JP7613054B2 - Silane-modified ethylene-based polymer composition for heat-shrinkable film, silane-crosslinked ethylene-based polymer composition, heat-shrinkable film, and method for producing heat-shrinkable film - Google Patents
Silane-modified ethylene-based polymer composition for heat-shrinkable film, silane-crosslinked ethylene-based polymer composition, heat-shrinkable film, and method for producing heat-shrinkable film Download PDFInfo
- Publication number
- JP7613054B2 JP7613054B2 JP2020182305A JP2020182305A JP7613054B2 JP 7613054 B2 JP7613054 B2 JP 7613054B2 JP 2020182305 A JP2020182305 A JP 2020182305A JP 2020182305 A JP2020182305 A JP 2020182305A JP 7613054 B2 JP7613054 B2 JP 7613054B2
- Authority
- JP
- Japan
- Prior art keywords
- silane
- heat
- polymer composition
- shrinkable film
- modified ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 152
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 title claims description 103
- 229920006257 Heat-shrinkable film Polymers 0.000 title claims description 76
- 229920000642 polymer Polymers 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title description 59
- 239000005977 Ethylene Substances 0.000 title description 59
- 229920000573 polyethylene Polymers 0.000 claims description 127
- 238000004132 cross linking Methods 0.000 claims description 51
- 239000003054 catalyst Substances 0.000 claims description 43
- 238000009833 condensation Methods 0.000 claims description 25
- 230000005494 condensation Effects 0.000 claims description 25
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 claims description 24
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 238000001125 extrusion Methods 0.000 claims description 10
- 238000004898 kneading Methods 0.000 claims description 9
- 238000011549 displacement method Methods 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 40
- -1 unsaturated silane compound Chemical class 0.000 description 25
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 239000004711 α-olefin Substances 0.000 description 24
- 229920001577 copolymer Polymers 0.000 description 21
- 238000000465 moulding Methods 0.000 description 17
- 229910000077 silane Inorganic materials 0.000 description 16
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 15
- 239000000047 product Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000004594 Masterbatch (MB) Substances 0.000 description 10
- 229920000092 linear low density polyethylene Polymers 0.000 description 9
- 238000004806 packaging method and process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 7
- 229920001519 homopolymer Polymers 0.000 description 7
- 239000004707 linear low-density polyethylene Substances 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- XQBCVRSTVUHIGH-UHFFFAOYSA-L [dodecanoyloxy(dioctyl)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCCCCCC)(CCCCCCCC)OC(=O)CCCCCCCCCCC XQBCVRSTVUHIGH-UHFFFAOYSA-L 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 229920001038 ethylene copolymer Polymers 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 125000005372 silanol group Chemical group 0.000 description 4
- 239000012974 tin catalyst Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- DFVOXRAAHOJJBN-UHFFFAOYSA-N 6-methylhept-1-ene Chemical compound CC(C)CCCC=C DFVOXRAAHOJJBN-UHFFFAOYSA-N 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- 229920003355 Novatec® Polymers 0.000 description 2
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001723 carbon free-radicals Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 2
- 238000010559 graft polymerization reaction Methods 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 1
- 229940106006 1-eicosene Drugs 0.000 description 1
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- NBJODVYWAQLZOC-UHFFFAOYSA-L [dibutyl(octanoyloxy)stannyl] octanoate Chemical compound CCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCC NBJODVYWAQLZOC-UHFFFAOYSA-L 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- GWOWVOYJLHSRJJ-UHFFFAOYSA-L cadmium stearate Chemical compound [Cd+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O GWOWVOYJLHSRJJ-UHFFFAOYSA-L 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000021156 lunch Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 235000021157 packed lunch Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002976 peresters Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920006302 stretch film Polymers 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
Description
本発明は、熱収縮性フィルム用シラン変性エチレン系重合体組成物、シラン架橋エチレン系重合体組成物、熱収縮性フィルム及び、熱収縮性フィルムの製造方法に関する。 The present invention relates to a silane-modified ethylene polymer composition for heat-shrinkable films, a silane-crosslinked ethylene polymer composition, a heat-shrinkable film, and a method for producing a heat-shrinkable film.
従来、熱収縮性の包装用フィルムとして電子線照射で架橋したエチレン系重合体よりなる多層フィルムが知られている。しかし、電子線照射での架橋は、専用の高価な設備を要し、かつ煩雑な工程が必要となる。そこで工程の簡便さから、シラン架橋されたフィルムの開発が行われおり、例えば、シラン架橋構造を有するオレフィン系樹脂を配合したフィルムが知られている(特許文献1参照)。 Conventionally, multilayer films made of ethylene-based polymers cross-linked by electron beam irradiation have been known as heat-shrinkable packaging films. However, cross-linking by electron beam irradiation requires expensive dedicated equipment and complicated processes. Therefore, silane-crosslinked films have been developed to simplify the process, and for example, a film containing an olefin-based resin with a silane-crosslinked structure is known (see Patent Document 1).
コンビニエンスストアやスーパー等の食品売り場に占める弁当や総菜は、ストレッチフィルムで包装されている。最近では、被包装物である弁当や総菜の種類、大きさ、形状が多種多様となり、この様な被包装物への対応のため、製袋工程では、自動包装機で製袋する際の余裕率(被包装物の大きさに対する製袋するフィルムの大きさの度合い)を大きくし、トンネル状の加熱装置を用いて加熱収縮させ、商品の形状に密着させて包装を行ったり、密封・整袋した後に製袋物内に含まれる空気を脱気するための小孔を付与したりする工夫がなされている。このような状況下、フィルムには、整袋工程での大きな余裕率に対応可能な高い熱収縮率と、包装中や輸送中に小孔や突起(折箱容器の角等)から破れることがない十分な強度に対する要求が高まっている。 Boxed lunches and prepared foods sold in the food sections of convenience stores and supermarkets are wrapped in stretch film. Recently, the types, sizes, and shapes of the packed lunches and prepared foods have become more diverse, and in order to accommodate this variety of packaged items, the bag-making process has been improved by increasing the margin (the ratio of the size of the film to the size of the packaged item) when making bags using automatic packaging machines, using a tunnel-shaped heating device to heat and shrink the film so that it adheres closely to the shape of the product, and providing small holes to allow the air contained in the bag to escape after it has been sealed and bagged. Under these circumstances, there is an increasing demand for films that have a high heat shrinkage rate that can accommodate the large margin in the bag-making process, and are strong enough not to tear from small holes or protrusions (such as the corners of folding boxes) during packaging or transportation.
しかしながら、特許文献1に記載のフィルムは、上記した要求に対して、熱収縮率と強度の面で十分なものではなかった。 However, the film described in Patent Document 1 was not sufficient in terms of heat shrinkage rate and strength to meet the above requirements.
本発明は、上記従来技術の問題を解決し、熱収縮率と強度に優れた熱収縮性フィルムを可能とする熱収縮性フィルム用シラン変性エチレン系重合体組成物、シラン架橋エチレン系重合体組成物、熱収縮性フィルム及び、熱収縮性フィルムの製造方法を提供することを目的とする。 The present invention aims to solve the problems of the conventional techniques described above and to provide a silane-modified ethylene polymer composition for heat-shrinkable films, a silane-crosslinked ethylene polymer composition, a heat-shrinkable film, and a method for producing a heat-shrinkable film, which enable the production of heat-shrinkable films with excellent heat shrinkage and strength.
本発明者は、前記課題を解決するために鋭意研究を行った結果、特定の密度のシラン変性エチレン系重合体組成物とすることで、熱収縮率と強度に優れた熱収縮性フィルムを得ることができることを見出し、本発明を完成するに至った。 As a result of intensive research conducted by the inventors to solve the above problems, they discovered that a heat-shrinkable film with excellent heat shrinkage and strength can be obtained by using a silane-modified ethylene polymer composition with a specific density, and thus completed the present invention.
即ち、本発明の要旨は以下のとおりである。 In other words, the gist of the present invention is as follows:
[1] 熱収縮性フィルム用シラン変性エチレン系重合体組成物であって、水中置換法で測定される密度が880kg/m3以上、905kg/m3以下である熱収縮性フィルム用シラン変性エチレン系重合体組成物。 [1] A silane-modified ethylene polymer composition for a heat-shrinkable film, the silane-modified ethylene polymer composition for a heat-shrinkable film having a density, as measured by an underwater displacement method, of 880 kg/m3 or more and 905 kg/m3 or less .
[2] 前記シラン変性エチレン系重合体組成物の変性前のエチレン系重合体組成物が2種以上の直鎖状低密度ポリエチレンを含む、[1]に記載の熱収縮性フィルム用シラン変性エチレン系重合体組成物。 [2] The silane-modified ethylene-based polymer composition for heat-shrinkable films described in [1], wherein the ethylene-based polymer composition before modification of the silane-modified ethylene-based polymer composition contains two or more types of linear low-density polyethylene.
[3] 190℃、2.16kgにおけるメルトフローレートが0.05g/10分以上、10g/10分以下である、[1]又は[2]に記載の熱収縮性フィルム用シラン変性エチレン系重合体組成物。 [3] The silane-modified ethylene polymer composition for heat-shrinkable films according to [1] or [2], which has a melt flow rate of 0.05 g/10 min or more and 10 g/10 min or less at 190°C and 2.16 kg.
[4] 示差走査熱量計(DSC)で測定される融解ピーク温度が110℃以上である、[1]~[3]のいずれかに記載の熱収縮性フィルム用シラン変性エチレン系重合体組成物。 [4] A silane-modified ethylene polymer composition for heat-shrinkable films according to any one of [1] to [3], which has a melting peak temperature of 110°C or higher as measured by a differential scanning calorimeter (DSC).
[5] [1]~[4]のいずれかに記載の熱収縮性フィルム用シラン変性エチレン系重合体組成物を架橋させた架橋体を含む、シラン架橋エチレン系重合体組成物。 [5] A silane-crosslinked ethylene-based polymer composition comprising a crosslinked product obtained by crosslinking the silane-modified ethylene-based polymer composition for heat-shrinkable films described in any one of [1] to [4].
[6] JIS K7113(1995)を参照して、3号形試験片を作製し、23℃、試験速度50mm/minで測定される成形流れ方向の引張破壊強さが15MPa以上である、[5]に記載のシラン架橋エチレン系重合体組成物。 [6] The silane-crosslinked ethylene polymer composition described in [5], in which a No. 3 test piece is prepared with reference to JIS K7113 (1995), and the tensile breaking strength in the molding flow direction measured at 23°C and a test speed of 50 mm/min is 15 MPa or more.
[7] [5]又は[6]に記載のシラン架橋エチレン系重合体組成物を用いた熱収縮性フィルム。 [7] A heat-shrinkable film using the silane-crosslinked ethylene polymer composition described in [5] or [6].
[8] 熱収縮性フィルムの製造方法であって、[1]~[4]のいずれかに記載の熱収縮性フィルム用シラン変性エチレン系重合体組成物を得る工程、該シラン変性エチレン系重合体組成物と架橋触媒を溶融混練した押出組成物を延伸して延伸フィルムを得る工程、及び、該延伸フィルムを架橋処理して熱収縮性フィルムを得る工程を有する熱収縮性フィルムの製造方法。 [8] A method for producing a heat shrinkable film, comprising the steps of obtaining a silane-modified ethylene-based polymer composition for a heat shrinkable film according to any one of [1] to [4], stretching an extrusion composition obtained by melt-kneading the silane-modified ethylene-based polymer composition and a crosslinking catalyst to obtain a stretched film, and crosslinking the stretched film to obtain a heat shrinkable film.
