[go: up one dir, main page]

JP7626414B2 - Method for analyzing and controlling nanodiamond particle concentration in composite plating solution - Google Patents

Method for analyzing and controlling nanodiamond particle concentration in composite plating solution Download PDF

Info

Publication number
JP7626414B2
JP7626414B2 JP2019090653A JP2019090653A JP7626414B2 JP 7626414 B2 JP7626414 B2 JP 7626414B2 JP 2019090653 A JP2019090653 A JP 2019090653A JP 2019090653 A JP2019090653 A JP 2019090653A JP 7626414 B2 JP7626414 B2 JP 7626414B2
Authority
JP
Japan
Prior art keywords
plating solution
concentration
particles
composite plating
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019090653A
Other languages
Japanese (ja)
Other versions
JP2020186962A (en
Inventor
智明 間彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2019090653A priority Critical patent/JP7626414B2/en
Publication of JP2020186962A publication Critical patent/JP2020186962A/en
Priority to JP2023143694A priority patent/JP2023158070A/en
Application granted granted Critical
Publication of JP7626414B2 publication Critical patent/JP7626414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、複合めっき液中のナノダイヤモンド粒子濃度の分析方法及び管理方法に関する。 The present invention relates to a method for analyzing and managing the concentration of nanodiamond particles in a composite plating solution.

本明細書において、ナノダイヤモンドを「ND」と記載する場合がある。 In this specification, nanodiamonds may be referred to as "ND."

通常のめっき液にナノダイヤモンド粒子を混合分散させた複合めっき液が知られている(特許文献1)。ナノダイヤモンド粒子を含有する複合めっき液を使用することで、ナノダイヤモンド粒子が均一に分散しためっき皮膜が形成され、めっき皮膜の意匠性や機械的特性、機能性を高めることができる。 A composite plating solution in which nanodiamond particles are mixed and dispersed in a normal plating solution is known (Patent Document 1). By using a composite plating solution containing nanodiamond particles, a plating film in which the nanodiamond particles are uniformly dispersed is formed, improving the design, mechanical properties, and functionality of the plating film.

このような複合めっき液を用いて所望の特性を有するめっき皮膜を再現性良く形成するためには、複合めっき液中のナノダイヤモンド粒子の濃度を管理し、この濃度が所定濃度となるように適宜複合めっき液中にナノダイヤモンド粒子を添加し、ナノダイヤモンド粒子濃度を維持管理する必要がある。 In order to reproducibly form a plating film with the desired characteristics using such a composite plating solution, it is necessary to control the concentration of nanodiamond particles in the composite plating solution, add nanodiamond particles to the composite plating solution appropriately so that this concentration becomes the desired concentration, and maintain and control the nanodiamond particle concentration.

複合めっき液中のナノダイヤモンド粒子濃度は、例えばめっき皮膜中のナノダイヤモンド粒子量を定量することで推定できるが、この方法は煩雑な操作が必要になる。 The concentration of nanodiamond particles in a composite plating solution can be estimated, for example, by quantifying the amount of nanodiamond particles in the plating film, but this method requires complicated operations.

特開2018-83960号公報JP 2018-83960 A

本発明の目的は、複合めっき液中のナノダイヤモンド粒子の濃度を簡易な方法で迅速かつ的確に分析し、複合めっき液を適切に管理することにある。 The object of the present invention is to quickly and accurately analyze the concentration of nanodiamond particles in a composite plating solution using a simple method, and to appropriately manage the composite plating solution.

本発明は、以下の複合めっき液中のナノダイヤモンド粒子濃度の分析方法及び管理方法を提供するものである。
〔1〕 ナノダイヤモンド粒子を含む複合めっき液の吸光度を測定し、吸光度の測定値に基づきナノダイヤモンド粒子の濃度を求める工程を含み、前記吸光度は250~630nm の範囲から選択される波長で測定される、複合めっき液中のナノダイヤモンド粒子濃度の分析方法。
〔2〕 〔1〕の方法で複合めっき液中のナノダイヤモンド粒子濃度を分析し、前記濃度が所定濃度となるように、必要に応じて複合めっき液にナノダイヤモンド粒子を添加する、複合めっき液中のナノダイヤモンド粒子濃度の管理方法。
The present invention provides the following method for analyzing and controlling the concentration of nanodiamond particles in a composite plating solution.
[1] A method for analyzing the concentration of nanodiamond particles in a composite plating solution, comprising the steps of measuring the absorbance of a composite plating solution containing nanodiamond particles and determining the concentration of the nanodiamond particles based on the measured absorbance, wherein the absorbance is measured at a wavelength selected from the range of 250 to 630 nm.
[2] A method for controlling the concentration of nanodiamond particles in a composite plating solution, comprising analyzing the concentration of nanodiamond particles in the composite plating solution using the method of [1], and adding nanodiamond particles to the composite plating solution as necessary so that the concentration becomes a predetermined concentration.

本発明によれば、複合めっき液中のナノダイヤモンド粒子濃度を、簡易かつ迅速に分析することができ、この分析方法を利用する本発明の複合めっき液の管理方法によれば、ナノダイヤモンド粒子の濃度の分析値をリアルタイムでナノダイヤモンド粒子の添加制御に反映させて、良好なめっき工程の維持管理のもとに、所望の特性を有する複合めっき皮膜を容易に得ることが可能になる。 According to the present invention, the concentration of nanodiamond particles in a composite plating solution can be analyzed easily and quickly, and according to the method of managing the composite plating solution of the present invention that utilizes this analysis method, the analytical value of the concentration of nanodiamond particles can be reflected in the control of the addition of nanodiamond particles in real time, making it possible to easily obtain a composite plating film with the desired characteristics while maintaining and managing the plating process well.

ナノダイヤモンド粒子を添加していない銅めっき液(ND=0ppm)の吸光度。Absorbance of copper plating solution (ND=0 ppm) without the addition of nanodiamond particles. ナノダイヤモンド粒子を所定濃度で添加した銅めっき液(ND=50-1000ppm)の吸光度。Absorbance of copper plating solution (ND=50-1000ppm) to which nanodiamond particles have been added at a specified concentration. ナノダイヤモンド水分散液(50ppm、500ppm)の吸光度。Absorbance of nanodiamond water dispersion (50 ppm, 500 ppm). 各濃度のナノダイヤモンド粒子(ND=300-360ppm)を添加した銅めっき液の検量線。Calibration curve for copper plating solution with various concentrations of nanodiamond particles (ND=300-360ppm) added. ナノダイヤモンド粒子を添加していないニッケルめっき液(ND=0ppm)の吸光度。Absorbance of nickel plating solution without added nanodiamond particles (ND=0 ppm). ナノダイヤモンド粒子を所定濃度で添加したニッケルめっき液(ND=50-1000ppm)の吸光度。Absorbance of nickel plating solution (ND=50-1000ppm) to which nanodiamond particles have been added at a specified concentration.

本明細書において、複合めっき浴は卑金属めっき液とナノダイヤモンド粒子(ND粒子)とを含む。前記卑金属めっき浴中におけるND粒子の濃度は、例えば0.001~1.0g/L(下限は、好ましくは0.003g/L、より好ましくは0.006g/L、さらに好ましくは0.01g/L、特に好ましくは0.03g/Lである。ND粒子の濃度の上限は、好ましくは0.8g/L、さらに好ましくは0.6g/L、特に好ましくは0.5g/Lである)の範囲であり、好ましくは0.01~0.5g/Lである。 In this specification, the composite plating bath contains a base metal plating solution and nanodiamond particles (ND particles). The concentration of the ND particles in the base metal plating bath is, for example, in the range of 0.001 to 1.0 g/L (the lower limit is preferably 0.003 g/L, more preferably 0.006 g/L, even more preferably 0.01 g/L, and particularly preferably 0.03 g/L. The upper limit of the concentration of the ND particles is preferably 0.8 g/L, more preferably 0.6 g/L, and particularly preferably 0.5 g/L), and is preferably 0.01 to 0.5 g/L.

卑金属としては、鉄、ニッケル、亜鉛、銅、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム及びタリウムからなる群から選ばれる少なくとも1種であり、好ましくは銅、ニッケル、亜鉛、スズ、クロム、パーマロイからなる群から選ばれる少なくとも1種であり、より好ましくは銅、ニッケル、亜鉛、スズからなる群から選ばれる少なくとも1種であり、特に好ましくは銅、ニッケルである。 The base metal is at least one selected from the group consisting of iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, indium, niobium, rhenium, and thallium, preferably at least one selected from the group consisting of copper, nickel, zinc, tin, chromium, and permalloy, more preferably at least one selected from the group consisting of copper, nickel, zinc, and tin, and particularly preferably copper and nickel.

複合めっき液中のND粒子の粒径(D50)は、例えば95nm以下、好ましくは70nm以下、特に好ましくは60nm以下、最も好ましくは50nm以下である。ND粒子の粒径(D50)の下限は、例えば20nmである。 The particle size (D50) of the ND particles in the composite plating solution is, for example, 95 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less. The lower limit of the particle size (D50) of the ND particles is, for example, 20 nm.

卑金属めっき液は公知であり、公知の卑金属めっき液にND粒子又はその分散液を添加することで、複合めっき浴が得られる。ND粒子の分散液は、水溶液が好ましい。複合めっき浴は電解複合めっき浴と無電解複合めっき浴のいずれであってもよい。複合めっき浴は、水溶性卑金属塩、ND粒子を必須成分として含み、電導度塩、錯化剤、還元剤(無電解めっき浴)、アノード溶解促進剤(複合電解めっき浴の場合)、リン供給源(無電解ニッケル‐リン合金めっきの場合)、pH緩衝剤、界面活性剤、安定剤、皮膜の外観と物性を調整する添加剤(光沢化剤、平滑化剤、応力減少剤など)などから選択されるその他の成分をさらに含むことができる。前記水溶性卑金属塩は、卑金属めっき浴中においては卑金属イオンとして存在する。その他、卑金属の酸素酸イオンや、錯化剤と結合した卑金属錯イオンとして存在する場合もある。 複合めっき浴における水溶性卑金属塩の濃度は、複合めっき液に供給される卑金属イオン濃度換算で、例えば0.01~0.5mol/Lであり、好ましくは0.05~0.2mol/Lである。 Base metal plating solutions are known, and a composite plating bath can be obtained by adding ND particles or a dispersion thereof to a known base metal plating solution. The dispersion of ND particles is preferably an aqueous solution. The composite plating bath may be either an electrolytic composite plating bath or an electroless composite plating bath. The composite plating bath contains a water-soluble base metal salt and ND particles as essential components, and may further contain other components selected from electrical conductivity salts, complexing agents, reducing agents (electroless plating baths), anode dissolution accelerators (in the case of composite electrolytic plating baths), phosphorus sources (in the case of electroless nickel-phosphorus alloy plating), pH buffers, surfactants, stabilizers, and additives for adjusting the appearance and physical properties of the film (brightening agents, smoothing agents, stress reducers, etc.). The water-soluble base metal salt exists as a base metal ion in the base metal plating bath. In addition, it may exist as an oxygen acid ion of the base metal or a base metal complex ion bound to a complexing agent. The concentration of the water-soluble base metal salt in the composite plating bath is, for example, 0.01 to 0.5 mol/L, preferably 0.05 to 0.2 mol/L, calculated as the base metal ion concentration supplied to the composite plating solution.

無電解複合めっき液に含有される還元剤としては、ホスホン酸又はホスホン酸塩(例えばホスホン酸ナトリウムなどのホスホン酸アルカリ金属塩)、ホスフィン酸又はホスフィン酸塩(例えばホスフィン酸ナトリウムなどのホスフィン酸アルカリ金属塩)などが挙げられる。還元剤としてホスフィン酸塩、ホスホン酸塩を採用する場合、無電解複合めっき液におけるホスフィン酸塩、ホスホン酸塩の濃度は、例えば0.02~0.5mol/Lであり、好ましくは0.1~0.2mol/Lである。 Examples of reducing agents contained in the electroless composite plating solution include phosphonic acid or phosphonates (e.g., alkali metal phosphonates such as sodium phosphonate), phosphinic acid or phosphinates (e.g., alkali metal phosphinates such as sodium phosphinate), etc. When a phosphinate or phosphonate is used as the reducing agent, the concentration of the phosphinate or phosphonate in the electroless composite plating solution is, for example, 0.02 to 0.5 mol/L, and preferably 0.1 to 0.2 mol/L.

電解及び無電解卑金属めっき浴に含有される錯化剤としては、例えば、クエン酸、乳酸、リンゴ酸、グリコール酸、およびこれらの塩が挙げられる。クエン酸としては、クエン酸ナトリウムやクエン酸カリウムなどのクエン酸アルカリ金属塩が挙げられる。クエン酸および/またはその塩を採用する場合、電解及び無電解卑金属めっき浴におけるクエン酸および/またはその塩の濃度は、例えば0.02~1.0mol/Lであり、好ましくは0.1~0.5mol/Lである。 Examples of complexing agents contained in the electrolytic and electroless base metal plating baths include citric acid, lactic acid, malic acid, glycolic acid, and salts thereof. Citric acid includes alkali metal citrates such as sodium citrate and potassium citrate. When citric acid and/or its salts are used, the concentration of citric acid and/or its salts in the electrolytic and electroless base metal plating baths is, for example, 0.02 to 1.0 mol/L, and preferably 0.1 to 0.5 mol/L.

卑金属めっき浴のpHは、例えば5~11である。 The pH of the base metal plating bath is, for example, 5 to 11.

本発明では、これらの複合めっき液の成分のうち、ND粒子の管理を行うものである。ND粒子以外の成分の管理は、常法に従い行うことができる。 In the present invention, the ND particles are controlled among the components of these composite plating solutions. Components other than ND particles can be controlled according to conventional methods.

本発明の好ましい1つの実施形態において、ND粒子以外の卑金属めっき用のめっき液としては、ND粒子、卑金属の硫酸塩、硫酸、塩化物イオンなどからなる硫酸卑金属めっき液;卑金属シアン化物、シアン化ナトリウム、炭酸アルカリ、ロッシェル塩などからなるシアン化卑金属めっき液;卑金属ピロリン酸塩、ピロリン酸カリウム、アンモニア水、硝酸カリウムなどからなるピロリン酸卑金属めっき液などが挙げられる。 In a preferred embodiment of the present invention, examples of plating solutions for plating base metals other than ND particles include base metal sulfate plating solutions consisting of ND particles, base metal sulfates, sulfuric acid, chloride ions, etc.; cyanide base metal plating solutions consisting of base metal cyanides, sodium cyanide, alkali carbonates, Rochelle salts, etc.; and pyrophosphate base metal plating solutions consisting of base metal pyrophosphates, potassium pyrophosphate, ammonia water, potassium nitrate, etc.

ND粒子の表面は、OH、COOH、NHなどの親水性官能基を有していてもよい。また、これらの官能基を介して、親水性基を導入したND粒子を用いてもよい。親水性基としては、グリセリン、ポリグリセリン(PG)、エチレングリコール、プロピレングリコール、ブチレングリコールなどのC2-4アルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなどのポリ(C2-4アルキレングリコール)などが挙げられる。これらの親水性ND粒子は公知であるか、公知に方法により製造することができる。 The surface of the ND particles may have hydrophilic functional groups such as OH, COOH, and NH2 . In addition, ND particles to which hydrophilic groups have been introduced via these functional groups may be used. Examples of hydrophilic groups include glycerin, polyglycerin (PG), C2-4 alkylene glycols such as ethylene glycol, propylene glycol, and butylene glycol, and poly( C2-4 alkylene glycols) such as polyethylene glycol, polypropylene glycol, and polybutylene glycol. These hydrophilic ND particles are publicly known or can be produced by publicly known methods.

ND粒子は、固体を(複合)めっき浴に配合してもよく、ND粒子分散液を(複合)めっき浴に配合してもよい。ND粒子分散液中のND粒子濃度は、例えば1~100g/L程度である。 The ND particles may be mixed into the (composite) plating bath as a solid, or an ND particle dispersion may be mixed into the (composite) plating bath. The ND particle concentration in the ND particle dispersion is, for example, about 1 to 100 g/L.

前記ND粒子としては、分散性に優れる点において、親水性高分子でコーティングもしくは修飾された親水性ND粒子が好ましく、特に好ましくはポリグリセリン鎖を含む水溶性高分子を有する親水性ND粒子である。 As the ND particles, hydrophilic ND particles coated or modified with a hydrophilic polymer are preferred because of their excellent dispersibility, and hydrophilic ND particles having a water-soluble polymer containing a polyglycerin chain are particularly preferred.

本発明の複合めっき液中のND粒子濃度の分析は、以下のようにして行うことができる。
(i)先ず、ND粒子の濃度を分析すべき複合めっき液に対して、ND粒子濃度を管理すべき範囲において、様々な配合量でND粒子を配合したND粒子濃度の既知の複数種類の複合めっき液を調製する。
(ii)次に、上記(i)で調製した複合めっき液について、各々、吸光度を測定する。
(iii)上記(ii)の結果をもとに、図4に示すように如く、複合めっき液の吸光度とND粒子濃度の関係を示す検量線を作成する。
The ND particle concentration in the composite plating solution of the present invention can be analyzed as follows.
(i) First, for a composite plating solution in which the concentration of ND particles is to be analyzed, multiple types of composite plating solutions with known ND particle concentrations are prepared by blending ND particles in various amounts within the range in which the ND particle concentration is to be controlled.
(ii) Next, the absorbance of each of the composite plating solutions prepared in (i) above is measured.
(iii) Based on the results of (ii) above, a calibration curve showing the relationship between the absorbance of the composite plating solution and the ND particle concentration is prepared, as shown in FIG.

複合めっき液の吸光度を測定する波長は、250~630nmの範囲から選択され、この範囲内であれば、任意の波長で検量線を作成し、複合めっき液中のND粒子濃度を分析することができる。検量線を作成する波長は、NDを含まないめっき液を基準として、ND粒子の濃度を高めていったときの吸光度変化の大きい波長が好ましい。例えば、図1~3に示す銅めっき液の場合、好ましくは280nm~630nm、より好ましくは300nm~600nm、さらに好ましくは310nm~500nmである。また、図5~6に示すニッケルめっき液の場合、好ましくは300nm~370nmと430nm~580nm、より好ましくは305nm~360nmと440nm~560nm、さらに好ましくは310nm~350nmと440nm~550nmである。銅めっき液とニッケルめっき液であったとしても、めっき液に含まれる成分や濃度が変化すれば、検量線作成の好ましい波長は変化し得る。また、卑金属めっき液の卑金属の種類が銅、ニッケルから鉄、亜鉛、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム、タリウムなどの他の卑金属に変わった場合にも、検量線作成の好ましい波長は変化し得る。検量線作成の好ましい波長の決定は、銅めっき液とニッケルめっき液の結果を参考にして容易に行うことができる。検量線は、1つの波長のみで作成してもよく、複数の波長(好ましくが2つの波長もしくは3つの波長)で作成してもよい。図3に示すように、ND粒子の水分散液の吸光度は、ND粒子の濃度によっても大きく影響を受けるので、このことを考慮して、検量線を作成する波長を決定することが好ましい。ND粒子濃度の管理すべき範囲内で、ND粒子濃度の決定に有利な吸光度の測定波長を検量線により決定する。複合めっき液のND粒子の濃度は、予め作製された検量線を用いて、吸光度の測定値により分析することができる。ND粒子濃度の分析は、ND粒子の濃度を特定するように行ってもよく、ND粒子濃度が許容範囲を逸脱する可能性が生じ、ND粒子を例えば水分散液の形態で複合めっき液に添加するべきか否かを判断できるように濃度ゾーンで分析してもよい。 The wavelength for measuring the absorbance of the composite plating solution is selected from the range of 250 to 630 nm, and within this range, a calibration curve can be created at any wavelength to analyze the ND particle concentration in the composite plating solution. The wavelength for creating the calibration curve is preferably a wavelength at which the absorbance change is large when the concentration of ND particles is increased, with the plating solution not containing ND as the reference. For example, in the case of the copper plating solution shown in Figures 1 to 3, the wavelengths are preferably 280 nm to 630 nm, more preferably 300 nm to 600 nm, and even more preferably 310 nm to 500 nm. In the case of the nickel plating solution shown in Figures 5 to 6, the wavelengths are preferably 300 nm to 370 nm and 430 nm to 580 nm, more preferably 305 nm to 360 nm and 440 nm to 560 nm, and even more preferably 310 nm to 350 nm and 440 nm to 550 nm. Even in the case of copper plating solution and nickel plating solution, if the components and concentrations contained in the plating solution change, the preferred wavelength for creating the calibration curve may change. In addition, when the type of base metal in the base metal plating solution is changed from copper and nickel to other base metals such as iron, zinc, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, indium, niobium, rhenium, and thallium, the preferred wavelength for creating the calibration curve may also change. The preferred wavelength for creating the calibration curve can be easily determined by referring to the results of the copper plating solution and the nickel plating solution. The calibration curve may be created using only one wavelength, or may be created using multiple wavelengths (preferably two or three wavelengths). As shown in FIG. 3, the absorbance of the aqueous dispersion of ND particles is also greatly affected by the concentration of ND particles, so it is preferable to determine the wavelength for creating the calibration curve taking this into consideration. Within the range of the ND particle concentration to be managed, the measurement wavelength of absorbance advantageous for determining the ND particle concentration is determined by the calibration curve. The concentration of ND particles in the composite plating solution can be analyzed by the absorbance measurement value using a previously prepared calibration curve. The analysis of the ND particle concentration can be performed to specify the concentration of ND particles, or it can be analyzed in a concentration zone so that it can be determined whether the ND particle concentration may deviate from the acceptable range and whether ND particles should be added to the composite plating solution, for example in the form of an aqueous dispersion.

本発明の複合めっき液のND粒子濃度の管理方法では、めっき槽から複合めっき液をサンプリングし、上述のような方法で複合めっき液中のND粒子の濃度を分析し、分析結果に基づきND粒子濃度が次のサンプリングまで許容範囲内にとどまると判断されればND粒子の添加は行わず、分析結果に基づきND粒子濃度が次のサンプリング時には許容範囲外になる可能性があると判断される場合には、必要に応じてめっき槽中の複合めっき液にND粒子を例えば水分散液の形態で添加し、ND粒子濃度が許容範囲内でめっきが行われるようにする。 In the method for managing the ND particle concentration of the composite plating solution of the present invention, the composite plating solution is sampled from the plating tank, and the concentration of ND particles in the composite plating solution is analyzed by the method described above. If it is determined based on the analysis results that the ND particle concentration will remain within the allowable range until the next sampling, no ND particles are added, and if it is determined based on the analysis results that the ND particle concentration may be outside the allowable range at the time of the next sampling, ND particles are added to the composite plating solution in the plating tank as necessary, for example in the form of an aqueous dispersion, so that plating is performed with the ND particle concentration within the allowable range.

本発明のND濃度の管理方法について、例えば複合めっき液からめっき液をポンプなどでサンプリングするサンプリング手段、サンプリングした試料の吸光度を測定する分析手段、分析手段の結果の信号を受け取り、ND粒子を複合めっき液に添加するか否かと添加量を決定する制御手段、前記制御手段によりND粒子の添加を制御されるND粒子添加手段を備えたシステムにより自動的にND粒子の濃度管理を行ってもよく、管理者がめっきの状況を見ながら適切なタイミングで複合めっき液のサンプリング及び吸光度測定を手動で行い、その結果から、複合めっき液へのND粒子の添加の要否、添加する場合にはその添加量を管理者が判断して実施してもよい。 Regarding the ND concentration management method of the present invention, for example, the concentration of ND particles may be automatically managed by a system equipped with a sampling means for sampling the plating solution from the composite plating solution using a pump or the like, an analysis means for measuring the absorbance of the sampled sample, a control means for receiving a signal from the analysis means and deciding whether or not to add ND particles to the composite plating solution and the amount to be added, and an ND particle addition means for controlling the addition of ND particles by the control means. Alternatively, a manager may manually sample the composite plating solution and measure the absorbance at appropriate times while observing the plating status, and based on the results, determine whether or not ND particles need to be added to the composite plating solution, and if so, the amount to be added.

以下、本発明を実施例を挙げてより詳細に説明する。
実施例1
銅めっき液(商品名「電解めっき液」、清川めっき工業(株)製)に、ポリグリセリン(PG)で修飾することで親水化処理されたND粒子水分散液(PG-ND粒子水分散液((株)ダイセル製)を、銅めっき液中のPG-ND濃度が0、50、100、200、300、400、500、1000ppmとなるように添加して、各種ND濃度の複合めっき液を調製した。
The present invention will now be described in more detail with reference to examples.
Example 1
Composite plating solutions with various ND concentrations were prepared by adding an aqueous dispersion of ND particles (PG-ND particle aqueous dispersion (manufactured by Daicel Corporation)) that had been hydrophilized by modification with polyglycerin (PG) to a copper plating solution (product name "Electrolytic Plating Solution" manufactured by Kiyokawa Plating Co., Ltd.) so that the PG-ND concentrations in the copper plating solution were 0, 50, 100, 200, 300, 400, 500, and 1000 ppm.

得られた複合銅めっき液について、分光光度計((株)日立ハイテクフィールディング社製「U-3900H Spectrophotometer)を用い、波長300nm、310nm、320nm、330nm、340nm、350nm、355nm、360nmで吸光度測定を行い、検量線を作成した(図4)。図1は、PG-NDを添加していない銅めっき液の吸光度測定結果を示し、図2は、PG-NDを50ppm、100ppm、200ppm、300ppm、400ppm、500ppm、1000ppmを各々添加した銅めっき液の吸光度測定結果を示す。また、図3は、PG-ND濃度が50ppmと500ppmのときのPG-ND水分散液の吸光度を示す。 The absorbance of the obtained composite copper plating solution was measured at wavelengths of 300 nm, 310 nm, 320 nm, 330 nm, 340 nm, 350 nm, 355 nm, and 360 nm using a spectrophotometer (U-3900H Spectrophotometer, Hitachi High-Tech Fielding Corporation), and a calibration curve was created (Figure 4). Figure 1 shows the absorbance measurement results of the copper plating solution to which no PG-ND was added, and Figure 2 shows the absorbance measurement results of the copper plating solutions to which PG-ND was added at 50 ppm, 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, and 1000 ppm. Figure 3 shows the absorbance of the PG-ND aqueous dispersion when the PG-ND concentration was 50 ppm and 500 ppm.

図4の結果から、ND粒子の濃度は吸光度により決定でき、複合めっき液中のND粒子濃度を適切に管理できることが明らかになった。 The results in Figure 4 show that the concentration of ND particles can be determined by absorbance, and that the concentration of ND particles in the composite plating solution can be appropriately controlled.

実施例2
ニッケルめっき液(商品名「電解ニッケルめっき液」、清川めっき工業(株)製)に、ポリエチレングリコール(PG)で修飾することで親水化処理されたND粒子水分散液(PG-ND粒子水分散液((株)ダイセル製)を、銅めっき液中のPG-ND濃度が0、50、100、200、300、400、500、1000ppmとなるように添加して、各種ND濃度の複合めっき液を調製した。
Example 2
Composite plating solutions with various ND concentrations were prepared by adding an aqueous dispersion of ND particles (PG-ND particle aqueous dispersion (manufactured by Daicel Corporation)) that had been hydrophilized by modification with polyethylene glycol (PG) to a nickel plating solution (product name "Electrolytic Nickel Plating Solution" manufactured by Kiyokawa Plating Co., Ltd.) so that the PG-ND concentrations in the copper plating solution were 0, 50, 100, 200, 300, 400, 500, and 1000 ppm.

得られた複合銅めっき液について、分光光度計を用いて吸光度測定を行った。図5は、PG-NDを添加していない銅めっき液の吸光度測定結果を示し、図6は、PG-NDを50ppm、100ppm、200ppm、300ppm、400ppm、500ppm、1000ppmを各々添加した銅めっき液の吸光度測定結果を示す。 The absorbance of the resulting composite copper plating solution was measured using a spectrophotometer. Figure 5 shows the absorbance of the copper plating solution to which no PG-ND was added, and Figure 6 shows the absorbance of the copper plating solution to which PG-ND was added at 50 ppm, 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, and 1000 ppm.

図5,6の結果から、ND粒子の濃度は吸光度により決定でき、銅めっき液中のND粒子濃度を適切に管理できることが明らかになった。 The results in Figures 5 and 6 show that the concentration of ND particles can be determined by absorbance, and that the concentration of ND particles in the copper plating solution can be appropriately controlled.

Claims (2)

ナノダイヤモンド粒子と卑金属を含む複合めっき液の吸光度を測定し、吸光度の測定値に基づきナノダイヤモンド粒子の濃度を求める工程を含み、
前記卑金属は銅又はニッケルであり、
前記卑金属が銅の場合、吸光度を測定する波長は310nm~500nmの範囲から選択され、
前記卑金属がニッケルの場合、吸光度を測定する波長は300nm~370nmと430nm~580nmの範囲から選択される、複合めっき液中のナノダイヤモンド粒子濃度の分析方法。
The method includes a step of measuring the absorbance of a composite plating solution containing nanodiamond particles and a base metal , and determining the concentration of the nanodiamond particles based on the measured absorbance;
the base metal is copper or nickel;
When the base metal is copper, the wavelength for measuring absorbance is selected from the range of 310 nm to 500 nm;
When the base metal is nickel, the wavelength for measuring absorbance is selected from the ranges of 300 nm to 370 nm and 430 nm to 580 nm .
請求項1の方法で複合めっき液中のナノダイヤモンド粒子濃度を分析し、前記濃度が所定濃度となるように、必要に応じて複合めっき液にナノダイヤモンド粒子を添加する、複合めっき液中のナノダイヤモンド粒子濃度の管理方法。 A method for managing the concentration of nanodiamond particles in a composite plating solution, which comprises analyzing the concentration of nanodiamond particles in the composite plating solution using the method of claim 1, and adding nanodiamond particles to the composite plating solution as necessary so that the concentration becomes a predetermined concentration.
JP2019090653A 2019-05-13 2019-05-13 Method for analyzing and controlling nanodiamond particle concentration in composite plating solution Active JP7626414B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019090653A JP7626414B2 (en) 2019-05-13 2019-05-13 Method for analyzing and controlling nanodiamond particle concentration in composite plating solution
JP2023143694A JP2023158070A (en) 2019-05-13 2023-09-05 Analysis method and management method for nanodiamond particle concentration in composite plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090653A JP7626414B2 (en) 2019-05-13 2019-05-13 Method for analyzing and controlling nanodiamond particle concentration in composite plating solution

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023143694A Division JP2023158070A (en) 2019-05-13 2023-09-05 Analysis method and management method for nanodiamond particle concentration in composite plating solution

Publications (2)

Publication Number Publication Date
JP2020186962A JP2020186962A (en) 2020-11-19
JP7626414B2 true JP7626414B2 (en) 2025-02-07

Family

ID=73223217

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019090653A Active JP7626414B2 (en) 2019-05-13 2019-05-13 Method for analyzing and controlling nanodiamond particle concentration in composite plating solution
JP2023143694A Withdrawn JP2023158070A (en) 2019-05-13 2023-09-05 Analysis method and management method for nanodiamond particle concentration in composite plating solution

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023143694A Withdrawn JP2023158070A (en) 2019-05-13 2023-09-05 Analysis method and management method for nanodiamond particle concentration in composite plating solution

Country Status (1)

Country Link
JP (2) JP7626414B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786686A (en) 2005-11-11 2006-06-14 哈尔滨工业大学 Method for measuring nano particle content in electroplate liquid or layer by spectrophotometer
JP2011149071A (en) 2010-01-22 2011-08-04 Eyetec Co Ltd Composite plating solution having diamonds particle dispersed therein, and method for producing the same
JP2017179604A (en) 2016-03-25 2017-10-05 株式会社伸光製作所 Method for regenerating metal plating solution, method for regenerating washing water used for metal plating, plating apparatus, and recycled material for metal plating
JP2018108913A (en) 2016-11-11 2018-07-12 ザ・キュレイターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリThe Curators of the University of Missouri Salt-assisted ultrasonic disaggregation of nanodiamond
US20190044185A1 (en) 2017-08-01 2019-02-07 Drexel University Additives for suppressing dendritic growth in batteries

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654534B2 (en) * 2000-05-22 2011-03-23 上村工業株式会社 Automatic analysis and management equipment for electroless composite nickel plating solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786686A (en) 2005-11-11 2006-06-14 哈尔滨工业大学 Method for measuring nano particle content in electroplate liquid or layer by spectrophotometer
JP2011149071A (en) 2010-01-22 2011-08-04 Eyetec Co Ltd Composite plating solution having diamonds particle dispersed therein, and method for producing the same
JP2017179604A (en) 2016-03-25 2017-10-05 株式会社伸光製作所 Method for regenerating metal plating solution, method for regenerating washing water used for metal plating, plating apparatus, and recycled material for metal plating
JP2018108913A (en) 2016-11-11 2018-07-12 ザ・キュレイターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリThe Curators of the University of Missouri Salt-assisted ultrasonic disaggregation of nanodiamond
US20190044185A1 (en) 2017-08-01 2019-02-07 Drexel University Additives for suppressing dendritic growth in batteries

Also Published As

Publication number Publication date
JP2020186962A (en) 2020-11-19
JP2023158070A (en) 2023-10-26

Similar Documents

Publication Publication Date Title
EP1892321B1 (en) A Hard Gold Alloy Plating Bath
CN107604393B (en) A kind of no cyanogen alkali copper electroplating composition and preparation method thereof
JP3871018B2 (en) Tin-copper alloy electroplating bath and plating method using the same
JPH04276081A (en) Electroless tin, lead or their alloy plating method
AT514818B1 (en) Deposition of Cu, Sn, Zn coatings on metallic substrates
TWI452179B (en) Gold plating solution
JP6951465B2 (en) Trivalent chrome plating solution and chrome plating method using this
Baldessin et al. The influence of Ni and Co concentration in the electroplating bath on Ni‐Co‐W alloys properties
JP7626414B2 (en) Method for analyzing and controlling nanodiamond particle concentration in composite plating solution
WO2018216320A1 (en) Molten salt titanium plating solution composition and method for manufacturing titanium-plated member
Kublanovsky et al. Cobalt-molybdenum-phosphorus alloys: electroplating and corrosion properties
JP2014105338A (en) Determination method of gold concentration in gold-containing solution, and determination device of gold concentration
JP4219224B2 (en) Electroplating method for tin-based alloys
KR101691949B1 (en) Measurement method of iodide in plating solution
Luyima et al. Examination of copper electrowinning smoothing agents. Part IV: Nucleation and growth of copper on stainless steel
JP2024031708A (en) Measuring apparatus and measuring method for gold concentration in gold-containing plating liquid
US20180355505A1 (en) Concentration indicator of metal component contained in plating solution, and plating method using the same
CN109415834A (en) Metal conditioner is used in electrolysis processing
US10629917B2 (en) Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
CN106460180A (en) High phosphorus electroless nickel
TW546418B (en) Method of producing AuCuGa alloy coating using electrolysis, and alloys produced by such a method
JPH04276082A (en) Analysis of copper ion concentration in bath for electroless plating of tin, lead, or those alloy
JP7640025B2 (en) Electroplating bath for depositing chromium or chromium alloys and process for depositing chromium or chromium alloys - Patents.com
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
CN109415835A (en) Metal conditioner is used in electrolysis processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250116

R150 Certificate of patent or registration of utility model

Ref document number: 7626414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150