid filled vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
JP2008138854A (en) Liquid seal vibration isolator
JP5535958B2 (en) Liquid-filled vibration isolator
JP5882124B2 (en) Liquid-filled vibration isolator
US12188537B2 (en) Fluid-filled vibration damping device
JP5431982B2 (en) Liquid-filled vibration isolator
JP7630390B2 (en) Fluid-filled vibration isolation device
JP2007271004A (en) Fluid-sealed vibration isolating device
JP4075066B2 (en) Fluid filled engine mount
JP2010031988A (en) Fluid-sealed vibration control device
JP4871902B2 (en) Fluid filled vibration isolator
JP5510713B2 (en) Liquid-filled vibration isolator
JP7319933B2 (en) Fluid-filled anti-vibration device
JP5668231B2 (en) Liquid-filled vibration isolator
JP2021067295A (en) Fluid-sealed type vibration isolation device
US20230323930A1 (en) Fluid-filled vibration damping device
JP5050283B2 (en) Liquid-filled vibration isolator
JP2010169121A (en) Fluid filled vibration control device
JP5899039B2 (en) Fluid filled vibration isolator
JP5690988B2 (en) Liquid-filled vibration isolator
JP6966249B2 (en) Fluid-filled anti-vibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250204

R150 Certificate of patent or registration of utility model

Ref document number: 7630390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150