[9] 前記架橋触媒がシラノール縮合触媒である、[8]に記載の熱収縮性フィルムの製造方法。 [9] The method for producing a heat-shrinkable film according to [8], wherein the crosslinking catalyst is a silanol condensation catalyst.
本発明によれば、熱収縮率と強度に優れた熱収縮性フィルムを可能とする熱収縮性フィルム用シラン変性エチレン系重合体組成物、シラン架橋エチレン系重合体組成物、熱収縮性フィルム及び、熱収縮性フィルムの製造方法を提供することができる。
本発明の熱収縮性フィルム用シラン変性エチレン系重合体組成物は、従来熱収縮性フィルムが使用されている用途への展開が期待できる。
According to the present invention, it is possible to provide a silane-modified ethylene polymer composition for a heat-shrinkable film, which enables production of a heat-shrinkable film having excellent heat shrinkage and strength, a silane-crosslinked ethylene polymer composition, a heat-shrinkable film, and a method for producing the heat-shrinkable film.
The silane-modified ethylene polymer composition for heat shrinkable films of the present invention is expected to be applied to applications in which heat shrinkable films have conventionally been used.
以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
The present invention will be described in detail below, but the present invention is not limited to the following description, and can be modified in any manner without departing from the gist of the present invention.
In this specification, when an expression is used using "~" followed by a numerical value or physical property value, the values before and after the expression are included.
また、一般的に「フィルム」とは、長さおよび幅に比べて厚みが極めて小さく、最大厚みが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいう(日本工業規格JIS K6900)。また、一般的に「シート」とは、JISにおける定義上、薄く、一般にその厚みが長さと幅のわりには小さく平らな製品をいう。しかし、フィルムとシートの境界は定かでない。本明細書においては両者を同一の意味を有する用語として用い、両者を統一して「フィルム」と記す。 In addition, the term "film" generally refers to a thin, flat product that is extremely thin compared to its length and width, with an arbitrarily limited maximum thickness, and is usually supplied in roll form (Japanese Industrial Standard JIS K6900). In addition, the term "sheet" generally refers to a thin, flat product, as defined in JIS, whose thickness is generally small compared to its length and width. However, the boundary between film and sheet is unclear. In this specification, both terms are used as having the same meaning, and both are referred to unified as "film."
本発明において、「シラン変性エチレン系重合体組成物」は、シラン変性されたエチレン系重合体の1種又は2種以上を含み、また、シラン変性エチレン系重合体だけでなく、シラン変性されていないエチレン系重合体をも含み得るものであり、更にはエチレン系重合体組成物のシラン変性に用いた不飽和シラン化合物の未反応残留物やラジカル発生剤をも含み得ることから「組成物」と呼称するが、一般的には、「シラン変性エチレン系重合体」とも称されるものである。
また、後述の「エチレン系重合体組成物」についても、1種のエチレン系重合体よりなるものと2種以上のエチレン系重合体よりなるものの総称として「組成物」と呼称するが、一般的には、「エチレン系重合体」とも称されるものである。
In the present invention, the "silane-modified ethylene polymer composition" contains one or more silane-modified ethylene polymers, and may contain not only silane-modified ethylene polymers but also non-silane-modified ethylene polymers, and may further contain unreacted residues of the unsaturated silane compound used in the silane modification of the ethylene polymer composition and a radical generator, and therefore, although it is referred to as a "composition," it is also generally referred to as a "silane-modified ethylene polymer."
In addition, with regard to the "ethylene-based polymer composition" described later, the term "composition" is a general term for a composition consisting of one type of ethylene-based polymer and a composition consisting of two or more types of ethylene-based polymers, but is also generally referred to as an "ethylene-based polymer."
[熱収縮性フィルム用シラン変性エチレン系重合体組成物]
本発明の熱収縮性フィルム用シラン変性エチレン系重合体組成物(以下、「本発明のシラン変性エチレン系重合体組成物」と称す場合がある。)は、水中置換法で測定される密度が880kg/m3以上、905kg/m3以下であることを特徴とする。
シラン変性エチレン系重合体組成物の密度が上記上限値を超えると、架橋により得られるシラン架橋エチレン系重合体組成物や熱収縮性フィルムに適用した場合の剛性が高くなってしまい、例えば、使用時の形状自由度が損なわれる。シラン変性エチレン系重合体組成物の密度が上記下限値未満であると、熱収縮性フィルムに適用した場合の熱収縮率が低下する他、フィルム強度が低下し、孔開きや破れを生ずる恐れがある。上記した観点から、シラン変性エチレン系重合体組成物の密度の下限は、885kg/m3以上であることが好ましく、上限は903kg/m3以下であることが好ましい。
なお、本発明のシラン変性エチレン系重合体組成物の密度は、具体的には、後掲の実施例の項に記載の方法で測定される。
[Silane-modified ethylene polymer composition for heat-shrinkable films]
The silane-modified ethylene polymer composition for heat shrinkable films of the present invention (hereinafter, may be referred to as "the silane-modified ethylene polymer composition of the present invention") is characterized in that it has a density, as measured by an underwater displacement method, of 880 kg/m3 or more and 905 kg/m3 or less .
If the density of the silane-modified ethylene polymer composition exceeds the upper limit, the rigidity of the silane-crosslinked ethylene polymer composition obtained by crosslinking or the heat-shrinkable film obtained by crosslinking becomes high, and for example, the degree of freedom of shape during use is impaired. If the density of the silane-modified ethylene polymer composition is less than the lower limit, the heat shrinkage rate when applied to a heat-shrinkable film is reduced, and the film strength is reduced, which may cause holes or breakage. From the above viewpoint, the lower limit of the density of the silane-modified ethylene polymer composition is preferably 885 kg/ m3 or more, and the upper limit is preferably 903 kg/m3 or less .
The density of the silane-modified ethylene polymer composition of the present invention is specifically measured by the method described in the Examples section below.
<メカニズム>
本発明のシラン変性エチレン系重合体組成物により、熱収縮率と強度に優れた熱収縮性フィルムが得られるメカニズムは以下のとおり推定される。
シラン変性エチレン系重合体組成物において、シリル基は、主として、シラン変性エチレン系重合体組成物を構成するエチレン系重合体の非晶部にグラフト重合されて存在する。この非晶部に存在するシリル基同士が架橋反応して得られる三次元ネットワーク構造により、フィルムとして高い熱収縮率を示す。そのため、非晶部が多い程この特性を発現しやすい傾向にある。シラン変性エチレン系重合体組成物の密度は、シラン変性エチレン系重合体組成物に存在する非晶部の量と相関があり、シラン変性エチレン系重合体組成物の密度が小さいほど、非晶部の量が多く、フィルムとして高い熱収縮率を示す傾向がある。一方で、密度が小さくなっていくと、柔軟性が高まるにつれ、応力緩和の影響が表れ、熱収縮率が低くなる。そこで、シラン変性エチレン系重合体組成物の密度を880kg/m3以上、905kg/m3以下とすることで、フィルム成形した場合の熱収縮率に優れたフィルムを得ることができる。また、この密度領域のシラン変性エチレン系重合体組成物を可能とする変性前のエチレン系重合体組成物は、強度にも優れるので、熱収縮性フィルムに高強度をもたらす。
<Mechanism>
The mechanism by which a heat-shrinkable film excellent in heat shrinkage rate and strength can be obtained from the silane-modified ethylene polymer composition of the present invention is presumed to be as follows.
In the silane-modified ethylene polymer composition, the silyl group is mainly present in the amorphous part of the ethylene polymer constituting the silane-modified ethylene polymer composition by graft polymerization. The silyl groups present in the amorphous part are crosslinked with each other to obtain a three-dimensional network structure, which shows a high heat shrinkage rate as a film. Therefore, the more amorphous parts there are, the more likely this characteristic is to be expressed. The density of the silane-modified ethylene polymer composition is correlated with the amount of amorphous parts present in the silane-modified ethylene polymer composition, and the lower the density of the silane-modified ethylene polymer composition, the more amorphous parts there are, and the higher the heat shrinkage rate as a film tends to be. On the other hand, as the density decreases, the effect of stress relaxation appears as the flexibility increases, and the heat shrinkage rate decreases. Therefore, by setting the density of the silane-modified ethylene polymer composition to 880 kg/m 3 or more and 905 kg/m 3 or less, a film with excellent heat shrinkage rate when molded into a film can be obtained. Furthermore, the unmodified ethylene polymer composition which enables the preparation of a silane-modified ethylene polymer composition in this density region also has excellent strength, and therefore provides a heat shrinkable film with high strength.
<シラン変性エチレン系重合体組成物>
本発明のシラン変性エチレン系重合体組成物は、2種以上のシラン変性エチレン系重合体をブレンドしたものや、シラン変性エチレン系重合体とシラン変性されていないエチレン系重合体とをブレンドしたものであってもよい。
好適には、エチレン系重合体組成物を不飽和シラン化合物によりグラフト変性したもので、後述のエチレン系重合体組成物に、加水分解可能な有機基を有するオレフィン性不飽和シラン化合物をラジカル発生剤の存在下に共重合させることによって得ることができる。この反応において、不飽和シラン化合物は、エチレン系重合体組成物に含まれるエチレン単独重合体やエチレン・α-オレフィン共重合体が相互に架橋する架橋点となるよう、それぞれの重合体にグラフト化されるものである。
<Silane-modified ethylene polymer composition>
The silane-modified ethylene polymer composition of the present invention may be a blend of two or more kinds of silane-modified ethylene polymers, or a blend of a silane-modified ethylene polymer and a non-silane-modified ethylene polymer.
Preferably, it is an ethylene-based polymer composition graft-modified with an unsaturated silane compound, and can be obtained by copolymerizing an olefinically unsaturated silane compound having a hydrolyzable organic group with an ethylene-based polymer composition described below in the presence of a radical generator. In this reaction, the unsaturated silane compound is grafted to each polymer so as to become a crosslinking point at which the ethylene homopolymer and ethylene-α-olefin copolymer contained in the ethylene-based polymer composition crosslink with each other.
<エチレン系重合体組成物>
シラン変性エチレン系重合体の原料として用いることができるエチレン系重合体としては、エチレン単独重合体、エチレン単位とエチレン単位以外のα-オレフィン単位やα-オレフィン以外の単量体単位との共重合体が挙げられる。エチレン・α-オレフィン共重合体は、エチレンと以下に述べる1種類のα-オレフィンとの共重合体であってもよく、エチレンと2種類以上のα-オレフィンを組合わせた共重合体であってもよい。
<Ethylene-Based Polymer Composition>
Examples of ethylene-based polymers that can be used as raw materials for the silane-modified ethylene-based polymer include ethylene homopolymers and copolymers of ethylene units and α-olefin units other than ethylene units or monomer units other than α-olefins. The ethylene-α-olefin copolymer may be a copolymer of ethylene and one type of α-olefin described below, or a copolymer of ethylene and two or more types of α-olefins in combination.
α-オレフィンとしては、通常、炭素数3~20のα-オレフィンが挙げられ、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、6-メチル-1-ヘプテンなどが挙げられるが、プロピレン、1-ブテン、1-ヘキセン、1-オクテンが好ましい。 The α-olefins typically include α-olefins having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene, and 6-methyl-1-heptene, with propylene, 1-butene, 1-hexene, and 1-octene being preferred.
エチレン系共重合体のエチレン単位の含有率は、通常エチレン系共重合体全体に対して、51~99.9質量%である。エチレン系共重合体の場合、エチレン単位以外のα-オレフィン単位及びα-オレフィン以外の単量体単位の含有率は、同様の理由から、エチレン系共重合体全体に対して、合計で0.1~49質量%である。 The content of ethylene units in an ethylene-based copolymer is usually 51 to 99.9% by mass relative to the entire ethylene-based copolymer. For the same reason, the content of α-olefin units other than ethylene units and monomer units other than α-olefins in an ethylene-based copolymer is 0.1 to 49% by mass in total relative to the entire ethylene-based copolymer.
エチレン系共重合体が、エチレン・α-オレフィン共重合体である場合、共重合体を構成する構成単位として、1種又は2種以上のα-オレフィン2~45質量%と、エチレン55~98質量%とを共重合させたものが好ましい。この範囲よりもエチレンが多くα-オレフィンが少ないと十分な柔軟性を得ることが困難になる傾向があり、この範囲よりもエチレンが少なく、α-オレフィンが多いと融点が低くなり、耐熱性が低下する傾向にある。 When the ethylene-based copolymer is an ethylene-α-olefin copolymer, the structural units constituting the copolymer are preferably one in which 2 to 45% by mass of one or more α-olefins are copolymerized with 55 to 98% by mass of ethylene. If there is more ethylene and less α-olefin than this range, it tends to be difficult to obtain sufficient flexibility, and if there is less ethylene and more α-olefin than this range, the melting point tends to be lower and heat resistance tends to be reduced.
エチレン系共重合体としては、耐熱性と強度のバランスに優れる等の観点から、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンのなかでも、エチレン・炭素数3~20のα-オレフィン共重合体が好ましい。これらの直鎖状低密度ポリエチレンは、1種を単独で用いてもよいが、2種以上選択することが好ましい。
これらの中でも、エチレン単独重合体とエチレン・炭素数3~8のα-オレフィン共重合体を含むエチレン系重合体組成物、エチレン・1-オクテン共重合体とエチレン・1-ヘキセン共重合体を含むエチレン系重合体組成物、エチレン・1-オクテン共重合体とエチレン・1-ブテン共重合体を含むエチレン系重合体組成物、エチレン・1-オクテン共重合体とエチレン・プロピレン共重合体を含むエチレン系重合体組成物がより好ましい。
As the ethylene copolymer, linear low density polyethylene is preferred from the viewpoint of an excellent balance between heat resistance and strength, etc. Among linear low density polyethylenes, ethylene/α-olefin copolymers having 3 to 20 carbon atoms are preferred. Although one type of these linear low density polyethylenes may be used alone, it is preferable to select two or more types.
Among these, an ethylene-based polymer composition containing an ethylene homopolymer and an ethylene/C3-8 α-olefin copolymer, an ethylene-based polymer composition containing an ethylene/1-octene copolymer and an ethylene/1-hexene copolymer, an ethylene-based polymer composition containing an ethylene/1-octene copolymer and an ethylene/1-butene copolymer, or an ethylene-based polymer composition containing an ethylene/1-octene copolymer and an ethylene/propylene copolymer is more preferred.
エチレン単独重合体とエチレン・炭素数3~8のα-オレフィン共重合体を含むエチレン系重合体組成物において、エチレン単独重合体とエチレン・α-オレフィン共重合体の割合は、上記したシラン変性エチレン系重合体組成物の密度を満たすよう配合すればよく、特に限定されないが、透明性が求められるフィルム用途では、エチレン系重合体組成物の主な材料を任意のエチレン・α-オレフィン共重合体で構成することが好ましい。 In an ethylene-based polymer composition containing an ethylene homopolymer and an ethylene-α-olefin copolymer having 3 to 8 carbon atoms, the ratio of the ethylene homopolymer and the ethylene-α-olefin copolymer is not particularly limited as long as it satisfies the density of the silane-modified ethylene-based polymer composition described above. However, in film applications where transparency is required, it is preferable that the main material of the ethylene-based polymer composition is composed of any ethylene-α-olefin copolymer.
なお、エチレン系重合体の製造方法は、各種公知の方法で製造することができ、特に限定されない。例えば、使用する触媒の種類としては、チーグラー・ナッタ系触媒、メタロセン系触媒が挙げられる。エチレンとα-オレフィンを重合させる際に用いる触媒としては、好適な密度範囲のエチレン系共重合体を製造し易いことから、チーグラ-ナッタ系触媒が好ましい。メタロセン系触媒を用いて得られるエチレン・α-オレフィン共重合体は、通常密度の低い重合体が主体であるため、所望の範囲の密度を得るために密度の高いエチレン系重合体と適宜混合して用いるのがよい。 The method for producing the ethylene polymer is not particularly limited and may be any of various known methods. For example, the type of catalyst used may be a Ziegler-Natta catalyst or a metallocene catalyst. As a catalyst used for polymerizing ethylene and an α-olefin, a Ziegler-Natta catalyst is preferred because it is easy to produce an ethylene copolymer in a suitable density range. Ethylene-α-olefin copolymers obtained using a metallocene catalyst are usually mainly low-density polymers, so it is recommended to mix them with an ethylene polymer with a high density in order to obtain a density in the desired range.
エチレン系重合体の密度は、本発明のシラン変性エチレン系重合体組成物の密度を880kg/m3以上、905kg/m3以下に制御する観点から、880kg/m3以上、965kg/m3以下のものを単独もしくは2種以上組み合わせて用いるのが好ましく、890kg/m3以上、960kg/m3以下のものを単独もしくは2種以上組み合わせて用いるのが好ましい。
ただし、2種以上のエチレン系重合体を組み合わせて用いる場合、個々のエチレン系重合体の密度は上記好適範囲から外れていても、混合物としての密度が上記好適範囲内となるものであれば、同様に好ましく用いることができる。
From the viewpoint of controlling the density of the silane-modified ethylene polymer composition of the present invention to 880 kg/ m3 or more and 905 kg/m3 or less , it is preferable to use one or more types of ethylene polymers having a density of 880 kg/ m3 or more and 965 kg/m3 or less , and it is preferable to use one or more types of ethylene polymers having a density of 890 kg/ m3 or more and 960 kg/m3 or less .
However, when two or more kinds of ethylene-based polymers are used in combination, even if the density of each ethylene-based polymer is outside the above-mentioned preferred range, they can be preferably used as well as the mixture having a density within the above-mentioned preferred range.
エチレン系重合体の密度は、主にエチレンと共重合する他のα-オレフィンの導入量によって調整することができる。
エチレン系重合体の密度を上記数値の範囲内とすることで、得られる熱収縮性フィルムの強度や耐熱性を良好に保持できる。また、適度な剛性を付与することができ、フィルム使用時の形状自由度を担保できる。
なお、エチレン系重合体の密度は、本発明のシラン変性エチレン系重合体組成物の密度と同様の方法で測定されるが、市販品であればカタログ値を用いることができる。
The density of the ethylene polymer can be adjusted mainly by the amount of other α-olefin introduced to be copolymerized with ethylene.
By setting the density of the ethylene-based polymer within the above range, the strength and heat resistance of the heat-shrinkable film obtained can be well maintained. In addition, appropriate rigidity can be imparted, and the degree of freedom in shape during use of the film can be ensured.
The density of the ethylene polymer is measured in the same manner as the density of the silane-modified ethylene polymer composition of the present invention, and if it is a commercially available product, the catalog value can be used.
エチレン系重合体の190℃、2.16kgにおけるメルトフローレート(MFR)は、0.1g/10分以上、10g/10分以下であることが好ましく、0.5g/10分以上、7g/10分以下であることがより好ましい。
密度と同様、2種以上のエチレン系重合体を組み合わせて用いる場合、個々のエチレン系重合体のMFRは上記好適範囲から外れていても、混合物としてのMFRが上記好適範囲内となるものであれば、同様に好ましく用いることができる。
The melt flow rate (MFR) of the ethylene polymer at 190° C. and 2.16 kg is preferably 0.1 g/10 min or more and 10 g/10 min or less, and more preferably 0.5 g/10 min or more and 7 g/10 min or less.
As with the density, when two or more kinds of ethylene-based polymers are used in combination, even if the MFR of each ethylene-based polymer is outside the above-mentioned preferred range, they can be preferably used as long as the MFR of the mixture is within the above-mentioned preferred range.
エチレン系重合体のMFRを上記数値の範囲内とすることで、シラン変性時の粘度が高くなりすぎることを抑制でき、シラン変性時の押出特性を良好に維持できる。また、得られるシラン変性エチレン系重合体組成物のMFRの大幅な低下を抑制できることから、フィルム成形時の圧力上昇やドローダウンの発生を抑制でき、例えばトルク異常や、表面性が悪化するメルトフラクチャーの発生等、押出成形性の悪化を抑制できる。 By setting the MFR of the ethylene-based polymer within the above range, it is possible to prevent the viscosity from becoming too high during silane modification, and to maintain good extrusion characteristics during silane modification. In addition, since it is possible to prevent a significant decrease in the MFR of the resulting silane-modified ethylene-based polymer composition, it is possible to prevent pressure increases and drawdown during film molding, and to prevent deterioration of extrusion moldability, such as torque abnormalities and melt fracture that deteriorates surface properties.
本発明において、エチレン系重合体は市販品を用いることができる。エチレン単独重合体としては、例えば、日本ポリエチレン社製「ノバテック(登録商標)LD」シリーズが挙げられる。エチレン・α-オレフィン共重合体としては、例えば、日本ポリエチレン社製「ノバテック(登録商標)LL」シリーズ、「ハーモレックス(登録商標)」シリーズ、三井化学社製「タフマー(登録商標)」シリーズ、ダウケミカル社製「エンゲージ(登録商標)」シリーズ、「INFUSE(登録商標)」シリーズ、SABIC社製「QAMAR」シリーズが挙げられる。 In the present invention, commercially available ethylene polymers can be used. Examples of ethylene homopolymers include the "Novatec (registered trademark) LD" series manufactured by Japan Polyethylene Corporation. Examples of ethylene-α-olefin copolymers include the "Novatec (registered trademark) LL" series and "Harmolex (registered trademark)" series manufactured by Japan Polyethylene Corporation, the "Tafmer (registered trademark)" series manufactured by Mitsui Chemicals, Inc., the "Engage (registered trademark)" series and "INFUSE (registered trademark)" series manufactured by The Dow Chemical Company, and the "QAMAR" series manufactured by SABIC.
<シラン変性>
本発明のシラン変性エチレン系重合体組成物は、上述した原料となるエチレン系重合体組成物にアルコキシシランをグラフト導入してシラン変性することにより製造することができる。
シラン変性は、公知の手法に従って行うことができ、特に限定されない。例えば、溶液変性、溶融変性、電子線や電離放射線の照射による固相変性、超臨界流体中での変性等が好適に用いられる。これらの中でも、設備やコスト競争力に優れた溶融変性が好ましく、連続生産性に優れた押出機を用いた溶融混練変性がさらに好ましい。溶融混練変性に用いられる装置としては、例えば単軸スクリュー押出機、二軸スクリュー押出機、バンバリーミキサー、ロールミキサーが挙げられる。これらの中でも連続生産性に優れた単軸スクリュー押出機、二軸スクリュー押出機が好ましい。
<Silane modification>
The silane-modified ethylene polymer composition of the present invention can be produced by graft-introducing an alkoxysilane into the above-mentioned raw material ethylene polymer composition to modify it with silane.
Silane modification can be carried out according to a known method, and is not particularly limited. For example, solution modification, melt modification, solid-phase modification by irradiation with electron beams or ionizing radiation, modification in supercritical fluid, etc. are preferably used. Among these, melt modification, which is excellent in equipment and cost competitiveness, is preferred, and melt kneading modification using an extruder, which is excellent in continuous productivity, is more preferred. Examples of devices used for melt kneading modification include single-screw extruders, twin-screw extruders, Banbury mixers, and roll mixers. Among these, single-screw extruders and twin-screw extruders, which are excellent in continuous productivity, are preferred.
一般に、エチレン系重合体へのアルコキシシランのグラフト導入は、ポリオレフィンの炭素-水素結合を開裂させて炭素ラジカルを発生させ、これに不飽和官能基が付加する、といったグラフト重合反応によって行うことができる。炭素ラジカルの発生源としては、上述した電子線や電離放射線の他、高温度とする方法や、有機、無機過酸化物等のラジカル発生剤を用いることで行うこともできる。コストや操作性の観点からは、有機過酸化物を用いることが好ましい。 In general, grafting of alkoxysilanes onto ethylene-based polymers can be carried out by a graft polymerization reaction in which the carbon-hydrogen bonds of polyolefins are cleaved to generate carbon radicals, to which unsaturated functional groups are added. In addition to the above-mentioned electron beams and ionizing radiation, carbon radicals can also be generated by using high temperatures or radical generators such as organic or inorganic peroxides. From the standpoint of cost and ease of operation, it is preferable to use organic peroxides.
エチレン系重合体組成物のシラン変性に好適に用いられる加水分解可能な有機基を有するオレフィン性不飽和シラン化合物としては、下記一般式(1)で表されるシラン化合物が挙げられる。
RSiR’nY3-n (1)
(式(1)中、Rは1価のオレフィン性不飽和炭化水素基を示し、Yは加水分解し得る有機基を示し、R’は脂肪族不飽和炭化水素以外の1価の炭化水素基あるいはYと同じものを示し、nは0、1又は2を示す。)
As an olefinically unsaturated silane compound having a hydrolyzable organic group that is suitably used for the silane modification of an ethylene-based polymer composition, there can be mentioned a silane compound represented by the following general formula (1).
RSiR' n Y 3-n (1)
(In formula (1), R represents a monovalent olefinically unsaturated hydrocarbon group, Y represents a hydrolyzable organic group, R' represents a monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon group or is the same as Y, and n represents 0, 1, or 2.)
一般式(1)において、Rはビニル基、アリル基、イソプロペニル基、ブテニル基等が好ましく、R’はメチル基、エチル基、プロピル基、デシル基、フェニル基等が好ましく、Yはメトキシ基、エトキシ基、ホルミルオキシ基、アセトキシ基、プロピオノキシ基、アルキルないしアリールアミノ基が好ましい。 In general formula (1), R is preferably a vinyl group, an allyl group, an isopropenyl group, a butenyl group, etc., R' is preferably a methyl group, an ethyl group, a propyl group, a decyl group, a phenyl group, etc., and Y is preferably a methoxy group, an ethoxy group, a formyloxy group, an acetoxy group, a propionoxy group, an alkyl or arylamino group.
また、より好ましい不飽和シラン化合物としては、例えば、下記一般式(2)で表される化合物が挙げられる。
CH2=CHSi(OA)3 (2)
(式(2)中、Aは炭素数1~8の1価の炭化水素基を示す。)
More preferred examples of the unsaturated silane compound include compounds represented by the following general formula (2).
CH2 =CHSi(OA) 3 (2)
(In formula (2), A represents a monovalent hydrocarbon group having 1 to 8 carbon atoms.)
上記一般式(2)で表される不飽和シラン化合物としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。 Specific examples of the unsaturated silane compound represented by the above general formula (2) include vinyltrimethoxysilane and vinyltriethoxysilane.
不飽和シラン化合物としてはまた、下記一般式(3)で表される化合物も好ましく用いることができる。
CH2=C(CH3)COOC3H6Si(OA)3 (3)
(式(3)中、Aは式(2)におけると同義である。)
As the unsaturated silane compound, a compound represented by the following general formula (3) can also be preferably used.
CH2 =C( CH3 ) COOC3H6Si (OA) 3 ( 3)
(In formula (3), A has the same meaning as in formula (2).)
上記一般式(3)で表される不飽和シラン化合物としては、例えばγ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリエトキシシラン等が挙げられる。 Examples of unsaturated silane compounds represented by the above general formula (3) include γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltriethoxysilane, etc.
これらの中で、不飽和シラン化合物としてはビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルトリエトキシシランが好ましい。 Among these, vinyltrimethoxysilane, vinyltriethoxysilane, and gamma-methacryloyloxypropyltriethoxysilane are preferred as unsaturated silane compounds.
これらの不飽和シラン化合物は1種を単独で用いても、2種以上を任意の組合せで併用してもよい。 These unsaturated silane compounds may be used alone or in any combination of two or more.
グラフト変性に用いる不飽和シラン化合物の添加率は、シラン変性に供するエチレン系重合体組成物の全質量を基準にして、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.7質量%以上であり、通常15質量%以下、好ましくは10質量%以下、より好ましくは7質量%以下、更に好ましくは4質量%以下である。不飽和シラン化合物の添加率を上記数値範囲とすることで、シラン変性エチレン系重合体組成物において、高い熱収縮率及び材料強度を得るために必要な所望のシラン導入率を得やすくなる傾向がある。ここで、不飽和シラン化合物の添加率は、シラン変性エチレン系重合体組成物における不飽和シラン化合物に由来する単位と同じ意味をもつものである。 The addition rate of the unsaturated silane compound used for graft modification is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.7% by mass or more, based on the total mass of the ethylene-based polymer composition to be subjected to silane modification, and usually 15% by mass or less, preferably 10% by mass or less, more preferably 7% by mass or less, and even more preferably 4% by mass or less. By setting the addition rate of the unsaturated silane compound within the above numerical range, it tends to be easier to obtain the desired silane introduction rate required to obtain a high heat shrinkage rate and material strength in the silane-modified ethylene-based polymer composition. Here, the addition rate of the unsaturated silane compound has the same meaning as the unit derived from the unsaturated silane compound in the silane-modified ethylene-based polymer composition.
グラフト変性時に使用されるラジカル発生剤としては、重合開始作用の強い種々の有機過酸化物及びパーエステル、例えば、ジクミルパーオキサイド、α,α′-ビス(t-ブチルパーオキシジイソプロピル)ベンゼン、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジ-ベンゾイルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエートが挙げられる。これらの中で、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイドが好ましい。これらのラジカル発生剤は、1種を単独で用いても、2種以上を任意の組合せで併用してもよい。 Radical generators used during graft modification include various organic peroxides and peresters with strong polymerization initiation action, such as dicumyl peroxide, α,α'-bis(t-butylperoxydiisopropyl)benzene, di-t-butyl peroxide, t-butylcumyl peroxide, di-benzoyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, t-butylperoxypivalate, di-t-butyl peroxide, and t-butylperoxy-2-ethylhexanoate. Of these, dicumyl peroxide, benzoyl peroxide, and di-t-butyl peroxide are preferred. These radical generators may be used alone or in any combination of two or more.
ラジカル発生剤の添加率は、得られるシラン変性エチレン系重合体組成物のMFRが最終的に以下のMFRの範囲になるよう調整するのが望ましく、得られるシラン変性エチレン系重合体組成物の全質量を基準にして、通常0.005質量%以上、好ましくは0.01質量%以上、より好ましくは0.02質量%以上であり、通常0.5質量%以下、好ましくは0.4質量%以下、より好ましくは0.2質量%以下である。ラジカル発生剤の添加率を上記数値範囲とすることで、シラン変性エチレン系重合体組成物における所望のシラン導入率を得やすくなる傾向があると同時に、シラン変性エチレン系重合体組成物のMFRの低下を抑制し、押出加工性を損なわず、成形表面の状態を良好に維持しやすい傾向がある。 The addition rate of the radical generator is desirably adjusted so that the MFR of the resulting silane-modified ethylene polymer composition is ultimately within the following MFR range, and is usually 0.005% by mass or more, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and usually 0.5% by mass or less, preferably 0.4% by mass or less, more preferably 0.2% by mass or less, based on the total mass of the resulting silane-modified ethylene polymer composition. By setting the addition rate of the radical generator within the above numerical range, it tends to be easier to obtain the desired silane introduction rate in the silane-modified ethylene polymer composition, while at the same time suppressing a decrease in the MFR of the silane-modified ethylene polymer composition, not impairing extrusion processability, and tending to easily maintain the condition of the molded surface in good condition.
<MFR>
本発明のシラン変性エチレン系重合体組成物の190℃、2.16kgにおけるメルトフローレート(MFR)は0.05g/10分以上、10g/10分以下であることが好ましく、0.1g/10分以上、8g/10分以下であることがより好ましい。
シラン変性エチレン系重合体組成物のMFRが上記数値範囲であることで、フィルム成形時の圧力上昇やドローダウンの発生を抑制でき、例えばトルク異常や、表面性が悪化するメルトフラクチャーの発生等、押出成形性の悪化を抑制できる。
<MFR>
The melt flow rate (MFR) of the silane-modified ethylene polymer composition of the present invention at 190°C and 2.16 kg is preferably 0.05 g/10 min or more and 10 g/10 min or less, and more preferably 0.1 g/10 min or more and 8 g/10 min or less.
When the MFR of the silane-modified ethylene polymer composition is within the above-mentioned numerical range, the occurrence of pressure increase and drawdown during film molding can be suppressed, and deterioration of extrusion moldability, such as the occurrence of torque abnormality and melt fracture that deteriorates surface properties, can be suppressed.
<融解ピーク温度>
本発明のシラン変性エチレン系重合体組成物は、示差走査熱量計(DSC)で測定される融解のピーク温度(以下「融解ピーク温度」と称す場合がある。)が110℃以上であることが好ましい。シラン変性エチレン系重合体組成物の融解ピーク温度が110℃以上であると高温でも結晶により形状を保持可能である。この観点から、シラン変性エチレン系重合体組成物の融解ピーク温度は115℃以上であることがより好ましい。ただし、シラン変性エチレン系重合体組成物の融解ピーク温度が過度に高いと、成形昇温時の未溶融のブツや成形冷却時の早期結晶化により外観不良となる恐れがあることから、シラン変性エチレン系重合体組成物の融解ピーク温度は通常135℃以下であることが好ましい。
なお、シラン変性エチレン系重合体組成物の融解ピーク温度は、具体的には、後掲の実施例の項に記載の方法で測定される。
<Melting peak temperature>
The silane-modified ethylene polymer composition of the present invention preferably has a peak melting temperature (hereinafter sometimes referred to as "peak melting temperature") of 110°C or higher as measured by a differential scanning calorimeter (DSC). When the silane-modified ethylene polymer composition has a peak melting temperature of 110°C or higher, the composition can maintain its shape due to crystallization even at high temperatures. From this viewpoint, the silane-modified ethylene polymer composition more preferably has a peak melting temperature of 115°C or higher. However, if the silane-modified ethylene polymer composition has an excessively high peak melting temperature, there is a risk of poor appearance due to unmelted particles during heating during molding or early crystallization during cooling during molding, and therefore the silane-modified ethylene polymer composition usually has a peak melting temperature of 135°C or lower.
The melting peak temperature of the silane-modified ethylene polymer composition is specifically measured by the method described in the Examples section below.
[シラン架橋エチレン系重合体組成物]
本発明のシラン変性エチレン系重合体組成物を架橋処理することにより、該シラン変性エチレン系重合体組成物を架橋させた架橋体を含む、本発明のシラン架橋エチレン系重合体組成物を得ることができる。
本発明のシラン架橋エチレン系重合体組成物を得るための本発明のシラン変性エチレン系重合体組成物の架橋処理の方法については、後掲の[熱収縮性フィルムの製造方法]の項において説明する。
[Silane-crosslinked ethylene polymer composition]
By subjecting the silane-modified ethylene polymer composition of the present invention to a crosslinking treatment, it is possible to obtain the silane-crosslinked ethylene polymer composition of the present invention, which contains a crosslinked product obtained by crosslinking the silane-modified ethylene polymer composition.
The method for crosslinking the silane-modified ethylene polymer composition of the present invention to obtain the silane-crosslinked ethylene polymer composition of the present invention will be described later in the section [Method for producing heat shrinkable film].
本発明のシラン架橋エチレン系重合体組成物は、JIS K7113(1995)を参照して、23℃、試験速度50mm/minで測定される成形流れ方向の引張破壊強さが15MPa以上であることが、得られる熱収縮性フィルムのフィルム強度の観点から好ましい。シラン架橋エチレン系重合体組成物の引張破壊強さを上記下限以上とすることで、包装時及び包装後の輸送や保管を含めて種々の外的負荷(裂け、突き破れ等)に対応可能なフィルム強度を得ることができる。 From the viewpoint of the film strength of the heat-shrinkable film obtained, it is preferable that the silane-crosslinked ethylene polymer composition of the present invention has a tensile breaking strength of 15 MPa or more in the molding flow direction measured at 23°C and a test speed of 50 mm/min in accordance with JIS K7113 (1995). By making the tensile breaking strength of the silane-crosslinked ethylene polymer composition equal to or more than the above lower limit, it is possible to obtain a film strength that can withstand various external loads (tears, breakage, etc.) during packaging and during transportation and storage after packaging.
シラン架橋エチレン系重合体組成物の引張破壊強さを上記下限以上とするための工夫としては、架橋処理に供するシラン変性エチレン系重合体組成物の製造において、以下のような方法が挙げられる。
(1) 材料の観点では、シラン変性に供するエチレン系重合体として材料強度に優れる直鎖状低密度ポリエチレンを選択し、エチレン系重合体組成物の配合比率及びシラン変性時の不飽和シラン化合物とラジカル発生剤の種類と添加量を適宜調整するのが好適である。
(2) 製造方法の観点では、シラン変性に供するエチレン系重合体組成物に適切に不飽和シラン化合物がグラフト反応するように温度設定した押出機へ投入して溶融混練し、溶融混練物を紐状に押し出し、冷却後カッティングして、シラン変性エチレン系重合体組成物を得るのが好ましい。
As a method for making the tensile breaking strength of the silane-crosslinked ethylene polymer composition equal to or higher than the above lower limit, the following method can be mentioned in the production of the silane-modified ethylene polymer composition to be subjected to the crosslinking treatment.
(1) From the viewpoint of materials, it is preferable to select a linear low-density polyethylene having excellent material strength as the ethylene polymer to be subjected to silane modification, and to appropriately adjust the blending ratio of the ethylene polymer composition and the types and amounts of the unsaturated silane compound and the radical generator used in the silane modification.
(2) From the viewpoint of the production method, it is preferable to feed the ethylene polymer composition to be subjected to silane modification into an extruder whose temperature is set so as to appropriately cause a graft reaction of the unsaturated silane compound, melt-knead the composition, extrude the molten kneaded product into a string-like shape, cool it, and then cut it to obtain the silane-modified ethylene polymer composition.
なお、シラン架橋エチレン系重合体組成物の引張破壊強さは、具体的には、後掲の実施例の項に記載の方法で測定される。 The tensile breaking strength of the silane-crosslinked ethylene polymer composition is specifically measured by the method described in the Examples section below.
[熱収縮性フィルム]
本発明の熱収縮性フィルムは、本発明のシラン架橋エチレン系重合体組成物を用いて得られる。
[Heat shrinkable film]
The heat-shrinkable film of the present invention is obtained by using the silane-crosslinked ethylene polymer composition of the present invention.
<ゲル分率>
本発明の熱収縮性フィルムのゲル分率、即ち、本発明の熱収縮性フィルムを構成する本発明のシラン架橋エチレン系重合体組成物のゲル分率は55質量%以上85質量%以下であることが好ましい。熱収縮性フィルムに含有されるゲル分は、シラン架橋エチレン系重合体組成物に含まれる架橋体に由来するものである。
ゲル分率は、シラン変性エチレン系重合体組成物の不飽和シラン化合物のグラフト率(変性量)、後述の架橋反応の架橋触媒として用いるシラノール縮合触媒の種類と配合量、架橋させる際の条件(温度、時間)等を変えることにより調整することができる。
<Gel Fraction>
The gel fraction of the heat-shrinkable film of the present invention, i.e., the gel fraction of the silane-crosslinked ethylene-based polymer composition of the present invention constituting the heat-shrinkable film of the present invention, is preferably 55% by mass or more and 85% by mass or less. The gel fraction contained in the heat-shrinkable film is derived from the crosslinked body contained in the silane-crosslinked ethylene-based polymer composition.
The gel fraction can be adjusted by changing the graft ratio (modification amount) of the unsaturated silane compound in the silane-modified ethylene polymer composition, the type and amount of a silanol condensation catalyst used as a crosslinking catalyst in the crosslinking reaction described below, the conditions (temperature, time) for crosslinking, etc.
ゲル分率は一般的に架橋ポリエチレン管の規格であるJIS K6769や、暖房用ポリエチレン管の規格であるJXPA401にて規定されている。ここで、ゲル分率は、樹脂の架橋度を示す指標となるものであり、ゲル分率が大きければ架橋度が高く、逆にゲル分率が小さければ架橋度は低いと言える。 The gel fraction is generally specified in JIS K6769, the standard for cross-linked polyethylene pipes, and JXPA401, the standard for heating polyethylene pipes. Here, the gel fraction is an index of the degree of cross-linking of the resin; a high gel fraction indicates a high degree of cross-linking, and a low gel fraction indicates a low degree of cross-linking.
熱収縮性フィルムのゲル分率の下限を55質量%以上とすることで、耐熱性、機械強度の低下を抑制できる。この観点から、本発明の熱収縮性フィルムのゲル分率はより好ましくは60質量%以上、更に好ましくは65質量%以上である。一方、ゲル分率の上限を85質量%以下とすることで、熱収縮性フィルムの熱収縮率の低下を抑制できる。この観点から本発明の熱収縮性フィルムのゲル分率の上限はより好ましくは83質量%以下、更に好ましくは81質量%以下である。 By setting the lower limit of the gel fraction of the heat-shrinkable film to 55% by mass or more, it is possible to suppress a decrease in heat resistance and mechanical strength. From this viewpoint, the gel fraction of the heat-shrinkable film of the present invention is more preferably 60% by mass or more, and even more preferably 65% by mass or more. On the other hand, by setting the upper limit of the gel fraction to 85% by mass or less, it is possible to suppress a decrease in the heat shrinkage rate of the heat-shrinkable film. From this viewpoint, the upper limit of the gel fraction of the heat-shrinkable film of the present invention is more preferably 83% by mass or less, and even more preferably 81% by mass or less.
JIS K6769やJXPA401にて規定されているゲル分率測定方法は、実際の成形加工を実施した後、成形体の状態で架橋処理を実施し、成形体を切削したサンプルを用いて測定されるが、本発明においては簡便のため、次の方法によりシラン架橋エチレン系重合体組成物のゲル分率を測定し、これを熱収縮性フィルムのゲル分率とする。 The gel fraction measurement method specified in JIS K6769 and JXPA401 involves carrying out actual molding, crosslinking the molded body, and then cutting the molded body into a sample for measurement. However, for the sake of simplicity, in this invention, the gel fraction of the silane-crosslinked ethylene polymer composition is measured using the following method, and this is regarded as the gel fraction of the heat-shrinkable film.
<シラン架橋エチレン系重合体組成物のゲル分率の測定方法>
シラン変性エチレン系重合体組成物にジオクチル錫ジラウレートを0.05質量%添加(実際にはMFR:3.5g/10分、密度898kg/m3の直鎖状低密度ポリエチレンにジオクチル錫ジラウレートを1質量%添加したマスターバッチを添加)し、溶融混練後、210℃にて0.5mm厚みに押出したフィルムを80℃温水中、24時間架橋処理して得られるシラン架橋エチレン系重合体組成物のサンプルを用い、1mm四方に裁断したサンプル約0.5g(試料重量をG1(g)とする)を200メッシュの金網中で、キシレン中、120℃で8時間還流した後、金網上に残った沸騰キシレン不溶分を10Torrの真空中において80℃で8時間乾燥させてその重量を精量し(精量した沸騰キシレン不溶分の重量をG2(g)とする)、下記式(4)により求める。
ゲル分率(%)=G2(g)÷G1(g)×100 (4)
<Method for measuring gel fraction of silane-crosslinked ethylene polymer composition>
A silane-crosslinked ethylene polymer composition sample was obtained by adding 0.05 mass% of dioctyltin dilaurate to a silane-modified ethylene polymer composition (actually, a master batch in which 1 mass% of dioctyltin dilaurate was added to a linear low-density polyethylene having an MFR of 3.5 g/10 min and a density of 898 kg/ m3 was added), melt-kneading the mixture, extruding the mixture at 210°C to a thickness of 0.5 mm, and subjecting the extruded film to a crosslinking treatment in hot water at 80°C for 24 hours. About 0.5 g of the sample (sample weight is designated as G1 (g)) cut into 1 mm squares was refluxed in xylene at 120°C for 8 hours in a 200-mesh wire net, and the boiling xylene insoluble matter remaining on the wire net was dried in a vacuum of 10 Torr at 80°C for 8 hours, and its weight was precisely measured (the weight of the precisely measured boiling xylene insoluble matter is designated as G2 (g)), and the weight was calculated according to the following formula (4).
Gel fraction (%) = G2 (g) ÷ G1 (g) × 100 (4)
<厚み>
本発明の熱収縮性フィルムの厚みは、要求性能、例えば用途、最終製品の形状、要求される物性等に応じて、任意に設定することができ、特に限定されない。例えば食品包装用や工業製品包装用、電子部材のフィルムとして用いる場合の熱収縮性フィルムの総厚みは1~500μmが好ましく、より好ましくは2~800μm、更に好ましくは3~700μmである。
また、本発明の熱収縮性フィルムは厚みなどによってはシートとして使用することも可能である。
<Thickness>
The thickness of the heat-shrinkable film of the present invention is not particularly limited and can be set arbitrarily depending on the required performance, for example, the application, the shape of the final product, the required physical properties, etc. For example, when used for food packaging, industrial product packaging, or as a film for electronic components, the total thickness of the heat-shrinkable film is preferably 1 to 500 μm, more preferably 2 to 800 μm, and even more preferably 3 to 700 μm.
The heat-shrinkable film of the present invention can also be used as a sheet depending on the thickness.
[熱収縮性フィルムの製造方法]
本発明の熱収縮性フィルムの製造方法には、従来公知の種々の手法を採用することができ、その方法は特に限定されないが、エチレン系重合体組成物をシラン変性することにより本発明のシラン変性エチレン系重合体組成物を得る工程、本発明のシラン変性エチレン系重合体組成物と架橋触媒を溶融混練した押出組成物を延伸して延伸フィルム(以下、「本発明の延伸フィルム」と称す場合がある。)を得る工程、及び、得られた延伸フィルムを架橋処理して熱収縮性フィルムを得る工程を経て製造されることが好ましい。
[Method of producing heat shrinkable film]
The heat shrinkable film of the present invention can be produced by various conventionally known methods, and the method is not particularly limited. However, the heat shrinkable film is preferably produced through a process including a step of obtaining the silane-modified ethylene polymer composition of the present invention by silane-modifying an ethylene polymer composition, a step of stretching an extruded composition obtained by melt-kneading the silane-modified ethylene polymer composition of the present invention and a crosslinking catalyst to obtain a stretched film (hereinafter, may be referred to as the "stretched film of the present invention"), and a step of crosslinking the obtained stretched film to obtain a heat shrinkable film.
すなわち、本発明の熱収縮性フィルムは、本発明のシラン変性エチレン系共重合体組成物を架橋触媒の存在下に架橋反応させてなるシラン架橋体を含有するものであり、通常、本発明のシラン変性エチレン系共重合体組成物と架橋触媒とを含む原料を押出機に円筒状のダイスまたはTダイを設置した成形機で溶融混練し押出組成物を延伸して延伸フィルムを成形した後、架橋処理することで製造される。 That is, the heat shrinkable film of the present invention contains a silane crosslinked product obtained by subjecting the silane-modified ethylene copolymer composition of the present invention to a crosslinking reaction in the presence of a crosslinking catalyst, and is usually produced by melt-kneading a raw material containing the silane-modified ethylene copolymer composition of the present invention and a crosslinking catalyst in a molding machine equipped with an extruder and a cylindrical die or T-die, stretching the extruded composition to form a stretched film, and then performing a crosslinking treatment.
<延伸フィルムを得る工程>
本発明の延伸フィルムを得る工程の一例を説明する。
この工程としては、例えば、本発明のシラン変性エチレン系重合体組成物と架橋触媒を押出機で溶融混練させた溶融樹脂組成物をダイスに供給して成形するインフレーションフィルム成形、T-ダイフィルム成形等で得られた未延伸のフィルムを冷却固化後、インライン又はアウトラインで60~160℃の延伸温度まで再加熱し、テンター及び圧縮空気等を用い一軸方向、或いは二軸方向に少なくとも面積比で1.5倍以上延伸を行い、一軸又は二軸延伸成形した延伸フィルムを得る方法が挙げられる。これらは同時延伸であっても、逐次延伸であってもよい。インフレーションフィルムの場合、インフレーション同時二軸延伸法、ロール及びテンターを用いる場合、逐次二軸延伸法等が一般的に用いられている。
<Step of obtaining stretched film>
An example of the process for obtaining the stretched film of the present invention will be described.
Examples of this step include inflation film molding in which a molten resin composition obtained by melt-kneading the silane-modified ethylene polymer composition of the present invention and a crosslinking catalyst in an extruder is fed to a die to be molded, and a method in which an unstretched film obtained by T-die film molding or the like is cooled and solidified, then reheated in-line or out-line to a stretching temperature of 60 to 160°C, and stretched at least 1.5 times in area ratio in a uniaxial or biaxial direction using a tenter and compressed air, etc., to obtain a uniaxially or biaxially stretched stretched film. These may be simultaneous stretching or sequential stretching. In the case of an inflation film, a simultaneous inflation biaxial stretching method, and in the case of using a roll and a tenter, a sequential biaxial stretching method, etc. are generally used.
本発明の熱収縮性フィルムは、熱収縮性と強度に優れることから単層で用いることが好適であるが、積層された多層フィルムでも良い。この場合、例えば、三枚の成形されたフィルムを貼合わせる方法でも押出ラミネートする方法でも、また、コーティングする方法でもよいが、特に複数の押出機と多層ダイスを用いたインフレーション成形法あるいはTダイ成形法等による共押出し法が最適である。 The heat-shrinkable film of the present invention is preferably used as a single layer because of its excellent heat shrinkability and strength, but it may also be a laminated multilayer film. In this case, for example, a method of laminating three molded films, a method of extrusion lamination, or a method of coating may be used, but in particular, a co-extrusion method such as an inflation molding method using multiple extruders and a multilayer die or a T-die molding method is optimal.
<架橋処理工程>
延伸フィルムを架橋処理して熱収縮性フィルムを得る工程の一例を説明する。
前記した延伸フィルムを得る工程で成形された本発明の延伸フィルムは架橋処理される。この架橋処理は例えば、フィルムをロール状に巻き取った状態で、高温高湿下、例えば温水又は水蒸気の存在下で行ってもよい。
<Crosslinking Treatment Step>
An example of a process for obtaining a heat-shrinkable film by crosslinking a stretched film will be described.
The stretched film of the present invention formed in the above-mentioned step of obtaining a stretched film is subjected to a crosslinking treatment. This crosslinking treatment may be carried out, for example, under high temperature and high humidity conditions, for example, in the presence of hot water or water vapor, while the film is wound into a roll.
本発明の延伸フィルムを架橋処理して熱収縮性フィルムを得る工程では、本発明のシラン変性エチレン系重合体組成物の押出成形体を延伸することによりシラン変性エチレン系重合体を配向結晶化させた後に、その非晶部を架橋し三次元ネットワーク構造を形成させる。このように延伸後に架橋処理を行うことが、より大きな熱収縮率を持つフィルムを得る観点から好ましい。 In the process of crosslinking the stretched film of the present invention to obtain a heat shrinkable film, the extrusion molded product of the silane-modified ethylene-based polymer composition of the present invention is stretched to orient and crystallize the silane-modified ethylene-based polymer, and then the amorphous portion is crosslinked to form a three-dimensional network structure. Such crosslinking after stretching is preferable from the viewpoint of obtaining a film with a larger heat shrinkage rate.
<架橋触媒>
シラン変性エチレン系重合体組成物の架橋反応に用いる架橋触媒としては、シラノール縮合触媒が好ましく使用される。以下、シラノール触媒について詳述する。
<Crosslinking catalyst>
As a crosslinking catalyst used in the crosslinking reaction of the silane-modified ethylene polymer composition, a silanol condensation catalyst is preferably used. The silanol catalyst will be described in detail below.
シラノール縮合触媒としては、例えば、ジブチル錫ジラウレート、酢酸第一錫、ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジオクチル錫ジラウレート等の錫触媒;ナフテン酸鉛、ステアリン酸鉛等の鉛触媒;カプリル酸亜鉛、ステアリン酸亜鉛等の亜鉛触媒;ナフテン酸コバルト等のコバルト触媒、チタン酸テトラブチルエステル等のチタン触媒;ステアリン酸カドミウム等のカドミウム触媒;ステアリン酸バリウム、ステアリン酸カルシウム等のアルカリ土類金属触媒等の有機金属触媒が挙げられる。これらの中で錫触媒が好ましい。これらのシラノール縮合触媒は1種を単独で用いても、2種以上を任意の組合せで併用してもよい。 Examples of silanol condensation catalysts include tin catalysts such as dibutyltin dilaurate, stannous acetate, dibutyltin diacetate, dibutyltin dioctoate, and dioctyltin dilaurate; lead catalysts such as lead naphthenate and lead stearate; zinc catalysts such as zinc caprylate and zinc stearate; cobalt catalysts such as cobalt naphthenate, titanium catalysts such as tetrabutyl titanate; cadmium catalysts such as cadmium stearate; and organometallic catalysts such as alkaline earth metal catalysts such as barium stearate and calcium stearate. Among these, tin catalysts are preferred. These silanol condensation catalysts may be used alone or in any combination of two or more.
シラノール縮合触媒の添加率は、シラノール縮合触媒を添加するシラン変性エチレン系重合体組成物の全質量を基準として、通常0.01質量%以上、好ましくは0.02質量%以上、より好ましくは0.05質量%以上であり、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。シラノール縮合触媒の添加率を上記数値範囲とすることで、十分な架橋反応を進めることができる。 The addition rate of the silanol condensation catalyst is usually 0.01% by mass or more, preferably 0.02% by mass or more, more preferably 0.05% by mass or more, based on the total mass of the silane-modified ethylene polymer composition to which the silanol condensation catalyst is added, and is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. By setting the addition rate of the silanol condensation catalyst within the above numerical range, a sufficient crosslinking reaction can be promoted.
なお、シラノール縮合触媒は、一般的にマスターバッチ形式で添加することが簡便である。シラノール縮合触媒のマスターバッチは、例えば、シラノール縮合触媒をエチレン単独重合体(ポリエチレン)やエチレン・α-オレフィン共重合体等のポリオレフィンの1種又は2種以上に添加して混練することにより製造することができる。 The silanol condensation catalyst is generally conveniently added in the form of a masterbatch. A masterbatch of the silanol condensation catalyst can be produced, for example, by adding the silanol condensation catalyst to one or more types of polyolefins, such as ethylene homopolymer (polyethylene) or ethylene-α-olefin copolymer, and kneading them.
シラノール縮合触媒を、ポリオレフィンにシラノール縮合触媒を配合したマスターバッチとして用いる場合、マスターバッチ中のシラノール縮合触媒の含有率には特に制限は無いが、通常0.1~5.0質量%程度とすることが好ましい。 When the silanol condensation catalyst is used as a masterbatch in which the silanol condensation catalyst is blended with a polyolefin, there is no particular limit to the content of the silanol condensation catalyst in the masterbatch, but it is usually preferable to set it to about 0.1 to 5.0 mass%.
シラノール縮合触媒含有マスターバッチには、必要に応じて、混和可能な他の熱可塑性樹脂や、安定剤、滑材、充填剤、着色剤、発泡剤、その他の補助資材を添加することができる。これらの添加剤は、それ自体既知の通常用いられるものであればよい。また、第3成分として、シラノール縮合触媒と共にこれらの添加剤を、本発明のシラン変性エチレン系重合体組成物に添加することも可能である。 If necessary, other compatible thermoplastic resins, stabilizers, lubricants, fillers, colorants, foaming agents, and other auxiliary materials can be added to the silanol condensation catalyst-containing masterbatch. These additives may be any commonly used additives known per se. In addition, these additives can be added to the silane-modified ethylene polymer composition of the present invention together with the silanol condensation catalyst as a third component.
<架橋反応の条件>
シラノール縮合触媒による架橋反応は、通常、シラン変性エチレン系重合体組成物にシラノール縮合触媒を配合した組成物を押出成形、射出成形、プレス成形等の各種成形方法により成形した後、水雰囲気中に曝すことにより、シラノール基間の架橋反応を進行させて行われるので特別な架橋設備を必要としない。水雰囲気中に曝す方法は、各種の条件を採用することができ、水分を含む空気中に放置する方法、水蒸気を含む空気を送風する方法、水浴中に浸漬する方法、温水を霧状に散水させる方法等が挙げられる。
<Crosslinking reaction conditions>
The crosslinking reaction using a silanol condensation catalyst is usually carried out by exposing a composition obtained by blending a silane-modified ethylene polymer composition with a silanol condensation catalyst to a water atmosphere, thereby promoting the crosslinking reaction between silanol groups, without requiring any special crosslinking equipment. Various conditions can be used for the method of exposing to a water atmosphere, and examples of the method include a method of leaving the composition in air containing moisture, a method of blowing air containing water vapor, a method of immersing the composition in a water bath, and a method of spraying warm water in a mist form.
この架橋反応では、本発明のシラン変性エチレン系重合体組成物が有する不飽和シラン化合物由来の加水分解可能なアルコキシ基がシラノール縮合触媒の存在下、水と反応して加水分解することによりシラノール基が生成し、更にシラノール基同士が脱水縮合することにより、反応が進行し、シラン変性エチレン系重合体組成物中のシラン変性エチレン系重合体同士が結合してシラン架橋体を生成する。 In this crosslinking reaction, the hydrolyzable alkoxy groups derived from the unsaturated silane compound contained in the silane-modified ethylene polymer composition of the present invention react with water in the presence of a silanol condensation catalyst and are hydrolyzed to generate silanol groups, and the reaction proceeds by further dehydration condensation between the silanol groups, and the silane-modified ethylene polymers in the silane-modified ethylene polymer composition bond to each other to generate a silane crosslinked product.
架橋反応の進行速度は水雰囲気中に曝す条件によって決まるが、通常20~130℃の温度範囲、かつ10分~1週間の範囲で曝せばよい。好ましい条件は、20~130℃の温度範囲、1時間~160時間の範囲である。水分を含む空気を使用する場合、相対湿度は1~100%の範囲から選択される。 The rate at which the crosslinking reaction proceeds depends on the conditions of exposure to the water atmosphere, but typically a temperature range of 20 to 130°C and exposure time of 10 minutes to 1 week is sufficient. Preferred conditions are a temperature range of 20 to 130°C and a time range of 1 to 160 hours. When using air containing moisture, the relative humidity is selected from the range of 1 to 100%.
[用途]
本発明の熱収縮フィルムの用途は、食品、医療品、電子部材、建築材料等の包装用熱収縮フィルムとしての用途が好ましい。また、それ以外の用途としても、本発明の熱収縮フィルムの特性や機能を使った様々な熱収縮包装分野において非常に有用である。
[Application]
The heat shrinkable film of the present invention is preferably used as a heat shrinkable film for packaging food, medical products, electronic materials, building materials, etc. In addition, the heat shrinkable film of the present invention is also very useful in various heat shrink packaging fields that utilize the characteristics and functions of the heat shrinkable film.
以下、実施例を用いて本発明の内容を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限または下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限または下限の値と、下記実施例の値または実施例同士の値との組み合わせで規定される範囲であってもよい。 The present invention will be explained in more detail below using examples, but the present invention is not limited to the following examples as long as it does not exceed the gist of the invention. The values of various manufacturing conditions and evaluation results in the following examples are meant as preferred upper or lower limit values in the embodiments of the present invention, and the preferred range may be a range defined by a combination of the above-mentioned upper or lower limit values and the values of the following examples or values between the examples.
[使用原料]
以下の製造例では、エチレン系重合体として以下のものを用いた。
[Ingredients used]
In the following production examples, the following ethylene polymers were used.
<直鎖状低密度ポリエチレン>
PE1:ダウケミカル社製 エンゲージ(登録商標) 8200
エチレン・1-オクテン共重合体
MFR(190℃、2.16kg):5.0g/10分
密度:870kg/m3
PE2:ダウケミカル社製 エンゲージ(登録商標) 8180
エチレン・1-オクテン共重合体
MFR(190℃、2.16kg):0.5g/10分
密度:863kg/m3
PE3:日本ポリエチレン社製 ハーモレックス(登録商標) NF464N
エチレン・1-ヘキセン共重合体
MFR(190℃、2.16kg):2.0g/10分
密度:918kg/m3
PE4:SABIC社製 QAMAR FD18N
エチレン・1-ブテン共重合体
MFR(190℃、2.16kg):2.0g/10分
密度:920kg/m3
<Linear low-density polyethylene>
PE1: Engage (registered trademark) 8200 manufactured by The Dow Chemical Company
Ethylene/1-octene copolymer MFR (190°C, 2.16 kg): 5.0 g/10 min Density: 870 kg/ m3
PE2: Engage (registered trademark) 8180 manufactured by The Dow Chemical Company
Ethylene/1-octene copolymer MFR (190°C, 2.16 kg): 0.5 g/10 min Density: 863 kg/ m3
PE3: Japan Polyethylene Corporation, Harmolex (registered trademark) NF464N
Ethylene/1-hexene copolymer MFR (190°C, 2.16 kg): 2.0 g/10 min Density: 918 kg/ m3
PE4: SABIC QAMAR FD18N
Ethylene/1-butene copolymer MFR (190°C, 2.16 kg): 2.0 g/10 min Density: 920 kg/ m3
[製造例1]
PE1:ダウケミカル社製 エンゲージ(登録商標) 8200(エチレン・1-オクテン共重合体)と、PE3:日本ポリエチレン社製 ハーモレックス(登録商標) NF464N(エチレン・1-ヘキセン共重合体)を40:60の質量割合で混合して変性前組成物1とした。
[Production Example 1]
PE1: Engage (registered trademark) 8200 (ethylene/1-octene copolymer) manufactured by The Dow Chemical Company, and PE3: Harmolex (registered trademark) NF464N (ethylene/1-hexene copolymer) manufactured by Japan Polyethylene Corporation were mixed in a mass ratio of 40:60 to prepare pre-modification composition 1.
この変性前組成物1の100質量部に対してジ-t-ブチルパーオキサイド(表-1中、「Pox」と記載)0.04質量部とビニルトリメトキシシラン(表-1中、「Si」と記載)2質量部とを添加、混合した後、単軸押出機PMS50-32(1V)(D=50mmφ、L/D=32、IKG(株)製)を用いて、温度220℃、スクリュー回転数60rpm、押出量20kg/hで溶融混練した。その後、溶融混練物を紐状に押し出し、冷却後カッティングし、シラン変性エチレン系重合体組成物1を得た。
得られたシラン変性エチレン系重合体組成物1のMFR、密度、融解ピーク温度を以下の方法で測定した。結果を表-1に示す。
To 100 parts by mass of this pre-modification composition 1, 0.04 parts by mass of di-t-butyl peroxide (shown as "Pox" in Table 1) and 2 parts by mass of vinyltrimethoxysilane (shown as "Si" in Table 1) were added and mixed, and then melt-kneaded at a temperature of 220°C, a screw rotation speed of 60 rpm, and an extrusion rate of 20 kg/h using a single-screw extruder PMS50-32 (1V) (D = 50 mmφ, L/D = 32, manufactured by IKG Co., Ltd.). Thereafter, the melt-kneaded product was extruded into a string shape, cooled, and then cut to obtain a silane-modified ethylene polymer composition 1.
The MFR, density and melting peak temperature of the obtained silane-modified ethylene polymer composition 1 were measured by the following methods. The results are shown in Table 1.
<MFR>
JIS K7210(1999)に準拠して、190℃、2.16kg荷重にて測定した。
<MFR>
The measurement was performed at 190° C. and a load of 2.16 kg in accordance with JIS K7210 (1999).
<密度>
JIS K7112(1999)A法に準拠して、徐冷プレスにて成形した厚さ2mm、長さ40mm、幅15mmの試験片を用い、水中置換法にて測定した。
<Density>
In accordance with JIS K7112 (1999) Method A, a test piece having a thickness of 2 mm, a length of 40 mm and a width of 15 mm, which had been molded by slow cooling press, was used for the measurement by the underwater displacement method.
<融解ピーク温度>
日立ハイテクサイエンス社製の示差走査熱量計、商品名「DSC6220」を用いて、JIS K7121(2010)に準じて、試料約5mgを加熱速度10℃/分で20℃から200℃まで昇温し、200℃で3分間保持した後、冷却速度10℃/分で-10℃まで降温し、その後、加熱速度10℃/分で200℃まで昇温した時に測定されたサーモグラムから融解ピーク温度を算出した。
<Melting peak temperature>
Using a differential scanning calorimeter manufactured by Hitachi High-Tech Science Corporation, product name "DSC6220", in accordance with JIS K7121 (2010), about 5 mg of a sample was heated from 20°C to 200°C at a heating rate of 10°C/min, held at 200°C for 3 minutes, cooled to -10°C at a cooling rate of 10°C/min, and then heated to 200°C at a heating rate of 10°C/min. From the thermogram measured at this time, the melting peak temperature was calculated.
また、シラン変性エチレン系重合体組成物1を架橋処理したシラン架橋エチレン系重合体組成物1について、前述の方法でゲル分率を測定すると共に、以下の方法で引張破壊強さを測定し、結果を表-1に示した。 In addition, the gel fraction of silane-crosslinked ethylene polymer composition 1, which was obtained by crosslinking silane-modified ethylene polymer composition 1, was measured by the method described above, and the tensile breaking strength was measured by the following method, and the results are shown in Table 1.
<引張破壊強さ>
シラン変性エチレン系重合体組成物1の100質量部に対して、シラノール縮合触媒マスターバッチ(1質量%スズ触媒(ジオクチル錫ジラウレート)含有直鎖状低密度ポリエチレン(MFR:2g/10分、密度:920kg/m3)マスターバッチ)5質量部をドライブレンドし、20mm単軸押出機を備えたシート成形機に供給し、ダイス温度220℃、ライン速度2m/minで厚み1mmのフィルムを得た。
得られたフィルムを80℃の温水中に24時間浸漬させ架橋処理を行った後、JIS K7113(1995)に準拠して、3号形試験片を作製し、23℃、試験速度50mm/minで成形流れ方向に引張破壊強さを測定した。
<Tensile breaking strength>
100 parts by mass of the silane-modified ethylene polymer composition 1 was dry-blended with 5 parts by mass of a silanol condensation catalyst masterbatch (a masterbatch of linear low-density polyethylene (MFR: 2 g/10 min, density: 920 kg/ m3 ) containing 1% by mass of tin catalyst (dioctyltin dilaurate)) and fed to a sheet molding machine equipped with a 20 mm single-screw extruder to obtain a film having a thickness of 1 mm at a die temperature of 220°C and a line speed of 2 m/min.
The obtained film was immersed in warm water at 80° C. for 24 hours for crosslinking treatment, and then a No. 3 test piece was prepared in accordance with JIS K7113 (1995), and the tensile breaking strength was measured in the molding flow direction at 23° C. and a test speed of 50 mm/min.
[製造例2~3]
表-1に示す変性前組成物の配合とした以外は製造例1と同様にしてシラン変性エチレン系重合体組成物2、シラン変性エチレン系重合体組成物3を得た。得られたシラン変性エチレン系重合体組成物について、製造例1と同様に測定を行った。測定結果を表-1に示す。
また、得られたシラン変性エチレン系重合体組成物2,3から製造例1と同様にしてシラン架橋エチレン系重合体組成物2,3を得た。得られたシラン架橋エチレン系重合体組成物について、製造例1と同様に測定を行った。測定結果を表-1に示す。
[Production Examples 2 to 3]
A silane-modified ethylene polymer composition 2 and a silane-modified ethylene polymer composition 3 were obtained in the same manner as in Production Example 1, except that the formulation of the pre-modification composition was as shown in Table 1. The obtained silane-modified ethylene polymer compositions were measured in the same manner as in Production Example 1. The measurement results are shown in Table 1.
In addition, silane-crosslinked ethylene polymer compositions 2 and 3 were obtained from the obtained silane-modified ethylene polymer compositions 2 and 3 in the same manner as in Production Example 1. The obtained silane-crosslinked ethylene polymer compositions were measured in the same manner as in Production Example 1. The measurement results are shown in Table 1.
[実施例1]
シラン変性エチレン系重合体組成物1の100質量部に対して、シラノール縮合触媒マスターバッチ(1質量%スズ触媒(ジオクチル錫ジラウレート)含有直鎖状低密度ポリエチレン(MFR:3.5g/10分、密度:898kg/m3)マスターバッチ)5質量部をドライブレンドし、20mm単軸押出機を備えたTダイフィルム成形機に供給し、ダイス温度220℃、ライン速度2m/minで厚み660μmの未架橋フィルムを作製した。得られた未架橋フィルムを、アイランド工業社二軸延伸装置にて、成形流れ方向に槽内温度設定80℃、延伸速度1.8m/minで1軸2倍に延伸し、厚み600μmの延伸フィルムを作製した。この延伸フィルムを恒温恒湿器にて85℃、85%RHの環境下で16時間静置して架橋処理を行い、熱収縮性フィルム1を得た。
[Example 1]
100 parts by mass of the silane-modified ethylene polymer composition 1 was dry-blended with 5 parts by mass of a silanol condensation catalyst master batch (a master batch of linear low-density polyethylene (MFR: 3.5 g/10 min, density: 898 kg/ m3 ) containing 1% by mass of tin catalyst (dioctyltin dilaurate)) and fed to a T-die film molding machine equipped with a 20 mm single screw extruder to produce an uncrosslinked film having a thickness of 660 μm at a die temperature of 220°C and a line speed of 2 m/min. The uncrosslinked film obtained was uniaxially stretched twice in the molding flow direction in an Island Industrial Co., Ltd. biaxial stretching device at an internal temperature setting of 80°C and a stretching speed of 1.8 m/min to produce a stretched film having a thickness of 600 μm. The stretched film was left to stand in a thermo-hygrostat under an environment of 85°C and 85% RH for 16 hours to perform a crosslinking treatment, and a heat-shrinkable film 1 was obtained.
[実施例2]
実施例1においてシラン変性エチレン系重合体組成物1の代りに、シラン変性エチレン系重合体組成物2を用いたこと以外は、実施例1と同様に未架橋フィルムを作製し、同様に1軸方向に2倍延伸して延伸フィルムを作製し、同様に架橋処理して熱収縮性フィルム2を得た。
[Example 2]
An uncrosslinked film was prepared in the same manner as in Example 1, except that silane-modified ethylene polymer composition 2 was used instead of silane-modified ethylene polymer composition 1 in Example 1, and a stretched film was prepared by stretching the film uniaxially by 2 times in the same manner, and a heat-shrinkable film 2 was obtained by crosslinking the film in the same manner.
[比較例1]
実施例1においてシラン変性エチレン系重合体組成物1の代りに、シラン変性エチレン系重合体組成物3を用いたこと以外は、実施例1と同様に未架橋フィルムを作製し、同様に1軸方向に2倍延伸して延伸フィルムを作製し、同様に架橋処理して熱収縮性フィルム3を得た。
[Comparative Example 1]
An uncrosslinked film was prepared in the same manner as in Example 1, except that silane-modified ethylene polymer composition 3 was used instead of silane-modified ethylene polymer composition 1 in Example 1, and a stretched film was prepared by stretching the film uniaxially by 2 times in the same manner, and a heat-shrinkable film 3 was obtained by crosslinking the film in the same manner.
熱収縮性フィルム1~3の熱収縮率を以下の方法で評価した。結果を表-1に示す。 The heat shrinkage rates of heat shrinkable films 1 to 3 were evaluated using the following method. The results are shown in Table 1.
<熱収縮率>
得られた熱収縮性フィルムを長さ3cm、幅3cmに切出し、120℃のギアオーブンに1時間静置した後の成形流れ方向のフィルム長さを測定し、下記式(5)で熱収縮率を算出した。
熱収縮率(%)=
(収縮前長さ(L0)-収縮後長さ(L1))/収縮前長さ(L0)×100 (5)
<Heat shrinkage rate>
The obtained heat-shrinkable film was cut into a piece of 3 cm in length and 3 cm in width, and left to stand in a Geer oven at 120° C. for 1 hour. The length of the film in the molding flow direction was then measured, and the heat shrinkage rate was calculated using the following formula (5).
Heat shrinkage rate (%) =
(Length before contraction (L0) - Length after contraction (L1)) / Length before contraction (L0) x 100 (5)
以上の結果から、本発明によれば、熱収縮性と強度に優れた熱収縮性フィルムを提供できることが分かる。本発明の熱収縮性フィルムは、単層で製膜が可能であり、特別な架橋設備を必要としないことから、実用上非常に有利である。 The above results show that the present invention can provide a heat-shrinkable film with excellent heat shrinkability and strength. The heat-shrinkable film of the present invention can be produced in a single layer and does not require special crosslinking equipment, making it highly advantageous in practical use.
Claims (5)
前記シラン変性エチレン系重合体を得る工程、
該シラン変性エチレン系重合体とシラノール縮合触媒を溶融混練した押出組成物を延伸して延伸フィルムを得る工程、
及び、
該延伸フィルムを架橋処理して熱収縮性フィルムを得る工程
を有する熱収縮性フィルムの製造方法。 A method for producing the heat shrinkable film according to any one of claims 1 to 4 , comprising the steps of:
A step of obtaining the silane-modified ethylene polymer;
a step of stretching an extrusion composition obtained by melt-kneading the silane-modified ethylene polymer and the silanol condensation catalyst to obtain a stretched film;
And,
The method for producing a heat-shrinkable film further comprises a step of crosslinking the stretched film to obtain a heat-shrinkable film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020182305A JP7613054B2 (en) | 2020-10-30 | 2020-10-30 | Silane-modified ethylene-based polymer composition for heat-shrinkable film, silane-crosslinked ethylene-based polymer composition, heat-shrinkable film, and method for producing heat-shrinkable film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020182305A JP7613054B2 (en) | 2020-10-30 | 2020-10-30 | Silane-modified ethylene-based polymer composition for heat-shrinkable film, silane-crosslinked ethylene-based polymer composition, heat-shrinkable film, and method for producing heat-shrinkable film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022072709A JP2022072709A (en) | 2022-05-17 |
JP7613054B2 true JP7613054B2 (en) | 2025-01-15 |
Family
ID=81604638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020182305A Active JP7613054B2 (en) | 2020-10-30 | 2020-10-30 | Silane-modified ethylene-based polymer composition for heat-shrinkable film, silane-crosslinked ethylene-based polymer composition, heat-shrinkable film, and method for producing heat-shrinkable film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7613054B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030050401A1 (en) | 2000-11-06 | 2003-03-13 | Peter Jackson | Crosslinked, predominantly polypropylene-based compositions |
JP2010093119A (en) | 2008-10-09 | 2010-04-22 | Dainippon Printing Co Ltd | Filler layer for solar cell module, and solar cell module using the same |
US20130017379A1 (en) | 2004-11-25 | 2013-01-17 | Mitsui Chemicals, Inc. | Propylene based resin composition and use thereof |
JP2014086634A (en) | 2012-10-25 | 2014-05-12 | Dainippon Printing Co Ltd | Sealing material sheet for solar cell module and solar cell module using the same |
US20150027516A1 (en) | 2012-03-12 | 2015-01-29 | Renolit Belgium N.V. | Backsheet and photovoltaic modules comprising it |
US20210309842A1 (en) | 2018-06-28 | 2021-10-07 | Exxonmobil Chemical Patents Inc. | Polyethylene Compositions, Wire and Cables, and Methods for Making the Same |
-
2020
- 2020-10-30 JP JP2020182305A patent/JP7613054B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030050401A1 (en) | 2000-11-06 | 2003-03-13 | Peter Jackson | Crosslinked, predominantly polypropylene-based compositions |
US20130017379A1 (en) | 2004-11-25 | 2013-01-17 | Mitsui Chemicals, Inc. | Propylene based resin composition and use thereof |
JP2010093119A (en) | 2008-10-09 | 2010-04-22 | Dainippon Printing Co Ltd | Filler layer for solar cell module, and solar cell module using the same |
US20150027516A1 (en) | 2012-03-12 | 2015-01-29 | Renolit Belgium N.V. | Backsheet and photovoltaic modules comprising it |
JP2014086634A (en) | 2012-10-25 | 2014-05-12 | Dainippon Printing Co Ltd | Sealing material sheet for solar cell module and solar cell module using the same |
US20210309842A1 (en) | 2018-06-28 | 2021-10-07 | Exxonmobil Chemical Patents Inc. | Polyethylene Compositions, Wire and Cables, and Methods for Making the Same |
Also Published As
Publication number | Publication date |
---|---|
JP2022072709A (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4614764A (en) | Linear low density ethylene polymers blended with modified linear low density ethylene polymers | |
US6465547B1 (en) | Crosslinked compositions containing silane-modified polypropylene blends | |
JP2000506210A (en) | Fluid-modified polyolefins | |
US5073598A (en) | Method for improving the processing characteristics of polyethylene blends | |
US20030050401A1 (en) | Crosslinked, predominantly polypropylene-based compositions | |
JPH06297657A (en) | Biaxially stretched double layer film | |
WO2017018479A1 (en) | Polyethylene film, laminate and package using same | |
JP2006517475A (en) | Methods, compositions and blends for forming articles with excellent environmental stress crack resistance | |
EP1803772B1 (en) | Polypropylene film with improved balance of mechanical properties | |
US10723874B2 (en) | Crosslinkable polyolefin composition | |
JP5086509B2 (en) | Heat shrinkable multilayer film | |
EP3402842B1 (en) | Polyolefin-based compositions, adhesives, and related multi-layered structures prepared therefrom | |
JPS6111244A (en) | Transparent barrier composition containing polyisobutylene/polyolefine composite component | |
JP7613054B2 (en) | Silane-modified ethylene-based polymer composition for heat-shrinkable film, silane-crosslinked ethylene-based polymer composition, heat-shrinkable film, and method for producing heat-shrinkable film | |
KR101215809B1 (en) | Elastomeric Compositions with Improved Resistance to Necking for High Speed Sheet Extrusion Applications | |
AU642017B2 (en) | Polypropylene-polybutylene compositions | |
JPS5938976B2 (en) | improved composition | |
JP7427955B2 (en) | Stretched film and microporous film | |
KR102318208B1 (en) | Compatibilized polypropylene/polyethylene blend | |
CN114901476B (en) | Multilayer film for packaging rubber bales | |
JPH0241539B2 (en) | ||
CN105247689A (en) | Composition for solar cell sealing film, method for producing same, and solar cell sealing film | |
JP2023128798A (en) | Silane-modified polyolefin, silane-modified polyolefin composition, silane crosslinked polyolefin, and molding including the same, crosslinked molding, and 3d network fiber aggregate | |
CN116507466A (en) | Method for producing polypropylene composition and polypropylene composition produced thereby | |
CA2382762C (en) | Crosslinked compositions containing silane-modified polyolefin blends |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7613054 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |