JP7622412B2 - Thick film conductor, composition for forming the same, and thick film conductor paste containing the composition for forming the same - Google Patents
Thick film conductor, composition for forming the same, and thick film conductor paste containing the composition for forming the same Download PDFInfo
- Publication number
- JP7622412B2 JP7622412B2 JP2020201873A JP2020201873A JP7622412B2 JP 7622412 B2 JP7622412 B2 JP 7622412B2 JP 2020201873 A JP2020201873 A JP 2020201873A JP 2020201873 A JP2020201873 A JP 2020201873A JP 7622412 B2 JP7622412 B2 JP 7622412B2
- Authority
- JP
- Japan
- Prior art keywords
- thick
- glass
- film conductor
- powder
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 title claims description 150
- 239000000203 mixture Substances 0.000 title claims description 57
- 239000011521 glass Substances 0.000 claims description 183
- 239000000843 powder Substances 0.000 claims description 149
- 239000000758 substrate Substances 0.000 claims description 45
- 239000011701 zinc Substances 0.000 claims description 32
- 238000010304 firing Methods 0.000 claims description 30
- 229910052720 vanadium Inorganic materials 0.000 claims description 30
- 229910052725 zinc Inorganic materials 0.000 claims description 29
- 230000009477 glass transition Effects 0.000 claims description 17
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052763 palladium Inorganic materials 0.000 claims description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010408 film Substances 0.000 description 160
- 239000010410 layer Substances 0.000 description 35
- 239000002245 particle Substances 0.000 description 22
- 239000000919 ceramic Substances 0.000 description 17
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 238000004898 kneading Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000001035 drying Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000001856 Ethyl cellulose Substances 0.000 description 4
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229920001249 ethyl cellulose Polymers 0.000 description 4
- 235000019325 ethyl cellulose Nutrition 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 3
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229940116411 terpineol Drugs 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016276 Bi2O3—SiO2—B2O3 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229910020410 SiO2—B2O3—PbO Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- -1 respectively Substances 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Conductive Materials (AREA)
Description
本発明は、ガラスグレーズ基板等のガラスを含有する膜が表面に形成された基板上に形成される厚膜導体及びその形成用組成物、並びに該形成用組成物を含んだ厚膜導体ペーストに関する。 The present invention relates to a thick-film conductor formed on a substrate having a glass-containing film formed on its surface, such as a glass glaze substrate, a composition for forming the same, and a thick-film conductor paste containing the composition for forming the same.
熱反応材料からなる熱感紙や熱転写リボンなどの紙媒体に熱によって印字を行う印字装置の1種であるサーマルプリンタは、低価格、低騒音、メンテナンスフリー等の特徴があり、家庭用ファクシミリ、券売機などの幅広い用途に用いられている。このサーマルプリンタのうち、上記の紙媒体に印字するデバイスであるサーマルプリントヘッドは、ガラスグレーズ基板と、その表面に形成された所定のパターンを有する電極と、該電極による通電により発熱する抵抗体と、これらを駆動するドライバICとから主に構成される。 Thermal printers are a type of printing device that uses heat to print on paper media such as thermal paper and thermal transfer ribbons made of thermally reactive materials. They are characterized by low cost, low noise, and maintenance-free operation, and are used in a wide range of applications such as home fax machines and ticket vending machines. Among these thermal printers, the thermal print head, which is the device that prints on the paper media, is primarily composed of a glass glaze substrate, electrodes with a predetermined pattern formed on the surface, a resistor that generates heat when electricity is passed through the electrodes, and a driver IC that drives these.
例えば特許文献1には、アルミナ等のセラミック基板の表面にガラスペーストなどを印刷して焼成することで形成されたガラスグレーズ層を有するガラスグレーズ基板と、このガラスグレーズ基板の表面に導電ペースト及び抵抗ペーストをそれぞれ原料に用いて厚膜技術により形成された電極及び発熱抵抗体と、これら電極及び発熱抵抗体を覆うようにガラスペーストを塗布して焼成することで形成された耐摩耗性及び平滑性を備えた保護層とから構成されるサーマルプリントヘッドが開示されている。 For example, Patent Document 1 discloses a thermal printhead that is composed of a glass glaze substrate having a glass glaze layer formed by printing and firing a glass paste or the like on the surface of a ceramic substrate such as alumina, electrodes and heating resistors formed on the surface of the glass glaze substrate by thick-film technology using conductive paste and resistive paste as raw materials, respectively, and a protective layer with wear resistance and smoothness formed by applying glass paste to cover the electrodes and heating resistors and firing the glass paste.
上記の導体ペーストは、一般に銀粉末などの金属粉末と、結合剤となるガラス粉末とを糊状のビヒクルに分散させることで作製される。一方、上記の抵抗ペーストは、ルテニウム酸化物などの導電性粉末と、結合剤となるガラス粉末とを糊状のビヒクルに分散させることで作製される。なお、上記の導電ペーストや抵抗ペーストに用いるビヒクルは、有機溶剤に樹脂等を溶解することで一般に作製される。 The above-mentioned conductor paste is generally made by dispersing a metal powder such as silver powder and a glass powder as a binder in a paste-like vehicle. On the other hand, the above-mentioned resistor paste is made by dispersing a conductive powder such as ruthenium oxide and a glass powder as a binder in a paste-like vehicle. The vehicle used for the above-mentioned conductive paste and resistor paste is generally made by dissolving a resin or the like in an organic solvent.
上記のように、サーマルプリントヘッドの基板は、ガラス質のガラスグレーズ層で表面が覆われたセラミック基板を用いるため、セラミック基板の表面に直に電極等の導体層を形成する場合の材料として使用する厚膜導体ペーストをそのまま使用すると問題が生ずることがあった。すなわち、セラミック基板の表面に直に導体層を形成する場合の材料として使用する厚膜導体組成物を含んだ厚膜導体ペーストを、ガラスグレーズ層の表面に印刷して焼成すると、これにより形成される導体層の表面にガラス成分の浮き出し(染み出しと称することもある)が生じ、該導体層の表面を電気的接続用の端子として使用する場合や、該導体層の表面に電気的接続された状態で抵抗体等の素子を形成する場合にそれらの電気的接続が不良又は不安定になることがあった。 As described above, the substrate of the thermal printhead is a ceramic substrate covered with a glassy glass glaze layer, and therefore problems can arise when the thick-film conductor paste used as a material for forming a conductor layer such as an electrode directly on the surface of the ceramic substrate is used as is. That is, when a thick-film conductor paste containing a thick-film conductor composition used as a material for forming a conductor layer directly on the surface of the ceramic substrate is printed on the surface of the glass glaze layer and fired, glass components are raised (sometimes called seepage) on the surface of the conductor layer thus formed, and when the surface of the conductor layer is used as a terminal for electrical connection or when an element such as a resistor is formed in a state electrically connected to the surface of the conductor layer, the electrical connection can become poor or unstable.
本発明は上記した事情に鑑みてなされたものであり、ガラスグレーズ基板のように、ガラスを含有する膜が表面に形成されている基板上に焼成により厚膜導体層を形成しても、その表面にガラス成分が浮き出すことのない厚膜導体形成用組成物及びこれを含んだ厚膜導体ペーストを提供することを目的としている。 The present invention has been made in consideration of the above-mentioned circumstances, and aims to provide a composition for forming a thick film conductor, which prevents glass components from floating to the surface even when a thick film conductor layer is formed by firing on a substrate having a glass-containing film formed on the surface, such as a glass glaze substrate, and a thick film conductor paste containing the same.
