[go: up one dir, main page]

JP7614505B2 - Method for discharging slag from a smelting furnace - Google Patents

Method for discharging slag from a smelting furnace Download PDF

Info

Publication number
JP7614505B2
JP7614505B2 JP2021088368A JP2021088368A JP7614505B2 JP 7614505 B2 JP7614505 B2 JP 7614505B2 JP 2021088368 A JP2021088368 A JP 2021088368A JP 2021088368 A JP2021088368 A JP 2021088368A JP 7614505 B2 JP7614505 B2 JP 7614505B2
Authority
JP
Japan
Prior art keywords
tilting
slag
degrees
tilt
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021088368A
Other languages
Japanese (ja)
Other versions
JP2022181428A (en
Inventor
紀史 浅原
充高 松尾
雄司 小川
憲一郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021088368A priority Critical patent/JP7614505B2/en
Publication of JP2022181428A publication Critical patent/JP2022181428A/en
Application granted granted Critical
Publication of JP7614505B2 publication Critical patent/JP7614505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

溶鉄を精錬炉に残したまま、精錬炉を傾動して溶鉄の上層にある溶融スラグを炉口から排出する精錬炉からのスラグ排出方法に関するものである。 This relates to a method of discharging slag from a refining furnace in which the molten slag on top of the molten iron is discharged from the furnace throat by tilting the furnace while leaving the molten iron in the furnace.

鉄鋼精錬において、精錬炉内に収容した溶鉄の上層に溶融スラグを形成し、溶鉄中に含まれる不純物を溶融スラグに移動することによって精錬が行われる。精錬炉として転炉を用いる場合、炉頂部に炉口を有し、炉側部に出鋼口を有し、精錬炉全体が傾動する。精錬に先立って炉口から溶鉄とスラグ原料を装入し、精錬を行い、精錬終了後は炉を傾動させて出鋼口から溶鋼のみを出鋼し、その後反対側に傾動して炉口から溶融スラグを排出する。 In steel refining, molten slag is formed on top of the molten iron contained in a refining furnace, and impurities contained in the molten iron are transferred to the molten slag. When a converter is used as the refining furnace, it has a furnace mouth at the top and a tapping port on the side, and the entire refining furnace is tilted. Prior to refining, molten iron and slag raw materials are charged through the furnace mouth and refining is carried out. After refining is complete, the furnace is tilted to tap only the molten steel from the tapping port, and then it is tilted to the other side to discharge the molten slag from the furnace mouth.

近年、転炉を用いた鉄鋼精錬において、同一の転炉内において脱りん精錬と脱炭精錬とを分割する方法が広く用いられている。転炉内に溶銑を装入し、脱りん用のスラグを形成して脱りん精錬を行い、脱りん精錬終了後に転炉を出鋼口と反対側に傾動して炉口から脱りんスラグのみを炉外に排出し、その後同じ転炉で脱炭精錬を行うものである。脱炭精錬終了後は炉を傾動させて出鋼口から溶鋼のみを出鋼し、その後反対側に傾動して炉口から脱炭スラグを排出する。 In recent years, in steel refining using converters, a method has been widely used in which dephosphorization and decarburization are performed separately within the same converter. Molten iron is charged into the converter, dephosphorization slag is formed and dephosphorization is performed, and after dephosphorization is completed, the converter is tilted to the side opposite the tap hole and only the dephosphorization slag is discharged from the throat, and then decarburization is performed in the same converter. After decarburization is completed, the furnace is tilted to tap only molten steel from the tap hole, and then it is tilted to the opposite side and the decarburization slag is discharged from the throat.

精錬炉を傾動して炉口から脱りんスラグを排出するに際し、排出後も脱りんスラグが炉内に残存すると、脱りんスラグ中に移動したりん分が続く脱炭精錬において溶鉄中に戻り、トータルとしての脱りん精錬を十分に行うことができなくなる。一方、スラグ排出時に炉内残存スラグを低減しようとすると、スラグとともに溶鉄も炉口から排出されることとなる。炉口から排出した排出スラグは、精錬炉の下方に待機する排滓鍋に受滓する。このとき、スラグとともに溶鉄が排出されると、排滓鍋中でスラグと溶鉄が反応してガスが発生し、スラグがフォーミングする。溶鉄流出が軽微であれば、スラグのフォーミングを抑える効果を持つスラグ鎮静剤を排滓鍋中に投入することでスラグ排出作業を継続できる。しかし、溶鉄流出が過大に生じると、スラグが排滓鍋からあふれ出し、設備損傷やその対応に伴う生産性の悪化を招く。そもそも、スラグ排出に伴って溶鉄が排出されると、精錬における鉄歩留りを悪化させることとなる。 When the refining furnace is tilted to discharge the dephosphorization slag from the throat, if the dephosphorization slag remains in the furnace after it has been discharged, the phosphorus that migrated into the dephosphorization slag will return to the molten iron during the continuing decarburization refining, and the overall dephosphorization refining process will not be sufficient. On the other hand, if an attempt is made to reduce the amount of slag remaining in the furnace when the slag is discharged, the molten iron will also be discharged from the throat along with the slag. The discharged slag discharged from the throat is collected in a slag ladle waiting below the refining furnace. When the molten iron is discharged together with the slag, the slag and the molten iron react in the slag ladle to generate gas, which causes the slag to foam. If the outflow of molten iron is minor, the slag discharge operation can be continued by adding a slag sedative to the slag ladle, which has the effect of suppressing slag foaming. However, if the outflow of molten iron is excessive, the slag will overflow from the slag ladle, causing equipment damage and the associated deterioration in productivity. In the first place, if molten iron is discharged when slag is discharged, it will reduce the iron yield during refining.

特許文献1、2においては、精錬炉を傾動して炉口からスラグを排出する際、精錬炉の傾動角度に応じて傾動速度を変更し、スラグ排出の後半で傾動速度を小さくし、あるいはスラグ排出にかける時間を前半より後半に多く確保することにより、スラグ排出時の溶鉄排出量を最小限に抑えつつ、また迅速な排出を可能にしつつ、スラグ排出率を増大するとしている。 In Patent Documents 1 and 2, when tilting a refining furnace to discharge slag from the furnace mouth, the tilting speed is changed according to the tilting angle of the refining furnace, and the tilting speed is slowed in the latter half of the slag discharge, or the time spent discharging the slag is increased in the latter half of the slag discharge compared to the first half, thereby minimizing the amount of molten iron discharged when discharging the slag, enabling rapid discharge, and increasing the slag discharge rate.

特開2007-077481号公報JP 2007-077481 A 特開2005-264210号公報JP 2005-264210 A

従来のスラグ排出方法を用いた場合、スラグ排出の末期において、まだスラグ排出は続いているにもかかわらず、スラグとともに溶鉄も流出するようになる。精錬炉内スラグ残存量を極力少なくしようとすると、溶鉄流出量が過大となる。
特許文献1、2ではスラグ流によって溶鉄が随伴されて流出することを抑制する方法が提案されている。しかし特許文献1、2に記載の方法を適用しても改善には限界があった。
When using a conventional slag discharge method, molten iron flows out together with the slag at the final stage of slag discharge, even though the slag discharge is still continuing. If an attempt is made to minimize the amount of slag remaining in the refining furnace, the amount of molten iron that flows out becomes excessive.
Patent Documents 1 and 2 propose methods for suppressing the outflow of molten iron entrained by the slag flow. However, even if the methods described in Patent Documents 1 and 2 are applied, there is a limit to the improvement.

本発明は、溶鉄を精錬炉に残したまま、精錬炉を傾動して溶鉄の上層にある溶融スラグを炉口から排出する精錬炉からのスラグ排出方法において、精錬炉からのスラグ排出量を維持しつつ、溶鉄流出量を抑制することを課題とする。 The present invention aims to suppress the amount of molten iron flowing out while maintaining the amount of slag discharged from the refining furnace in a method for discharging slag from a refining furnace in which the molten slag in the upper layer of the molten iron is discharged from the furnace throat by tilting the refining furnace while leaving the molten iron in the furnace.

精錬炉を傾動させて炉口からスラグを排出する際の精錬炉内の流体の挙動について、数値モデル実験を行った。その結果、傾動を行っている際の精錬炉内の流体表面には表面波が発生しており、溶鉄に生じた波の影響によってスラグ流とは無関係に溶鉄が流出しうることを知見した。そして、精錬炉の傾動パターンについて、少なくとも1回の「傾動停止-傾動-傾動停止」のパターンを設け、当該「傾動」における傾動角度変化を1.5度以下とし、その後の「傾動停止」における停止時間を2秒以上とすることにより、精錬炉内流体表面の表面波の波高さを軽減できるとともに、溶鉄流出量を低減できることがわかった。 A numerical model experiment was conducted on the behavior of the fluid inside a refining furnace when the furnace is tilted to discharge slag from the furnace throat. As a result, it was found that surface waves are generated on the surface of the fluid inside the refining furnace during tilting, and that the molten iron can flow out regardless of the slag flow due to the influence of the waves generated in the molten iron. It was also found that the height of the surface waves on the surface of the fluid inside the refining furnace can be reduced and the amount of molten iron flowing out can be reduced by setting the tilting pattern of the refining furnace to at least one "tilt stop - tilt - tilt stop" pattern, setting the tilt angle change in this "tilt" to 1.5 degrees or less, and setting the stop time in the subsequent "tilt stop" to 2 seconds or more.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)溶鉄を精錬炉に残したまま、精錬炉を傾動して溶鉄の上層にある溶融スラグを炉口から排出するスラグ排出方法において、スラグ排出中に停止時間が0.5秒以上の傾動停止を2回以上実行し、スラグ排出停止までの区間の一部又は全部において、特定傾動制御として、1の前記傾動停止と次の前記傾動停止の間の傾動角度変化を1.5度以下とし、かつ、上記1.5度以下の傾動角度変化後の傾動停止時間を2秒以上とする傾動制御を行うことを特徴とする精錬炉からのスラグ排出方法。
(2)精錬炉の正立位置(炉口が真上を向いている位置)の傾動角度θ(度)を0度とし、スラグ排出時の最大傾動角度をθend(度)とし、傾動角度が下記(1)式で定まるθa(度)になる範囲で、前記特定傾動制御を行うことを特徴とする上記(1)に記載の精錬炉からのスラグ排出方法。
θa≦0.95θend…(1)
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
(1) A method for discharging slag from a refining furnace in which the molten slag in the upper layer of the molten iron is discharged from the throat by tilting the refining furnace while leaving the molten iron in the furnace, the method comprising the steps of: executing two or more tilting stops with a stop time of 0.5 seconds or more during the slag discharge; and performing specific tilting control in a part or all of the section until the slag discharge is stopped, in which the change in tilt angle between one tilting stop and the next tilting stop is 1.5 degrees or less, and the tilting stop time after the tilting angle change of 1.5 degrees or less is 2 seconds or more.
(2) The method for discharging slag from a refining furnace described in (1) above, characterized in that the tilt angle θ (degrees) of the upright position of the refining furnace (the position where the furnace mouth is facing straight up) is set to 0 degrees, the maximum tilt angle when discharging slag is set to θend (degrees), and the specific tilt control is performed within a range in which the tilt angle is θa (degrees) determined by the following formula (1).
θa≦0.95θend…(1)

本発明は、溶鉄を精錬炉に残したまま、精錬炉を傾動して溶鉄の上層にある溶融スラグを炉口から排出するスラグ排出方法において、スラグ排出中の精錬炉の傾動パターンについて、少なくとも1回の「傾動停止-傾動-傾動停止」のパターンを設け、当該「傾動」における傾動角度変化を1.5度以下とし、その後の「傾動停止」における停止時間を2秒以上とすることにより、精錬炉内流体表面の表面波の波高さを軽減できるとともに、スラグ排出時における溶鉄流出量を低減できる。 In this invention, in a slag discharge method in which the molten slag on top of the molten iron is discharged from the throat by tilting the refining furnace while leaving the molten iron in the furnace, at least one "tilt stop - tilt - tilt stop" pattern is set for the tilt pattern of the refining furnace during slag discharge, the change in tilt angle during the "tilt" is set to 1.5 degrees or less, and the stop time during the subsequent "tilt stop" is set to 2 seconds or more, thereby reducing the wave height of the surface waves on the fluid surface in the refining furnace and reducing the amount of molten iron flowing out when the slag is discharged.

精錬炉の傾動状況を示す概略断面図であり、(A)は精錬時、(B)は傾動時の状態を示す。1A and 1B are schematic cross-sectional views showing the tilting state of a refining furnace, in which FIG. 1A shows the state during refining and FIG. スラグ排出中の炉内スラグ-メタル界面の波立ち状況を示す概念断面図である。FIG. 1 is a conceptual cross-sectional view showing the rippling state of the slag-metal interface in the furnace during slag discharge. 傾動時の時間(t)と傾動角度(θ)の関係を示す図であり、(A)は基本傾動パターン、(B)は図4に示す傾動パターンのうちのΔt=2秒、Δθ=1.5度の場合であり、(C)は図7の実施例に示す傾動パターンである。7A and 7B show the relationship between time (t) and tilt angle (θ) during tilting, where (A) is the basic tilting pattern, (B) is the tilting pattern shown in FIG. 4 where Δt S = 2 seconds and Δθ M = 1.5 degrees, and (C) is the tilting pattern shown in the embodiment of FIG. 7. スラグ排出時の傾動パターンのうち傾動停止時間Δtを変化させたときの、最大波高増幅度の状況を示す図である。FIG. 13 is a diagram showing the state of maximum wave height amplification when the tilting stop time ΔtS in the tilting pattern during slag discharge is changed. スラグ排出時の傾動パターンのうち1回あたり傾動角度Δθを変化させたときの、最大波高増幅度の状況を示す図である。FIG. 13 is a diagram showing the state of the maximum wave height amplification degree when the tilt angle Δθ M per tilting pattern during slag discharge is changed. スラグ排出時の炉内スラグ-溶鉄界面の波立ち状況を示す断面概念図であり、(A)はスラグ排出開始時(θini)、(B)は最大傾動角度(θend)を示す図である。1A and 1B are cross-sectional conceptual diagrams showing rippling at the slag-molten iron interface in the furnace when the slag is discharged, and FIG. 1B shows the maximum tilt angle (θend) at which the slag is started to be discharged. スラグ排出時の傾動パターンを変化させたときの溶鉄流出量指数を示す図である。FIG. 13 is a diagram showing the molten iron outflow index when the tilting pattern during slag discharge is changed.

溶鉄を精錬する精錬炉として350トン転炉をモデルとし、スラグ排出時の溶鉄と溶融スラグの流体挙動を、数値流体力学に基づく数値モデル実験により解析した。数値モデル実験には、汎用熱流体解析ソフトウェアであるアンシス・ジャパン(株)製のFLUENT(登録商標)を用いた。精錬炉内の流体は、気相と溶融スラグ相との界面、溶融スラグ相と溶鉄相との界面を有しているため、FLUENTが備える混相流モデルを適用し、これら界面で発生する表面波の挙動を明らかにした。 Using a 350-ton converter as a model of a refining furnace for refining molten iron, the fluid behavior of molten iron and molten slag when the slag is discharged was analyzed by a numerical model experiment based on computational fluid dynamics. For the numerical model experiment, FLUENT (registered trademark), a general-purpose thermal fluid analysis software made by ANSYS Japan, Inc., was used. Since the fluid inside the refining furnace has an interface between the gas phase and the molten slag phase, and an interface between the molten slag phase and the molten iron phase, the multiphase flow model provided by FLUENT was applied to clarify the behavior of the surface waves generated at these interfaces.

精錬炉内には、350トンの溶鉄と、脱りん精錬を終了した時点での脱りんスラグが収容されている。脱りんスラグはフォーミングにより嵩比重が真比重よりも小さい状況にある。 The refining furnace contains 350 tons of molten iron and dephosphorization slag at the end of dephosphorization refining. The bulk density of the dephosphorization slag is smaller than its true density due to foaming.

図1に示すように、精錬炉1は、回転軸3を中心に傾動する。図1(A)は精錬時、(B)は傾動時の状態を示す。ここでは、精錬炉をスラグ排出のための傾動方向6に傾動したときの傾動角度をθ(度)、傾動速度をω(度/秒)、傾動中の時間をt(秒)で表す。傾動速度を度/分で表示する場合はΩ(度/分)と表示する。精錬炉の正立位置(精錬時)(炉口2が真上を向いている位置)の傾動角度θ(度)を0度とし、図6(A)に示すようにスラグ5が炉口2から排出され始める傾動角度をθini(度)、図6(B)に示すようにスラグ排出時の最大傾動角度をθend(度)とする。 As shown in Figure 1, the refining furnace 1 tilts around the rotation axis 3. Figure 1 (A) shows the state during refining, and (B) shows the state during tilting. Here, the tilting angle when the refining furnace is tilted in the tilting direction 6 for discharging slag is represented as θ (degrees), the tilting speed is represented as ω (degrees/second), and the time during tilting is represented as t (seconds). When the tilting speed is represented in degrees/minutes, it is represented as Ω (degrees/minute). The tilting angle θ (degrees) of the refining furnace in the upright position (during refining) (position where the furnace throat 2 faces straight up) is 0 degrees, the tilting angle at which the slag 5 begins to be discharged from the furnace throat 2 as shown in Figure 6 (A) is θini (degrees), and the maximum tilting angle at which the slag is discharged as shown in Figure 6 (B) is θend (degrees).

精錬炉の傾動運動については、所定時間の停止と、所定時間・所定角度の傾動とを繰り返す運動パターンを行う。以下、停止は添え字S(Stop)、傾動は添え字M(Move)で表す。また、停止と傾動とを組み合わせた平均の傾動速度などを表す場合は、添え字A(Average)で表す。従って、精錬炉の傾動運動については、停止時間Δtと、傾動時間Δt中に傾動角度Δθだけ傾動を行う繰り返しパターンとなる。Δt中の傾動速度(度/分)をωとする。平均傾動速度ω
ω=Δθ/(Δt+Δt)=Δt・ω/(Δt+Δt
となる。
The tilting movement of the refining furnace is a motion pattern that repeats a stop for a predetermined time and a tilt for a predetermined time and angle. Hereinafter, stop is represented by the subscript S (Stop) and tilt is represented by the subscript M (Move). Furthermore, when expressing the average tilting speed combining stop and tilt, it is represented by the subscript A (Average). Therefore, the tilting movement of the refining furnace is a repeating pattern of a stop time ΔtS and tilting by a tilt angle ΔθM during a tilting time ΔtM . The tilting speed (degrees/minute) during ΔtM is ωM . The average tilting speed ωA is ωA = ΔθM / ( ΔtS + ΔtM ) = ΔtMωM / ( ΔtS + ΔtM )
It becomes.

数値計算において、基本傾動パターンとして、図3(A)に示すように、Δt=0.5秒、Δt=1.0秒、ω=1度/秒を順次繰り返すパターンを用いた。この基本傾動パターンにおいて、平均傾動速度は、
ω=1/1.5=0.67度/秒(Ω=40度/分)
となる。
In the numerical calculation, as the basic tilt pattern, a pattern in which Δt S =0.5 seconds, Δt M =1.0 seconds, and ω M =1 degree/second are repeated in sequence, as shown in FIG. 3A. In this basic tilt pattern, the average tilt speed is
ω A = 1/1.5 = 0.67 degrees/second (Ω A = 40 degrees/minute)
It becomes.

次に、スラグ排出処理において精錬炉1を傾動させ、図6(A)に示すようにスラグ5が炉口2から排出され始める傾動角度θiniから、図6(B)に示すようにスラグ排出時の最大傾動角度θendに至るまでの傾動パターンを種々変化させて数値モデル実験を行い、θiniからθendまでの時間経過中において、溶鉄4とスラグ5が収容された精錬炉1内の溶融スラグ相-溶鉄相界面に発生する表面波に着目し、表面波の波高Hを抽出した(図2参照)。表面波は炉内で定在波の山部が1~5個程度存在したが、定在波の1周期の間で最大波高を形成する時点における波高を波高Hとした。θiniからθendまでについても、傾動パターンとしては、傾動停止と傾動との繰り返しを行う。そして、θini以降の繰り返し回数を添え字nで表示する。θini以降の最初の繰り返しを添え字1とする。繰り返しn回目における表面波の波高をHと表示する。そして、傾動パターンの繰り返し1回あたりの波高Hの増大比率を「H/Hn-1」で表す。θiniからθendまでにおける「H/Hn-1」の最大値を抽出し、「最大波高増幅度」と呼ぶ。この最大波高増幅度が小さくなるほど、精錬炉内における表面波を抑制しえる傾動パターンであると評価することとした。 Next, the refining furnace 1 was tilted in the slag discharge process, and a numerical model experiment was performed by changing the tilting pattern from the tilting angle θini at which the slag 5 starts to be discharged from the throat 2 as shown in FIG. 6(A) to the maximum tilting angle θend at the time of slag discharge as shown in FIG. 6(B). During the time lapse from θini to θend, attention was paid to the surface waves generated at the interface between the molten slag phase and the molten iron phase in the refining furnace 1 containing the molten iron 4 and the slag 5, and the wave height H of the surface waves was extracted (see FIG. 2). The surface waves had about 1 to 5 standing wave crests in the furnace, and the wave height at the time when the maximum wave height was formed during one period of the standing wave was taken as the wave height H. From θini to θend, the tilting pattern also involved repeated tilting stops and tilting. The number of repetitions after θini is indicated by the subscript n. The first repetition after θini is indicated by the subscript 1. The wave height of the surface waves at the nth repetition is indicated as H n . The increase ratio of the wave height H per repetition of the tilting pattern is expressed as "H n /H n-1 ". The maximum value of "H n /H n-1 " from θini to θend is extracted and called the "maximum wave height amplification degree." The smaller this maximum wave height amplification degree is, the more the tilting pattern is evaluated as being able to suppress surface waves in the refining furnace.

いずれのパターンにおいても、θ=0からθiniまでの間の傾動パターンとしては、上記基本傾動パターンを用いた。なお、数値モデル実験において、いずれも、θini=55度、θend=85度である。 In both patterns, the basic tilt pattern described above was used as the tilt pattern between θ = 0 and θini. In the numerical model experiments, θini = 55 degrees and θend = 85 degrees.

まず、θiniからθendまでの時間経過中の傾動パターンを種々設定し、各々の傾動パターンにおいて、Δtを0.5秒から20秒までの間のいずれか一定値を採用し、最大波高増幅度を評価した。なお、いずれのパターンにおいても、ω=1.0度/秒一定とし、また1回あたりの傾動角度Δθは0.2度と1.5度の2水準で計算を行うこととした。図3(B)には、Δt=2秒、Δθ=1.5度の場合の傾動パターンを示している。 First, various tilt patterns were set during the time lapse from θini to θend, and for each tilt pattern, a constant value of ΔtS between 0.5 and 20 seconds was adopted to evaluate the maximum wave height amplification. Note that for each pattern, ωM was set constant at 1.0 degree/second, and the calculation was performed with two levels of tilt angle ΔθM per time, 0.2 degrees and 1.5 degrees. Figure 3(B) shows the tilt patterns for ΔtS = 2 seconds and ΔθM = 1.5 degrees.

結果を図4に示す。横軸がΔt、縦軸が最大波高増幅度である。Δθ=0.2度と1.5度のいずれにおいても、Δt=2秒の前後で最大波高増幅度が大きく変化し、Δtが2秒未満であると最大波高増幅度が1より大きくなり、精錬炉内において表面波が増幅する傾向が見られるのに対し、Δtが2秒以上であればいずれも最大波高増幅度が1より小さく、即ちθini時に炉内に表面波が発生していたとしても、その後継続して表面波の波高は減衰していくことを示している。 The results are shown in Figure 4. The horizontal axis is Δt S and the vertical axis is the maximum wave height amplification. In both cases where Δθ M = 0.2 degrees and 1.5 degrees, the maximum wave height amplification changes significantly before and after Δt S = 2 seconds, and when Δt S is less than 2 seconds, the maximum wave height amplification is greater than 1, indicating a tendency for surface waves to be amplified in the refining furnace, whereas when Δt S is 2 seconds or more, the maximum wave height amplification is less than 1 in all cases, which indicates that even if surface waves are generated in the furnace at θini, the wave height of the surface waves continues to attenuate thereafter.

ここで図4において、Δt=2秒、Δθ=1.5度のデータ(「高速パターン1」という。)と、Δt=1秒、Δθ=0.2度のデータ(「低速パターン1」という。)の対比を行う。高速パターン1の平均傾動速度をω H1、低速パターン1の平均傾動速度をω L1と表す。高速パターン1においてΔt=1.5秒、低速パターン1においてΔt=0.2秒である。従って、
ω H1=1.5/(2+1.5)=0.43度/秒
ω L1=0.2/(1+0.2)=0.17度/秒
となる。即ち、低速パターン1は高速パターン1より平均傾動速度ωが2倍以上も遅いにもかかわらず、高速パターン1(Δt=2秒)では表面波が減衰し、低速パターン1(Δt=1秒)では表面波が増幅しているのである。
4, data where Δt S =2 seconds and Δθ M =1.5 degrees (called "high speed pattern 1") is compared with data where Δt S =1 second and Δθ M =0.2 degrees (called "low speed pattern 1"). The average tilt speed of high speed pattern 1 is represented as ω A H1 and the average tilt speed of low speed pattern 1 is represented as ω A L1 . In high speed pattern 1, Δt M =1.5 seconds, and in low speed pattern 1, Δt M =0.2 seconds. Therefore,
ω A H1 = 1.5/(2 + 1.5) = 0.43 deg/sec ω A L1 = 0.2/(1 + 0.2) = 0.17 deg/sec That is, even though the average tilt speed ω A of low speed pattern 1 is more than twice as slow as that of high speed pattern 1, the surface waves attenuate in high speed pattern 1 (Δt S = 2 seconds) and amplify in low speed pattern 1 (Δt S = 1 second).

以上の数値計算結果から、スラグ排出処理中の精錬炉の傾動パターンにおいて、傾動停止と傾動とを繰り返すに際し、傾動停止時間Δtを2秒以上とすることにより、平均傾動速度が速いにもかかわらず、精錬炉内に発生する表面波を減衰できることが判明した。なお、Δtが20秒を超えると、表面波の減衰効果は飽和する。従って、Δtを20秒超として保持することは、溶鉄流出防止に対して悪影響は与えないものの、操業時間の延長につながる。よって、Δtは20秒以下であることが望ましい。 From the above numerical calculation results, it was found that in the tilting pattern of the refining furnace during the slag discharge process, when the tilting stop and tilting are repeated, the surface waves generated in the refining furnace can be attenuated by setting the tilting stop time ΔtS to 2 seconds or more, even though the average tilting speed is fast. Note that when ΔtS exceeds 20 seconds, the effect of attenuating the surface waves is saturated. Therefore, maintaining ΔtS at more than 20 seconds does not have an adverse effect on preventing the outflow of molten iron, but leads to an extension of the operating time. Therefore, it is preferable that ΔtS is 20 seconds or less.

次に、θiniからθendまでの時間経過中の傾動パターンを種々設定し、各々の傾動パターンにおいて、Δθを0.1度から1.9度までの間のいずれか一定値を採用し、最大波高増幅度を評価した。なお、いずれのパターンにおいても、Δt=2秒で一定とした。また、それぞれのパターンにおいて、ωについては、ω=0.167、0.667、8度/秒(Ω=10、40、480度/分)の3種類それぞれで数値計算を行った。θ=0からθiniまでの間の傾動パターンとしては、前記基本傾動パターンを用いており、θini=55度、θend=85度である点は図4の場合と同じである。 Next, various tilt patterns were set over time from θini to θend, and for each tilt pattern, a constant value of ΔθM between 0.1 degrees and 1.9 degrees was adopted to evaluate the maximum wave height amplification. In each pattern, Δt S was set constant at 2 seconds. In addition, for each pattern, numerical calculations were performed for three types of ωM : ωM = 0.167, 0.667, and 8 degrees/second ( ΩM = 10, 40, and 480 degrees/minute). The basic tilt pattern was used as the tilt pattern between θ=0 and θini, and θini = 55 degrees and θend = 85 degrees, which is the same as in FIG. 4.

結果を図5に示す。横軸をΔθ、縦軸を最大波高増幅度とし、ω=0.167度/秒(△)、0.667度/秒(+)、8度/秒(●)でプロットを分けている。いずれのωの条件であっても、Δθ=1.5度の前後で最大波高増幅度が大きく変化し、Δθが1.5度超であると最大波高増幅度が1より大きくなり、精錬炉内において表面波が増幅する傾向が見られるのに対し、Δθが1.5度以下であればいずれも最大波高増幅度が1より小さく、即ちθini時に炉内に表面波が発生していたとしても、その後継続して表面波の波高は減衰していくことを示している。 The results are shown in Figure 5. The horizontal axis is Δθ M and the vertical axis is the maximum wave height amplification, with the plots divided into ω M = 0.167 degrees/second (△), 0.667 degrees/second (+), and 8 degrees/second (●). Regardless of the ω M condition, the maximum wave height amplification changes significantly around Δθ M = 1.5 degrees, and when Δθ M is over 1.5 degrees, the maximum wave height amplification is greater than 1, indicating a tendency for surface waves to be amplified in the refining furnace, whereas when Δθ M is 1.5 degrees or less, the maximum wave height amplification is less than 1 in all cases, which indicates that even if surface waves are generated in the furnace at θini, the wave height of the surface waves continues to attenuate thereafter.

ここで図5において、Δθ=1.5度、ω=8度/秒のデータ(「高速パターン2」という。)と、Δθ=1.7度、ω=0.167度/秒のデータ(「低速パターン2」という。)の対比を行う。高速パターン2の平均傾動速度をω H2、低速パターン2の平均傾動速度をω L2と表す。高速パターン2においてΔt=0.19秒、低速パターン2においてΔt=10.2秒である。従って、
ω H2=1.5/(2+0.19)=0.68度/秒
ω L2=1.7/(2+10.2)=0.14度/秒
となる。即ち、低速パターン2は高速パターン2より平均傾動速度ωが4倍以上も遅いにもかかわらず、高速パターン2(Δθ=1.5度)では表面波が減衰し、低速パターン2(Δθ=1.7度)では表面波が増幅しているのである。
5, data where Δθ M =1.5 degrees and ω M =8 degrees/second (called "high speed pattern 2") is compared with data where Δθ M =1.7 degrees and ω M =0.167 degrees/second (called "low speed pattern 2"). The average tilt speed of high speed pattern 2 is represented as ω A H2 and the average tilt speed of low speed pattern 2 is represented as ω A L2 . In high speed pattern 2, Δt M =0.19 seconds, and in low speed pattern 2, Δt M =10.2 seconds. Therefore,
ω A H2 = 1.5/(2 + 0.19) = 0.68 deg/sec ω A L2 = 1.7/(2 + 10.2) = 0.14 deg/sec That is, even though the average tilt speed ω A of the low speed pattern 2 is more than four times slower than that of the high speed pattern 2, the surface waves are attenuated in the high speed pattern 2 (Δθ M = 1.5 deg) and are amplified in the low speed pattern 2 (Δθ M = 1.7 deg).

以上の数値計算結果から、スラグ排出処理中の精錬炉の傾動パターンにおいて、傾動停止と傾動とを繰り返すに際し、1回あたりの傾動角度Δθを1.5度以下とすることにより、平均傾動速度にかかわらず、精錬炉内に発生する表面波を減衰できることが判明した。なお、Δθが0.2度未満では最大波高増幅度の低減効果は飽和する。従って、Δθを0.2度未満とすることは、溶鉄流出抑制に対して悪影響は与えないものの、傾動回数の増加とスラグ排出中平均傾動速度の低下をきたし、操業時間の延長につながる。従って、Δθは0.2度以上であることが好ましい。 From the above numerical calculation results, it was found that in the tilting pattern of the refining furnace during the slag discharge process, when the tilting stop and tilting are repeated, the surface waves generated in the refining furnace can be attenuated regardless of the average tilting speed by setting the tilting angle Δθ M per tilt to 1.5 degrees or less. Note that when Δθ M is less than 0.2 degrees, the effect of reducing the maximum wave height amplification is saturated. Therefore, setting Δθ M to less than 0.2 degrees does not have an adverse effect on the suppression of molten iron outflow, but increases the number of tilts and decreases the average tilting speed during slag discharge, leading to an extension of the operating time. Therefore, it is preferable that Δθ M is 0.2 degrees or more.

図4に示す結果と図5に示す結果をまとめると、スラグ排出開始からスラグ排出停止までの区間において、傾動停止と傾動とを繰り返すに際し、1の傾動停止と次の傾動停止の間の傾動角度変化を1.5度以下とし、かつ、1.5度以下の傾動角度変化後の傾動停止時間を2秒以上とすることにより、精錬炉内のスラグメタル表面に発生する表面波を抑制し、それに伴ってスラグ排出中における溶鉄の流出量を抑制できる可能性が示唆された。 Summarizing the results shown in Figure 4 and Figure 5, when tilting and stopping are repeated in the section from the start of slag discharge to the stop of slag discharge, by setting the change in tilt angle between one tilt stop and the next tilt stop to 1.5 degrees or less, and setting the tilt stop time after a tilt angle change of 1.5 degrees or less to 2 seconds or more, it is possible to suppress the surface waves generated on the slag metal surface in the refining furnace, and therefore to suppress the amount of molten iron flowing out during slag discharge.

そこで次に、精錬炉を直立させたθ=0の状態から、θiniを経てθendに至るまでの傾動パターンとして前記基本傾動パターン(Δt=0.5秒、Δt=1.0秒、ω=1度/秒を順次繰り返すパターン)を適用し、その中で、θiniからθendまでの間に1回だけ、傾動角度変化を1.5度以下とし、かつ、1.5度以下の傾動角度変化後の傾動停止時間を2秒以上とするパターンを適用することにより、精錬炉からの溶鉄流出量にどのような効果を及ぼすかについて、前記と同じ数値モデル実験を行った。なお、数値モデル実験の前提条件は、θini=55度、θend=85度である点を含め、前記数値モデル実験と同じである。 Next, the basic tilting pattern (a pattern in which Δt S =0.5 sec, Δt M =1.0 sec, ω M =1 degree/sec are repeated in sequence) was applied as the tilting pattern from the upright state of the refining furnace at θ=0 through θini to θend, and a pattern was applied in which the tilt angle was changed to 1.5 degrees or less only once between θini and θend, and the tilting stop time after the tilt angle change of 1.5 degrees or less was set to 2 seconds or more, to examine the effect on the amount of molten iron outflowing from the refining furnace. Note that the preconditions for the numerical model experiment were the same as those for the numerical model experiment, including that θini=55 degrees and θend=85 degrees.

比較例1は、θ=0からθendに至るまでの全傾動期間において、基本傾動パターン(Δt=0.5秒、Δt=1.0秒、ω=1度/秒を順次繰り返すパターン)を適用した。平均傾動速度ω=0.67度/秒(Ω=40度/分)である。 In Comparative Example 1, the basic tilt pattern (Δt S =0.5 sec, Δt M =1.0 sec, ω M =1 deg/sec repeated in sequence) was applied throughout the entire tilt period from θ=0 to θend. The average tilt speed ω A =0.67 deg/sec (Ω A =40 deg/min).

次に、実施例1~4においては、図3(C)に示すように、上記比較例1の傾動パターン(基本傾動パターン)をベースとし、θiniからθendまでの間に繰り返し1区間だけ、基本傾動パターンと異なるパターン(「特定傾動パターン」という。)を挿入する傾動制御を実施した。即ち、基本傾動パターンの所定の傾動角度θaにおけるΔt=0.5秒のあとに特定傾動パターンを挿入する。ω=1.5度/秒でΔt=1秒の傾動を行ってΔθ=1.5度とし、その直後の傾動停止においてΔt=2秒の停止を行って特定傾動パターンとした。その後はω=0.5度/秒の傾動をΔt=1秒行い、次いで基本傾動パターンに戻ることとした。実施例1~4は、上記特定傾動パターンを挿入するタイミング(傾動角度θa)について以下のように定めた。
実施例1:θa=55度、θa/θend=0.647
実施例2:θa=79度、θa/θend=0.929
実施例3:θa=80.5度、θa/θend=0.947
実施例4:θa=81.5度、θa/θend=0.958
Next, in Examples 1 to 4, as shown in FIG. 3C, tilt control was performed in which a pattern different from the basic tilt pattern (referred to as a "specific tilt pattern") was inserted repeatedly for only one section between θini and θend, based on the tilt pattern (basic tilt pattern) of Comparative Example 1. That is, the specific tilt pattern was inserted after Δt S =0.5 seconds at a predetermined tilt angle θa of the basic tilt pattern. A tilt of Δt M =1 second at ω M =1.5 degrees/second was performed to set Δθ M =1.5 degrees, and a stop of Δt S =2 seconds was performed immediately after that to set the specific tilt pattern. After that, a tilt of ω M =0.5 degrees/second was performed for Δt M =1 second, and then the tilt pattern was returned to the basic tilt pattern. In Examples 1 to 4, the timing of inserting the specific tilt pattern (tilt angle θa) was determined as follows.
Example 1: θa = 55 degrees, θa/θend = 0.647
Example 2: θa = 79 degrees, θa/θend = 0.929
Example 3: θa = 80.5 degrees, θa/θend = 0.947
Example 4: θa = 81.5 degrees, θa/θend = 0.958

スラグ排出処理の末期、傾動角度がθendに到達したところで傾動を停止し、比較例1、実施例1~3は0.5秒間、実施例4は2秒間停止を継続した後、精錬炉を正立に戻した。そして、傾動開始から傾動終了までに転炉炉口から流出した溶鉄量の総計を求め、比較例1における溶鉄流出量を100として規格化し、実施例1~4の溶鉄流出量指数を計算して図7の縦軸とした。図7から明らかなように、実施例1~4のいずれも、比較例に比較して溶鉄流出量が減少していることが明らかである。
以上の実施例1~4の結果から、スラグ排出停止までの区間の一部又は全部において、特定傾動制御として、1の前記傾動停止と次の前記傾動停止の間の傾動角度変化を1.5度以下とし、かつ、上記1.5度以下の傾動角度変化後の傾動停止時間を2秒以上とする傾動制御を行うことにより、溶鉄流出量の減少が実現できることが明らかとなった。
At the end of the slag discharge process, when the tilting angle reached θend, tilting was stopped, and the stoppage was continued for 0.5 seconds in Comparative Example 1 and Examples 1 to 3, and for 2 seconds in Example 4, after which the refining furnace was returned to the upright position. The total amount of molten iron that flowed out from the converter throat from the start to the end of tilting was calculated, and the amount of molten iron that flowed out in Comparative Example 1 was normalized to 100, and the molten iron outflow amount index was calculated for Examples 1 to 4, which was plotted on the vertical axis of Fig. 7. As is clear from Fig. 7, the amount of molten iron outflow was reduced in all of Examples 1 to 4 compared to the Comparative Example.
From the results of Examples 1 to 4 described above, it has become clear that the amount of molten iron outflow can be reduced by performing specific tilting control in a part or all of the section until the slag discharge is stopped, in which the change in tilt angle between one tilting stop and the next tilting stop is set to 1.5 degrees or less, and the tilting stop time after the tilting angle change of 1.5 degrees or less is set to 2 seconds or more.

即ち、本発明で規定するように、溶鉄を精錬炉に残したまま、精錬炉を傾動して溶鉄の上層にある溶融スラグを炉口から排出するスラグ排出方法において、スラグ排出中に停止時間が0.5秒以上の傾動停止を2回以上実行し、スラグ排出開始からスラグ排出停止までの区間の一部又は全部において、特定傾動制御として、1の前記傾動停止と次の前記傾動停止の間の傾動角度変化を1.5度以下とし、かつ、上記1.5度以下の傾動角度変化後の傾動停止時間を2秒以上とする傾動制御を行うことにより、スラグ排出時の溶鉄流出量を低減することが可能となる。実施例1~4、比較例1いずれも、θendを同じ値としているので、スラグ排出が終了した時点で精錬炉内に残存するスラグ量は同一であった。 In other words, as specified in the present invention, in a slag discharge method in which the molten slag on top of the molten iron is discharged from the throat by tilting the refining furnace while leaving the molten iron in the furnace, the amount of molten iron that flows out during slag discharge can be reduced by performing two or more tilt stops with a stop time of 0.5 seconds or more during slag discharge, and performing specific tilt control in part or all of the section from the start of slag discharge to the stop of slag discharge, in which the change in tilt angle between one tilt stop and the next tilt stop is 1.5 degrees or less, and the tilt stop time after the tilt angle change of 1.5 degrees or less is 2 seconds or more. In all of Examples 1 to 4 and Comparative Example 1, θend is set to the same value, so the amount of slag remaining in the refining furnace at the time slag discharge was completed was the same.

なお、上記実施例1~4のパターンは、本発明のうち、スラグ排出開始からスラグ排出停止までの区間の一部において特定傾動制御を適用した事例である。それに対して、図4におけるΔt≦2秒のプロット、図5におけるΔθ≦1.5度のプロットは、スラグ排出開始からスラグ排出停止までの区間の全部において特定傾動制御を適用した事例である。 The patterns of Examples 1 to 4 above are examples of the present invention in which the specific tilt control is applied to a part of the section from the start of slag discharge to the end of slag discharge, whereas the plot of Δt S ≦2 seconds in Fig. 4 and the plot of Δθ M ≦1.5 degrees in Fig. 5 are examples in which the specific tilt control is applied to the entire section from the start of slag discharge to the end of slag discharge.

また、実施例1~4を比較すると、θa/θend>0.95の実施例4に比較して、特定傾動制御の実施時期を調整してθa/θend≦0.95とすることにより、スラグ排出時の溶鉄流出量をより一層低減できることがわかる。即ち、本発明で規定するように、精錬炉の正立位置(炉口が真上を向いている位置)の傾動角度θ(度)を0度とし、スラグ排出時の最大傾動角度をθend(度)とし、傾動角度が下記(1)式で定まるθa(度)になる範囲で、前記特定傾動制御を行うこととすると好ましい。
θa≦0.95θend…(1)
In addition, comparing Examples 1 to 4, it is found that, compared to Example 4 in which θa/θend>0.95, the amount of molten iron flowing out during slag discharge can be further reduced by adjusting the timing of the specific tilting control to θa/θend≦0.95. That is, as specified in the present invention, it is preferable to set the tilting angle θ (degrees) of the upright position of the refining furnace (the position where the furnace mouth faces straight up) to 0 degrees, set the maximum tilting angle during slag discharge to θend (degrees), and perform the specific tilting control within a range in which the tilting angle is θa (degrees) determined by the following formula (1).
θa≦0.95θend…(1)

θaを算出するには、スラグ排出時の最大傾動角度θendの値が必要となる。θendは、炉内の耐火物プロフィールを事前に計測して求められる傾動時の炉内容積と炉内の溶鉄量から、準静的に傾動した場合に溶鉄が流出する傾動角度を予測できる。ただし、実際には溶鉄の波立ちの影響を受けるため、事前に傾動方法を変更した試験を行い、θendを決定しておくと良い。 To calculate θa, the value of the maximum tilting angle θend when discharging the slag is required. θend can be determined by measuring the refractory profile inside the furnace in advance to determine the furnace volume at the time of tilting and the amount of molten iron in the furnace, and it is possible to predict the tilting angle at which the molten iron will flow out when tilted quasi-statically. However, in practice this is affected by rippling of the molten iron, so it is a good idea to carry out tests in advance with different tilting methods to determine θend.

1 精錬炉
2 炉口
3 回転軸
4 溶鉄
5 スラグ
6 傾動方向
θ 傾動角度
θini スラグが炉口から排出され始める傾動角度
θend スラグ排出時の最大傾動角度
Δt 傾動停止時間
Δt 傾動時間
Δθ (1回あたり)傾動角度
ω 傾動速度(度/秒)
ω 平均傾動速度
Ω 傾動速度(度/分)
1 Refining furnace 2 Throat 3 Rotating shaft 4 Molten iron 5 Slag 6 Tilting direction θ Tilting angle θini Tilting angle at which slag starts to be discharged from the throat θend Maximum tilting angle when slag is discharged Δt S Tilting stop time Δt M Tilting time Δθ M Tilting angle (per time) ω Tilting speed (degrees/second)
ω A average tilting speed Ω Tilt speed (degrees/min)

Claims (2)

溶鉄を精錬炉に残したまま、精錬炉を傾動して溶鉄の上層にある溶融スラグを炉口から排出するスラグ排出方法において、スラグ排出中に停止時間が0.5秒以上の傾動停止を2回以上実行し、
スラグ排出停止までの区間の一部又は全部において、
特定傾動制御として、1の前記傾動停止と次の前記傾動停止の間の傾動角度変化を1.5度以下とし、かつ、上記1.5度以下の傾動角度変化後の傾動停止時間を2秒以上とする傾動制御
を行うことを特徴とする精錬炉からのスラグ排出方法。
In a slag discharge method in which a refining furnace is tilted while leaving molten iron in the furnace, and molten slag in an upper layer of the molten iron is discharged from a furnace throat, the method comprises: performing tilting stops with a stop time of 0.5 seconds or more two or more times during slag discharge;
In part or all of the section up to the stop of slag discharge,
The method for discharging slag from a refining furnace is characterized in that, as a specific tilting control, a tilting angle change between one tilting stop and the next tilting stop is set to 1.5 degrees or less, and the tilting stop time after the tilting angle change of 1.5 degrees or less is set to 2 seconds or more.
精錬炉の正立位置(炉口が真上を向いている位置)の傾動角度θ(度)を0度とし、スラグ排出時の最大傾動角度をθend(度)とし、傾動角度が下記(1)式で定まるθa(度)になる範囲で、前記特定傾動制御を行うことを特徴とする請求項1に記載の精錬炉からのスラグ排出方法。
θa≦0.95θend…(1)
The method for discharging slag from a refining furnace according to claim 1, characterized in that the tilt angle θ (degrees) of the refining furnace in the upright position (the position where the furnace mouth is facing straight up) is 0 degrees, the maximum tilt angle when discharging slag is θend (degrees), and the specific tilt control is performed within a range in which the tilt angle is θa (degrees) determined by the following formula (1).
θa≦0.95θend…(1)
JP2021088368A 2021-05-26 2021-05-26 Method for discharging slag from a smelting furnace Active JP7614505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021088368A JP7614505B2 (en) 2021-05-26 2021-05-26 Method for discharging slag from a smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088368A JP7614505B2 (en) 2021-05-26 2021-05-26 Method for discharging slag from a smelting furnace

Publications (2)

Publication Number Publication Date
JP2022181428A JP2022181428A (en) 2022-12-08
JP7614505B2 true JP7614505B2 (en) 2025-01-16

Family

ID=84329246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088368A Active JP7614505B2 (en) 2021-05-26 2021-05-26 Method for discharging slag from a smelting furnace

Country Status (1)

Country Link
JP (1) JP7614505B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264210A (en) 2004-03-17 2005-09-29 Nippon Steel Corp Converter discharge method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350109A (en) * 1991-05-28 1992-12-04 Nippon Steel Corp Method for removing slag
JPH1110318A (en) * 1997-06-24 1999-01-19 Hitachi Metals Ltd Method for restraining waving on liquid surface
JP4533293B2 (en) * 2005-09-16 2010-09-01 新日本製鐵株式会社 Converter discharge method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264210A (en) 2004-03-17 2005-09-29 Nippon Steel Corp Converter discharge method

Also Published As

Publication number Publication date
JP2022181428A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
CN101818231B (en) Control method for preventing splash during refining ferrochromium alloy with argon oxygen
JP5904237B2 (en) Melting method of high nitrogen steel
US4210442A (en) Argon in the basic oxygen process to control slopping
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP6945055B2 (en) Method of slag in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel
JP7614505B2 (en) Method for discharging slag from a smelting furnace
US4417723A (en) Tuyere for blowing gases into molten metal bath container
TWI805460B (en) Method for deoxidizing and refining molten steel, method for manufacturing steel and the steel
KR102454518B1 (en) Method for producing Ti-containing ultralow-carbon steel
FI67094B (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP ID PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
WO1998042879A1 (en) Pressure converter steel making method
JP2007077483A (en) Converter steelmaking
JP2012233220A (en) Method for producing rem-added steel
US6346212B1 (en) Converter
JP2002363636A (en) Method for refining molten steel in RH vacuum degasser
JP6293233B2 (en) Refining apparatus and refining method
GB2576026A (en) Manufacturing steel
JP6744600B1 (en) Method for producing Ti-containing ultra low carbon steel
JP6337681B2 (en) Vacuum refining method for molten steel
KR100225249B1 (en) Remaining slag control method of of slopping control
JP4025713B2 (en) Dephosphorization method of hot metal
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
JP7410393B2 (en) Hot metal pretreatment method and hot metal pretreatment lance
RU2125099C1 (en) Method of steel melting in converter
Isaev Improving the technology for the tundish refining of steel in order to elevate the quality of continuous-cast semifinished products and rolled plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241209

R150 Certificate of patent or registration of utility model

Ref document number: 7614505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150