[go: up one dir, main page]

JP7618329B1 - Sintered alloys and dies - Google Patents

Sintered alloys and dies Download PDF

Info

Publication number
JP7618329B1
JP7618329B1 JP2024525554A JP2024525554A JP7618329B1 JP 7618329 B1 JP7618329 B1 JP 7618329B1 JP 2024525554 A JP2024525554 A JP 2024525554A JP 2024525554 A JP2024525554 A JP 2024525554A JP 7618329 B1 JP7618329 B1 JP 7618329B1
Authority
JP
Japan
Prior art keywords
phase
volume
solid solution
compound
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024525554A
Other languages
Japanese (ja)
Inventor
秀門 三守
勉 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Application granted granted Critical
Publication of JP7618329B1 publication Critical patent/JP7618329B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Cr3C2相とからなり、前記化合物相を38~95体積%含有することを特徴とする焼結合金。 A sintered alloy characterized in that it forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb and V, and at least one of C and N , and that it contains 38 to 95 volume % of said compound phase, with 80 volume % or more of the compound phase having an NaCl type structure and a Cr3C2 phase.

Description

本発明は、焼結合金、及び焼結合金からなる金型に関する。 The present invention relates to a sintered alloy and a mold made of a sintered alloy.

各種光学レンズ成形用金型の材料にはSUS420J2、超微粒超硬合金、バインダレス超硬合金等が用いられてきたが、非球面レンズ等の金型といった形状精度が求められる場合には熱膨張係数が小さいバインダレス超硬合金が使用されている。 Materials used for molds for various optical lenses include SUS420J2, ultrafine-grained cemented carbide, and binderless cemented carbide, but when precision in shape is required, such as for molds for aspherical lenses, binderless cemented carbide, which has a small thermal expansion coefficient, is used.

他方、レンズ材料として多様な材料が使用されつつあり、従来材料よりも熱膨張係数が大きいレンズ材料が使用されたり、従来の金型材料の熱膨張係数では成形しにくい形状のものを成形したりする場合に、熱膨張係数が大きい金型材料が使用されることもある。On the other hand, a variety of materials are being used as lens materials, and lens materials with a higher thermal expansion coefficient than conventional materials are being used. Mold materials with a high thermal expansion coefficient may also be used when molding shapes that are difficult to mold using the thermal expansion coefficient of conventional mold materials.

特許第2574426号(特許文献1)は、ガラス光学素子のプレス成形に用いる光学素子成形用型において、該型の少なくともガラスに接する部分が、(a) タングステンが65.7~92.9重量%、チタンが24.0~0.8重量%、炭素が10.3~6.3重量%、残りが不可避不純物からなる組成を有し、かつ(b) 第1相が炭化タングステン相、第2相がNaCl型結晶のチタンとタングステンの固溶体複炭化物相の2相混合組織である光学素子成形用型を開示している。 Patent No. 2574426 (Patent Document 1) discloses an optical element molding die used in press molding of glass optical elements, in which at least the portion of the die that comes into contact with the glass has a composition of (a) 65.7 to 92.9 wt % tungsten, 24.0 to 0.8 wt % titanium, 10.3 to 6.3 wt % carbon, and the remainder unavoidable impurities, and (b) a two-phase mixed structure in which the first phase is a tungsten carbide phase and the second phase is a solid solution complex carbide phase of titanium and tungsten in a NaCl-type crystal.

特許第6049978号(特許文献2)は、NbCを20 mass%以上40 mass%以下、Niを0.3 mass%以上10 mass%以下、および不可避不純物を含み、残部がCr3C2である、Cr3C2-NbC-Ni組成を備え、熱膨張係数が大きいガラス材料の成形に有利な熱膨張係数が大きい成形金型用焼結合金を開示している。この熱膨張係数が大きい成形金型用焼結合金は、熱膨張係数が大きい材料の成形のみでなく、従来材料では成形に難がある形状の材料の成形も可能とした。 Japanese Patent No. 6049978 (Patent Document 2) discloses a sintered alloy for molding dies with a large thermal expansion coefficient that is advantageous for molding glass materials with a large thermal expansion coefficient, and has a Cr3C2 - NbC-Ni composition containing 20 mass% to 40 mass% NbC, 0.3 mass% to 10 mass% Ni , unavoidable impurities, and the remainder being Cr3C2. This sintered alloy for molding dies with a large thermal expansion coefficient not only enables molding of materials with a large thermal expansion coefficient, but also enables molding of materials with shapes that are difficult to mold with conventional materials.

特許第7351582号(特許文献3)は、前記の熱膨張係数が大きい成形金型用焼結合金の耐酸化性を向上させ、金型寿命を延ばすとともに成形品の品質を高めた。 Patent No. 7351582 (Patent Document 3) improves the oxidation resistance of the sintered alloy for molding dies, which has a large thermal expansion coefficient, thereby extending the life of the dies and improving the quality of the molded products.

特許第2574426号Patent No. 2574426 特許第6049978号Patent No. 6049978 特許第7351582号Patent No. 7351582

近年、成形する製品の多様化に伴い種々の熱膨張係数を有する成形材料が提案され、また従来にない特殊な形状を成形する機会が増えている。これらの用途に対応するためには、適切な熱膨張係数を有する成形金型を提供する必要がある。In recent years, as the variety of products to be molded has increased, molding materials with various thermal expansion coefficients have been proposed, and there are an increasing number of opportunities to mold unusual shapes that have never been seen before. In order to accommodate these applications, it is necessary to provide molding dies with an appropriate thermal expansion coefficient.

本発明は、必要とする任意の熱膨張係数を得ることができる上に、必要に応じて鏡面性、熱伝導性、強度、耐酸化性などの特性を付与できるレンズ成形用金型材料に関する。 The present invention relates to a lens molding die material that can obtain any required thermal expansion coefficient and can also be imparted with properties such as specularity, thermal conductivity, strength, and oxidation resistance as required.

すなわち、本発明者らは、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とを含む固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相(以下、「MC相」とも呼ぶ。)、Cr3C2相及びWC相のうち2種以上の硬質相を含む焼結合金は、Cr3C2相の熱膨張係数が10.3 MK-1程度であり、WC相の熱膨張係数が4.2~5.0 MK-1程度であるため、従来のバインダレス超硬合金の熱膨張係数4~5MK-1から、特許文献2及び3の材料の熱膨張係数9MK-1程度までの間の任意の熱膨張係数を有するとともに、必要に応じて鏡面性、熱伝導性、強度、耐酸化性などの特性を付与できる成形用金型材料として好適であることを発見し、本発明に想到した。 That is, the inventors discovered that a sintered alloy that forms a solid solution phase containing at least one metal element selected from Ti, Ta, Nb and V, and at least one of C and N, and that contains a compound phase (hereinafter also referred to as an "MC phase") having an NaCl-type structure at least 80 volume % of which is a Cr3C2 phase and a WC phase has a thermal expansion coefficient of approximately 10.3 MK -1 for the Cr3C2 phase and a thermal expansion coefficient of approximately 4.2 to 5.0 MK -1 for the WC phase, and is therefore suitable as a molding die material that has any thermal expansion coefficient between the thermal expansion coefficient of conventional binderless cemented carbide, which is 4 to 5 MK -1 , and the thermal expansion coefficient of the materials in Patent Documents 2 and 3, which is approximately 9 MK -1 , and can be imparted with properties such as specularity, thermal conductivity, strength, and oxidation resistance as necessary, and thus arrived at the present invention.

すなわち、本発明の第一の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有することを特徴とする。
That is, the sintered alloy according to the first embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, and at least one of C and N, and 80 volume % or more of the sintered alloy is composed of a compound phase having a NaCl type structure and a Cr3C2 phase ;
The composition is characterized in that the compound phase is contained in an amount of 38 to 95% by volume.

本発明の第二の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする。
The sintered alloy according to the second embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, at least one of W and Mo, and at least one of C and N, and is composed of a compound phase having a NaCl type structure and a Cr3C2 phase, with 80 volume % or more of the solid solution phase being composed of the compound phase having a NaCl type structure and the Cr3C2 phase ,
The compound phase is contained at 38 to 95% by volume,
The compound phase is characterized in that at least one of W and Mo is dissolved in the compound phase in an amount of 0.1 to 45 atomic % based on the total amount of metal elements in the compound phase.

本発明の第三の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有し、前記結合相を8.2体積%以下含有することを特徴とする。
The sintered alloy according to the third embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, and at least one of C and N, and is composed of a compound phase having a NaCl type structure of 80 volume % or more, a binder phase consisting of at least one of Ni, Co, and Fe, and a Cr3C2 phase ;
The composition is characterized in that the compound phase is contained in an amount of 38 to 95% by volume, and the binder phase is contained in an amount of 8.2% by volume or less.

本発明の第四の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有し、前記結合相を8.2体積%以下含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする。
The sintered alloy according to the fourth embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, at least one of W and Mo, and at least one of C and N, and is composed of a compound phase having a NaCl type structure of 80 volume % or more, a binder phase consisting of at least one of Ni, Co, and Fe, and a Cr3C2 phase ;
The compound phase is contained in an amount of 38 to 95% by volume, and the binder phase is contained in an amount of 8.2% by volume or less,
The compound phase is characterized in that at least one of W and Mo is dissolved in the compound phase in an amount of 0.1 to 45 atomic % based on the total amount of metal elements in the compound phase.

本発明の第五の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相とからなり、
前記化合物相を8~95体積%含有し、前記結合相を2.0体積%以下含有することを特徴とする。
The sintered alloy according to the fifth embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, and at least one of C and N, and is composed of a compound phase having a NaCl type structure of 80 volume % or more, a binder phase consisting of at least one of Ni, Co, and Fe, and a WC phase;
The composition is characterized in that it contains the compound phase in an amount of 8 to 95% by volume and the binder phase in an amount of 2.0% by volume or less.

本発明の第六の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相とからなり、
前記化合物相を8~95体積%含有し、前記結合相を2.0体積%以下含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする。
The sintered alloy according to the sixth embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, at least one of W and Mo, and at least one of C and N, and is composed of a compound phase having a NaCl type structure of 80 volume % or more, a binder phase consisting of at least one of Ni, Co, and Fe, and a WC phase;
The compound phase is contained in an amount of 8 to 95% by volume, and the binder phase is contained in an amount of 2.0% by volume or less,
The compound phase is characterized in that at least one of W and Mo is dissolved in the compound phase in an amount of 0.1 to 45 atomic % based on the total amount of metal elements in the compound phase.

本発明の第七の実施態様による焼結合金は、WC相と、Cr3C2相とからなり、
前記Cr3C2相を10~90体積%含有することを特徴とする。
The sintered alloy according to the seventh embodiment of the present invention comprises a WC phase and a Cr3C2 phase,
The steel is characterized in that it contains the Cr 3 C 2 phase in an amount of 10 to 90 volume %.

本発明の第八の実施態様による焼結合金は、WC相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、Cr3C2相とからなり、
前記Cr3C2相を10~90体積%含有し、前記結合相を2.0体積%以下含有することを特徴とする。
The sintered alloy according to the eighth embodiment of the present invention comprises a WC phase, a binder phase comprising at least one of Ni, Co and Fe, and a Cr3C2 phase ;
The steel is characterized in that it contains 10 to 90 volume % of the Cr 3 C 2 phase and 2.0 volume % or less of the binder phase.

本発明の第九の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、WC相と、Cr3C2相とからなることを特徴とする。 The sintered alloy according to the ninth embodiment of the present invention is characterized in that it forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb and V, and at least one of C and N, and that 80 volume % or more of the solid solution phase consists of a compound phase having a NaCl type structure, a WC phase, and a Cr3C2 phase .

本発明の第十の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、WC相と、Cr3C2相とからなり、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする。
The sintered alloy according to the tenth embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, at least one of W and Mo, and at least one of C and N, and is composed of a compound phase having a NaCl type structure, a WC phase, and a Cr3C2 phase, with 80 volume % or more of the compound phase being composed of the NaCl type structure, WC phase, and Cr3C2 phase,
The compound phase is characterized in that at least one of W and Mo is dissolved in the compound phase in an amount of 0.1 to 45 atomic % based on the total amount of metal elements in the compound phase.

本発明の第十一の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相と、Cr3C2相とからなり、
前記結合相を2.0体積%以下含有することを特徴とする。
The sintered alloy according to the eleventh embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, and at least one of C and N, and is composed of a compound phase having a NaCl structure of 80 volume % or more, a binder phase consisting of at least one of Ni, Co, and Fe, a WC phase, and a Cr3C2 phase ;
The binder phase is contained in an amount of 2.0% by volume or less.

本発明の第十二の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相と、Cr3C2相とからなり、
前記結合相を2.0体積%以下含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする。
The sintered alloy according to the twelfth embodiment of the present invention forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb, and V, at least one of W and Mo, and at least one of C and N, and is composed of a compound phase having a NaCl structure of 80 volume % or more, a binder phase consisting of at least one of Ni, Co, and Fe, a WC phase, and a Cr3C2 phase;
The binder phase contains 2.0% by volume or less,
The compound phase is characterized in that at least one of W and Mo is dissolved in the compound phase in an amount of 0.1 to 45 atomic % based on the total amount of metal elements in the compound phase.

前記第九~第十二の実施態様において、前記化合物相を10~90体積%含有するのが好ましい。In the ninth to twelfth embodiments, it is preferable that the compound phase is contained in an amount of 10 to 90 volume percent.

前記第九~第十二の実施態様において、前記WC相の含有量に対する前記Cr3C2相の含有量の体積比が0.125~8であるのが好ましい。 In the ninth to twelfth embodiments, the volume ratio of the content of the Cr 3 C 2 phase to the content of the WC phase is preferably 0.125 to 8.

前記WC相の粒度が0.1~2.5μmであるのが好ましい。It is preferable that the grain size of the WC phase is 0.1 to 2.5 μm.

前記第一~第十二の実施態様において、ホットプレスにより焼結してなるのが好ましい。In the first to twelfth embodiments, it is preferable that the material is sintered by hot pressing.

本発明の一実施態様による金型は、上記の焼結合金からなることを特徴とする。 A mold according to one embodiment of the present invention is characterized in that it is made of the above-mentioned sintered alloy.

本発明によれば、必要とする任意の熱膨張係数を得ることができる上に、必要に応じて鏡面性、熱伝導性、強度、耐酸化性などの特性を付与できるレンズ成形用金型材料が得られる。 According to the present invention, it is possible to obtain a lens molding die material that can obtain any required thermal expansion coefficient and can also be endowed with properties such as specularity, thermal conductivity, strength, and oxidation resistance as required.

[1] 第一の実施態様
本発明の第一の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相(以下、「MC相」とも呼ぶ。)と、Cr3C2相とからなり、MC相を38~95体積%含有することを特徴とする。
[1] First embodiment The sintered alloy according to the first embodiment of the present invention is characterized in that it forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb and V, and at least one of C and N, and that it is composed of a compound phase having a NaCl type structure (hereinafter also referred to as "MC phase") and a Cr3C2 phase , with the MC phase being 38 to 95 volume %.

MC相は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素の炭化物、炭窒化物、窒化物、またそれらの固溶体(単一の化合物からなる場合も含む。)であり、NaCl型構造を有する。このようにTi,Ta,Nb及びVのうち少なくとも1種を含みNaCl型構造を有するMC相を含むことにより、焼結合金の耐酸化性が向上する。なかでもMC相にTiが含まれることにより、特に優れた耐酸化性が得られる。MC相はTa,Nb又はVにTiをさらに含む固溶相でもよい。その場合、Tiの含有量は、MC相に含まれる金属元素量に対して10~90 mol%であるのが好ましく、40~80 mol%であるのがより好ましい。MC相は炭化物又は炭窒化物であるのが好ましい。Ti,Ta,Nb及びVのうちTi炭化物は硬さが高いためMC相にTiが多いときは耐摩耗性に優れる材料となるが硬脆い傾向もあるため鏡面性が得にくい場合もあり、そのような場合にはTi添加量を少な目にしたほうがよい。Vを含ませると金型の耐凝着性が向上する。MC相はTi,Ta及びNbのうち少なくとも1種の金属元素にVをさらに含む固溶相でもよい。また、Ti,Ta,Nb及びVのうち成分が被加工材料に混入することを避けたい場合にはその元素量を少なくして調整することができる。また、酸素、ホウ素をさらに含んでもよく、Zr、Hf、Crをさらに含んでもよい。 The MC phase is a carbide, carbonitride, nitride, or solid solution of at least one of the metal elements Ti, Ta, Nb, and V (including the case where it is composed of a single compound), and has a NaCl type structure. By including an MC phase containing at least one of Ti, Ta, Nb, and V and having a NaCl type structure, the oxidation resistance of the sintered alloy is improved. In particular, by including Ti in the MC phase, particularly excellent oxidation resistance is obtained. The MC phase may be a solid solution phase containing Ti in addition to Ta, Nb, or V. In that case, the content of Ti is preferably 10 to 90 mol%, more preferably 40 to 80 mol%, of the amount of metal elements contained in the MC phase. The MC phase is preferably a carbide or carbonitride. Among Ti, Ta, Nb, and V, Ti carbide has high hardness, so when there is a lot of Ti in the MC phase, the material has excellent wear resistance, but it also tends to be hard and brittle, so it may be difficult to obtain a mirror finish. In such cases, it is better to add less Ti. The inclusion of V improves the adhesion resistance of the die. The MC phase may be a solid solution phase containing at least one of the metal elements Ti, Ta, and Nb, and further containing V. In addition, when it is desired to prevent the components Ti, Ta, Nb, and V from being mixed into the processed material, the amount of the element can be adjusted to be small. In addition, oxygen and boron may be further included, and Zr, Hf, and Cr may be further included.

第一の実施態様による焼結合金(MC-Cr3C2合金)は、熱膨張係数7~9MK-1程度の焼結合金を得やすい上に、耐酸化性に優れている。MC相の含有量を38~95体積%とすることにより、7~9MK-1程度の狙いの熱膨張係数を得ることができる。MC相の含有量が95体積%超のとき、MC相の組織が粒成長しやすく、焼結合金の鏡面性が得にくい。MC相の含有量が38体積%未満のとき、9MK-1程度より小さい熱膨張係数を得にくい。MC相の含有量は40~90体積%であるのが好ましく、45~85体積%であるのがより好ましい。 The sintered alloy (MC- Cr3C2 alloy ) according to the first embodiment is easy to obtain a sintered alloy with a thermal expansion coefficient of about 7 to 9 MK -1 , and is excellent in oxidation resistance. By making the MC phase content 38 to 95% by volume, the target thermal expansion coefficient of about 7 to 9 MK -1 can be obtained. When the MC phase content exceeds 95% by volume, the MC phase structure is prone to grain growth, making it difficult to obtain a mirror finish of the sintered alloy. When the MC phase content is less than 38% by volume, it is difficult to obtain a thermal expansion coefficient smaller than about 9 MK -1 . The MC phase content is preferably 40 to 90% by volume, more preferably 45 to 85% by volume.

MC相は、MC相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していても良い。WCやMo2Cは単体では六方晶構造を有するが、MC相に固溶している場合にはNaCl型の結晶構造を維持したまま、MC相の粒成長を抑制しつつ、耐酸化性をさらに向上させることができる。このとき、WやMoの含有量を変化させることで合金の剛性、硬さ、熱膨張係数等を変化させることができるので、用途によって合金が所望の特性を得るような組成を選択することができるし、合金の硬さを変化させて鏡面仕上げしやすさや耐摩耗性を調整することができる。NaCl型の結晶構造を維持しつつ、耐酸化性が向上するように、0.1~43原子%の範囲内で少量のWやMoを固溶させても良い。適切な剛性、硬さ、熱膨張係数を得られるように、MC相の金属元素の総量に対してW及びMoのうち1種以上が5~43原子%固溶しているのがより好ましく、10~40原子%固溶しているのがさらに好ましい。 The MC phase may have at least one of W and Mo dissolved in it at 0.1 to 45 atomic % relative to the total amount of metal elements in the MC phase. WC and Mo 2 C have a hexagonal crystal structure when used alone, but when dissolved in the MC phase, the grain growth of the MC phase can be suppressed while maintaining the NaCl-type crystal structure, and the oxidation resistance can be further improved. In this case, the rigidity, hardness, thermal expansion coefficient, etc. of the alloy can be changed by changing the content of W or Mo, so that a composition that gives the alloy the desired characteristics depending on the application can be selected, and the ease of mirror finishing and wear resistance can be adjusted by changing the hardness of the alloy. A small amount of W or Mo may be dissolved in it within the range of 0.1 to 43 atomic % so as to improve the oxidation resistance while maintaining the NaCl-type crystal structure. In order to obtain appropriate rigidity, hardness, and thermal expansion coefficient, it is more preferable that at least one of W and Mo is dissolved in it at 5 to 43 atomic %, and even more preferable that it is dissolved in it at 10 to 40 atomic % relative to the total amount of metal elements in the MC phase.

ここで、MC相がNaCl型の結晶構造を有するとは、MC相の80体積%以上がNaCl型の結晶構造を有することを意味する。すなわち、NaCl型の結晶構造以外にも、六方晶構造を有する結晶や酸化物、ホウ化物等を少量含んでいても良く、MC相が複数の金属元素を含む場合、NaCl型の結晶構造を有する固溶体以外に、コアリム組織を有するMC相を含んでいても良い。また、MC相は組成が異なる複数の種類の相で構成されてもよい。Here, the MC phase having a NaCl-type crystal structure means that 80% or more by volume of the MC phase has a NaCl-type crystal structure. In other words, in addition to the NaCl-type crystal structure, the MC phase may contain small amounts of crystals, oxides, borides, etc. having a hexagonal structure, and when the MC phase contains multiple metal elements, it may contain an MC phase having a core-rim structure in addition to a solid solution having a NaCl-type crystal structure. The MC phase may also be composed of multiple types of phases with different compositions.

Cr3C2相は10.3 MK-1と高い熱膨張係数を有し、かつ1300 HVに近い硬さを有するので、Cr3C2相を含むことにより、焼結合金の熱膨張係数が高くなり、鏡面仕上げがしやすくなり、鏡面性が向上する。また焼結合金がCr3C2相を含み、耐酸化性に優れたNaCl型構造のMC相以外の硬質相を含まないことにより、より優れた鏡面性を長期にわたり維持できる相乗効果が得られる。 The Cr3C2 phase has a high thermal expansion coefficient of 10.3 MK -1 and a hardness close to 1300 HV, so the inclusion of the Cr3C2 phase increases the thermal expansion coefficient of the sintered alloy, making it easier to achieve a mirror finish and improving the specularity. In addition, the sintered alloy contains the Cr3C2 phase and does not contain any hard phases other than the MC phase with a NaCl structure that has excellent oxidation resistance, resulting in a synergistic effect that allows the excellent specularity to be maintained for a long period of time.

Cr23C6相やCr7C3相等のCr3C2以外のクロム化合物からなる相が形成されると、その含有量に比例して熱膨張係数が低下する。また、Cr3C2相よりも脆弱であるため工具として不具合を生じやすい。Cr3C2相にCr23C6やCr7C3等のCr3C2以外のクロム化合物が少量であれば含まれていても良く、ここで、「Cr3C2相」とは、クロム化合物のうち80体積%以上がCr3C2相であることをいう。 When a phase consisting of chromium compounds other than Cr3C2 , such as the Cr23C6 phase or the Cr7C3 phase , is formed, the thermal expansion coefficient decreases in proportion to the content. In addition, since it is more brittle than the Cr3C2 phase , it is more likely to cause problems as a tool. The Cr3C2 phase may contain a small amount of chromium compounds other than Cr3C2 , such as Cr23C6 or Cr7C3 , and here, the " Cr3C2 phase " means that 80 volume % or more of the chromium compounds is the Cr3C2 phase .

MC相に含まれる金属元素量に対する、MC相に含まれるCやN等の軽元素量の原子数比は0.8以上であるのが好ましい。軽元素量の原子数比が0.8よりも小さいと焼結合金が十分に緻密化せず、さらに比が小さいとCr3C2相やNaCl型構造のMC相以外の化合物相が生じやすくなり高耐酸化性を得ることができない。金属元素と軽元素の原子比は、使用したCr3C2原料粉末炭素量と添加比率から試算したCr3C2相の炭素量を焼結体の合金炭素量から引いて残りの成分から原子数比を算出するか、MC相を直接EDS分析するなどして求める。MC相に含まれる金属元素量に対する、MC相に含まれるCやN等の軽元素量の原子数比は1.0以下であるのが好ましい。軽元素量の原子数比がそれより大きいと、合金中に遊離炭素が生成しやすくなる。 The atomic ratio of the amount of light elements such as C and N contained in the MC phase to the amount of metal elements contained in the MC phase is preferably 0.8 or more. If the atomic ratio of the amount of light elements is smaller than 0.8, the sintered alloy is not sufficiently densified, and if the ratio is even smaller, compound phases other than the MC phase with a Cr 3 C 2 phase or NaCl type structure are likely to occur, making it impossible to obtain high oxidation resistance. The atomic ratio of metal elements to light elements is calculated by subtracting the amount of carbon in the Cr 3 C 2 phase calculated from the amount of carbon in the Cr 3 C 2 raw material powder used and the addition ratio from the amount of alloy carbon in the sintered body, and calculating the atomic ratio from the remaining components, or by directly analyzing the MC phase with EDS. The atomic ratio of the amount of light elements such as C and N contained in the MC phase to the amount of metal elements contained in the MC phase is preferably 1.0 or less. If the atomic ratio of the amount of light elements is larger than that, free carbon is likely to be generated in the alloy.

MC相の粒度は0.1~6μmであるのが好ましい。MC相の粒度は、焼結合金の任意の断面におけるMC相の断面積と同一面積の円の直径とする。MC相の粒度が0.1μm未満とするには原料粉末を微細にする必要がありコストアップにつながりまた粉末の成形性も悪化する。MC相の粒度が6μmよりも大きいとき鏡面性が低下して、金型に用いると不具合を生じることがある。MC相の粒度は、焼結合金の断面を走査型電子顕微鏡(SEM)で撮像し、得られたSEM写真から画像解析ソフトを用いて求めることができる。MC相の粒度は0.5~3μmであるのがより好ましい。The grain size of the MC phase is preferably 0.1 to 6 μm. The grain size of the MC phase is the diameter of a circle having the same area as the cross-sectional area of the MC phase in any cross section of the sintered alloy. To make the grain size of the MC phase less than 0.1 μm, the raw powder must be finely milled, which increases costs and also deteriorates the moldability of the powder. If the grain size of the MC phase is larger than 6 μm, the specularity decreases, which may cause problems when used in a mold. The grain size of the MC phase can be determined by photographing the cross section of the sintered alloy with a scanning electron microscope (SEM) and using image analysis software from the resulting SEM photograph. The grain size of the MC phase is more preferably 0.5 to 3 μm.

Cr3C2相の粒度は9μm以下が望ましい。Cr3C2相の粒度が9μmを超えると鏡面性が低下する場合がある。Cr3C2相の粒度は、MC相の粒度と同様に求めることができる。Cr3C2相の粒度は0.5~7μmであるのがより好ましい。 The grain size of the Cr3C2 phase is preferably 9μm or less. If the grain size of the Cr3C2 phase exceeds 9μm, the specularity may decrease. The grain size of the Cr3C2 phase can be determined in the same manner as the grain size of the MC phase. The grain size of the Cr3C2 phase is more preferably 0.5 to 7μm.

本発明の第一の実施態様による焼結合金は、Ni、Co及びFeのうち少なくとも1種からなる金属相をさらに含んでいても良い。金属相を含むことで所望の熱膨張係数、靭性を得ることができる。金属相の含有量は8.2体積%以下であるのが好ましい。金属相としてNiを含むことにより焼結性を向上させ、また靭性を向上させることができる。CoやFeは焼結合金の室温及び高温の強度を高める。またFeは比較的安価に入手することができる。工具の使用用途により必要とする特性を得るため、各元素の含有量を選ぶことができる。金属相の含有量が8.2体積%超であると仕上げ加工後の面粗さRaが粗くなり、高温での使用時における耐工具変形性が低下する。金属相の含有量は8体積%以下であるのがより好ましい。The sintered alloy according to the first embodiment of the present invention may further contain a metal phase consisting of at least one of Ni, Co, and Fe. By containing the metal phase, the desired thermal expansion coefficient and toughness can be obtained. The content of the metal phase is preferably 8.2% by volume or less. By containing Ni as the metal phase, the sinterability and toughness can be improved. Co and Fe increase the strength of the sintered alloy at room temperature and high temperatures. In addition, Fe can be obtained relatively inexpensively. The content of each element can be selected to obtain the required characteristics depending on the use of the tool. If the content of the metal phase exceeds 8.2% by volume, the surface roughness Ra after finishing becomes rough, and the tool deformation resistance during use at high temperatures decreases. It is more preferable that the content of the metal phase is 8% by volume or less.

[2] 第二の実施態様
本発明の第二の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相(以下、「MC相」とも呼ぶ。)と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相とからなり、MC相を8~95体積%含有し、結合相を2.0体積%以下含有することを特徴とする。
[2] Second embodiment The sintered alloy according to the second embodiment of the present invention is characterized in that it forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb and V, and at least one of C and N, and is composed of a compound phase (hereinafter also referred to as "MC phase") having an NaCl type structure of 80% or more by volume, a binder phase consisting of at least one of Ni, Co and Fe, and a WC phase, and contains 8 to 95% by volume of the MC phase and 2.0% by volume or less of the binder phase.

第二の実施態様による焼結合金(MC-WC合金)は、熱膨張係数5~7MK-1程度の焼結合金を得やすい。MC相は第一の実施態様と同様であっても良い。MC相が8体積%未満となると必要な熱膨張係数が得られず、また耐酸化性も低下する。またMC相が95体積%超のときは組織が粒成長しやすいため鏡面性が得にくく、強度も低下する。MC相の含有量は10~92体積%であるのが好ましく、12~90体積%であるのがより好ましい。 The sintered alloy (MC-WC alloy) according to the second embodiment is easy to obtain a sintered alloy with a thermal expansion coefficient of about 5 to 7 MK -1 . The MC phase may be the same as that of the first embodiment. If the MC phase is less than 8 volume %, the required thermal expansion coefficient is not obtained, and the oxidation resistance is also reduced. If the MC phase is more than 95 volume %, the structure is prone to grain growth, making it difficult to obtain a mirror finish, and the strength is also reduced. The content of the MC phase is preferably 10 to 92 volume %, more preferably 12 to 90 volume %.

第二の実施態様による焼結合金は、Ni、Co及びFeのうち少なくとも1種からなる金属相を2.0体積%以下含有するので、焼結性も高まり焼結温度を低くすることが可能となり、また、それぞれの粒子間に微量の金属成分が介在するため粒子の合体による成長も抑制させることができるため微粒組織が得やすく鏡面性や強度も高まる。さらに所望の靭性を得ることができ、工具使用時の欠けによる不具合が生じにくい。また第一の実施態様と同様に工具の使用用途により必要とする特性を得るため、各元素の含有量を選ぶことができる。金属相の含有量が2.0体積%超であると、高温での使用時における耐工具変形性が低下する。金属相の含有量は1.5体積%以下であるのが好ましく、1体積%以下であるのがより好ましい。The sintered alloy according to the second embodiment contains 2.0% by volume or less of a metal phase consisting of at least one of Ni, Co, and Fe, so that the sinterability is improved and the sintering temperature can be lowered. In addition, since a small amount of metal component is present between each particle, the growth due to the coalescence of particles can be suppressed, so that a fine grain structure is easily obtained and the specularity and strength are improved. Furthermore, the desired toughness can be obtained, and defects due to chipping during use of the tool are unlikely to occur. In addition, as in the first embodiment, the content of each element can be selected to obtain the characteristics required depending on the use of the tool. If the content of the metal phase exceeds 2.0% by volume, the tool deformation resistance during use at high temperatures decreases. The content of the metal phase is preferably 1.5% by volume or less, and more preferably 1% by volume or less.

WC相の粒度は、0.1~2.5μmであるのが好ましい。WC相の粒度は、MC相の粒度と同様に求めることができる。WC粒度を0.1~2.5μmの範囲に調整することにより、微粒組織を有するMC-WC合金が得られるため、高い鏡面性が得られる。一方、WC相を含むため、耐酸化性は第一の実施態様のものよりやや劣る。WC相の粒度は、0.11~2.0μmであるのがより好ましく、0.12~1.5μmであるのがさらに好ましく、0.13~1.0μmであるのがさらに好ましく、0.14~0.7μmであるのが特に好ましい。The grain size of the WC phase is preferably 0.1 to 2.5 μm. The grain size of the WC phase can be determined in the same manner as the grain size of the MC phase. By adjusting the WC grain size to the range of 0.1 to 2.5 μm, an MC-WC alloy with a fine grain structure can be obtained, resulting in high specularity. On the other hand, since it contains a WC phase, the oxidation resistance is somewhat inferior to that of the first embodiment. The grain size of the WC phase is more preferably 0.11 to 2.0 μm, even more preferably 0.12 to 1.5 μm, even more preferably 0.13 to 1.0 μm, and particularly preferably 0.14 to 0.7 μm.

第二の実施態様による焼結合金のMC相は、第一の実施態様と同様に、MC相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していても良い。NaCl型の結晶構造を維持しつつ、耐酸化性が向上するように、0.1~43原子%程度の少量のWやMoを固溶させても良い。適切な剛性、硬さや熱膨張係数を得られるように、MC相の金属元素の総量に対してW及びMoのうち1種以上が5~43原子%固溶しているのがより好ましく、10~40原子%固溶しているのがさらに好ましい。軽元素として、酸素、ホウ素を含んでも良い。金属元素として、Zr、Hf、Crを含んでもよい。 In the MC phase of the sintered alloy according to the second embodiment, as in the first embodiment, at least one of W and Mo may be dissolved in a solid solution of 0.1 to 45 atomic % relative to the total amount of metal elements in the MC phase. A small amount of W or Mo, about 0.1 to 43 atomic %, may be dissolved in the solid solution to improve oxidation resistance while maintaining a NaCl-type crystal structure. In order to obtain appropriate rigidity, hardness, and thermal expansion coefficient, it is more preferable that at least one of W and Mo is dissolved in a solid solution of 5 to 43 atomic %, and even more preferable that it is dissolved in a solid solution of 10 to 40 atomic %, relative to the total amount of metal elements in the MC phase. As light elements, oxygen and boron may be included. As metal elements, Zr, Hf, and Cr may be included.

[3] 第三の実施態様
本発明の第三の実施態様による焼結合金は、WC相とCr3C2相とからなり、Cr3C2相を10~90体積%含有することを特徴とする。
[3] Third embodiment The sintered alloy according to the third embodiment of the present invention is characterized in that it comprises a WC phase and a Cr 3 C 2 phase, and contains 10 to 90 volume % of the Cr 3 C 2 phase.

第三の実施態様による焼結合金(Cr3C2-WC合金)は、各相の比率を変えることで広い範囲の熱膨張係数が得られ、Cr3C2相の含有量が10~90体積%とすることにより、5~9MK-1程度の広い範囲の熱膨張係数を有する。また熱膨張係数が近い他の合金系と比較すると熱伝導率が高い傾向にある。Cr3C2相は第一の実施態様と同様であっても良い。Cr3C2相の含有量が90体積%超のとき、Cr3C2相が粒成長しやすく鏡面性を得にくい。Cr3C2相の含有量が10体積%未満のとき、耐酸化性が劣る傾向にある。Cr3C2相の含有量は15~85体積%であるのが好ましく、20~80体積%であるのがより好ましい。WC相比率が高い場合、耐酸化性にはやや劣るが、靭性や強度に優れる。 The sintered alloy (Cr 3 C 2 -WC alloy) according to the third embodiment can obtain a wide range of thermal expansion coefficients by changing the ratio of each phase, and has a wide range of thermal expansion coefficients of about 5 to 9 MK -1 by making the content of the Cr 3 C 2 phase 10 to 90 volume %. In addition, the thermal conductivity tends to be high compared to other alloy systems with similar thermal expansion coefficients. The Cr 3 C 2 phase may be the same as that of the first embodiment. When the content of the Cr 3 C 2 phase exceeds 90 volume %, the Cr 3 C 2 phase is prone to grain growth and it is difficult to obtain a mirror finish. When the content of the Cr 3 C 2 phase is less than 10 volume %, the oxidation resistance tends to be poor. The content of the Cr 3 C 2 phase is preferably 15 to 85 volume %, more preferably 20 to 80 volume %. When the WC phase ratio is high, the oxidation resistance is somewhat poor, but the toughness and strength are excellent.

混合粉砕条件やWC相の原料の選択により合金組織の粒径を調節しやすく、例えば超微粒合金が得られるため、鏡面性の良いCr3C2-WC合金が得やすい。WC相の粒度は、第二の実施態様と同様であっても良い。それにより、微粒のCr3C2-WC合金が得られるため、高い鏡面性が得られる。 The grain size of the alloy structure can be easily adjusted by selecting the mixed grinding conditions and the raw material of the WC phase, and for example, an ultrafine grain alloy can be obtained, so that a Cr3C2 - WC alloy with good specularity can be easily obtained. The grain size of the WC phase may be the same as that of the second embodiment. As a result, a fine grain Cr3C2 - WC alloy can be obtained, so that a high specularity can be obtained.

第三の実施態様による焼結合金は、合金の焼結性が十分でない場合、Ni、Co及びFeのうち少なくとも1種からなる金属相を2.0体積%以下含有しても良い。それにより、所望の靭性を得ることができ、工具使用時の欠けによる不具合が生じにくい。また焼結性も高まるため焼結温度を低くすることが可能であり、粒成長も抑制されるため、鏡面性や強度も高まる傾向にある。第一の実施態様と同様に工具の使用用途により必要とする特性を得るため、各元素の含有量を選ぶことができる。金属相の含有量が2.0体積%超であると、高温での使用時における耐工具変形性が低下する。金属相の含有量は1.5体積%以下であるのが好ましく、1体積%以下であるのがより好ましい。 In the sintered alloy according to the third embodiment, if the sinterability of the alloy is insufficient, the sintered alloy may contain 2.0 vol. % or less of a metal phase consisting of at least one of Ni, Co, and Fe. This makes it possible to obtain the desired toughness, and defects due to chipping during use of the tool are less likely to occur. In addition, since the sinterability is also increased, the sintering temperature can be lowered, and grain growth is also suppressed, so that specularity and strength tend to be increased. As in the first embodiment, the content of each element can be selected to obtain the characteristics required depending on the use of the tool. If the content of the metal phase exceeds 2.0 vol. %, the tool deformation resistance during use at high temperatures decreases. The content of the metal phase is preferably 1.5 vol. % or less, and more preferably 1 vol. % or less.

[4] 第四の実施態様
本発明の第四の実施態様による焼結合金は、Ti,Ta,Nb及びVのうち少なくとも1種の金属元素と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相(以下、「MC相」とも呼ぶ。)と、WC相と、Cr3C2相とからなることを特徴とする。
[4] Fourth embodiment The sintered alloy according to the fourth embodiment of the present invention is characterized in that it forms a solid solution phase consisting of at least one metal element selected from the group consisting of Ti, Ta, Nb and V, and at least one of C and N, and that 80 volume % or more of the solid solution phase consists of a compound phase having a NaCl type structure (hereinafter also referred to as "MC phase"), a WC phase, and a Cr3C2 phase.

本発明のMC-Cr3C2合金やMC-WC合金において、7MK-1程度の中間的な熱膨張係数を得ようとするとき、MC相の比率を増加させることが考えられるが、MC相の比率が高まることにより、MC相の粗大化が生じやすく、それに伴い鏡面性や強度の低下等の弊害も生じやすい。このため、MC相、Cr3C2相及びWC相の三相を共存させたMC-Cr3C2-WC合金とすることにより、組織の粗大化を防ぐことができる。MC相、Cr3C2相及びWC相はそれぞれ第一~第三の実施態様と同様であっても良い。 In the MC-Cr 3 C 2 alloy or MC-WC alloy of the present invention, when an intermediate thermal expansion coefficient of about 7 MK -1 is to be obtained, it is possible to increase the ratio of the MC phase, but the increase in the ratio of the MC phase tends to cause coarsening of the MC phase, which tends to cause problems such as a decrease in specularity and strength. For this reason, by making an MC-Cr 3 C 2 -WC alloy in which the three phases of the MC phase, the Cr 3 C 2 phase, and the WC phase coexist, it is possible to prevent the coarsening of the structure. The MC phase, the Cr 3 C 2 phase, and the WC phase may be the same as those in the first to third embodiments.

第四の実施態様による焼結合金(MC-Cr3C2-WC合金)は、MC相を10~90体積%含有するのが好ましい。MC相が10体積%未満となると耐酸化性は低下する。またMC相が90体積%超のときは組織が粒成長しやすいため鏡面性が得にくく、強度も低下する。MC相の含有量は20~90体積%であるのが好ましく、40~85体積%であるのがより好ましい。WC相比率を高めにすると耐酸化性は低下傾向にあるが小さい熱膨張係数が得やすく、大きめの熱伝導率、高めの靭性を得やすい。MC相比率を高めにすると耐酸化性を高めるとともに中程度の熱膨張係数が得やすく、焼結性が向上する。 The sintered alloy (MC- Cr3C2 - WC alloy) according to the fourth embodiment preferably contains 10 to 90 volume % of the MC phase. If the MC phase is less than 10 volume %, the oxidation resistance decreases. If the MC phase is more than 90 volume %, the structure is prone to grain growth, making it difficult to obtain a mirror finish and reducing strength. The MC phase content is preferably 20 to 90 volume %, more preferably 40 to 85 volume %. If the WC phase ratio is increased, the oxidation resistance tends to decrease, but it is easy to obtain a small thermal expansion coefficient, a large thermal conductivity, and high toughness. If the MC phase ratio is increased, the oxidation resistance increases and it is easy to obtain a medium thermal expansion coefficient, improving sinterability.

WC相の含有量に対するCr3C2相の含有量の体積比が0.125~8であるのが好ましい。WC相の含有量に対するCr3C2相の含有量の体積比が0.125未満であると耐酸化性は低めの傾向にあり、8超であると鏡面性が低い傾向にある。WC相の含有量に対するCr3C2相の含有量の体積比は0.15~6.6であるのが好ましく、0.2~5であるのがより好ましい。 The volume ratio of the Cr3C2 phase content to the WC phase content is preferably 0.125 to 8. If the volume ratio of the Cr3C2 phase content to the WC phase content is less than 0.125, the oxidation resistance tends to be low, and if it exceeds 8, the specularity tends to be low. The volume ratio of the Cr3C2 phase content to the WC phase content is preferably 0.15 to 6.6, and more preferably 0.2 to 5.

Cr3C2相比率を高めにすると耐酸化性が向上するとともに大きな熱膨張係数を得やすい。MC相量が10体積%のときWC相に対するCr3C2相の体積比を0.125~8としたとき6~9 MK-1程度の熱膨張係数が得らえる。MC相量90体積%のとき同様に6.5~7.5 MK-1程度の熱膨張係数が得られる。 Increasing the Cr3C2 phase ratio improves oxidation resistance and makes it easier to obtain a large thermal expansion coefficient. When the MC phase amount is 10 volume percent and the volume ratio of the Cr3C2 phase to the WC phase is 0.125 to 8, a thermal expansion coefficient of about 6 to 9 MK -1 can be obtained. Similarly, when the MC phase amount is 90 volume percent, a thermal expansion coefficient of about 6.5 to 7.5 MK -1 can be obtained.

第四の実施態様による焼結合金は、必要に応じて各比率を変化させて必要な熱膨張係数と必要な特性を得ることができる。なお、Cr3C2-WC合金でも熱膨張係数7MK-1程度の合金を得ることができるが、特に耐酸化性を重視する場合にはMC-Cr3C2-WC合金を選択し、熱伝導率を高めたいときはCr3C2-WC合金を選択するのが良い。 The sintered alloy according to the fourth embodiment can obtain the required thermal expansion coefficient and required characteristics by changing the ratios as necessary. Although an alloy with a thermal expansion coefficient of about 7 MK -1 can be obtained with a Cr3C2 - WC alloy, it is better to select an MC- Cr3C2 - WC alloy when oxidation resistance is particularly important, and a Cr3C2 - WC alloy when thermal conductivity is to be increased.

第四の実施態様による焼結合金は、合金強度が必要である場合、合金の焼結性が十分でない場合、Ni、Co及びFeのうち少なくとも1種からなる金属相を2.0体積%以下含有しても良い。2.0体積%より多いと耐摩耗性に劣る場合がある。金属相の含有量は1.5体積%以下であるのが好ましく、1体積%以下であるのがより好ましい。 The sintered alloy according to the fourth embodiment may contain 2.0 vol. % or less of a metal phase consisting of at least one of Ni, Co, and Fe when alloy strength is required or when the sinterability of the alloy is insufficient. If the content is more than 2.0 vol. %, the wear resistance may be poor. The content of the metal phase is preferably 1.5 vol. % or less, and more preferably 1 vol. % or less.

第四の実施態様による焼結合金のMC相は、第一の実施態様と同様に、MC相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していても良い。NaCl型の結晶構造を維持しつつ、耐酸化性が向上するように、0.1~43原子%程度の少量のWやMoを固溶させても良い。適切な剛性、硬さや熱膨張係数を得られるように、MC相の金属元素の総量に対してW及びMoのうち1種以上が5~43原子%固溶しているのがより好ましく、10~40原子%固溶しているのがさらに好ましい。 In the MC phase of the sintered alloy according to the fourth embodiment, as in the first embodiment, at least one of W and Mo may be dissolved in a solid solution of 0.1 to 45 atomic % relative to the total amount of metal elements in the MC phase. Small amounts of W and Mo, about 0.1 to 43 atomic %, may be dissolved in the MC phase to improve oxidation resistance while maintaining a NaCl-type crystal structure. In order to obtain appropriate rigidity, hardness, and thermal expansion coefficient, it is more preferable that at least one of W and Mo is dissolved in a solid solution of 5 to 43 atomic %, and even more preferable that it is dissolved in a solid solution of 10 to 40 atomic %, relative to the total amount of metal elements in the MC phase.

本発明の焼結合金を使用したレンズ成形金型はDLC等の硬質膜コーティング、白金等の金属膜コーティングを施してもよい。レンズ成形金型に限らず、本発明の特徴を最大限に発揮するために本発明の焼結合金を使用した部材や工具等に種々のコーティングを施してもよい。 Lens molding dies using the sintered alloy of the present invention may be coated with a hard film coating such as DLC, or a metal film coating such as platinum. Not limited to lens molding dies, various coatings may be applied to members and tools using the sintered alloy of the present invention in order to maximize the features of the present invention.

[5] 焼結合金の製造方法
本発明の焼結合金は、普通焼結、ホットプレス焼結等により得られる。すなわち、所定の量の粉末を秤量して湿式混合・粉砕、乾燥ののち金型により加圧成形して粉末成形体を得る。この粉末成形体を切削加工又は研削加工して必要な形状にしても良いし、粉末成形体を仮焼結した後に機械加工して所定の形状を得てもよい。また、所定形状の型に粉末を充填してホットプレス焼結して所定の形状を得てもよい。普通焼結の場合には、この粉末成形体を真空中、又は窒素、アルゴン等の不活性ガス雰囲気下で、1300~1540℃の焼結温度で焼結することで得られる。
[5] Manufacturing method of sintered alloy The sintered alloy of the present invention can be obtained by normal sintering, hot press sintering, etc. That is, a predetermined amount of powder is weighed, wet mixed, crushed, dried, and then pressure molded in a die to obtain a powder compact. This powder compact can be cut or ground to obtain the required shape, or the powder compact can be pre-sintered and then machined to obtain the required shape. Also, the powder can be filled into a mold of a predetermined shape and hot press sintered to obtain the required shape. In the case of normal sintering, the powder compact can be sintered in a vacuum or in an inert gas atmosphere such as nitrogen or argon at a sintering temperature of 1300 to 1540°C.

焼結後にさらにHIP処理を行っても良い。それにより、焼結の際に生じたポアを低減することができる。HIP処理の温度は、焼結合金の組成に応じて適宜設定可能であるが、焼結温度以下の温度でもよい。焼結温度より高い場合、Cr炭化物などが粒成長し、強度低下が起こるためである。HIP処理により組織粒度の調整をすることもできる。 HIP treatment may be further performed after sintering. This will reduce the pores that occur during sintering. The temperature of the HIP treatment can be set appropriately depending on the composition of the sintered alloy, but it may be a temperature below the sintering temperature. If the temperature is higher than the sintering temperature, Cr carbides and other particles will grow into grains, resulting in a decrease in strength. HIP treatment can also be used to adjust the grain size of the structure.

金属相量に関わらず普通焼結、ホットプレス焼結いずれの方法を用いてもよい。ホットプレス焼結を用いる場合には焼結温度を低くして微粒組織を得やすくすることができる。金属相量が少なく普通焼結では緻密な合金が得にくい場合にはホットプレスにより焼結しても良い。その場合、金属相の含有量は0~2.0体積%であるのが好ましく、0~1体積%であるのがより好ましい。金属相を含まないか微量の金属相を含む焼結合金をホットプレス焼結することで緻密な合金となり、鏡面性をより高めることができるため、金型として好適な焼結合金が得られる。Regardless of the amount of metallic phase, either normal sintering or hot press sintering may be used. When using hot press sintering, the sintering temperature can be lowered to make it easier to obtain a fine grain structure. When the amount of metallic phase is small and it is difficult to obtain a dense alloy by normal sintering, sintering by hot press may be used. In this case, the metallic phase content is preferably 0 to 2.0% by volume, and more preferably 0 to 1% by volume. By hot press sintering a sintered alloy that does not contain any metallic phase or contains a small amount of metallic phase, it becomes a dense alloy and the specularity can be further improved, resulting in a sintered alloy that is suitable for use as a mold.

ホットプレスは、一般的に焼結合金を形成するものであれば特に限定されないが、焼結条件は、真空中、又は窒素、アルゴン等の不活性ガス雰囲気下で、20~100 MPaの圧力、1200~1500℃の焼結温度で行うのが好ましい。また通電焼結などホットプレス以外の装置を用いてもよい。 There are no particular limitations on the hot press as long as it is generally capable of forming a sintered alloy, but the sintering conditions are preferably a vacuum or an inert gas atmosphere such as nitrogen or argon, a pressure of 20 to 100 MPa, and a sintering temperature of 1200 to 1500°C. Devices other than hot presses, such as electric current sintering, may also be used.

[6] 金型及びその他の用途
本発明の焼結合金は、金型、特にレンズ成形用の金型の材料として好適に用いることができ、不具合なく部品を成形するためにレンズ材料の熱膨張係数や成形部品の形状を考慮し5~9 MK-1程度の範囲内で最適な熱膨張係数を有する金型材料を選択することができる。また、これに限らず、部品成形する金型に通常の超硬合金やバインダレス超硬合金よりも大きい熱膨張係数や優れる耐酸化性が要求される場合に好適に用いることができるし、高熱膨張係数と高耐摩耗性と優れた耐酸化性が求められる部材や工具等に好適に用いることができる。
[6] Molds and other uses The sintered alloy of the present invention can be suitably used as a material for molds, particularly molds for lens molding, and in order to mold parts without problems, a mold material having an optimal thermal expansion coefficient within the range of about 5 to 9 MK -1 can be selected in consideration of the thermal expansion coefficient of the lens material and the shape of the molded part. In addition, the sintered alloy can be suitably used when a mold for molding parts requires a thermal expansion coefficient larger than that of ordinary cemented carbide or binderless cemented carbide and excellent oxidation resistance, and can be suitably used for members, tools, etc. that require a high thermal expansion coefficient, high wear resistance, and excellent oxidation resistance.

本発明を発明品によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。The present invention will be described in further detail with reference to the inventions, but is not limited thereto.

実施例1
原料粉末には、Cr3C2(2.4μm)、Ni(2.3μm)、Co(1.4μm)、Fe(2.9μm)、TaC(1.6μm)、NbC(1.6μm)、TiC(1.6μm)、Ti(C0.5,N0.5)(2.1μm)、TaN(2.0μm)、Nb(C0.7N0.3)(2.5μm)、WC(0.8μm)、Mo2C(3.1μm)及び表1に記載の各種固溶体粉末を用いた。固溶体粉末は表1に示す組成となるように炭化物、窒化物及び炭窒化物を配合して湿式混合した粉末を高温炉で固溶体化処理を行い、粉砕・篩別して原料粉末(1.3~3.1μm)として調製した。
Example 1
The raw material powders used were Cr3C2 (2.4μm), Ni (2.3μm), Co (1.4μm), Fe (2.9μm), TaC (1.6μm), NbC (1.6μm), TiC (1.6μm), Ti( C0.5 , N0.5 ) (2.1μm), TaN (2.0μm), Nb( C0.7N0.3 ) ( 2.5μm ), WC (0.8μm), Mo2C (3.1μm), and various solid solution powders shown in Table 1. The solid solution powders were prepared by wet mixing carbides, nitrides, and carbonitrides to obtain the compositions shown in Table 1, subjecting the mixture to a solid solution treatment in a high-temperature furnace, and then pulverizing and sieving the mixture to obtain raw material powders (1.3-3.1μm).

Figure 0007618329000001
Figure 0007618329000001

金属相成分を少量含む試料では、金属粉末と他の粉末とを湿式粉砕して予備粉砕した粉末を用い、金属相成分を4体積%以上含む試料では予備粉砕せずにそのまま用いた。また試料に応じて粉末に含まれる酸化物の還元や炭素量の調整を目的としてC粉末を加えた。For samples containing a small amount of metallic phase components, powders that had been pre-ground by wet grinding metallic powder and other powders were used, while samples containing 4% or more by volume of metallic phase components were used as is without pre-grinding. Depending on the sample, C powder was also added to reduce oxides contained in the powder and adjust the amount of carbon.

焼結は、窒素又はアルゴンの不活性ガス雰囲気下での普通焼結、又はホットプレス焼結を行い、得られた焼結体にHIP処理を行い、発明品1~20及び比較品1~5の焼結合金を作製した。普通焼結において、焼結温度を1400℃~1540℃とし、圧力を40 kPa~90kPaとし、焼結雰囲気をN2又はArとした。ホットプレス焼結(発明品6、7、8、11、12、15、17、19、20)において、焼結温度を1200~1650℃とし、焼結雰囲気をArとした。発明品1~20及び比較品1~5の焼結合金のうちMC相を含むものについて、MC相を構成する化合物比率を求めた。得られた結果を表2に示す。なお、表2に記載のMC相を構成する化合物比率は、配合時の化合物比率と焼結合金の炭素量と窒素量を加味して各化合物に換算して求めた。 Sintering was performed by normal sintering or hot press sintering under an inert gas atmosphere of nitrogen or argon, and the obtained sintered body was subjected to HIP treatment to produce sintered alloys of invention products 1 to 20 and comparison products 1 to 5. In normal sintering, the sintering temperature was 1400°C to 1540°C, the pressure was 40 kPa to 90 kPa, and the sintering atmosphere was N2 or Ar. In hot press sintering (invention products 6, 7, 8, 11, 12, 15, 17, 19, 20), the sintering temperature was 1200°C to 1650°C, and the sintering atmosphere was Ar. For the sintered alloys of invention products 1 to 20 and comparison products 1 to 5 that contain MC phase, the compound ratio constituting the MC phase was obtained. The obtained results are shown in Table 2. The compound ratio constituting the MC phase listed in Table 2 was calculated by converting it to each compound, taking into account the compound ratio at the time of blending and the carbon and nitrogen amounts of the sintered alloy.

Figure 0007618329000002
Figure 0007618329000002

得られた試料の抗折力、硬度、熱膨張係数、耐高温酸化性、熱伝導率及び面粗さを以下の方法により調査した。その総合評価とともに結果を表3に示す。The obtained samples were examined for flexural strength, hardness, thermal expansion coefficient, high-temperature oxidation resistance, thermal conductivity, and surface roughness using the following methods. The results are shown in Table 3 together with the overall evaluation.

(抗折力)
発明品1~20及び比較品1~5の焼結合金の抗折力(MPa)を、JISB4104の方法による抗折力測定(3点曲げ試験)により求めた。
(Transverse strength)
The flexural strength (MPa) of the sintered alloys of the invention products 1 to 20 and the comparison products 1 to 5 was determined by flexural strength measurement (three-point bending test) according to the method of JIS B4104.

(ロックウェル硬度HRA)
発明品1~20及び比較品1~5の焼結合金のビッカース硬度(HRA)を、CIS027B焼結合金のロックウェルA硬さ試験方法によって測定した。
(Rockwell hardness HRA)
The Vickers hardness (HRA) of the sintered alloys of the invention products 1 to 20 and the comparison products 1 to 5 was measured by the Rockwell A hardness test method for CIS027B sintered alloys.

(熱膨張係数RT-700℃)
発明品1~20及び比較品1~5の焼結合金を縦型熱膨張計にて室温から700℃に加熱し、熱膨張係数RT-700℃(MK-1)の測定を行った。
(Thermal expansion coefficient RT-700℃)
The sintered alloys of invention products 1 to 20 and comparison products 1 to 5 were heated from room temperature to 700° C. using a vertical thermal dilatometer, and the thermal expansion coefficient RT-700° C. (MK -1 ) was measured.

(耐酸化性700℃)
発明品1~20及び比較品1~5の焼結合金を大気中において700℃で30分間加熱し、酸化増量(単位面積当たりの酸化重量)(g/m2)を求めた。
(Oxidation resistance 700℃)
The sintered alloys of invention products 1 to 20 and comparison products 1 to 5 were heated in air at 700° C. for 30 minutes, and the oxidation weight gain (oxidation weight per unit area) (g/m 2 ) was determined.

(熱伝導率)
発明品1~20及び比較品1~5の焼結合金の熱伝導率はレーザーフラッシュ法熱定数測定装置により求めた。
(Thermal Conductivity)
The thermal conductivity of the sintered alloys of the invention products 1 to 20 and the comparison products 1 to 5 was determined by a laser flash method thermal constant measuring device.

(仕上げ後の面粗さRa)
発明品1~20及び比較品1~5の焼結合金をダイヤモンドスラリーを用いて鏡面仕上げした後の面粗さRa(nm)を求めた。
(surface roughness after finishing Ra)
The sintered alloys of the invention products 1 to 20 and the comparison products 1 to 5 were mirror-finished using diamond slurry, and the surface roughness Ra (nm) was measured.

(評価)
発明品1~20及び比較品1~5の焼結合金を用いて金型を作成し、ガラスレンズを繰り返し成形し、繰り返し回数及び繰り返し使用した後の成形面の鏡面性等により、金型の評価を行った。所定回数以上使用できて依然として良好な鏡面性を維持している場合は◎、所定回数以上使用できた場合は○、所定回数まで使用できた場合は△、所定回数まで使用できなかった場合は×とした。
(evaluation)
Molds were made using the sintered alloys of invention products 1-20 and comparison products 1-5, and glass lenses were repeatedly molded to evaluate the molds based on the number of times they were used and the specularity of the molded surface after repeated use. If they could be used a specified number of times or more and still maintained good specularity, they were marked with an ◎, if they could be used a specified number of times or more, they were marked with an ○, if they could be used up to the specified number of times, they were marked with a △, and if they could not be used up to the specified number of times, they were marked with an ×.

Figure 0007618329000003
Figure 0007618329000003

表3から分かるように、発明品1~20は、4.9~9.2 MK-1の範囲で必要とする種々の熱膨張係数を有するとともに、鏡面性、熱伝導性、強度、耐酸化性などの必要な特性に優れていた。すなわち、MC-Cr3C2合金は耐酸化性に優れ、MC-WC合金は強度、鏡面性に優れ、Cr3C2-WC合金は鏡面性に優れるとともに高い熱伝導性を有し、MC-Cr3C2-WC合金とすることで相の粒成長を抑制することができるため鏡面性や強度を高めることができることが分かった。また耐酸化性の向上のために、MC相の金属元素総量に対してMo及び/又はWを0.1~45原子%固溶させても良い。W量を変化させることでMC相の熱膨張係数を変化させることができる。 As can be seen from Table 3, inventions 1 to 20 have various required thermal expansion coefficients in the range of 4.9 to 9.2 MK -1 , and are excellent in necessary properties such as specularity, thermal conductivity, strength, and oxidation resistance. That is, the MC-Cr 3 C 2 alloy has excellent oxidation resistance, the MC-WC alloy has excellent strength and specularity, and the Cr 3 C 2 -WC alloy has excellent specularity and high thermal conductivity, and it was found that the MC-Cr 3 C 2 -WC alloy can suppress the grain growth of the phase, thereby improving specularity and strength. In addition, in order to improve oxidation resistance, Mo and/or W may be dissolved in a solid solution of 0.1 to 45 atomic % relative to the total amount of metal elements in the MC phase. The thermal expansion coefficient of the MC phase can be changed by changing the amount of W.

比較品1はMC-Cr3C2合金においてMC相の含有量が97体積%と多いため、MC相が粒成長し、特に面粗さに劣った。比較品2はMC-WC合金においてMC相の含有量が3.0体積%と少ないため、熱膨張係数が4.7 MK-1と低く、必要な熱膨張係数が得られず、また耐酸化性も劣っていた。比較品3はMC相のみを含んでいるため、MC相が粒成長し、面粗さに劣った。比較品4はCr3C2-WC合金においてCr3C2相の含有量が96体積%と多いため、熱膨張係数が10.1 MK-1と高く、必要な熱膨張係数が得られず、またCr3C2相が粒成長し、面粗さに劣った。比較品5は、Cr3C2-WC合金においてCr3C2相の含有量が5.7体積%と少ないため、耐酸化性が劣っていた。 In the comparative example 1, the MC-Cr 3 C 2 alloy contained a large amount of MC phase at 97 volume percent, which caused grain growth of the MC phase, resulting in poor surface roughness. In the comparative example 2, the MC-WC alloy contained a small amount of MC phase at 3.0 volume percent, which caused a low thermal expansion coefficient of 4.7 MK -1 , which meant that the required thermal expansion coefficient could not be obtained, and the oxidation resistance was also poor. In the comparative example 3, which contained only the MC phase, grain growth of the MC phase occurred, resulting in poor surface roughness. In the comparative example 4, the Cr 3 C 2 -WC alloy contained a large amount of Cr 3 C 2 phase at 96 volume percent, which meant that the thermal expansion coefficient was high at 10.1 MK -1 , which meant that the required thermal expansion coefficient could not be obtained, and the Cr 3 C 2 phase grew grains, resulting in poor surface roughness. In the comparative example 5, the Cr 3 C 2 -WC alloy contained a small amount of Cr 3 C 2 phase at 5.7 volume percent, resulting in poor oxidation resistance.

Claims (18)

Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有することを特徴とする焼結合金。
A solid solution phase is formed consisting of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) and at least one of C and N, and 80% by volume or more of the solid solution phase is composed of a compound phase having a NaCl type structure and a Cr3C2 phase ;
A sintered alloy containing the compound phase in an amount of 38 to 95% by volume.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする焼結合金。
A solid solution phase is formed consisting of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) , at least one of W and Mo, and at least one of C and N, and 80 volume % or more of the solid solution phase is composed of a compound phase having a NaCl type structure and a Cr3C2 phase,
The compound phase is contained at 38 to 95% by volume,
The sintered alloy is characterized in that the compound phase contains 0.1 to 45 atomic % of at least one of W and Mo in solid solution relative to the total amount of metal elements in the compound phase.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有し、前記結合相を8.2体積%以下含有することを特徴とする焼結合金。
A solid solution phase is formed of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) and at least one of C and N, and 80% by volume or more of the compound phase has a NaCl type structure, a binder phase selected from at least one of Ni, Co and Fe, and a Cr3C2 phase ;
A sintered alloy containing 38 to 95 volume % of said compound phase and 8.2 volume % or less of said binder phase.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、Cr3C2相とからなり、
前記化合物相を38~95体積%含有し、前記結合相を8.2体積%以下含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする焼結合金。
A solid solution phase is formed consisting of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) , at least one of W and Mo, and at least one of C and N, and 80 volume % or more of the compound phase has a NaCl type structure, a binder phase consisting of at least one of Ni, Co and Fe, and a Cr3C2 phase ;
The compound phase is contained in an amount of 38 to 95% by volume, and the binder phase is contained in an amount of 8.2% by volume or less,
The sintered alloy is characterized in that the compound phase contains 0.1 to 45 atomic % of at least one of W and Mo in solid solution relative to the total amount of metal elements in the compound phase.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相とからなり、
前記化合物相を8~95体積%含有し、前記結合相を2.0体積%以下含有することを特徴とする焼結合金。
A solid solution phase is formed of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) and at least one of C and N, and the solid solution phase is composed of a compound phase having an NaCl type structure of 80 volume % or more, a binder phase selected from at least one of Ni, Co and Fe, and a WC phase;
A sintered alloy containing 8 to 95 volume % of said compound phase and 2.0 volume % or less of said binder phase.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相とからなり、
前記化合物相を8~95体積%含有し、前記結合相を2.0体積%以下含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする焼結合金。
A solid solution phase is formed of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) , at least one of W and Mo, and at least one of C and N, and the solid solution phase is composed of 80 volume % or more of a compound phase having a NaCl type structure, a binder phase selected from at least one of Ni, Co and Fe, and a WC phase;
The compound phase is contained in an amount of 8 to 95% by volume, and the binder phase is contained in an amount of 2.0% by volume or less,
The sintered alloy is characterized in that the compound phase contains 0.1 to 45 atomic % of at least one of W and Mo in solid solution relative to the total amount of metal elements in the compound phase.
WC相と、Cr3C2相とからなり、
前記Cr3C2相を10~50体積%含有することを特徴とする焼結合金。
It consists of WC phase and Cr3C2 phase ,
A sintered alloy containing 10 to 50 volume % of the Cr 3 C 2 phase.
WC相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、Cr3C2相とからなり、
前記Cr3C2相を10~50体積%含有し、前記結合相を2.0体積%以下含有することを特徴とする焼結合金。
It is composed of a WC phase, a binder phase consisting of at least one of Ni, Co, and Fe, and a Cr3C2 phase ,
A sintered alloy comprising said Cr 3 C 2 phase in an amount of 10 to 50 volume % and said binder phase in an amount of 2.0 volume % or less.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、WC相と、Cr3C2相とからなることを特徴とする焼結合金。 A sintered alloy characterized in that it forms a solid solution phase consisting of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) and at least one of C and N, and in that 80 volume % or more of the sintered alloy is composed of a compound phase having a NaCl type structure, a WC phase, and a Cr3C2 phase . Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、WC相と、Cr3C2相とからなり、
前記化合物相を10~90体積%含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする焼結合金。
A solid solution phase is formed consisting of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) , at least one of W and Mo, and at least one of C and N, and 80 volume % or more of the solid solution phase is composed of a compound phase having a NaCl type structure, a WC phase, and a Cr3C2 phase ;
The compound phase is contained in an amount of 10 to 90% by volume,
The sintered alloy is characterized in that the compound phase contains 0.1 to 45 atomic % of at least one of W and Mo in solid solution relative to the total amount of metal elements in the compound phase.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相と、Cr3C2相とからなり、
前記化合物相を10~90体積%含有し、
前記結合相を2.0体積%以下含有することを特徴とする焼結合金。
A solid solution phase is formed consisting of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) and at least one of C and N, and the solid solution phase is composed of a compound phase having a NaCl type structure of which 80 volume % or more, a binder phase consisting of at least one of Ni, Co and Fe, a WC phase, and a Cr3C2 phase;
The compound phase is contained in an amount of 10 to 90% by volume,
A sintered alloy comprising the binder phase in an amount of 2.0 volume % or less.
Ti,Ta,Nb及びVのうち少なくとも1種の金属元素(ただし、Ta又はNbを必須元素として含むか、Ti,Ta及びNbのうち少なくとも1種にVをさらに含む。)と、W及びMoのうち少なくとも1種と、C及びNのうち少なくとも1種とからなる固溶相を形成し、80体積%以上のものがNaCl型構造を有する化合物相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、WC相と、Cr3C2相とからなり、
前記化合物相を10~90体積%含有し、前記結合相を2.0体積%以下含有し、
前記化合物相には、前記化合物相の金属元素の総量に対してW及びMoのうち少なくとも1種が0.1~45原子%固溶していることを特徴とする焼結合金。
A solid solution phase is formed consisting of at least one metal element selected from Ti, Ta, Nb and V (wherein Ta or Nb is contained as an essential element, or at least one of Ti, Ta and Nb further contains V) , at least one of W and Mo, and at least one of C and N, and the solid solution phase is composed of 80 volume % or more of a compound phase having a NaCl type structure, a binder phase consisting of at least one of Ni, Co and Fe, a WC phase, and a Cr3C2 phase ;
The compound phase is contained in an amount of 10 to 90% by volume, and the binder phase is contained in an amount of 2.0% by volume or less,
The sintered alloy is characterized in that the compound phase contains 0.1 to 45 atomic % of at least one of W and Mo in solid solution relative to the total amount of metal elements in the compound phase.
前記化合物相を10~90体積%含有することを特徴とする請求項に記載の焼結合金。 10. The sintered alloy according to claim 9, characterized in that the compound phase is contained in an amount of 10 to 90% by volume. 前記WC相の含有量に対する前記Cr3C2相の含有量の体積比が0.125~8であることを特徴とする請求項9~12のいずれかに記載の焼結合金。 13. The sintered alloy according to claim 9, wherein the volume ratio of the content of said Cr 3 C 2 phase to the content of said WC phase is 0.125-8. 前記WC相の粒度が0.1~2.5μmであることを特徴とする請求項7~12のいずれかに記載の焼結合金。 A sintered alloy according to any one of claims 7 to 12, characterized in that the grain size of the WC phase is 0.1 to 2.5 μm. 請求項1~12のいずれかの焼結合金からなる金型。 A mold made of the sintered alloy of any one of claims 1 to 12. WC相と、CrWC phase and Cr 33 CC 22 相とからなり、It consists of phases,
前記CrThe Cr 33 CC 22 相を10~90体積%(ただし、65~90体積%を除く。)含有する焼結合金からなることを特徴とする加熱成形用金型。A hot forming die comprising a sintered alloy containing 10 to 90 volume % (but excluding 65 to 90 volume %) of a sintered phase.
WC相と、Ni、Co及びFeのうち少なくとも1種からなる結合相と、CrA WC phase, a binder phase consisting of at least one of Ni, Co, and Fe, and Cr 33 CC 22 相とからなり、It consists of phases,
前記CrThe Cr 33 CC 22 相を10~90体積%(ただし、65~90体積%を除く。)含有し、前記結合相を2.0体積%以下含有する焼結合金からなることを特徴とする加熱成形用金型。1. A hot-molding die comprising a sintered alloy containing 10 to 90 volume % (but excluding 65 to 90 volume %) of a binder phase and 2.0 volume % or less of said binder phase.
JP2024525554A 2024-04-25 2024-04-25 Sintered alloys and dies Active JP7618329B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024016345 2024-04-25

Publications (1)

Publication Number Publication Date
JP7618329B1 true JP7618329B1 (en) 2025-01-21

Family

ID=94279139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024525554A Active JP7618329B1 (en) 2024-04-25 2024-04-25 Sintered alloys and dies

Country Status (1)

Country Link
JP (1) JP7618329B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059460A (en) 2017-12-04 2018-05-22 株洲夏普高新材料有限公司 Hard alloy suitable for water knife sandpipe and preparation method thereof
CN110981488A (en) 2019-12-24 2020-04-10 有研工程技术研究院有限公司 Ultrahigh-hardness aspheric glass lens mold material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059460A (en) 2017-12-04 2018-05-22 株洲夏普高新材料有限公司 Hard alloy suitable for water knife sandpipe and preparation method thereof
CN110981488A (en) 2019-12-24 2020-04-10 有研工程技术研究院有限公司 Ultrahigh-hardness aspheric glass lens mold material and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
下平 高次郎,TiC-Cr3C2系固溶体及びTiC-Cr3C2-(Ni,Co)系サーメットの耐酸化性に関する研究,窯協,日本,1958年,Vol. 66,P. 83-88
仁野 章弘,超硬バインダーレスWCの粒成長支配因子の解明,様式C-19 科学研究費助成事業(科学研究費補助金)研究成果報告書,日本,2012年,P. 1-5,URL:<https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-22760553/22760553seika.pdf>
蜂須賀 武治,TiC-Cr3C2系複合セラミックスの焼結機構,粉体および粉末冶金,1990年08月,Vol. 37, No. 6,P. 861-868

Similar Documents

Publication Publication Date Title
JP4690475B2 (en) Cermet and coated cermet tools
EP3130685B1 (en) Cermet, method for producing cermet, and cutting tool
KR20120023179A (en) Cermet and coated cermet
WO2011136197A1 (en) Cermet and coated cermet
KR20170103626A (en) Cermet, cutting tool, and method for manufacturing cermet
JP2004292842A (en) Cermet
JP4703122B2 (en) Method for producing TiCN-based cermet
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP7618329B1 (en) Sintered alloys and dies
JP4069749B2 (en) Cutting tool for roughing
JP2006111947A (en) Ultra-fine particle of cermet
JP7351582B1 (en) Sintered alloy and mold
JPH0978174A (en) Titanium-based carbonitride cermet having high strength
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP7035820B2 (en) Base material and cutting tools
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP2006063416A (en) Chromium-containing hard metal and coated hard metal thereof
JP2004330314A (en) Coated cemented carbide tool
JP4540791B2 (en) Cermet for cutting tools
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP2003113438A (en) Die made from sintered hard metal alloy
JPH0813077A (en) Nitrogen-containing sintered hard alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240426

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241225

R150 Certificate of patent or registration of utility model

Ref document number: 7618329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150