上記目的を達成するため、本発明に係る厚膜導体形成用組成物は、導電粉末と、バナジウム及び亜鉛を含有する鉛フリーガラス粉末とを含み、ガラスを含有する膜が表面に形成された基板上に焼成により形成される厚膜導体層の原料として使用され、前記導電粉末が、Au、Ag、Pd、及びPtからなる群から選ばれる単体の金属粉末又は合金粉末であり、前記鉛フリーガラス粉末が、V 2 O 5 -ZnO-Bi 2 O 3 系ガラス粉末であって、前記バナジウムを酸化物V 2 O 5 換算で30~60質量%含み且つ前記亜鉛を酸化物ZnO換算で20~50質量%含むことを特徴としている。 In order to achieve the above object, the composition for forming a thick film conductor according to the present invention contains a conductive powder and a lead-free glass powder containing vanadium and zinc, and is used as a raw material for a thick film conductor layer formed by firing on a substrate having a film containing glass formed on its surface , the conductive powder being a single metal powder or an alloy powder selected from the group consisting of Au, Ag, Pd, and Pt, and the lead-free glass powder being a V 2 O 5 -ZnO-Bi 2 O 3 based glass powder containing 30 to 60 mass % of the vanadium calculated as V 2 O 5 oxide and 20 to 50 mass % of the zinc calculated as ZnO oxide .
本発明によれば、ガラスを含有する膜が表面に形成された基板上に焼成により厚膜導体層を形成しても、その表面にガラス成分が浮き出すのを抑えることが可能になる。 According to the present invention, even if a thick-film conductor layer is formed by firing on a substrate having a glass-containing film formed on its surface, it is possible to prevent the glass components from protruding onto the surface.
1.厚膜導体形成用組成物
本発明の実施形態の厚膜導体形成用組成物は、基板表面にガラスグレーズ層が形成されたガラスグレーズ基板のように、ガラスを含有する膜が表面に形成された基板上に焼成により形成される厚膜導体層の原料として使用されるものであり、導電粉末と、バナジウム及び亜鉛を含有する鉛フリーガラス粉末とを含んでいる。以下、これら導電粉末及び鉛フリーガラス粉末の各々について説明した後、厚膜導体形成用組成物について詳細に説明する。
1. Composition for forming a thick-film conductor The composition for forming a thick-film conductor according to an embodiment of the present invention is used as a raw material for a thick-film conductor layer formed by firing on a substrate having a film containing glass formed on its surface, such as a glass glaze substrate having a glass glaze layer formed on the substrate surface, and contains a conductive powder and a lead-free glass powder containing vanadium and zinc. Below, the conductive powder and the lead-free glass powder will each be described, and then the composition for forming a thick-film conductor will be described in detail.
1.1 導電粉末
上記した本発明の実施形態の厚膜導体形成用組成物の一方の主構成要素である導電粉末は、一般的な厚膜導体の材料に用いるものでよく、例えば、Au、Ag、Pd、及びPtなどの貴金属が好適に用いられ、これらの貴金属からなる群から選んだ1種のみから構成される単体の金属粉末若しくはその合金粉末、又はそれら単体の金属粉末や合金粉末の2種以上を組み合わせた混合粉末の形態で用いられる。これらの中では、融点が低い点やコストの観点からAg単体の粉末若しくはそれとPd単体との混合粉末、Ag及びPdの合金粉末、又はそれらの混合粉末を使用することが好ましい。
1.1 Conductive Powder The conductive powder, which is one of the main components of the thick-film conductor forming composition of the embodiment of the present invention described above, may be a material used for general thick-film conductors, and for example, noble metals such as Au, Ag, Pd, and Pt are preferably used, and is used in the form of a single metal powder consisting of only one type selected from the group consisting of these noble metals, or an alloy powder thereof, or a mixed powder combining two or more of these single metal powders or alloy powders. Among these, it is preferable to use a powder of Ag alone or a mixed powder of Ag and Pd alone, an alloy powder of Ag and Pd, or a mixed powder thereof, in terms of the low melting point and cost.
上記の導電粉末の数平均粒径は、10μm以下であることが好ましく、厚膜導体ペーストの形態に調製したときの塗布性の観点から0.1μm以上5.0μm以下であることがより好ましい。この数平均粒径が10μmを超えると、焼成の際に昇温時間がかかりすぎる場合がある。また、Ag粉末及びPd粉末の混合粉末ように2種類以上の混合粉末を用いる場合には、厚膜導体ペーストの形態に調製したときの塗布性の観点やこれら異なる種類の粉末の均質な分散の観点から、これら異なる種類の粉末は数平均粒径が互いに異なるものを用いるのが好ましく、例えば上記の0.1μm以上5.0μm以下の金属粉末に対して数平均粒径が1/10~1/2程度の小粒径の金属粉末を配合するのが好ましい。具体的には、Ag粉末及びPd粉末の混合粉末の場合は、Ag粉末の数平均粒径を0.1μm以上3.0μm以下とし、Pd粉末の数平均粒径を0.01μm以上0.3μm以下とすることが好ましい。 The number average particle size of the conductive powder is preferably 10 μm or less, and more preferably 0.1 μm to 5.0 μm from the viewpoint of coatability when prepared in the form of a thick-film conductor paste. If the number average particle size exceeds 10 μm, the temperature may take too long to rise during firing. In addition, when using a mixed powder of two or more types of powders such as a mixed powder of Ag powder and Pd powder, it is preferable to use powders with different number average particle sizes from the viewpoint of coatability when prepared in the form of a thick-film conductor paste and from the viewpoint of uniform dispersion of these different types of powders. For example, it is preferable to mix a small metal powder with a number average particle size of about 1/10 to 1/2 with the above-mentioned metal powder of 0.1 μm to 5.0 μm. Specifically, in the case of a mixed powder of Ag powder and Pd powder, it is preferable to set the number average particle size of Ag powder to 0.1 μm to 3.0 μm and the number average particle size of Pd powder to 0.01 μm to 0.3 μm.
上記のように2種類以上の混合粉末を用いる場合は、混合粉末全体を100質量部としたとき、最も大きな数平均粒径を有する種類の金属粉末が10~80質量部含まれるように配合するのが好ましい。ここで数平均粒径とは、測定対象となる粉末を走査型電子顕微鏡で撮像することで得たSEM画像中の粒子群の長さを算術平均したものである。なお、導電粉末の形状については特に限定はなく、粒状、塊状、フレーク状等の種々の形状のものを用いることができる。なお、用途に応じて好適な形状が適宜選択されることがある。この導電粉末を用いて後述するように厚膜導電ペーストを調製し、これを塗布及び焼成することにより、所定のパターン形状を有する厚膜導体層を形成することができる。 When two or more kinds of mixed powders are used as described above, it is preferable to mix them so that the metal powder type having the largest number average particle size is contained in 10 to 80 parts by mass when the total mixed powder is taken as 100 parts by mass. Here, the number average particle size is the arithmetic average of the lengths of the particle groups in the SEM image obtained by imaging the powder to be measured with a scanning electron microscope. There is no particular limitation on the shape of the conductive powder, and various shapes such as granular, clumped, and flake-shaped can be used. A suitable shape may be selected depending on the application. A thick-film conductive paste is prepared using this conductive powder as described below, and the paste is applied and fired to form a thick-film conductor layer having a predetermined pattern shape.
1.2 V及びZnを含有する鉛フリーガラス粉末
上記した本発明の実施形態の厚膜導体形成用組成物のもう一方の主構成要素である鉛フリーガラス粉末は、V及びZnを含有している。この鉛フリーガラス粉末は、更にBaやCaなどのアルカリ土類元素を含んでもよいし、B、Bi、Alを含んでもよい。このような鉛フリーガラスとしては、V2O5-ZnO-アルカリ土類酸化物系ガラス粉末や、V2O5-ZnO-B2O3系ガラス粉末や、V2O5-ZnO-Bi2O3系ガラス粉末等のガラス粉末を挙げることができる。また、上記の添加元素のほかSi、Fe、Cuなどを鉛フリーガラス粉末に加えてもよい。
1.2 Lead-free glass powder containing V and Zn The lead-free glass powder, which is the other main component of the thick-film conductor forming composition of the embodiment of the present invention described above, contains V and Zn. This lead-free glass powder may further contain alkaline earth elements such as Ba and Ca, or may contain B, Bi, and Al. Examples of such lead-free glass include glass powders such as V 2 O 5 -ZnO-alkaline earth oxide glass powder, V 2 O 5 -ZnO-B 2 O 3 glass powder, and V 2 O 5 -ZnO-Bi 2 O 3 glass powder. In addition to the above-mentioned additive elements, Si, Fe, Cu, etc. may be added to the lead-free glass powder.
上記のV及びZnを含有する鉛フリーガラス粉末は、Vがその酸化物V2O5換算で30~60質量%含まれ、Znがその酸化物ZnO換算で20~50質量%含まれるように配合するのが好ましい。Vが添加されることで鉛フリーガラスは熱による溶融性が変わるため、Vが酸化物V2O3換算で30質量%未満では、ガラス転移点が後述する望ましい温度範囲の上限より高くなり、逆に60質量%を超えるとガラス転移点がこの望ましい温度範囲の下限より低くなる。 The lead-free glass powder containing V and Zn is preferably blended so that V is contained in an amount of 30 to 60 mass % calculated as its oxide, V2O5 , and Zn is contained in an amount of 20 to 50 mass % calculated as its oxide, ZnO. The addition of V changes the melting property of the lead-free glass due to heat, so that if V is less than 30 mass % calculated as its oxide, V2O3 , the glass transition point will be higher than the upper limit of the desirable temperature range described below, and conversely, if V exceeds 60 mass %, the glass transition point will be lower than the lower limit of this desirable temperature range.
一方、Znが酸化物ZnO換算で50質量%を超えるとガラス化しにくくなり、逆に20質量%未満ではZnを添加した効果が生じにくくなる。このV及びZnを含有する鉛フリーガラスは、結晶化ガラスでもよいし、結晶化しないガラスでもよい。なお、本発明においては、鉛フリーガラス粉末を、鉛を含まないガラス粉末か、又は不可避的不純物として鉛を100質量ppm以下含むガラス粉末と定義する。 On the other hand, if the amount of Zn exceeds 50 mass% in terms of the oxide ZnO, vitrification becomes difficult, and conversely, if it is less than 20 mass%, the effect of adding Zn becomes difficult to obtain. This lead-free glass containing V and Zn may be crystallized glass or may be glass that does not crystallize. In the present invention, lead-free glass powder is defined as glass powder that does not contain lead or glass powder that contains 100 mass ppm or less of lead as an unavoidable impurity.
厚膜導電ペーストを焼成処理することで厚膜導体を形成する際の焼成温度を考慮して、このV及びZnを含有する鉛フリーガラス粉末はガラス転移点が350℃以上550℃以下であることが望ましい。このガラス転移点が350℃未満では厚膜導体の表面に後述するガラス浮き出しが生じる可能性がある。逆に、このガラス転移点が550℃を超えると後述するステインが発生する可能性がある。ここで、ガラス転移点は、測定対象のガラス粉末を再溶融などにより成形したロッド状の試料に対して、熱機械分析法(TMA)にて大気中で測定して得た熱膨張曲線の屈曲点を示す箇所の温度として求めることができる。 Considering the firing temperature when forming a thick film conductor by firing the thick film conductive paste, it is desirable that the glass transition point of this lead-free glass powder containing V and Zn is 350°C or higher and 550°C or lower. If the glass transition point is less than 350°C, glass protrusion, which will be described later, may occur on the surface of the thick film conductor. Conversely, if the glass transition point exceeds 550°C, stains, which will be described later, may occur. Here, the glass transition point can be determined as the temperature at the point showing the bending point of the thermal expansion curve obtained by measuring in air using thermomechanical analysis (TMA) for a rod-shaped sample formed by remelting the glass powder to be measured.
V及びZnを含有する鉛フリーガラス粉末の形状については特に限定はなく、球状や針状等の種々の形状のものを用いることができる。また、V及びZnを含有する鉛フリーガラス粉末は、レーザー回折を利用した粒度分布計により測定した体積累計粒度分布のD50径(メジアン径)が0.5μm以上30μm以下であることが好ましい。この範囲内の粒度分布を有する鉛フリーガラス粉末であれば、本発明の実施形態の厚膜導体形成用組成物を製造すべく前述した導電粉末と混合する際、この鉛フリーガラス粉末が効率よく磨砕されるので、より細かくなって導電粉末と鉛フリーガラス粉末とを均質に分散させることができる。 There is no particular limitation on the shape of the lead-free glass powder containing V and Zn, and various shapes such as spherical and acicular can be used. In addition, the lead-free glass powder containing V and Zn preferably has a D50 diameter (median diameter) of 0.5 μm or more and 30 μm or less in the volume cumulative particle size distribution measured by a particle size distribution meter using laser diffraction. If the lead-free glass powder has a particle size distribution within this range, when it is mixed with the conductive powder described above to produce the thick-film conductor forming composition of the embodiment of the present invention, the lead-free glass powder is efficiently ground, so that the conductive powder and the lead-free glass powder become finer and can be dispersed homogeneously.
1.3 厚膜導体形成用組成物
厚膜導体形成用組成物に上記の導体粉末とガラス粉末とを含めることで、これを導体ペーストの形態に調製してアルミナ等のセラミック基板の表面に塗布及び焼成することで厚膜導体を形成したとき、当該ガラス粉末はセラミック基板と厚膜導体との互いの接着がより一層強固になるように作用する。
1.3 Composition for forming thick film conductors When the composition for forming thick film conductors contains the above-mentioned conductor powder and glass powder, and is prepared into a conductor paste form which is then applied to the surface of a ceramic substrate such as alumina and fired to form a thick film conductor, the glass powder acts to further strengthen the adhesion between the ceramic substrate and the thick film conductor.
ところで、上記のように厚膜導体組成物にガラスを含めることで、これを材料に用いてセラミック基板の表面に形成した厚膜導体の接着強度が高まるのであれば、セラミック基板の表面にガラスグレーズ層のようなガラスを含有する膜が形成されている場合は、その表面に形成する厚膜導体の材料となる厚膜導体形成用組成物には、セラミック基板との接着を強固にするためにガラス粉末を含有させる必要はないように思われる。 Incidentally, if the inclusion of glass in the thick-film conductor composition as described above increases the adhesive strength of the thick-film conductor formed on the surface of a ceramic substrate using this composition as a material, then when a glass-containing film such as a glass glaze layer is formed on the surface of the ceramic substrate, it would not seem necessary for the thick-film conductor forming composition, which is the material for the thick-film conductor formed on that surface, to contain glass powder in order to strengthen adhesion to the ceramic substrate.
しかしながら、厚膜導体形成用組成物にガラス粉末を含有させずにAg粉末などの導電粉末のみを含有させた場合は、この厚膜導体形成用組成物を材料に用いてガラスグレーズ層の表面に形成した厚膜導体は、その表面にガラス成分が浮き出して導電性を低下させる問題が発生することがある。厚膜導体形成用組成物にはガラス粉末を含有させなかったので、この浮き出したガラス成分はガラスグレーズ層に由来するものである。 However, if the composition for forming a thick film conductor does not contain glass powder but contains only a conductive powder such as Ag powder, the thick film conductor formed on the surface of the glass glaze layer using this composition for forming a thick film conductor may have a problem in that the glass components float to the surface, reducing the conductivity. Since the composition for forming a thick film conductor did not contain glass powder, the floated glass components originate from the glass glaze layer.
この場合、ガラスグレーズ層の表面に形成した厚膜導体の表面にガラス成分の浮き出しが発生するのを予測するのは難しい。なぜなら、厚膜導体の形成の際、セラミック基板の表面にガラスグレーズ層の材料であるガラス粉末を含んだガラスペーストが塗布されたままで未焼成のとき、このガラスペースト層の表面に厚膜導体形成用組成物を含んだ厚膜導電ペーストを塗布し、これら未焼成のガラスペースト層と厚膜導電ペースト層とを同時に焼成するのであれば、この未焼成のガラスペースト層のガラス粉末の溶融が進行するので、ガラス成分の濃度がゼロの厚膜導体形成用組成物に向ってガラス成分の濃度過剰なガラスペースト層から該ガラス成分が拡散し、これにより焼成後の厚膜導体の表面にガラス成分が浮き出しやすくなると考えることができる。他方、既に膜状に焼成されたガラスを含む膜であるガラスグレーズ層の表面に厚膜導電ペーストを塗布及び焼成することで厚膜導体を形成する場合は、その表面までガラス成分が拡散して浮き出ることを予測するのは難しい。 In this case, it is difficult to predict that the glass component will protrude from the surface of the thick-film conductor formed on the surface of the glass glaze layer. This is because, when forming a thick-film conductor, if a thick-film conductive paste containing a thick-film conductor forming composition is applied to the surface of the glass paste layer when the glass paste containing the glass powder that is the material of the glass glaze layer is applied to the surface of the ceramic substrate and is not yet fired, and the unfired glass paste layer and the thick-film conductive paste layer are simultaneously fired, the glass powder of the unfired glass paste layer will melt, and the glass component will diffuse from the glass paste layer, which has an excessive concentration of glass components, toward the thick-film conductor forming composition, which has zero concentration of glass components, and this can be considered to make the glass component more likely to protrude from the surface of the thick-film conductor after firing. On the other hand, when a thick-film conductor is formed by applying and firing a thick-film conductive paste to the surface of the glass glaze layer, which is a film containing glass that has already been fired into a film, it is difficult to predict that the glass component will diffuse to the surface and protrude.
これに対して、本発明の実施形態の厚膜導体形成用組成物は、前述したようにV及びZnを含有する鉛フリーガラスを含有しているので、ガラスグレーズ基板のようにセラミック基板の表面にガラス粉末を含んだガラスペーストを塗布及び焼結することで形成したガラスを含有する膜の表面に、該厚膜導体形成用組成物を含んだ厚膜導電ペーストを塗布及び焼成して厚膜導体層を形成した場合であっても、この厚膜導体層の表面にガラス成分が浮きだすのを抑制することができる。 In contrast, the thick-film conductor forming composition of the embodiment of the present invention contains lead-free glass containing V and Zn as described above, so even if a thick-film conductor layer is formed by applying and firing a thick-film conductive paste containing the thick-film conductor forming composition to the surface of a glass-containing film formed by applying and sintering a glass paste containing glass powder to the surface of a ceramic substrate such as a glass glaze substrate, the glass components can be prevented from floating out onto the surface of the thick-film conductor layer.
本発明の実施形態の厚膜導体形成用組成物は、導電粉末100質量部に対してV及びZnを含有する鉛フリーガラスを0.8質量部以上4質量部以下含有するように配合することが望ましい。このV及びZnを含有する鉛フリーガラスの配合割合が0.8質量部未満では、焼成後の厚膜導体の表面のガラス成分の浮き出しを抑制できないことがある。逆に、このV及びZnを含有する鉛フリーガラスの配合割合が4質量部を超えてもガラス成分の浮き出し抑制の効果がほとんど変わらないので不経済になる。 The composition for forming a thick-film conductor according to an embodiment of the present invention is preferably formulated so that it contains 0.8 to 4 parts by mass of lead-free glass containing V and Zn per 100 parts by mass of conductive powder. If the blending ratio of this lead-free glass containing V and Zn is less than 0.8 parts by mass, it may not be possible to suppress the protrusion of glass components on the surface of the thick-film conductor after firing. Conversely, even if the blending ratio of this lead-free glass containing V and Zn exceeds 4 parts by mass, the effect of suppressing the protrusion of glass components remains almost unchanged, making it uneconomical.
なお、V及びZnを含有する鉛フリーガラスの代わりにV2O5粉末を含有させた厚膜導体形成用組成物を材料に用いた場合であっても、焼成により形成される厚膜導体の表面にガラス成分が浮き出るのを抑制できるが、この場合は、厚膜導体の周囲のガラスグレーズ層の表面に、走査型電子顕微鏡(SEM)で観察されるステインと称するシミ状の模様が発生することがある。 Even when a composition for forming a thick-film conductor containing V2O5 powder is used instead of lead-free glass containing V and Zn, the glass components can be prevented from protruding onto the surface of the thick-film conductor formed by firing. In this case, however, a stain-like pattern, which can be observed with a scanning electron microscope (SEM), may occur on the surface of the glass glaze layer around the thick-film conductor.
このステインは厚膜導体に悪影響を及ぼすおそれがあり、該厚膜導体に電気的接続用の端子の役割を担わせる際や、該厚膜導体に電気的接続された状態で抵抗体等の素子を形成する際に、その電気的接続が不良又は不安定になることがある。これに対して、本発明の実施形態の厚膜導体形成用組成物では、焼成後に得られる厚膜導体の表面にガラス成分の浮き出しやステインが発生するのをいずれも効果的に抑制することができるので、上記の電気的接続の問題が生じにくくなる。 This stain may adversely affect the thick film conductor, and may cause poor or unstable electrical connection when the thick film conductor is used as a terminal for electrical connection, or when an element such as a resistor is formed while electrically connected to the thick film conductor. In contrast, the thick film conductor forming composition of the embodiment of the present invention can effectively suppress both the protrusion of glass components and the occurrence of stains on the surface of the thick film conductor obtained after firing, making the above-mentioned electrical connection problems less likely to occur.
本発明の実施形態の厚膜導体形成用組成物は、上記のV及びZnを含有する鉛フリーガラスに加えて、Vを含有しないガラス粉末を含有させてもよい。これにより、厚膜導体の表面にNi電気めっきを施したりする際に、該厚膜導体に対して耐薬品性の向上などの特性を付与することができる。なお、Vを含有しないガラス粉末を含有させる場合であっても、上記のV及びZnを含有する鉛フリーガラスは導電粉末100質量部に対して0.8質量部以上含有させるのが好ましく、これにより、前述した厚膜導体の表面のガラス成分の浮き出しを抑制することができる。Vを含有しないガラス粉末の添加量は特に限定はなく、厚膜導体の使用目的に応じて適宜選択できるが、一般的には導電粉末100質量部に対し0.8質量部から3質量部含有させることが望ましい。 The thick-film conductor forming composition of the embodiment of the present invention may contain glass powder that does not contain V in addition to the lead-free glass containing V and Zn described above. This can impart properties such as improved chemical resistance to the thick-film conductor when Ni electroplating is performed on the surface of the thick-film conductor. Even when glass powder that does not contain V is contained, it is preferable to contain 0.8 parts by mass or more of the lead-free glass containing V and Zn with respect to 100 parts by mass of the conductive powder, which can suppress the protrusion of glass components on the surface of the thick-film conductor described above. There is no particular limit to the amount of glass powder that does not contain V, and it can be selected appropriately depending on the purpose of use of the thick-film conductor, but it is generally desirable to contain 0.8 to 3 parts by mass with respect to 100 parts by mass of the conductive powder.
Vを含有しないガラス粉末には、SiO2-B2O3-アルカリ土類酸化物系ガラス粉末や、Bi2O3-SiO2-B2O3系ガラス粉末や、ZnO-SiO2-B2O3系ガラス粉末等の鉛フリーガラス粉末を用いてもよいし、SiO2-B2O3-PbO系ガラス粉末を用いてもよい。これらの中では、近年の環境保護を考慮して鉛フリーガラス粉末を用いることが望ましい。また、厚膜導体を焼成により形成する際の焼成温度を考慮して、上記のVを含有しない鉛フリーガラス粉末は、ガラス転移点が400℃以上600℃以下であるか、若しくは軟化点が500℃以上700℃以下であるか、又はこれらガラス転移点の温度条件と軟化点の温度条件の両方を満たすのが好ましい。 The V-free glass powder may be a lead-free glass powder such as a SiO 2 -B 2 O 3 -alkaline earth oxide glass powder, a Bi 2 O 3 -SiO 2 -B 2 O 3 glass powder, or a ZnO-SiO 2 -B 2 O 3 glass powder, or a SiO 2 -B 2 O 3 -PbO glass powder. Among these, it is preferable to use a lead-free glass powder in consideration of recent environmental protection. In addition, in consideration of the firing temperature when forming a thick-film conductor by firing, the V-free lead-free glass powder preferably has a glass transition point of 400°C or more and 600°C or less, or a softening point of 500°C or more and 700°C or less, or satisfies both the temperature conditions of the glass transition point and the softening point.
更に、上記のVを含有しない鉛フリーガラスのガラス転移点が、セラミック基板の表面に形成されるガラスを含有する膜を構成するガラスのガラス転移点以下であるか、あるいは上記のVを含有しない鉛フリーガラスの軟化点が、セラミック基板の表面に形成されるガラスを含有する膜を構成するガラスの軟化点以下であることが望ましい。なお、前述したV及びZnを含有する鉛フリーガラス粉末のガラス転移点と同様に、Vを含有しない鉛フリーガラス粉末のガラス転移点は、測定対象のガラス粉末を再溶融により形成したロッド状の試料に対して、熱機械分析法(TMA)にて大気中で測定して得た熱膨張曲線の屈曲点を示す箇所の温度として求めることができる。 Furthermore, it is desirable that the glass transition point of the above-mentioned V-free lead-free glass is equal to or lower than the glass transition point of the glass-containing film formed on the surface of the ceramic substrate, or that the softening point of the above-mentioned V-free lead-free glass is equal to or lower than the softening point of the glass-containing film formed on the surface of the ceramic substrate. Note that, like the glass transition point of the lead-free glass powder containing V and Zn described above, the glass transition point of the V-free lead-free glass powder can be determined as the temperature at the inflection point of the thermal expansion curve obtained by measuring in air by thermomechanical analysis (TMA) on a rod-shaped sample formed by remelting the glass powder to be measured.
上記のVを含有しないガラス粉末のガラス転移点や軟化点の条件は、そのガラス組成を適宜調整することで満たすことができる。また、上記のVを含有しないガラス粉末は、SiO2の含有量が15質量%以上60質量%以下であることが好ましい。このSiO2の含有量が15質量%未満では、厚膜導体中のガラスの耐候性、耐水性及び耐薬品性が低下しやすくなり、その結果、厚膜導体にNiめっき等を行う際にめっき不良等の問題が発生するおそれがある。逆に、SiO2の含有量が60質量%を超えると、ガラスが軟化する温度が高くなりすぎて厚膜導体とセラミックス基板との密着性が低下するおそれがある。 The glass transition point and softening point conditions of the above-mentioned V-free glass powder can be satisfied by appropriately adjusting the glass composition. In addition, the above-mentioned V-free glass powder preferably has a SiO 2 content of 15% by mass or more and 60% by mass or less. If the SiO 2 content is less than 15% by mass, the weather resistance, water resistance, and chemical resistance of the glass in the thick-film conductor are likely to decrease, and as a result, problems such as plating defects may occur when Ni plating is performed on the thick-film conductor. On the other hand, if the SiO 2 content exceeds 60% by mass, the temperature at which the glass softens may become too high, and the adhesion between the thick-film conductor and the ceramic substrate may decrease.
前述したV及びZnを含有する鉛フリーガラスと同様に、Vを含有しない鉛フリーガラスは、結晶化ガラスでもよいし結晶化しないガラスでもよい。また、Vを含有しないガラス粉末の形状についても特に限定はなく、球状や針状等の種々の形状のものを用いることができる。但し、前述したV及びZnを含有する鉛フリーガラス粉末とは異なり、Vを含有しない鉛フリーガラス粉末はレーザー回折を利用した粒度分布計により測定した体積累計粒度分布のD50径(メジアン径)が、1μm以上10μm以下であることが好ましく、厚膜導体ペーストの形態に調製したときの塗布性や、導電粉末との均質な分散の観点から0.5μm以上3μm以下であることがより好ましい。このD50径が10μmを超えると、Vを含有しない鉛フリーガラス粉末と導電粉末とを互いに均質に分散させるのが困難になりやすく、その結果、厚膜導電ペーストに調製したときにVを含有しないガラス粉末が該ペースト内で偏在して厚膜導体と基板との接着強度が低下するおそれがある。 As with the lead-free glass containing V and Zn described above, the lead-free glass not containing V may be crystallized glass or may not be crystallized glass. There is no particular limitation on the shape of the glass powder not containing V, and various shapes such as spherical and needle-like shapes can be used. However, unlike the lead-free glass powder containing V and Zn described above, the lead-free glass powder not containing V preferably has a D50 diameter (median diameter) of the volume cumulative particle size distribution measured by a particle size distribution meter using laser diffraction of 1 μm or more and 10 μm or less, and more preferably 0.5 μm or more and 3 μm or less from the viewpoint of application when prepared in the form of a thick-film conductor paste and homogeneous dispersion with the conductive powder. If the D50 diameter exceeds 10 μm, it is likely to be difficult to homogeneously disperse the lead-free glass powder not containing V and the conductive powder with each other, and as a result, when prepared into a thick-film conductive paste, the glass powder not containing V is unevenly distributed in the paste, which may reduce the adhesive strength between the thick-film conductor and the substrate.
本発明の実施形態の厚膜導体形成用組成物は、上記したV及びZnを含有する鉛フリーガラス粉末のほか、本発明の効果を阻害しない範囲で添加物として酸化物を添加してもよい。このような酸化物としては、例えば、厚膜導体の接着強度、耐酸性、はんだ濡れ性などを向上させる働きを有する、Bi2O3、SiO2、CuO、ZnO、TiO2、ZrO2、Mn3O4などを挙げることができ、これら酸化物の粉末を必要に応じて1種又は2種以上添加してもよい。但し、抵抗値の温度の上昇を抑える観点から、これら酸化物の合計含有量は、導電粉末100質量部に対して10質量部程度を上限にすることが好ましい。 In addition to the lead-free glass powder containing V and Zn, the thick-film conductor forming composition according to the embodiment of the present invention may contain oxides as additives within a range that does not impair the effects of the present invention. Examples of such oxides include Bi2O3 , SiO2 , CuO , ZnO, TiO2 , ZrO2, and Mn3O4 , which have the function of improving the adhesive strength, acid resistance, and solder wettability of the thick- film conductor, and one or more of these oxide powders may be added as necessary. However, from the viewpoint of suppressing the increase in resistance value due to temperature, it is preferable that the total content of these oxides is limited to about 10 parts by mass per 100 parts by mass of conductive powder.
2.厚膜導体ペースト及びその調製方法
上記した本発明の実施形態の厚膜導体形成用組成物を作製する場合は、先ず必須の構成要素として、導電粉末と、V及びZnを含有する鉛フリーガラス粉末とを用意し、更に必要に応じてVを含有しないガラス粉末や酸化物を用意する。そして、これらを所定の配合割合となるように秤取って一般的な粉体混合機で混合する。これにより、粉末状の厚膜導体形成用組成物を作製することができる。この粉末状の厚膜導体形成用組成物に対して、溶剤及び樹脂を所定の配合割合となるように添加して混練することで厚膜導体ペーストを調製することができる。上記の溶剤には、一般的な導電ペーストで用いられるターピネオールやブチルカルビトール等を好適に用いることができる。また、上記の樹脂についても、一般的な導電ペーストで用いられるエチルセルロースやメタクリレートなどを好適に用いることができる。
2. Thick-film conductor paste and its preparation method When preparing the thick-film conductor forming composition of the embodiment of the present invention described above, first, a conductive powder and a lead-free glass powder containing V and Zn are prepared as essential components, and glass powder or oxide not containing V is further prepared as necessary. Then, these are weighed out to a predetermined mixing ratio and mixed with a general powder mixer. In this way, a powdered thick-film conductor forming composition can be prepared. A solvent and a resin are added to this powdered thick-film conductor forming composition to a predetermined mixing ratio and kneaded to prepare a thick-film conductor paste. Terpineol, butyl carbitol, etc., which are used in general conductive pastes, can be suitably used as the above-mentioned solvent. In addition, ethyl cellulose, methacrylate, etc., which are used in general conductive pastes, can be suitably used as the above-mentioned resin.
上記の樹脂及び溶剤は、予め混合することで有機ビヒクルを作製し、この有機ビヒクルを粉末状の厚膜導体形成用組成物と混練することで厚膜導体ペーストを調製してもよい。この有機ビヒクルには、コストや取扱いの容易性の観点から、例えば、エチルセルロースをターピネオールに溶解したものが好適に用いられる。この有機ビヒクルを構成する樹脂と溶剤との配合割合は、最終的に調製される厚膜導体ペーストの印刷性や塗布方法を考慮して適宜定められるが、一般的には樹脂100質量部に対して溶剤100~2000質量部程度の配合割合が好ましい。 The above resin and solvent may be mixed in advance to prepare an organic vehicle, and the thick-film conductor paste may be prepared by kneading this organic vehicle with a powdered thick-film conductor-forming composition. From the viewpoints of cost and ease of handling, for example, a solution of ethyl cellulose in terpineol is preferably used as this organic vehicle. The blending ratio of the resin and solvent constituting this organic vehicle is appropriately determined taking into consideration the printability and application method of the thick-film conductor paste finally prepared, but generally, a blending ratio of about 100 to 2000 parts by mass of solvent to 100 parts by mass of resin is preferable.
上記の有機ビヒクルを用いて厚膜導体ペーストを調製する場合は、導電粉末100質量部に対して、有機ビヒクルの配合割合を15質量部以上250質量部以下にすることが好ましく、印刷性や塗布の容易性、厚膜導体ペースト内での粒子の沈降の抑制や厚膜導体の緻密性を考慮すると、20質量部以上100質量部以下にすることがより好ましい。この有機ビヒクルの配合割合が15質量部未満では、厚膜導体ペーストの粘度が高くなりすぎて塗布が実質的に不可能となる場合があり、逆にこの配合割合が250質量部を超えると厚膜導体ペースト内で粒子の沈降が生じたり焼成後の厚膜導体膜の緻密性が大きく低下したりする問題が生じるおそれがある。 When preparing a thick-film conductor paste using the above organic vehicle, the mixing ratio of the organic vehicle is preferably 15 parts by mass or more and 250 parts by mass or less per 100 parts by mass of conductive powder, and more preferably 20 parts by mass or more and 100 parts by mass or less, taking into consideration printability, ease of application, suppression of particle settling in the thick-film conductor paste, and denseness of the thick-film conductor. If the mixing ratio of this organic vehicle is less than 15 parts by mass, the viscosity of the thick-film conductor paste may become too high, making application practically impossible. Conversely, if the mixing ratio exceeds 250 parts by mass, problems such as particle settling in the thick-film conductor paste or a significant decrease in denseness of the thick-film conductor film after firing may occur.
上記した厚膜導体ペーストの調製の際に行われる粉末状の厚膜導体形成用組成物と有機ビヒクルとの混練方法、又は該組成物と溶剤と樹脂との混練方法には特に限定はないが、湿式混練ミル、ロールミル、テーパロールミルなどの混練機を用いることが好ましく、これにより効率よく混練することができる。 There are no particular limitations on the method of kneading the powdered thick-film conductor forming composition with the organic vehicle, or the method of kneading the composition with the solvent and the resin when preparing the thick-film conductor paste described above, but it is preferable to use a kneading machine such as a wet kneading mill, roll mill, or tapered roll mill, which allows for efficient kneading.
3.厚膜導体及びその形成方法
本発明の実施形態の厚膜導体組成物は、上記した厚膜導体ペーストの形態でガラスグレーズ基板のようなガラスを含有する膜が表面に形成された基板上に所定の印刷パターンとなるように塗布された後、好適にはピーク温度550~900℃の範囲内で厚膜導体の用途に応じた焼成温度で焼成処理が施されて厚膜導体が形成される。
3. Thick Film Conductor and Method for Forming the Same The thick film conductor composition according to the embodiment of the present invention is applied in the form of the thick film conductor paste described above onto a substrate having a glass-containing film formed on its surface, such as a glass glaze substrate, in a predetermined printing pattern, and then the thick film conductor is formed by subjecting the substrate to a firing treatment at a firing temperature depending on the application of the thick film conductor, preferably within a peak temperature range of 550 to 900°C.
上記のガラスグレーズ基板は、ガラス転移点が400℃以上のガラス粉末を含有するガラスペーストをアルミナ等のセラミック基板の表面に塗布して焼成することにより作製することができ、これにより形成されるガラスグレーズ層は、上記の焼成の際にガラス粉末を構成する粒子群が互いに融着したり熔融したりすることで形成されるガラスを含む膜である。このガラスグレーズ層は、用途に応じたガラス転移点を有するように、ガラスを構成するガラス粉末としてSiO2のほか、種々の酸化物を一般に含んでいる。なお、厚膜導体とは、スパッタリング等の薄膜技術によって形成される薄膜導体に対して用いられる用語であり、その膜厚は一般的には5~15μm程度である。 The above-mentioned glass glaze substrate can be produced by applying a glass paste containing glass powder having a glass transition point of 400° C. or more to the surface of a ceramic substrate such as alumina and firing the paste, and the glass glaze layer formed by this is a film containing glass formed by the particles constituting the glass powder fusing or melting each other during the firing. This glass glaze layer generally contains various oxides in addition to SiO 2 as glass powder constituting the glass so as to have a glass transition point according to the application. The term "thick film conductor" is used for a thin film conductor formed by a thin film technique such as sputtering, and the film thickness is generally about 5 to 15 μm.
以上、本発明の実施形態の厚膜導体形成用組成物及びこれを材料に用いて調製された厚膜導体ペーストについて、ガラスグレーズ基板の表面に該厚膜導体ペーストを塗布及び焼成することで厚膜導体を形成する場合を例に挙げて説明したが、これに限定されるものではなく、ガラスグレーズ基板以外にほうろう基板の表面に該厚膜導体ペーストを塗布及び焼成することで厚膜導体を形成する場合にも好適に適用することができる。更には、厚膜抵抗体の表面に該厚膜導体ペーストを塗布及び焼成することで厚膜導体を形成する場合にも好適に適用することができる。 The thick-film conductor forming composition according to an embodiment of the present invention and the thick-film conductor paste prepared using the composition as a material have been described above using an example in which the thick-film conductor paste is applied to the surface of a glass glaze substrate and fired to form a thick-film conductor, but the present invention is not limited to this, and can also be suitably applied to cases in which the thick-film conductor paste is applied to the surface of an enamel substrate other than a glass glaze substrate and fired to form a thick-film conductor. Furthermore, the present invention can also be suitably applied to cases in which the thick-film conductor paste is applied to the surface of a thick-film resistor and fired to form a thick-film conductor.
例えば、特許第2777206号に開示されているように、セラミック基板の表面に、先ずRuO2粉末、ガラス粉末、及び有機ビヒクルを含有する抵抗ペーストを塗布、乾燥、及び焼成することにより抵抗被膜を形成し、次にAg等の導電粉末、ガラス粉末、及び有機ビヒクルを含有する導電ペーストを塗布、乾燥、及び焼成することにより電極を形成することで厚膜抵抗器を作製する場合は、この導電ペーストの材料に本発明の実施形態の厚膜導体形成用組成物を好適に用いることができる。次に、本発明の厚膜導体形成用組成物について、実施例を挙げてより具体的に説明を行うが、本発明はこの実施例により何ら制限されるものではない。 For example, as disclosed in Japanese Patent No. 2777206, when a thick-film resistor is produced by first applying, drying and firing a resistive paste containing RuO2 powder, glass powder and an organic vehicle to the surface of a ceramic substrate, and then applying, drying and firing a conductive paste containing a conductive powder such as Ag, glass powder and an organic vehicle to form an electrode, the thick-film conductor forming composition of the embodiment of the present invention can be suitably used as the material for this conductive paste. Next, the thick-film conductor forming composition of the present invention will be described in more detail with reference to examples, but the present invention is not limited by these examples.
組成がそれぞれ異なる複数種類の厚膜導体形成用組成物を作製し、それらの各々を用いて調製した厚膜導体ペーストをガラスグレーズ層が表面に形成されたセラミック基板上に塗布して焼成することで厚膜導体を形成し、その表面の状態を評価した。以下、厚膜導体形成用組成物粉末の作製、厚膜導電ペーストの作製、厚膜導体の作製、及び厚膜導体の評価の順に説明する。 Several types of compositions for forming thick-film conductors, each with a different composition, were prepared, and thick-film conductor pastes prepared using each of these were applied to a ceramic substrate having a glass glaze layer formed on its surface, followed by firing to form thick-film conductors, and the condition of their surfaces was evaluated. The following describes in the order of preparation of the composition powder for forming thick-film conductors, preparation of the thick-film conductive paste, preparation of the thick-film conductors, and evaluation of the thick-film conductors.
[厚膜導体形成用組成物粉末の作製]
先ず、厚膜導体形成用組成物を構成する導電粉末として、形状の異なる3種類の銀粉末A、B及びCと、銀及びパラジウムの合金粉末とを用意した。銀粉末Aは数平均粒径が0.3μmの球状粉末であり、銀粉末Bは数平均粒径が15.0μmの鱗片状粉末であり、銀粉末Cは数平均粒径が1.0μmの塊状粉末である。他方、銀及びパラジウムの合金粉末は、数平均粒径が0.2μmの球状粉末である。また、上記厚膜導体形成用組成物を構成する鉛フリーガラス粉末として下記表1に示すV及びZnを含有する鉛フリーガラス粉末と、下記表2に示すVを含有しない鉛フリーガラス粉末とを用意した。
[Preparation of thick-film conductor forming composition powder]
First, three types of silver powders A, B, and C with different shapes and an alloy powder of silver and palladium were prepared as conductive powders constituting the composition for forming a thick-film conductor. Silver powder A is a spherical powder with a number average particle size of 0.3 μm, silver powder B is a scaly powder with a number average particle size of 15.0 μm, and silver powder C is a lump powder with a number average particle size of 1.0 μm. On the other hand, the alloy powder of silver and palladium is a spherical powder with a number average particle size of 0.2 μm. In addition, as the lead-free glass powder constituting the composition for forming a thick-film conductor, a lead-free glass powder containing V and Zn shown in Table 1 below and a lead-free glass powder not containing V shown in Table 2 below were prepared.
なお、上記表1に示すV及びZnを含有する鉛フリーガラス粉末のガラス転移点はTMAで測定した。また、上記表2に示すVを含有しない鉛フリーガラス粉末の軟化点は、ガラス粉末を示差熱分析法(TG-DTA)で分析することで得た示差熱曲線の最も低温側の示差熱曲線の減少が発現する温度よりも高温側の次の示差熱曲線が減少するピークの温度で求めた。更に、添加物として粉末状のBi2O3及びV2O5を用意した。これら導電粉末、鉛フリーガラス粉末、及び添加物を下記表3に示す配合割合となるようにそれぞれ秤り取って粉体混合機で混合することで実施例1~9及び比較例1~5の厚膜導体形成用組成を作製した。なお、総ガラス質量部とは導電粉末100質量部に対するV及びZnを含有する鉛フリーガラス粉末とVを含有しない鉛フリーガラス粉末の合計量であり、Vガラス質量部とは導電粉末100質量部に対するV及びZnを含有する鉛フリーガラス粉末の量である。 The glass transition points of the lead-free glass powder containing V and Zn shown in Table 1 were measured by TMA. The softening points of the lead-free glass powder not containing V shown in Table 2 were determined as the peak temperature at which the next differential thermal curve on the higher side decreases, which is higher than the temperature at which the lowest differential thermal curve decreases, obtained by analyzing the glass powder by differential thermal analysis (TG-DTA). Furthermore, powdered Bi 2 O 3 and V 2 O 5 were prepared as additives. The conductive powder, the lead-free glass powder, and the additives were weighed out and mixed in a powder mixer to obtain the blending ratios shown in Table 3 below, to prepare compositions for forming thick-film conductors in Examples 1 to 9 and Comparative Examples 1 to 5. The total glass parts by mass refers to the total amount of the lead-free glass powder containing V and Zn and the lead-free glass powder not containing V relative to 100 parts by mass of the conductive powder, and the V glass parts by mass refers to the amount of the lead-free glass powder containing V and Zn relative to 100 parts by mass of the conductive powder.
[厚膜導電ペーストの作製]
次に、エチルセルロースが7質量%、及び溶剤としてのターピネオール溶液が93質量%の配合割合となるようにそれぞれ秤取って混合した後、加熱によりエチルセルロースを溶解させて有機ビヒクルを作製した。得られた有機ビヒクルを、上記にて作製した実施例1~9及び比較例1~5の厚膜導体形成用組成物粉末の各々に対して上記表3の配合割合となるように秤取って3本ロールミルに装入し、それらを混練することにより厚膜導体ペーストを調製した。
[Preparation of thick film conductive paste]
Next, ethyl cellulose was weighed out and mixed to give a blend ratio of 7 mass% and terpineol solution as a solvent of 93 mass%, and then the ethyl cellulose was dissolved by heating to prepare an organic vehicle. The obtained organic vehicle was weighed out and charged into a three-roll mill for each of the thick-film conductor forming composition powders of Examples 1 to 9 and Comparative Examples 1 to 5 prepared above to give the blend ratios shown in Table 3 above, and they were kneaded to prepare a thick-film conductor paste.
[厚膜導体の作製]
このようにして調製した実施例1~9、比較例1~5の厚膜導体形成用組成物をそれぞれ含む14種類の厚膜導体ペーストをガラスグレーズ基板の表面にスクリーン印刷機によりスクリーン印刷し(塗布工程)、ベルト式乾燥炉を用いて150℃で5分間かけて乾燥処理し(乾燥工程)、ベルト炉を用いてピーク温度600℃で5分間かけて焼成処理した(焼成工程)。なお、厚膜導体ペーストのスクリーン印刷では、焼成後の膜厚が10μmとなるよう印刷条件を調整した。これにより14種類の厚膜導体を製造した。
[Fabrication of thick film conductors]
Fourteen types of thick-film conductor pastes containing the thick-film conductor forming compositions of Examples 1 to 9 and Comparative Examples 1 to 5 thus prepared were screen-printed on the surface of a glass glaze substrate by a screen printer (coating process), dried at 150°C for 5 minutes using a belt-type drying furnace (drying process), and fired at a peak temperature of 600°C for 5 minutes using a belt furnace (firing process). In addition, in the screen printing of the thick-film conductor paste, the printing conditions were adjusted so that the film thickness after firing would be 10 μm. In this way, 14 types of thick-film conductors were manufactured.
上記のガラスグレーズ基板には、96%アルミナ基板(縦25.4mm×横25.4mm×厚み1mm)の全表面に膜厚20μmのガラスグレーズ層が焼成により形成されたものを用いた。このガラスグレーズ層は、TG-DTAで測定した軟化点600℃の鉛フリーガラス粉末(Bの酸化物B2O3を1質量%、SiO2を22質量%、Al2O3を3質量%、ZnOを1質量%、Bi2O3を73質量%をそれぞれ含有する)80質量%と、上記の厚膜導体ペーストで使用したものと同じ有機ビヒクル20質量%とを3本ロールミルで混練して調製したガラスグレーズペーストを上記96%アルミナ基板に塗布した後、ベルト式乾燥炉を用いて150℃で5分間かけて乾燥処理し、得られた乾燥膜をベルト炉を用いてピーク温度600℃保持時間で5分間かけて焼成処理することで形成した。 The glass glaze substrate used was a 96% alumina substrate (25.4 mm long x 25.4 mm wide x 1 mm thick) with a 20 μm thick glass glaze layer formed by firing on the entire surface. The glass glaze layer was formed by kneading 80% by mass of lead-free glass powder (containing 1% by mass of B oxide B 2 O 3 , 22% by mass of SiO 2 , 3% by mass of Al 2 O 3 , 1% by mass of ZnO, and 73% by mass of Bi 2 O 3 ) with a softening point of 600°C measured by TG-DTA and 20% by mass of the same organic vehicle as used in the thick-film conductor paste using a three-roll mill, applying the glass glaze paste to the 96% alumina substrate, drying the paste at 150°C for 5 minutes using a belt drying furnace, and firing the resulting dried film at a peak temperature of 600°C for 5 minutes using a belt furnace.
[厚膜導体の評価]
上記にて作製した14種類の厚膜導体の各々に対して、先ず表面の状態を評価するため、SEMで撮像し、ガラス成分の浮き出しの有無を調べた。その結果、比較例5を除く全ての比較例で厚膜導体の表面にガラス成分とみられる物質の浮き出しが確認された。なお、図1に比較例1の厚膜導体のSEM写真を示す。この図1では、浮き出したガラス成分からなる膜の下部に導電粉末を構成する粒子群が焼結している状態が確認できる。一方、実施例1~9の全てにおいて厚膜導体の表面には比較例1~4のようなガラス成分とみられる物質の浮き出しは確認されなかった。なお、図2に実施例1の厚膜導体のSEM写真を示す。
[Evaluation of thick film conductors]
First, in order to evaluate the surface condition of each of the 14 types of thick-film conductors prepared above, images were taken with an SEM to check for the presence or absence of protruding glass components. As a result, protruding substances thought to be glass components were confirmed on the surface of the thick-film conductor in all comparative examples except for comparative example 5. FIG. 1 shows an SEM photograph of the thick-film conductor of comparative example 1. In FIG. 1, it can be seen that the particle group constituting the conductive powder is sintered under the film made of the protruding glass components. On the other hand, in all of the thick-film conductors of Examples 1 to 9, protruding substances thought to be glass components, as in Comparative Examples 1 to 4, were not confirmed on the surface of the thick-film conductor. FIG. 2 shows an SEM photograph of the thick-film conductor of Example 1.
また、SEMで撮像し、ガラスグレーズ層の表面のうち厚膜導体の周囲にステインが発生しているか否か確認した。その結果、比較例4と5で厚膜導体の周囲のガラスグレーズ層の表面にステインが確認されたが、それ以外では確認されなかった。 Images were also taken with an SEM to check whether stains had occurred on the surface of the glass glaze layer around the thick-film conductor. As a result, stains were confirmed on the surface of the glass glaze layer around the thick-film conductor in Comparative Examples 4 and 5, but not elsewhere.
Claims (5)
前記導電粉末が、Au、Ag、Pd、及びPtからなる群から選ばれる単体の金属粉末又は合金粉末であり、前記鉛フリーガラス粉末が、V 2 O 5 -ZnO-Bi 2 O 3 系ガラス粉末であって、前記バナジウムを酸化物V 2 O 5 換算で30~60質量%含み且つ前記亜鉛を酸化物ZnO換算で20~50質量%含むことを特徴とする厚膜導体形成用組成物。 The present invention includes a conductive powder and a lead-free glass powder containing vanadium and zinc, and is used as a raw material for a thick-film conductor layer formed by firing on a substrate having a glass-containing film formed on the surface thereof ,
The composition for forming a thick-film conductor is characterized in that the conductive powder is a single metal powder or an alloy powder selected from the group consisting of Au, Ag, Pd, and Pt, and the lead-free glass powder is a V2O5 - ZnO - Bi2O3 - based glass powder, containing 30 to 60 mass% of the vanadium in terms of V2O5 oxide and 20 to 50 mass% of the zinc in terms of ZnO oxide .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020201873A JP7622412B2 (en) | 2020-12-04 | 2020-12-04 | Thick film conductor, composition for forming the same, and thick film conductor paste containing the composition for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020201873A JP7622412B2 (en) | 2020-12-04 | 2020-12-04 | Thick film conductor, composition for forming the same, and thick film conductor paste containing the composition for forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022089460A JP2022089460A (en) | 2022-06-16 |
JP7622412B2 true JP7622412B2 (en) | 2025-01-28 |
Family
ID=81989158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020201873A Active JP7622412B2 (en) | 2020-12-04 | 2020-12-04 | Thick film conductor, composition for forming the same, and thick film conductor paste containing the composition for forming the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7622412B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010158873A (en) | 2009-01-09 | 2010-07-22 | Tdk Corp | Thermal head |
WO2012086972A2 (en) | 2010-12-20 | 2012-06-28 | 동우화인켐 주식회사 | Composition for aluminum paste and solar cell element using same |
JP2017199544A (en) | 2016-04-27 | 2017-11-02 | 住友金属鉱山株式会社 | Conductive composition, and method for manufacturing terminal electrode |
JP2018190491A (en) | 2017-04-28 | 2018-11-29 | 住友金属鉱山株式会社 | Conductive composition, method for manufacturing conductor, and method for forming wiring of electronic component |
-
2020
- 2020-12-04 JP JP2020201873A patent/JP7622412B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010158873A (en) | 2009-01-09 | 2010-07-22 | Tdk Corp | Thermal head |
WO2012086972A2 (en) | 2010-12-20 | 2012-06-28 | 동우화인켐 주식회사 | Composition for aluminum paste and solar cell element using same |
JP2017199544A (en) | 2016-04-27 | 2017-11-02 | 住友金属鉱山株式会社 | Conductive composition, and method for manufacturing terminal electrode |
JP2018190491A (en) | 2017-04-28 | 2018-11-29 | 住友金属鉱山株式会社 | Conductive composition, method for manufacturing conductor, and method for forming wiring of electronic component |
Also Published As
Publication number | Publication date |
---|---|
JP2022089460A (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7267713B2 (en) | Conductive paste and glass circuit structure | |
JP4291857B2 (en) | Copper conductor paste, conductor circuit board and electronic components | |
CN102332320B (en) | Electroconductive paste | |
TWI590417B (en) | Thick film resistor and manufacturing method thereof | |
KR102488162B1 (en) | Manufacturing method of conductive composition and terminal electrode | |
JP5426241B2 (en) | Chip resistor front and back electrodes | |
WO2006098160A1 (en) | Conductive paste and glass structure | |
CN113539591B (en) | Chip resistor paste capable of reducing size effect | |
KR102553644B1 (en) | conductive paste | |
JP7622736B2 (en) | Thick film resistor paste, thick film resistor, and electronic component | |
JP7622737B2 (en) | Thick film resistor paste, thick film resistor, and electronic component | |
JP6769208B2 (en) | Lead-free conductive paste | |
JP7622412B2 (en) | Thick film conductor, composition for forming the same, and thick film conductor paste containing the composition for forming the same | |
KR100686533B1 (en) | Glass Composition for Thick Film Resistor Paste, Thick Film Resistor Paste, Thick Film Resistor and Electronic Components | |
JP2005129806A (en) | Resistor paste and thick film resistor | |
JP7581791B2 (en) | Powder composition for forming thick film conductor, paste for forming thick film conductor, and thick film conductor | |
JP7279551B2 (en) | Composition for thick film resistor, paste for thick film resistor, and thick film resistor | |
WO2021221175A1 (en) | Thick film resistor paste, thick film resistor, and electronic component | |
KR20190072424A (en) | Powder composition for forming thick film conductor and paste for forming thick film conductor | |
JP7601545B2 (en) | Composition for thick film resistor, paste for thick film resistor, and thick film resistor | |
JP7273266B2 (en) | Composition for thick film resistor, paste for thick film resistor, and thick film resistor | |
JP7322534B2 (en) | Powder composition for forming thick film conductor and paste for forming thick film conductor | |
JP2004250308A (en) | Electrically conductive paste | |
JP3926142B2 (en) | Conductor paste | |
KR20230004486A (en) | Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240528 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241230 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7622412 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |