JP7610858B2 - Heat-shielding composite sheet - Google Patents
Heat-shielding composite sheet Download PDFInfo
- Publication number
- JP7610858B2 JP7610858B2 JP2022184009A JP2022184009A JP7610858B2 JP 7610858 B2 JP7610858 B2 JP 7610858B2 JP 2022184009 A JP2022184009 A JP 2022184009A JP 2022184009 A JP2022184009 A JP 2022184009A JP 7610858 B2 JP7610858 B2 JP 7610858B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- hydroxyl
- alkyl
- groups
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 60
- 239000010410 layer Substances 0.000 claims description 158
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 116
- 229920005992 thermoplastic resin Polymers 0.000 claims description 109
- 239000002245 particle Substances 0.000 claims description 90
- 125000000468 ketone group Chemical group 0.000 claims description 79
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 75
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 73
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 71
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 62
- 239000011787 zinc oxide Substances 0.000 claims description 58
- -1 hydroxyl-substituted phenyl Chemical group 0.000 claims description 50
- 239000010409 thin film Substances 0.000 claims description 50
- 150000002085 enols Chemical class 0.000 claims description 49
- 125000000217 alkyl group Chemical group 0.000 claims description 48
- 239000004744 fabric Substances 0.000 claims description 44
- 150000001412 amines Chemical class 0.000 claims description 42
- 239000000126 substance Substances 0.000 claims description 41
- 125000003545 alkoxy group Chemical group 0.000 claims description 39
- 125000004432 carbon atom Chemical group C* 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 34
- 229930194542 Keto Natural products 0.000 claims description 26
- 125000001424 substituent group Chemical group 0.000 claims description 18
- 125000001797 benzyl group Chemical class [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 16
- 239000012964 benzotriazole Substances 0.000 claims description 15
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 14
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 13
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 12
- 239000011164 primary particle Substances 0.000 claims description 11
- 239000011247 coating layer Substances 0.000 claims description 10
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 claims description 8
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 7
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000003884 phenylalkyl group Chemical group 0.000 claims description 3
- 239000012528 membrane Substances 0.000 description 54
- 239000000835 fiber Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 36
- 230000001699 photocatalysis Effects 0.000 description 28
- 230000000694 effects Effects 0.000 description 26
- 229920005989 resin Polymers 0.000 description 25
- 239000011347 resin Substances 0.000 description 25
- 238000004381 surface treatment Methods 0.000 description 18
- 229910044991 metal oxide Inorganic materials 0.000 description 17
- 150000004706 metal oxides Chemical class 0.000 description 17
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 12
- 235000021355 Stearic acid Nutrition 0.000 description 11
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 11
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 11
- 239000008117 stearic acid Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 150000002894 organic compounds Chemical group 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000004014 plasticizer Substances 0.000 description 9
- 239000004800 polyvinyl chloride Substances 0.000 description 9
- 229920000915 polyvinyl chloride Polymers 0.000 description 9
- 239000006087 Silane Coupling Agent Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 229910000077 silane Inorganic materials 0.000 description 8
- 239000002759 woven fabric Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 230000007062 hydrolysis Effects 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 125000005372 silanol group Chemical group 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 6
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 6
- 239000001913 cellulose Substances 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 229920005594 polymer fiber Polymers 0.000 description 6
- 229920002994 synthetic fiber Polymers 0.000 description 6
- 239000012209 synthetic fiber Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 229920006026 co-polymeric resin Polymers 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002121 nanofiber Substances 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000272470 Circus Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 3
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-Tetramethylpiperidine Substances CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004693 Polybenzimidazole Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 150000001343 alkyl silanes Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 150000001565 benzotriazoles Chemical class 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 238000010504 bond cleavage reaction Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000013305 flexible fiber Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002480 polybenzimidazole Polymers 0.000 description 2
- 229920002577 polybenzoxazole Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229920003067 (meth)acrylic acid ester copolymer Polymers 0.000 description 1
- KCZIUKYAJJEIQG-UHFFFAOYSA-N 1,3,5-triazin-2-amine Chemical compound NC1=NC=NC=N1 KCZIUKYAJJEIQG-UHFFFAOYSA-N 0.000 description 1
- MCRZWYDXIGCFKO-UHFFFAOYSA-N 2-butylpropanedioic acid Chemical compound CCCCC(C(O)=O)C(O)=O MCRZWYDXIGCFKO-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- ZPQAUEDTKNBRNG-UHFFFAOYSA-N 2-methylprop-2-enoylsilicon Chemical compound CC(=C)C([Si])=O ZPQAUEDTKNBRNG-UHFFFAOYSA-N 0.000 description 1
- HPFWYRKGZUGGPB-UHFFFAOYSA-N 4,6-dichloro-n-(2,4,4-trimethylpentan-2-yl)-1,3,5-triazin-2-amine Chemical compound CC(C)(C)CC(C)(C)NC1=NC(Cl)=NC(Cl)=N1 HPFWYRKGZUGGPB-UHFFFAOYSA-N 0.000 description 1
- NPYDPROENPLGBR-UHFFFAOYSA-N 4,6-dichloro-n-cyclohexyl-1,3,5-triazin-2-amine Chemical compound ClC1=NC(Cl)=NC(NC2CCCCC2)=N1 NPYDPROENPLGBR-UHFFFAOYSA-N 0.000 description 1
- UQAMDAUJTXFNAD-UHFFFAOYSA-N 4-(4,6-dichloro-1,3,5-triazin-2-yl)morpholine Chemical compound ClC1=NC(Cl)=NC(N2CCOCC2)=N1 UQAMDAUJTXFNAD-UHFFFAOYSA-N 0.000 description 1
- ZCILGMFPJBRCNO-UHFFFAOYSA-N 4-phenyl-2H-benzotriazol-5-ol Chemical class OC1=CC=C2NN=NC2=C1C1=CC=CC=C1 ZCILGMFPJBRCNO-UHFFFAOYSA-N 0.000 description 1
- NJCDRURWJZAMBM-UHFFFAOYSA-N 6-phenyl-1h-1,3,5-triazin-2-one Chemical class OC1=NC=NC(C=2C=CC=CC=2)=N1 NJCDRURWJZAMBM-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 206010019345 Heat stroke Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- NOKSMMGULAYSTD-UHFFFAOYSA-N [SiH4].N=C=O Chemical compound [SiH4].N=C=O NOKSMMGULAYSTD-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000006084 composite stabilizer Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- VGWJKDPTLUDSJT-UHFFFAOYSA-N diethyl dimethyl silicate Chemical compound CCO[Si](OC)(OC)OCC VGWJKDPTLUDSJT-UHFFFAOYSA-N 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical class NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000012747 synergistic agent Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- ADLSSRLDGACTEX-UHFFFAOYSA-N tetraphenyl silicate Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(OC=1C=CC=CC=1)OC1=CC=CC=C1 ADLSSRLDGACTEX-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
本発明は、主にテント膜構造物の素材に使用する遮熱性複合体シート、及びその耐久性向上、すなわち耐用年数の延長技術に関し、具体的には、テント膜構造物用の採光性を有する遮熱性ターポリン、及び遮熱性帆布の耐候性向上に関する。本発明により得られる遮熱テント膜構造物は、夏期の外気温度よりも3~5℃低い屋内温度が得られ、相応の冷房、冷却のためのエネルギーが節減され、しかも適度な採光性を有することで照明ためのエネルギーも節減されることで、地球温暖化抑止の取り組みに貢献することができ、耐用年数延長によって、その貢献をより持続性の高いものとすることできる。 The present invention relates to a heat-shielding composite sheet used primarily as a material for tent membrane structures, and to a technology for improving its durability, i.e., extending its useful life, and more specifically to a heat-shielding tarpaulin with light-gathering properties for use in tent membrane structures, and improving the weather resistance of heat-shielding canvas. The heat-shielding tent membrane structure obtained by the present invention achieves an indoor temperature that is 3 to 5°C lower than the outdoor air temperature in summer, thereby saving a corresponding amount of energy for air conditioning and cooling, and by having appropriate light-gathering properties, energy for lighting is also saved, thereby contributing to efforts to prevent global warming, and by extending the useful life, this contribution can be made more sustainable.
密閉型のテント膜構造物は、インドアスポーツ(テニス、フットサル、ボルダリングなど)、展示会ホール、イベントパビリオン、巡業サーカス、映像投影ドーム、グランピングなど娯楽(人間)を主体とするものと、テント倉庫のように、工場資材の保管・備蓄、製品の物流(物品)を主体とするものとがある。いずれもポリエステル繊維織物などの合成繊維織物を基材として、その両面に軟質塩化ビニル樹脂などの熱可塑性樹脂層を設けて被覆したターポリン、または防水帆布などが使用されている。密閉型のテント膜構造物とは、出入口扉、開閉窓を有し、これらを閉じることで密閉空間を成すもので、一方、密閉型に対する解放型として、屋根構造を主体とする吹き抜け構造物で、具体的には、公園、テーマパークの日除けモニュメント、ビル間スペースに設けられるガーデンテラス屋根、パーゴラシェード、などである。密閉型のテント膜構造物は人や物品を風雨から守る反面、採光性を得るために光半透過性の膜材仕様とするため、夏期の日射熱が内部にこもり易い欠点がある。一方、解放型は風通しがよい反面、人や物品を風雨から守ることには不適切な構造である。そして密閉型のテント膜構造物において、娯楽(人間)を主体とするものには空調設備、冷暖房設備を充実したものとするが、物流(物品)を主体とするテント倉庫にはこのような設備を充実させることは少ない。しかしながらテント倉庫内は夏期の熱気がこもり過酷な環境となるため、工場資材の保管・備蓄を管理・入出庫する従事者にとって、扇風機、スポットクーラーなどの熱中症対策は不可欠となっている。 Enclosed tent membrane structures include those that are primarily intended for entertainment (people), such as indoor sports (tennis, futsal, bouldering, etc.), exhibition halls, event pavilions, traveling circuses, video projection domes, and glamping, and those that are primarily intended for the storage and stockpiling of factory materials and the distribution of products (goods), such as tent warehouses. All of them use a synthetic fiber fabric such as polyester fiber fabric as the base material, covered on both sides with a thermoplastic resin layer such as soft polyvinyl chloride resin, as a tarpaulin, or waterproof canvas. Enclosed tent membrane structures have entrance doors and opening/closing windows that form an enclosed space when closed. On the other hand, the open type, as opposed to the enclosed type, is an open-ceiling structure that is primarily made of a roof structure, and specific examples include sunshade monuments in parks and theme parks, garden terrace roofs installed in the spaces between buildings, and pergola shades. Although closed-type tent membrane structures protect people and goods from wind and rain, they have the disadvantage that the heat from solar radiation in summer tends to build up inside because they are made of semi-transparent membrane materials to allow light in. On the other hand, open-type structures are well ventilated, but are not suitable for protecting people and goods from wind and rain. And while closed-type tent membrane structures that are primarily used for entertainment (people) are equipped with air conditioning and heating/cooling equipment, tent warehouses that are primarily used for logistics (goods) rarely have such equipment. However, the heat builds up inside tent warehouses in summer, making them harsh environments, so heatstroke prevention measures such as electric fans and spot coolers are essential for employees who manage and take in and out the storage and stockpiling of factory materials.
このようなテント倉庫内の熱気を下げるためには、テント膜(ターポリン、防水帆布)の色を白、シルバーなどの反射色とすることが効果的で、特に酸化チタン顔料は屈折率が高いことで光散乱力が大きく、それによって高い日射反射率(遮熱率)が得られることが知られている。しかし、光散乱力が大きい程、隠蔽性が高くなり、テント膜の採光性が阻害されるためテント倉庫内は日中も照明が必要な環境となっていた。このジレンマに対して当出願人は以前に、遮熱効果と採光性とを兼ね備えたテント(倉庫用)膜材として、膜材の熱可塑性樹脂被覆層に、屈折率1.8以上、粒子径分布0.3~3.0μm、アスペクト比1.0~3.0の不定形無機化合物粒子(酸化チタン)を0.3~30質量%の含有量で含ませてなる膜材(特許文献1)を提案した。この実施例では38~65%の遮熱率、及び光線透過率4~45%の採光性を得ることができ、夏期の空調電力、及び通年の照明電力節減効果が期待できるものとなっている。しかし、光線透過率4~45%の採光性の代償として、光線線透過による紫外線ダメージでテント膜(熱可塑性樹脂被覆層)を変色させたり、表面に亀裂を生じさせ、膜材の耐用年数を短くするリスクを高いものとしていた。昨今のSDGsの取り組みの1つとして長期的使用が可能なテント膜材が望まれている。これはテント膜材の耐用年数を数年延ばすことにより、テント膜材の張替え交換サイクルが長くなり、テント膜材を製造するための合成繊維織物、及び熱可塑性樹脂などの原料となる石化資源の消費を減らし、さらに二酸化炭素排出の削減にも繋がる社会貢献となるからである。特許文献1の遮熱効果と採光性とを兼ね備えたテント膜材を検討した当時は、このような石化資源の消費を減らし、地球温暖化を止めようとする世界規模の取り組みはなされていなかった。 In order to reduce the heat inside such a tent warehouse, it is effective to make the tent membrane (tarpaulin, waterproof canvas) a reflective color such as white or silver. In particular, it is known that titanium oxide pigments have a high refractive index and therefore a high light scattering power, which results in a high solar reflectance (heat shielding rate). However, the greater the light scattering power, the higher the concealment power becomes, and the light gathering ability of the tent membrane is hindered, so that the inside of the tent warehouse becomes an environment where lighting is required even during the day. In response to this dilemma, the applicant previously proposed a membrane material (Patent Document 1) for a tent (warehouse) that combines a heat-blocking effect and light gathering ability, in which the thermoplastic resin coating layer of the membrane contains 0.3 to 30 mass% of amorphous inorganic compound particles (titanium oxide) with a refractive index of 1.8 or more, a particle size distribution of 0.3 to 3.0 μm, and an aspect ratio of 1.0 to 3.0. In this embodiment, a heat shielding rate of 38 to 65% and daylighting with a light transmittance of 4 to 45% can be obtained, and it is expected that the effect of reducing the power consumption of air conditioning in the summer and the power consumption of lighting throughout the year can be expected. However, in exchange for the daylighting with a light transmittance of 4 to 45%, the risk of discoloring the tent membrane (thermoplastic resin coating layer) due to ultraviolet damage caused by light transmission and cracking on the surface, which shortens the service life of the membrane material, is high. As one of the recent efforts of the SDGs, a tent membrane material that can be used for a long time is desired. This is because by extending the service life of the tent membrane material by several years, the replacement cycle of the tent membrane material can be extended, reducing the consumption of petrochemical resources that are the raw materials for synthetic fiber fabrics and thermoplastic resins used to manufacture the tent membrane material, and further contributing to society by reducing carbon dioxide emissions. At the time when the tent membrane material with both heat shielding effect and daylighting of Patent Document 1 was considered, there was no global effort to reduce the consumption of petrochemical resources and stop global warming.
具体的に、軟質塩化ビニル系樹脂製の産業用遮熱性複合体シートの耐用年数を向上させる手段として、本出願人は、軟質塩化ビニル系樹脂層に紫外線吸収剤を配合する方法(特許文献2)、遮熱性複合体シートの表面に高分子量紫外線吸収剤を配合した塗膜層を設ける方法(特許文献3)などを過去に検討している。また、最近、ターポリンの遮熱層に亀裂を容易に生じず、遮熱層が容易に摩滅、脱落することがなく、遮熱性を長期持続可能な遮熱性複合体シートを得る方法として、遮熱層を有機重合体、または有機/無機縮合体で構成し、(変性)セルロースナノファイバーを含有させる提案(特許文献4)をしたが、採光性、かつ遮熱性のテント膜材の張替交換サイクルの長期化のため、如いては地球環境保全のために、さらなる耐用年数の延長の課題が顕在している。 Specifically, as a means for improving the service life of industrial heat-shielding composite sheets made of soft polyvinyl chloride resin, the applicant has previously considered a method of blending an ultraviolet absorbing agent into a soft polyvinyl chloride resin layer (Patent Document 2) and a method of providing a coating layer containing a high molecular weight ultraviolet absorbing agent on the surface of a heat-shielding composite sheet (Patent Document 3). In addition, a recent proposal was made to form a heat-shielding composite sheet from an organic polymer or an organic/inorganic condensate and to contain (modified) cellulose nanofibers (Patent Document 4) as a method for obtaining a heat-shielding composite sheet that does not easily crack, wear out, or fall off the heat-shielding layer of the tarpaulin, and has long-lasting heat-shielding properties. However, due to the need to lengthen the replacement cycle of light-gathering and heat-shielding tent membrane materials, and for the sake of protecting the global environment, there is a need to further extend the service life.
本発明における解決課題は、テント膜構造物を構成する、採光性、かつ遮熱性の膜材の耐候性向上(紫外線劣化軽減)であり、すなわち採光性、遮熱性、及び耐候性に優れたテント膜構造物用の膜材(ターポリン、帆布などの複合体シート)の提供である。また、本発明における目的は、テント膜構造物用の膜材(遮熱性複合体シート)の耐用年数を延長することによって、廃棄頻度(すなわち張替交換)を減らして廃棄する膜材量を削減することによって、地球環境保全に貢献することである。 The problem to be solved by this invention is to improve the weather resistance (reduction of ultraviolet degradation) of the light-gathering and heat-shielding membrane material that constitutes the tent membrane structure, i.e., to provide a membrane material (composite sheet such as tarpaulin or canvas) for tent membrane structures that has excellent light-gathering, heat-shielding, and weather resistance. In addition, the object of this invention is to contribute to the conservation of the global environment by extending the service life of the membrane material (heat-shielding composite sheet) for tent membrane structures, thereby reducing the frequency of disposal (i.e. replacement) and the amount of membrane material to be disposed of.
かかる点を考慮し検討を重ねた結果、本発明の遮熱性複合体シートは、布帛に熱可塑性樹脂層が積層された複合体シートであって、前記熱可塑性樹脂層が、表面処理酸化チタン粒子、ケト/エノール型互変異性体、及びN-OR型ヒンダードアミン、を少なくとも含有し、前記表面処理酸化チタン粒子の一次平均粒子径が0.4~1.2μmであり、前記ケト/エノール型互変異性体が、ベンゾトリアゾール系互変異性体、トリアジン系互変異性体、及びジフェニルケトン系系互変異性体、から選ばれた1種以上であり、さらに前記熱可塑性樹脂層上に、酸化亜鉛、または酸化チタンと酸化亜鉛の混合物を含む薄膜層が形成され、かつ前記酸化亜鉛、及び酸化チタンが、粒子表面にコーティング層を有する一次平均粒子径10~50nmのものであることにより、採光性、遮熱性、及び耐候性に優れたテント膜構造物用の膜材(ターポリン、帆布などの複合体シート)が得られ、耐候性の向上(紫外線劣化軽減)により採光性、かつ遮熱性複合体シートの耐用年数の延長が可能となり、その結果、廃棄頻度(すなわち張替交換)を減らして廃棄する膜材量を削減し、同時に膜材の生産量を削減し、二酸化炭素排出の要因となる石化資源の消費を抑え、地球環境保全に貢献するものとなることを確信して本発明を完成させるに至った。 As a result of considering these points and carrying out extensive research, the present invention has found that the heat-shielding composite sheet of the present invention is a composite sheet in which a thermoplastic resin layer is laminated on a fabric, the thermoplastic resin layer contains at least surface-treated titanium oxide particles, a keto/enol type tautomer, and an N-OR type hindered amine, the surface-treated titanium oxide particles have a primary average particle size of 0.4 to 1.2 μm, the keto/enol type tautomer is one or more selected from benzotriazole-based tautomers, triazine-based tautomers, and diphenyl ketone-based tautomers, and further a thin film layer containing zinc oxide or a mixture of titanium oxide and zinc oxide is formed on the thermoplastic resin layer. and the zinc oxide and titanium oxide have a coating layer on the surface of the particles and have a primary average particle size of 10 to 50 nm , thereby making it possible to obtain a membrane material for tent membrane structures (a composite sheet such as tarpaulin or canvas) having excellent light-collecting, heat-shielding and weather resistance, and the improved weather resistance (reduced ultraviolet light deterioration) makes it possible to extend the service life of the light-collecting and heat-shielding composite sheet, which results in a reduction in the frequency of disposal (i.e., replacement) and a reduction in the amount of membrane material to be discarded, and at the same time, a reduction in the amount of membrane material produced, which suppresses the consumption of petrochemical resources that cause carbon dioxide emissions, thereby contributing to the conservation of the global environment, and thus the present invention has been completed with this conviction.
本発明の遮熱性複合体シートは、前記ケト/エノール型互変異性体が、ベンゾトリアゾール系互変異性体、トリアジン系互変異性体、及びジフェニルケトン系系互変異性体、から選ばれた1種以上であることが好ましい。このケト/エノール型互変異性体は、太陽光(紫外線)の刺激で、エノール型異性体と、ケト型異性体とのナノ秒単位の相互変換を繰り返すことで、熱可塑性樹脂層内にエノール型とケト型の異性体が平衡状態で共存し、受けた紫外線エネルギーを相互変換の分子振動の熱エネルギーに替えて系外放出する、エネルギー減衰作用の発現で紫外線によるダメージを軽減させることができる。 In the heat-shielding composite sheet of the present invention, the keto/enol tautomer is preferably one or more selected from benzotriazole tautomers, triazine tautomers, and diphenyl ketone tautomers. This keto/enol tautomer repeats mutual conversion between the enol isomer and the keto isomer in nanosecond units when stimulated by sunlight (ultraviolet rays), so that the enol and keto isomers coexist in equilibrium within the thermoplastic resin layer, and the ultraviolet energy received is converted into thermal energy of molecular vibrations during the mutual conversion and released outside the system, thereby reducing damage caused by ultraviolet rays through the manifestation of an energy attenuation effect.
本発明の遮熱性複合体シートは、前記ベンゾトリアゾール系互変異性体が、水酸基(1~2個)/ケトン基(0個)のベンゼン環(アルキル基、分岐アルキル基、アルキル置換ベンジル基から選ばれた1種または2種を有していてもよい)1個と、ベンゾトリアゾール環(置換基を有していてもよい)とのC-N結合体を骨格とするエノール型異性体(Ia)〔化1〕と、水酸基(0~1個)/ケトン基(1個)のベンゼン環(アルキル基、分岐アルキル基、アルキル置換ベンジル基から選ばれた1種または2種を有していてもよい)1個と、ベンゾトリアゾール環(置換基を有していてもよい)とのC-N結合体を主骨格とするケト型異性体(IIa)〔化2〕であることが好ましい。このベンゾトリアゾール系互変異性体は、太陽光(紫外線)の刺激で、エノール型異性体(Ia)〔化1〕と、ケト型異性体(IIa)〔化2〕とのナノ秒単位相互変換を繰り返すことで、遮熱層内にエノール型とケト型の異性体が平衡状態で共存し、受けた紫外線エネルギーを相互変換の分子振動の熱エネルギーに替えて系外放出する、エネルギー減衰作用の発現で紫外線によるダメージを軽減させることができる。
から選ばれた1種以上
から選ばれた1種以上
In the heat shielding composite sheet of the present invention, the benzotriazole-based tautomer is preferably an enol type isomer (Ia) [Chemical formula 1] having a skeleton of a C-N bond between one benzene ring (which may have one or two types selected from an alkyl group, a branched alkyl group, and an alkyl-substituted benzyl group) having a hydroxyl group (1 to 2 groups)/ketone group (0 groups) and a benzotriazole ring (which may have a substituent), or a keto type isomer (IIa) [Chemical formula 2] having a skeleton of a C-N bond between one benzene ring (which may have one or two types selected from an alkyl group, a branched alkyl group, and an alkyl-substituted benzyl group) having a hydroxyl group (0 to 1 groups)/ketone group (1 group) and a benzotriazole ring (which may have a substituent). When stimulated by sunlight (ultraviolet rays), this benzotriazole tautomer repeatedly undergoes interconversion between the enol isomer (Ia) [Chemical formula 1] and the keto isomer (IIa) [Chemical formula 2] on a nanosecond basis. As a result, the enol and keto isomers coexist in equilibrium within the heat-shielding layer, and the ultraviolet light energy received is converted into thermal energy of the molecular vibrations involved in the interconversion and released outside the system, thereby exerting an energy attenuation effect and reducing damage caused by ultraviolet light.
本発明の遮熱性複合体シートは、前記トリアジン系互変異性体が、水酸基(1~2個)/ケトン基(0個)のベンゼン環(アルキルオキシ基を有していてもよい)1~3個と、1,3,5-トリアジン環(アルキル置換フェニル基、及び/または水酸基置換フェニル基を有していてもよい)とのC-C結合体を主骨格とするエノール型異性体(Ib)〔化3〕と、水酸基(0~1個)/ケトン基(1個)のベンゼン環(アルキルオキシ基を有していてもよい)1~3個と、1,3,5-トリアジン環(アルキル置換フェニル基、及び/または水酸基置換フェニル基を有していてもよい)とのC-C結合体を骨格とするケト型異性体(IIb)〔化4〕であることが好ましい。このトリアジン系互変異性体は、太陽光(紫外線)の刺激で、エノール型異性体(Ib)〔化3〕と、ケト型異性体(IIb)〔化4〕とのナノ秒単位の相互変換を繰り返すことで、遮熱層内にエノール型とケト型の異性体が平衡状態で共存し、受けた紫外線エネルギーを相互変換の分子振動の熱エネルギーに替えて系外放出する、エネルギー減衰作用の発現で紫外線によるダメージを軽減させることができる。
R2,R3は、アルキル置換フェニル基、及び/または水酸基置換フェニル基
R2,R3は、アルキル置換フェニル基、及び/または水酸基置換フェニル基
In the heat shielding composite sheet of the present invention, the triazine-based tautomer is preferably an enol isomer (Ib) [Chemical formula 3] having as a main skeleton a C-C bond between 1 to 3 benzene rings (which may have an alkyloxy group) having 1 to 2 hydroxyl groups/0 ketone groups and a 1,3,5-triazine ring (which may have an alkyl-substituted phenyl group and/or a hydroxyl-substituted phenyl group), or a keto isomer (IIb) [Chemical formula 4] having as a main skeleton a C-C bond between 1 to 3 benzene rings (which may have an alkyloxy group) having 1 to 2 hydroxyl groups/1 ketone group and a 1,3,5-triazine ring (which may have an alkyl-substituted phenyl group and/or a hydroxyl-substituted phenyl group). When stimulated by sunlight (ultraviolet rays), this triazine tautomer repeatedly undergoes interconversion between the enol isomer (Ib) [Chemical formula 3] and the keto isomer (IIb) [Chemical formula 4] on a nanosecond basis. As a result, the enol and keto isomers coexist in equilibrium within the heat-shielding layer, and the ultraviolet light energy received is converted into thermal energy through molecular vibrations during the interconversion and released outside the system, thereby exerting an energy attenuation effect and reducing damage caused by ultraviolet light.
本発明の遮熱性複合体シートは、前記ジフェニルケトン系互変異性体が、水酸基(1~2個)/ケトン基(0個)/アルキルオキシ基(0~1個)のベンゼン環2個がC=O結合で連結された主骨格のエノール型異性体(Ic)〔化5〕と、水酸基(0~1個)/ケトン基(1個)/アルキルオキシ基(0~1個)のベンゼン環1個と、水酸基(1~2個)/ケトン基(0個)/アルキルオキシ基(0~1個)のベンゼン環1個がC=O結合で連結された主骨格のケト型異性体(IIc)〔化6〕であることが好ましい。このジフェニルケトン系互変異性体は、太陽光(紫外線)の刺激で、エノール型異性体(Ic)〔化5〕と、ケト型異性体(IIc)〔化6〕との相互変換を繰り返すことで、遮熱層内にエノール型とケト型の異性体が平衡状態で共存し、受けた紫外線エネルギーをナノ秒単位の相互変換の分子振動の熱エネルギーに替えて系外放出する、エネルギー減衰作用の発現で紫外線によるダメージを軽減させることができる。
本発明の遮熱性複合体シートは、前記N-OR型ヒンダードアミンが、ヒンダードアミン構造のN位に、炭素数2~18のアルコキシ基、及び、炭素数5~12のシクロアルコキシ基から選ばれた1種以上の置換基を有するものであることが好ましい。これによってN-OR型ヒンダードアミン化合物が、紫外線ダメージで生じる熱可塑性樹脂層からの過酸化物ラジカル(ROO・)をN-OR部で捕獲してアルコール、ケトンに無害化して放出し、自身はニトロキシラジカル(N-O・)に転じ、紫外線ダメージで生じる熱可塑性樹脂層からのアルキルラジカル(R・)を捕捉してN-OR型ヒンダードアミン化合物も戻るというナノ秒単位のサイクルを繰り返すことで、有害なラジカルの攻撃による熱可塑性樹脂の結合開裂の連鎖進行を抑止することができる。
直鎖アルキル基、または分枝アルキル基、c)1個以上の-O-,-S-,
-SO-,-SO2-,-CO-,-COO-,-OCO-,-CONR-,
-NRCO-または-NR-を含む上記b)のアルキル基、d)炭素数3~20の
アルケニル基、e)炭素数6~10のアリール基、f)炭素数1~20のアルキル基、
炭素数5~12のシクロアルキル基、及び炭素数7~15のフェニルアルキル基から
選択された1~3個の置換基を有するアリール基
R5は炭素数2~18のアルキル基、または、炭素数5~12のシクロアルキル基
In the heat-shielding composite sheet of the present invention, the N-OR type hindered amine preferably has, at the N-position of the hindered amine structure, one or more substituents selected from an alkoxy group having 2 to 18 carbon atoms and a cycloalkoxy group having 5 to 12 carbon atoms. This allows the N-OR type hindered amine compound to capture peroxide radicals (ROO.) generated from the thermoplastic resin layer due to ultraviolet damage at the N-OR moiety, render them harmless as alcohols or ketones, and release them, while converting itself to a nitroxy radical (N-O.), capture alkyl radicals (R.) generated from the thermoplastic resin layer due to ultraviolet damage, and return to the N-OR type hindered amine compound, repeating this cycle on a nanosecond basis, thereby making it possible to inhibit the chain reaction of bond cleavage in the thermoplastic resin due to the attack of harmful radicals.
-SO-, -SO 2 -, -CO-, -COO-, -OCO-, -CONR-,
an alkyl group of the above b) containing -NRCO- or -NR-; d) an alkenyl group having 3 to 20 carbon atoms; e) an aryl group having 6 to 10 carbon atoms; and f) an alkyl group having 1 to 20 carbon atoms.
An aryl group having 1 to 3 substituents selected from a cycloalkyl group having 5 to 12 carbon atoms and a phenylalkyl group having 7 to 15 carbon atoms. R 5 is an alkyl group having 2 to 18 carbon atoms or a cycloalkyl group having 5 to 12 carbon atoms.
本発明の遮熱性複合体シートは、前記熱可塑性樹脂層が、酸化亜鉛、または酸化チタンと酸化亜鉛の混合物をさらに含み、かつ前記酸化亜鉛、及び酸化チタンが、粒子表面にコーティング層を有する一次平均粒子径0.3μm以下のものであることが好ましい。これによって熱可塑性樹脂層に含まれる一次平均粒子径0.4~1.2μmの表面処理酸化チタン粒子間に生じる隙間に、一次平均粒子径0.3μm以下(0.1μm~0.3μm)の酸化亜鉛、または酸化亜鉛と酸化チタンの粒子が入り込むことを可能とし、この粒子径の酸化亜鉛、及び酸化チタン粒子は、熱可塑性樹脂層内に透過する紫外線を散乱させて紫外線の透過を遮蔽することができ、特に酸化亜鉛はUVA(紫外線A波)の遮蔽効果に優れ、酸化チタンはUVB(紫外線B波)の遮蔽効果に優れるので、酸化チタンと酸化亜鉛の混合物を用いることが好ましい。本発明に用いる酸化亜鉛、及び酸化チタン粒子は表面処理により光触媒活性が封止された熱可塑性樹脂層を劣化させない紫外線遮蔽剤である。 In the heat-shielding composite sheet of the present invention, the thermoplastic resin layer preferably further contains zinc oxide or a mixture of titanium oxide and zinc oxide, and the zinc oxide and titanium oxide have a primary average particle diameter of 0.3 μm or less and a coating layer on the particle surface. This allows zinc oxide or zinc oxide and titanium oxide particles with a primary average particle diameter of 0.3 μm or less (0.1 μm to 0.3 μm) to enter the gaps between the surface-treated titanium oxide particles with a primary average particle diameter of 0.4 to 1.2 μm contained in the thermoplastic resin layer, and the zinc oxide and titanium oxide particles with this particle diameter can scatter ultraviolet rays that penetrate into the thermoplastic resin layer and block the transmission of ultraviolet rays. In particular, zinc oxide has an excellent UVA (ultraviolet A wave) blocking effect, and titanium oxide has an excellent UVB (ultraviolet B wave) blocking effect, so it is preferable to use a mixture of titanium oxide and zinc oxide. The zinc oxide and titanium oxide particles used in the present invention are ultraviolet blocking agents that do not deteriorate the thermoplastic resin layer whose photocatalytic activity has been sealed by surface treatment.
本発明の遮熱性複合体シートは、前記熱可塑性樹脂層上に、酸化亜鉛、または酸化チタンと酸化亜鉛の混合物を含む薄膜層が形成され、かつ前記酸化亜鉛、及び酸化チタンが、粒子表面にコーティング層を有する一次平均粒子径10~50nmのものであることが好ましい。この薄膜層の存在によって、熱可塑性樹脂層内に透過する紫外線を、一次平均粒子径10~50nmの酸化亜鉛、及び/または酸化チタン粒子により散乱させて紫外線の透過を遮蔽するので、熱可塑性樹脂層の耐光性をケト/エノール型互変異性体、及びN-OR型ヒンダードアミンとの相乗効果でさらに向上させることができる。特に酸化亜鉛はUVA(紫外線A波)の遮蔽効果に優れ、酸化チタンはUVB(紫外線B波)の遮蔽効果に優れるので、酸化チタンと酸化亜鉛の混合物を用いることが好ましい。本発明に用いる酸化亜鉛、及び酸化チタン粒子は表面処理により光触媒活性が封止された熱可塑性樹脂層を劣化させないものである。 In the heat-shielding composite sheet of the present invention, a thin film layer containing zinc oxide or a mixture of titanium oxide and zinc oxide is formed on the thermoplastic resin layer, and the zinc oxide and titanium oxide preferably have a primary average particle size of 10 to 50 nm and a coating layer on the particle surface. Due to the presence of this thin film layer, ultraviolet rays penetrating the thermoplastic resin layer are scattered by the zinc oxide and/or titanium oxide particles having a primary average particle size of 10 to 50 nm, blocking the transmission of ultraviolet rays, and the light resistance of the thermoplastic resin layer can be further improved by the synergistic effect with the keto/enol tautomer and the N-OR hindered amine. In particular, zinc oxide has an excellent UVA (ultraviolet A wave) blocking effect, and titanium oxide has an excellent UVB (ultraviolet B wave) blocking effect, so it is preferable to use a mixture of titanium oxide and zinc oxide. The zinc oxide and titanium oxide particles used in the present invention do not deteriorate the thermoplastic resin layer in which the photocatalytic activity is sealed by surface treatment.
本発明の遮熱性複合体シートは、前記熱可塑性樹脂層上に、オルガノシリケート化合物、またはシラノール基含有有機シラン化合物のゾルゲル縮合体を主体とする薄膜層が形成され、この薄膜層内に、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上の光触媒性金属酸化物を含有していることが好ましい。このような薄膜層を熱可塑性樹脂層上に配置することによって、薄膜層内に含む光触媒性金属酸化物が紫外線励起により光触媒活性を発現させる。この光触媒活性は、煤塵汚れなどの付着異物の除去をセルフクリーニング作用として熱可塑性樹脂層の長期持続に寄与する。この時、本発明の遮熱性複合体シートが受ける紫外線は薄膜層を透過し、さらに熱可塑性樹脂層まで到達するが、薄膜層では、透過する紫外線エネルギーの一部が光触媒性金属酸化物の活性化で消費されるので、下に位置する熱可塑性樹脂層に到達する紫外線エネルギーは減衰したものとなる。従って薄膜層を熱可塑性樹脂層上に配置することは熱可塑性樹脂層の保護となり、如いては遮熱性複合体シートの耐用年数の延長に寄与することができる。 In the heat-shielding composite sheet of the present invention, a thin film layer mainly composed of an organosilicate compound or a sol-gel condensate of a silanol group-containing organic silane compound is formed on the thermoplastic resin layer, and it is preferable that the thin film layer contains one or more photocatalytic metal oxides selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide. By disposing such a thin film layer on the thermoplastic resin layer, the photocatalytic metal oxide contained in the thin film layer exhibits photocatalytic activity by ultraviolet excitation. This photocatalytic activity contributes to the long-term durability of the thermoplastic resin layer by acting as a self-cleaning action to remove attached foreign matter such as soot and dust stains. At this time, the ultraviolet light received by the heat-shielding composite sheet of the present invention penetrates the thin film layer and reaches the thermoplastic resin layer, but in the thin film layer, a part of the ultraviolet light energy that penetrates is consumed by the activation of the photocatalytic metal oxide, so that the ultraviolet light energy that reaches the thermoplastic resin layer located below is attenuated. Therefore, placing a thin film layer on a thermoplastic resin layer protects the thermoplastic resin layer and can contribute to extending the service life of the heat-shielding composite sheet.
本発明により、採光性、遮熱性、及び耐候性に優れたテント膜構造物用の膜材(ターポリン、帆布などの複合体シート)を得ることができるようになり、テント膜構造物用の膜材(遮熱性複合体シート)の耐用年数が延長されることによって、廃棄頻度(すなわち張替交換)が減り、廃棄する膜材量の削減となり、同時に膜材の生産量が削減されることで石化資源の使用量が減り、二酸化炭素排出減による地球環境の保全に貢献することを可能とする。具体的に、屋内スポーツ施設、イベントパビリオン、移動サーカス、プラネタリウム、テント倉庫などの長期使用(10~15年)のテント構造物に最適な膜材となり、さらに、建築養生(防音)シート、パーゴラシェード(膜天井)、ファサードシート、昇降式シートシャッター、間仕切りシート、トラック幌、野積防水シート、屋形テントなどの10年未満の用途にも展開可能となる。 The present invention makes it possible to obtain a membrane material (composite sheet such as tarpaulin or canvas) for tent membrane structures that has excellent lighting, heat insulation, and weather resistance, and by extending the service life of the membrane material (heat-shielding composite sheet) for tent membrane structures, the frequency of disposal (i.e., replacement) is reduced, and the amount of membrane material to be disposed of is reduced. At the same time, the amount of membrane material produced is reduced, which reduces the amount of petrochemical resources used, and contributes to the conservation of the global environment by reducing carbon dioxide emissions. Specifically, this membrane material is ideal for long-term (10 to 15 years) tent structures such as indoor sports facilities, event pavilions, traveling circuses, planetariums, and tent warehouses, and can also be used for applications lasting less than 10 years, such as architectural protection (soundproofing) sheets, pergola shades (membrane ceilings), facade sheets, lift-up sheet shutters, partition sheets, truck canopies, open-air waterproof sheets, and roofed tents.
本発明の遮熱性複合体シートは、布帛に熱可塑性樹脂層が積層された複合体シートであって、熱可塑性樹脂層が、表面処理酸化チタン粒子、ケト/エノール型互変異性体(ベンゾトリアゾール系互変異性体、及びトリアジン系互変異性体、から選ばれた1種以上)、及びN-OR型ヒンダードアミン、を少なくとも含有する態様、熱可塑性樹脂層に、特定の酸化亜鉛、または特定の酸化チタンと特定の酸化亜鉛の混合物をさらに含む態様、熱可塑性樹脂層上に、特定の酸化亜鉛、または特定の酸化チタンと特定の酸化亜鉛の混合物を含む薄膜層が形成された態様、熱可塑性樹脂層上に、ゾルゲル縮合体を主体とする薄膜層が形成され、この薄膜層内に光触媒性金属酸化物を含有する態様を含むものである。 The heat-shielding composite sheet of the present invention is a composite sheet in which a thermoplastic resin layer is laminated on a fabric, and includes an embodiment in which the thermoplastic resin layer contains at least surface-treated titanium oxide particles, a keto/enol tautomer (one or more selected from benzotriazole-based tautomers and triazine-based tautomers), and an N-OR hindered amine; an embodiment in which the thermoplastic resin layer further contains a specific zinc oxide or a mixture of a specific titanium oxide and a specific zinc oxide; an embodiment in which a thin film layer containing a specific zinc oxide or a mixture of a specific titanium oxide and a specific zinc oxide is formed on the thermoplastic resin layer; and an embodiment in which a thin film layer mainly composed of a sol-gel condensate is formed on the thermoplastic resin layer, and a photocatalytic metal oxide is contained within this thin film layer.
本発明の遮熱性複合体シートの熱可塑性樹脂層を構成する熱可塑性樹脂は、軟質塩化ビニル樹脂(可塑剤配合)、塩化ビニル系共重合体樹脂、塩素化塩化ビニル樹脂、オレフィン樹脂(PE,PP)、オレフィン系共重合体樹脂、エチレン-酢酸ビニル共重合体樹脂(EVA)、エチレン-(メタ)アクリル酸(エステル)共重合体樹脂、ウレタン樹脂、酢酸ビニル系共重合体樹脂、スチレン系共重合体樹脂、ポリエステル系共重合体樹脂、フッ素含有共重合体樹脂など、ショアA硬度35~85程度の熱可塑性樹脂、またはエラストマーであり、これらは相溶、または半相溶の状態で2種以上をブレンドしてもよく、また2種以上の多層フィルム、または多層塗膜としてもよい。エラストマーとは2種以上のモノマーからなるブロック共重合体樹脂で、個々のブロック成分がハードセグメント、及びソフトセグメントを構成する可撓性樹脂である。テント膜構造物用のターポリンは、布帛の両面に熱可塑性樹脂組成物フィルムを熱可塑性樹脂層として積層した厚さ0.5~1.5mmの可撓性繊維複合体で、熱可塑性樹脂組成物フィルムは軟質塩化ビニル樹脂(可塑剤配合)によるものが、加工性、柔軟性、耐摩耗性、耐候性、防炎性などに優れ最も好ましい。またテント膜構造物用の帆布は布帛の両面に液状の熱可塑性樹脂組成物を含浸塗工し、それを皮膜固化させた厚さ0.3~0.8mmの可撓性繊維複合体で、熱可塑性樹脂組成物は軟質塩化ビニル樹脂(可塑剤配合ペーストゾル)によるものが、加工性、柔軟性、耐摩耗性、耐候性、防炎性などに優れ最も好ましい。 The thermoplastic resin constituting the thermoplastic resin layer of the heat shielding composite sheet of the present invention is a thermoplastic resin having a Shore A hardness of about 35 to 85, such as soft vinyl chloride resin (blended with plasticizer), vinyl chloride copolymer resin, chlorinated vinyl chloride resin, olefin resin (PE, PP), olefin copolymer resin, ethylene-vinyl acetate copolymer resin (EVA), ethylene-(meth)acrylic acid (ester) copolymer resin, urethane resin, vinyl acetate copolymer resin, styrene copolymer resin, polyester copolymer resin, or fluorine-containing copolymer resin, or an elastomer. Two or more of these may be blended in a compatible or semi-compatible state, or two or more may be used as a multi-layer film or multi-layer coating. An elastomer is a block copolymer resin made of two or more monomers, and is a flexible resin in which each block component constitutes a hard segment and a soft segment. Tarpaulin for tent membrane structures is a flexible fiber composite with a thickness of 0.5 to 1.5 mm, in which a thermoplastic resin composition film is laminated as a thermoplastic resin layer on both sides of a fabric, and the thermoplastic resin composition film is most preferably made of soft polyvinyl chloride resin (mixed with plasticizer) because of its excellent processability, flexibility, abrasion resistance, weather resistance, and flame resistance. Canvas for tent membrane structures is a flexible fiber composite with a thickness of 0.3 to 0.8 mm, in which a liquid thermoplastic resin composition is impregnated and coated on both sides of a fabric, and then solidified into a film, and the thermoplastic resin composition is most preferably made of soft polyvinyl chloride resin (paste sol mixed with plasticizer) because of its excellent processability, flexibility, abrasion resistance, weather resistance, and flame resistance.
熱可塑性樹脂層に必須成分として含む表面処理酸化チタン粒子の一次平均粒子径は0.4~1.2μmであることが好ましい。白色顔料としての酸化チタンは、粒子径を光の波長の約1/2の0.2~0.4μmサイズとすることで可視光線領域(400~700nm)の散乱を最大とすることで高い隠蔽性を得る。一方、粒子径を0.4~1.2μmにサイズアップすることによって隠蔽性は下がるが、日射エネルギーの約50%を占める近赤外線領域(780~2500nm)の反射効果が高くなることで顔料酸化チタンよりも優れた遮熱効果を得ることができる。好ましい一次平均粒子径は0.9~1.1μmの粒子で、これらの表面処理酸化チタン粒子の形状はアスペクト比1:1~1:2の、略球形、卵型、俵型、じゃが芋型、などである。また、短軸粒子径0.4~0.8μm、長軸粒子径2.0~4.0μm、アスペクト比1:5~1:10の棒型、角材型などの表面処理酸化チタン粒子を併用することもできる。表面処理が施されていないと光触媒活性により熱可塑性樹脂層の熱可塑性樹脂をラジカル攻撃して劣化させる。酸化チタン粒子に施す表面処理は、凝集防止、分散性向上、及び酸化チタン粒子の光触媒活性を封止するためのもので、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、及び水酸化アルムニウム、から選ばれた1種以上(選択肢は7種)の金属酸化物による表面処理である。またこれらの金属酸化物による表面処理の上に、さらなる表面処理として、シランカップリング剤、飽和アルキルチタネート、飽和アルキルシラン、ポリシロキサン、アクリルシリコン、及び金属石鹸(ステアリン酸、ラウリン酸などの長鎖脂肪酸と、バリウム、亜鉛などの金属との金属塩)などが1種1層または2種2層が施された多層表面処理であってもよい。このような表面処理によって凝集防止、分散性がさらに向上する。熱可塑性樹脂層に含む、表面処理酸化チタン粒子の配合量は、熱可塑性樹脂100質量部に対して3~20質量部、好ましくは5~12質量部である。 The primary average particle size of the surface-treated titanium oxide particles contained as an essential component in the thermoplastic resin layer is preferably 0.4 to 1.2 μm. Titanium oxide as a white pigment has a particle size of 0.2 to 0.4 μm, which is about half the wavelength of light, to maximize scattering in the visible light region (400 to 700 nm), thereby obtaining high concealment properties. On the other hand, by increasing the particle size to 0.4 to 1.2 μm, the concealment properties decrease, but the reflection effect in the near-infrared region (780 to 2500 nm), which accounts for about 50% of solar energy, is increased, resulting in a heat shielding effect superior to that of pigment titanium oxide. The preferred primary average particle size is 0.9 to 1.1 μm, and the shape of these surface-treated titanium oxide particles is approximately spherical, egg-shaped, bale-shaped, potato-shaped, etc., with an aspect ratio of 1:1 to 1:2. Surface-treated titanium oxide particles having a minor axis diameter of 0.4 to 0.8 μm, a major axis diameter of 2.0 to 4.0 μm, and an aspect ratio of 1:5 to 1:10, such as rod-shaped or square-shaped particles, can also be used in combination. If the surface treatment is not performed, the photocatalytic activity will cause radical attack on the thermoplastic resin of the thermoplastic resin layer, resulting in deterioration. The surface treatment performed on the titanium oxide particles is for preventing aggregation, improving dispersibility, and sealing the photocatalytic activity of the titanium oxide particles, and is a surface treatment with one or more metal oxides (7 options) selected from aluminum oxide, zirconium oxide, silicon oxide, and aluminum hydroxide. In addition to the surface treatment with these metal oxides, a multi-layer surface treatment may be performed in which a silane coupling agent, saturated alkyl titanate, saturated alkyl silane, polysiloxane, acrylic silicone, and metal soap (metal salt of long-chain fatty acid such as stearic acid or lauric acid and metal such as barium or zinc) are applied in one layer or two layers. Such surface treatment further improves aggregation prevention and dispersibility. The amount of surface-treated titanium oxide particles contained in the thermoplastic resin layer is 3 to 20 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of the thermoplastic resin.
熱可塑性樹脂層に必須成分として含むケト/エノール型互変異性体の配合量は、熱可塑性樹脂層を構成する熱可塑性樹脂100質量部に対して0.1~10質量部、好ましくは0.2~5質量部で、ケト/エノール型互変異性体は、ベンゾトリアゾール系互変異性体、トリアジン系互変異性体、及びジフェニルケトン系変異性体から選ばれた1種以上である。ここで複数のケト/エノール型互変異性体の使用とは、異なる系の組み合わせ、及び同一系での組み合わせのバリエーションを包含する。ケト/エノール型互変異性体とは、R2-CH-(C=O)-R1(ケト型異性体)と、R2-C=CH(OH)-R1(エノール型異性体)とが可逆変換しうる有機化合物である。ベンゾトリアゾール系互変異性体は、エノール型とケト型が存在し、エノール型異性体(Ia)は、水酸基(1~2個)/ケトン基(0個)のベンゼン環(C1~C10アルキル基、C4~C10分岐アルキル基、アルキル置換ベンジル基から選ばれた1種または2種を有していてもよい)1個と、ベンゾトリアゾール環(塩素基を有していてもよい)とのC-N結合体を骨格とする有機化合物〔化1〕で、具体的にベンゼン環の2位に水酸基を有する構造、ベンゼン環の2位と、3~5位の何れかに水酸基を有する構造、ベンゼン環の2位に水酸基、3位及び/または5位にアルキル基、分岐アルキル基、アルキル置換ベンジル基から選ばれた1種または2種を有する構造である。ケト型異性体(IIa)は、水酸基(0~1個)/ケトン基(1個)のベンゼン環(C1~C10アルキル基、C4~C10分岐アルキル基、アルキル置換ベンジル基の何れかを有していてもよい)1個と、ベンゾトリアゾール環(塩素基を有していてもよい)とのC-N結合体を主骨格とする有機化合物〔化2〕で、具体的にベンゼン環の2位にケトン基を有する構造、ベンゼン環の2位にケトン基、3~5位の何れかに水酸基を有する構造、ベンゼン環の2位にケトン基、3位及び/または5位にアルキル基、分岐アルキル基、アルキル置換ベンジル基の何れかを有する構造である。ケト型とエノール型、双方の異性体が相互変換を繰り返して、双方の異性体が平衡状態で共存するもので、分子量が250~700の範囲のベンゾトリアゾール系化合物、特にエノール型として、ヒドロキシフェニルベンゾトリアゾール誘導体が好ましい。この熱可塑性樹脂層内部では、太陽光(紫外線)エネルギー励起により、ベンゾトリアゾール系互変異性体が、エノール型異性体(Ia)〔化1〕と、ケト型異性体(IIa)〔化2〕に相互変換を繰り返すことによって、紫外線エネルギーを相互変換の分子振動エネルギーに変換して系外放出する作用により、紫外線による劣化ダメージを減衰させる。この熱可塑性樹脂層の紫外線減衰効果が、本発明の遮熱性複合体シートの耐用年数延長に大きく作用する。ここでアルキル置換ベンジル基は、ベンジル基「C6H6-CH2-」を、「C6H6-CR1R2-」(R1,R2はC1~C10アルキル基)にアルキル置換したものを意味する。また、ベンゾトリアゾール系互変異性体は、アクリル系ポリマーの側鎖にグラフトしたものを使用することができる。
から選ばれた1種以上
から選ばれた1種以上
The amount of the keto/enol tautomer contained in the thermoplastic resin layer as an essential component is 0.1 to 10 parts by mass, preferably 0.2 to 5 parts by mass, based on 100 parts by mass of the thermoplastic resin constituting the thermoplastic resin layer, and the keto/enol tautomer is at least one selected from benzotriazole tautomers, triazine tautomers, and diphenyl ketone tautomers. The use of multiple keto/enol tautomers herein includes combinations of different systems and variations of combinations in the same system. The keto/enol tautomer is an organic compound that can be reversibly converted between R 2 -CH-(C═O)-R 1 (keto isomer) and R 2 -C═CH(OH)-R 1 (enol isomer). Benzotriazole tautomers exist in enol and keto forms. The enol isomer (Ia) is an organic compound [Chemical Formula 1] having a skeleton of a C-N bond between one benzene ring (which may have one or two groups selected from a C1-C10 alkyl group, a C4-C10 branched alkyl group, and an alkyl-substituted benzyl group) having hydroxyl groups (1 to 2)/ketone groups (0) and a benzotriazole ring (which may have a chlorine group), specifically a structure having a hydroxyl group at the 2-position of the benzene ring, a structure having hydroxyl groups at the 2-position and any one of the 3-5-positions of the benzene ring, or a structure having a hydroxyl group at the 2-position of the benzene ring and one or two groups selected from an alkyl group, a branched alkyl group, and an alkyl-substituted benzyl group at the 3-position and/or the 5-position. The keto type isomer (IIa) is an organic compound [Chemical formula 2] having a main skeleton of one benzene ring (which may have any of a C1-C10 alkyl group, a C4-C10 branched alkyl group, or an alkyl-substituted benzyl group) having hydroxyl groups (0-1)/ketone groups (1), and a C-N bond between a benzotriazole ring (which may have a chlorine group), specifically a structure having a ketone group at the 2-position of the benzene ring, a structure having a ketone group at the 2-position of the benzene ring and a hydroxyl group at any of the 3-5-positions, or a structure having a ketone group at the 2-position of the benzene ring and an alkyl group, a branched alkyl group, or an alkyl-substituted benzyl group at the 3- and/or 5-positions. Both the keto type and the enol type isomers are repeatedly converted to each other, and both isomers coexist in equilibrium. Benzotriazole compounds having a molecular weight in the range of 250 to 700, particularly hydroxyphenylbenzotriazole derivatives, are preferred as the enol type. In the thermoplastic resin layer, the benzotriazole tautomers are repeatedly converted into the enol isomer (Ia) [Chemical formula 1] and the keto isomer (IIa) [Chemical formula 2] by the excitation of sunlight (ultraviolet light) energy, and the ultraviolet light energy is converted into molecular vibration energy of the conversion and released outside the system, thereby attenuating the deterioration damage caused by ultraviolet light. This ultraviolet light attenuation effect of the thermoplastic resin layer greatly contributes to the extension of the service life of the heat-shielding composite sheet of the present invention. Here, the alkyl-substituted benzyl group means a benzyl group "C 6 H 6 -CH 2 -" substituted with an alkyl group "C 6 H 6 -CR 1 R 2 -" (R 1 and R 2 are C1 to C10 alkyl groups). The benzotriazole tautomers can be used by grafting them to the side chains of acrylic polymers.
また、トリアジン系互変異性体は、エノール型とケト型が存在し、エノール型異性体(Ib)は、水酸基(1~2個)/ケトン基(0個)のベンゼン環(C1~C10アルキルオキシ基を有していてもよい)1~3個と、1,3,5-トリアジン環(アルキル(1~2個)置換フェニル基、及び/または水酸基(1~2個)置換フェニル基を有していてもよい)とのC-C結合体を主骨格とする有機化合物〔化3〕で、具体的にベンゼン環の2位に水酸基を有する構造、ベンゼン環の2位と4位に水酸基を有する構造、ベンゼン環の2位に水酸基、4位にアルキルオキシ基を有する構造、また、アルキル(1~2個)置換フェニル基は2位または4位、2位と4位であり、水酸基(1~2個)置換フェニル基は2位または4位、2位と4位である。ケト型異性体(IIb)は、水酸基(0~1個)/ケトン基(1個)のベンゼン環(C1~C10アルキルオキシ基を有していてもよい)1~3個と、1,3,5-トリアジン環(アルキル(1~2個)置換フェニル基、及び/または水酸基(1~2個)置換フェニル基を有していてもよい)とのC-C結合体を骨格とする有機化合物〔化4〕で、具体的にベンゼン環の2位にケトン基を有する構造、ベンゼン環の2位にケトン基と4位に水酸基を有する構造、ベンゼン環の2位にケトン基、4位にアルキルオキシ基を有する構造、また、アルキル(1~2個)置換フェニル基は2位または4位、2位と4位であり、水酸基(1~2個)置換フェニル基は2位または4位、2位と4位である。ケト型とエノール型、双方の異性体が相互変換を繰り返して、双方の異性体が平衡状態で共存するもので、特に分子量が250~700の範囲のトリアジン系化合物、特にエノール型として、ヒドロキシフェニル-1,3,5-トリアジン誘導体が好ましい。この遮熱層内部では、太陽光(紫外線)エネルギー励起により、トリアジン系互変異性体が、エノール型異性体(Ib)〔化3〕と、ケト型異性体(IIb)〔化4〕に相互変換を繰り返すことによって、紫外線エネルギーを相互変換の分子振動エネルギーに変換して系外放出する作用により、紫外線による劣化ダメージを減衰させる。この熱可塑性樹脂層の紫外線減衰効果が、本発明の遮熱性複合体シートの耐用年数延長に大きく作用する。具体的にアルキルオキシ基は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブチル基、ペンチルオキシ基などである。また、トリアジン系互変異性体は、アクリル系ポリマーの側鎖にグラフトしたものを使用することができる。
R2,R3は、アルキル置換フェニル基、及び/または水酸基置換フェニル基
R2,R3は、アルキル置換フェニル基、及び/または水酸基置換フェニル基
In addition, triazine tautomers exist in enol and keto forms, and the enol isomer (Ib) is an organic compound [Chemical Formula 3] having a main skeleton of a C-C bond between 1 to 3 benzene rings (which may have a C1 to C10 alkyloxy group) having 1 to 2 hydroxyl groups/0 ketone groups and a 1,3,5-triazine ring (which may have an alkyl (1 to 2) substituted phenyl group and/or a hydroxyl (1 to 2) substituted phenyl group), specifically a structure having a hydroxyl group at the 2-position of the benzene ring, a structure having hydroxyl groups at the 2-position and an alkyloxy group at the 4-position of the benzene ring, the alkyl (1 to 2) substituted phenyl group being at the 2-position or the 4-position, or the 2-position and the 4-position, and the hydroxyl (1 to 2) substituted phenyl group being at the 2-position or the 4-position or the 2-position and the 4-position. The keto isomer (IIb) is an organic compound [Chemical Formula 4] having a skeleton of a C-C bond between 1 to 3 benzene rings (which may have a C1 to C10 alkyloxy group) having 0 to 1 hydroxyl group/1 ketone group and a 1,3,5-triazine ring (which may have an alkyl (1 to 2) substituted phenyl group and/or a hydroxyl (1 to 2) substituted phenyl group), specifically, a structure having a ketone group at the 2-position of the benzene ring, a structure having a ketone group at the 2-position and a hydroxyl group at the 4-position of the benzene ring, a structure having a ketone group at the 2-position and an alkyloxy group at the 4-position of the benzene ring, the alkyl (1 to 2) substituted phenyl group at the 2-position or the 4-position, and the hydroxyl (1 to 2) substituted phenyl group at the 2-position or the 4-position or the 2-position and the 4-position. The keto and enol isomers are repeatedly converted to each other, and the two isomers coexist in an equilibrium state. In particular, a triazine compound having a molecular weight in the range of 250 to 700 is preferred, and as the enol type, a hydroxyphenyl-1,3,5-triazine derivative is particularly preferred. Inside the heat shielding layer, the triazine tautomers are repeatedly converted to the enol isomer (Ib) [Chemical formula 3] and the keto isomer (IIb) [Chemical formula 4] by excitation with solar light (ultraviolet light) energy, and the ultraviolet light energy is converted into molecular vibration energy of the conversion and released outside the system, thereby attenuating the deterioration damage caused by ultraviolet light. The ultraviolet light attenuation effect of the thermoplastic resin layer greatly works to extend the service life of the heat shielding composite sheet of the present invention. Specifically, the alkyloxy group is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butyl group, a pentyloxy group, etc. In addition, the triazine tautomers can be used by grafting them onto the side chains of an acrylic polymer.
また、ジフェニルケトン系互変異性体はエノール型とケト型が存在し、エノール型異性体(Ic)は、水酸基(1~2個)/ケトン基(0個)/アルキルオキシ基(0~1個)のベンゼン環2個がC=O結合で連結された主骨格の有機化合物〔化5〕で、具体例にベンゼン環の2位に水酸基を有する構造、ベンゼン環の2位と4位に水酸基を有する構造、ベンゼン環の2位に水酸基、4位にアルキルオキシ基を有する構造である。また、ケト型異性体(IIc)は水酸基(0~1個)/ケトン基(1個)/アルキルオキシ基(0~1個)のベンゼン環(A)1個と、水酸基(1~2個)/ケトン基(0個)/アルキルオキシ基(0~1個)のベンゼン環(B)1個がC=O結合で連結された主骨格の有機化合物〔化6〕で、具体例にベンゼン環(A)の2位にケトン基を有する構造、ベンゼン環(A)の2位にケトン基、4位に水酸基を有する構造、ベンゼン環(A)の2位にケトン基、4位にアルキルオキシ基を有する構造、ベンゼン環(B)の2位に水酸基を有する構造、ベンゼン環(B)の2位と4位に水酸基を有する構造、ベンゼン環(B)の2位に水酸基、4位にアルキルオキシ基を有する構造である。このケト型とエノール型、双方の異性体が相互変換を繰り返して、双方の異性体が平衡状態で共存する分子量200~400の範囲のジフェニルケトン系化合物、特にエノール型として、ヒドロキシジフェニルケトン誘導体が好ましい。この熱可塑性樹脂層内部では、太陽光(紫外線)エネルギーにより、ジフェニルケトン系互変異性体が、エノール型異性体(Ic)〔化5〕と、ケト型異性体(IIc)〔化6〕に相互変換を繰り返すことによって、紫外線エネルギーを相互変換の分子振動エネルギーに変換して系外放出する作用により、紫外線による劣化ダメージを減衰させる。この熱可塑性樹脂層の紫外線減衰効果が、本発明の遮熱性複合体シートの耐用年数延長に大きく作用する。具体的にアルキルオキシ基は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブチル基、ペンチルオキシ基などである。また、ジフェニルケトン系互変異性体は、アクリル系ポリマーの側鎖にグラフトしたものを使用することができる。
熱可塑性樹脂層に必須成分として含むN-OR型ヒンダードアミンの配合量は、熱可塑性樹脂層を構成する熱可塑性樹脂100質量部に対して0.1~10質量部、好ましくは0.2~5質量部で、特に塩化ビニル樹脂の耐光安定性の向上に効果的である。N-OR型ヒンダードアミン系化合物としては、その分子構造中に少なくとも1個以上、好ましくは2個、または好ましくは4個、または好ましくは6個のヒンダードアミン構造を有するものが用いられ、これらの下記式〔化7〕に示すヒンダードアミン構造のN位には、炭素数2~18のアルコキシ基、または、炭素数5~12のシクロアルコキシ基から選ばれた1種以上の置換基を有し、かつ、これらの分子量は200~400(ヒンダードアミン構造1個)、400~700(ヒンダードアミン構造2~3個)、700~1000(ヒンダードアミン構造4~5個)、1000~2500(ヒンダードアミン構造6個以上)であるものが熱可塑性樹脂層への残留保持性に優れ好ましい。
これらのN-OR型ヒンダードアミン系化合物の具体例としては、ヒンダードアミン構造〔化7〕のN位に、R5=炭素数2~18のアルキル基、または、R5=炭素数5~12のシクロアルキル基から選ばれた1種以上の置換基R5を有する化合物で、これらは、ビス(1-ウンデカオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、4,4’-ヘキサメチレン-ビス(N-OR5-2,2,6,6-テトラメチルピペリジン)及び2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジンの重縮合物;1-(2-ヒドロキシエチル)-N-OR5-2,2,6,6-テトラメチル-4-ヒドロキシピペリジン及びコハク酸の重縮合物:N,N’,N’’,N’’’-テトラキス[4,6-ビス(ブチル-(N-OR5-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-s-トリアジン-2-イル]-1,10-ジアミノ-4,7-ジアザデカン;4,4’-ヘキサメチレン-ビス(N-OR5-2,2,6,6-テトラメチルピペリジン)及び2,4-ジクロロ-6-モルホリノ-s-トリアジンの重縮合物;ポリ[メチル3-(N-OR5-2,2,6,6-テトラメチルピペリジン-4-イルオキシ)プロピル]シロキサン;ビス(N-OR5-2,2,6,6-テトラメチルピペリジン-4-イル)シクロヘシレンジオキシジメチルマロネート;ビス(N-OR5-2,2,6,6-テトラメチル-4-ピペリジル)[[3,5ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート;ビス(N-OR5-2,2,6,6-テトラメチル-4-ピペリジル)セバケート;1,3,5-トリス{N-シクロヘキシル-N-[2-(N-OR5-2,2,6,6-テトラメチルピペラジン-3-オン-4-イル)エチル]アミノ-s-トリアジン;4,4’-ヘキサメチレン-ビス(N-OR5-2,2,6,6-テトラメチルピペリジン)及び2,4-ジクロロ-6-シクロヘキシルアミノ-s-トリアジンの重縮合物;及びポリ{N-[4,6-ビス(ブチル-(N-OR5-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-s-トリアジン-2-イル]-1,4,7-トリアザノナン}-ω-N’’-[4,6-ビス(ブチル-(N-OR5-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-s-トリアジン-2-イル]アミン、などの化合物が例示できる。 Specific examples of these N-OR type hindered amine compounds are compounds having at least one substituent R 5 selected from an alkyl group having 2 to 18 carbon atoms or a cycloalkyl group having 5 to 12 carbon atoms at the N-position of the hindered amine structure [Chemical Formula 7 ], and these include bis(1-undecaoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate, a polycondensate of 4,4'-hexamethylene-bis(N-OR 5 -2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-tert-octylamino-s-triazine; a polycondensate of 1-(2-hydroxyethyl)-N-OR 5 -2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid: N,N',N'',N'''-tetrakis[4,6-bis(butyl-(N-OR 5 -2,2,6,6-tetramethylpiperidin-4-yl)amino)-s-triazin-2-yl]-1,10-diamino-4,7-diazadecane; polycondensate of 4,4'-hexamethylene-bis(N-OR 5 -2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-morpholino-s-triazine; poly[methyl 3-(N-OR 5 -2,2,6,6-tetramethylpiperidin-4-yloxy)propyl]siloxane; bis(N-OR 5 -2,2,6,6-tetramethylpiperidin-4-yl)cyclohexylenedioxydimethylmalonate; bis(N-OR 5 -2,2,6,6-tetramethyl-4-piperidyl)[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]butyl malonate; bis(N-OR 5 -2,2,6,6-tetramethyl-4-piperidyl)sebacate; 1,3,5-tris{N-cyclohexyl-N-[2-(N-OR 5 -2,2,6,6-tetramethylpiperazin-3-one-4-yl)ethyl]amino-s-triazine; polycondensates of 4,4'-hexamethylene-bis(N-OR 5 -2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-cyclohexylamino-s-triazine; and poly{N-[4,6-bis(butyl-(N-OR 5 -2,2,6,6-tetramethylpiperidin-4-yl)amino)-s-triazin-2-yl]-1,4,7-triazanonane}-ω-N″-[4,6-bis(butyl-(N—OR 5 -2,2,6,6-tetramethylpiperidin-4-yl)amino)-s-triazin-2-yl]amine, and the like can be exemplified.
N-OR型ヒンダードアミンによる光安定化は、N-OR型ヒンダードアミンが酸素、紫外線及びパーオキサイドなどにより酸化され、ニトロキシラジカル(NO・)に転化することにより光安定化サイクルが始まり、ニトロキシラジカル(NO・)は熱可塑性樹脂層の熱可塑性樹脂の光劣化により発生したアルキルラジカル(R・)を捕獲してアミノエーテル(NOR)に転じ、次いでアルキルラジカル(R・)と空気中の酸素との反応により生成した過酸化物ラジカル(ROO・)をN-OR部で捕獲して、アルコール、ケトンに無害化して放出し、自身は元のニトロキシラジカル(N-O・)に戻るというナノ秒単位のサイクルを繰り返すことで有害なラジカルの攻撃による熱可塑性樹脂の結合開裂の連鎖進行を抑止することができる。このラジカル無害化のサイクルはNH型ヒンダードアミン、N-アルキル型ヒンダードアミンにおいても同様であるが、塩化ビニル系樹脂の耐光性安定化においてはN-OR型ヒンダードアミンが最も好ましい。本発明においてN-OR型ヒンダードアミンとNH型ヒンダードアミンとの併用、またはN-OR型ヒンダードアミンとN-アルキル型ヒンダードアミンとの併用も可能であり、その併用比率は10:1~10:10、特に10:2~10:5が好ましい。塩化ビニル系樹脂を主体とする配合系でのN-OR型ヒンダードアミンの使用比率が低いと著しい耐光性向上効果が得られなくなることがある。また必須成分であるケト/エノール型互変異性体とN-OR型ヒンダードアミンとの併用比率は10:1~10:5、特に10:3~10:4が好ましい。ケト/エノール型互変異性体の使用比率が低いと著しい耐光性向上効果が得られなくなることがある。 The light stabilization by N-OR type hindered amines begins when the N-OR type hindered amines are oxidized by oxygen, ultraviolet light, peroxides, etc. and converted into nitroxy radicals (NO.), which then capture alkyl radicals (R.) generated by the photodegradation of the thermoplastic resin in the thermoplastic resin layer and convert them into amino ethers (NOR). The N-OR part then captures the peroxide radicals (ROO.) generated by the reaction of the alkyl radicals (R.) with oxygen in the air, which are then detoxified into alcohols and ketones and released, and the N-OR part itself returns to the original nitroxy radical (N-O.). By repeating this cycle in nanoseconds, it is possible to suppress the chain reaction of bond cleavage in the thermoplastic resin caused by the attack of harmful radicals. This radical detoxification cycle is the same for NH type hindered amines and N-alkyl type hindered amines, but N-OR type hindered amines are the most preferable for stabilizing the light resistance of vinyl chloride resins. In the present invention, it is also possible to use an N-OR type hindered amine in combination with an NH type hindered amine, or an N-OR type hindered amine in combination with an N-alkyl type hindered amine, with the combination ratio being 10:1 to 10:10, and particularly preferably 10:2 to 10:5. If the ratio of N-OR type hindered amine used in a blend system mainly composed of vinyl chloride resin is low, a significant improvement in light resistance may not be obtained. In addition, the combination ratio of the essential component keto/enol type tautomer and N-OR type hindered amine is preferably 10:1 to 10:5, and particularly preferably 10:3 to 10:4. If the ratio of keto/enol type tautomer used is low, a significant improvement in light resistance may not be obtained.
また、本発明の遮熱性複合体シートの態様として、熱可塑性樹脂層に、酸化亜鉛、または酸化チタンと酸化亜鉛の混合物を紫外線遮蔽材としてさらに含むことができる。この酸化亜鉛、及び酸化チタンは、粒子表面にコーティング層を有する一次平均粒子径0.3μm以下のものであることが好ましい。これによって熱可塑性樹脂層に含む一次平均粒子径0.4~4.0μmの表面処理酸化チタン粒子間に生じる隙間に、一次平均粒子径0.3μm以下(0.1μm~0.3μm)の酸化亜鉛、または酸化亜鉛と酸化チタンの粒子が入り込むことを可能とし、このような粒子径の酸化亜鉛、及び酸化チタン粒子の表面積が増大することで、熱可塑性樹脂層内に透過する紫外線を散乱させて紫外線の透過を効果的に遮蔽する。この紫外線遮蔽効果によって、熱可塑性樹脂層の耐光性をケト/エノール型互変異性体、及びN-OR型ヒンダードアミンとの相乗効果をさらに向上させる。特に酸化亜鉛はUVA(紫外線A波)の遮蔽効果に優れ、酸化チタンはUVB(紫外線B波)の遮蔽効果に優れるので、酸化チタンと酸化亜鉛の質量比率10:6~6:10の混合物、特に10:10の混合物を用いることが好ましい。本発明に用いる酸化亜鉛、及び酸化チタン粒子は表面処理により光触媒活性が封止されたものが好ましい。表面処理が施されていないと光触媒活性により熱可塑性樹脂層の熱可塑性樹脂をラジカル攻撃して劣化させる。酸化亜鉛粒子、及び酸化チタン粒子に施す表面処理は、凝集防止、分散性向上、及び酸化チタン粒子の光触媒活性を封止するためのもので、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、から選ばれた1種以上(選択肢は7種)の金属酸化物による表面処理である。またこれらの金属酸化物による表面処理の上に、さらなる表面処理として、シランカップリング剤、飽和アルキルチタネート、飽和アルキルシラン、ポリシロキサン、アクリルシリコン、及び金属石鹸(ステアリン酸、ラウリン酸などの長鎖脂肪酸と、バリウム、亜鉛などの金属との金属塩)などが1種1層または2種2層が施された多層表面処理であってもよい。このような表面処理によって凝集防止、分散性がさらに向上する。熱可塑性樹脂層に含む、一次平均粒子径0.3μm以下(0.1μm~0.3μm)の表面処理酸化亜鉛、及び/または表面処理酸化チタン粒子の配合量は、熱可塑性樹脂100質量部に対して3~20質量部、好ましくは5~12質量部である。 In addition, as an embodiment of the heat-shielding composite sheet of the present invention, the thermoplastic resin layer may further contain zinc oxide or a mixture of titanium oxide and zinc oxide as an ultraviolet shielding material. The zinc oxide and titanium oxide preferably have a primary average particle diameter of 0.3 μm or less and a coating layer on the particle surface. This allows zinc oxide or zinc oxide and titanium oxide particles with a primary average particle diameter of 0.3 μm or less (0.1 μm to 0.3 μm) to enter the gaps between the surface-treated titanium oxide particles with a primary average particle diameter of 0.4 to 4.0 μm contained in the thermoplastic resin layer, and the surface area of the zinc oxide and titanium oxide particles with such particle diameters is increased, scattering ultraviolet rays that penetrate into the thermoplastic resin layer and effectively shielding the transmission of ultraviolet rays. This ultraviolet shielding effect further improves the light resistance of the thermoplastic resin layer through the synergistic effect with the keto/enol tautomer and the N-OR hindered amine. In particular, zinc oxide has an excellent UVA (ultraviolet A wave) shielding effect, and titanium oxide has an excellent UVB (ultraviolet B wave) shielding effect, so it is preferable to use a mixture of titanium oxide and zinc oxide with a mass ratio of 10:6 to 6:10, and particularly a mixture of 10:10. The zinc oxide and titanium oxide particles used in the present invention are preferably those whose photocatalytic activity has been sealed by surface treatment. If the surface treatment is not performed, the thermoplastic resin of the thermoplastic resin layer will be deteriorated by radical attack due to the photocatalytic activity. The surface treatment performed on the zinc oxide particles and titanium oxide particles is for preventing aggregation, improving dispersibility, and sealing the photocatalytic activity of the titanium oxide particles, and is a surface treatment with one or more metal oxides selected from aluminum oxide, zirconium oxide, and silicon oxide (7 options). In addition to the surface treatment with these metal oxides, a multi-layer surface treatment may be used in which a single layer of one type or two layers of two types of silane coupling agents, saturated alkyl titanates, saturated alkyl silanes, polysiloxanes, acrylic silicones, and metal soaps (metal salts of long-chain fatty acids such as stearic acid and lauric acid and metals such as barium and zinc) are applied as a further surface treatment. Such surface treatments further improve the prevention of aggregation and dispersibility. The amount of surface-treated zinc oxide and/or surface-treated titanium oxide particles with a primary average particle size of 0.3 μm or less (0.1 μm to 0.3 μm) contained in the thermoplastic resin layer is 3 to 20 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of the thermoplastic resin.
また、本発明の遮熱性複合体シートの態様として、熱可塑性樹脂層上に、酸化亜鉛、または酸化チタンと酸化亜鉛の混合物を含む3~20μmの層厚の薄膜層を形成することができる。この酸化亜鉛、及び酸化チタンは粒子表面にコーティング層を有する一次平均粒子径10~50nmのもので、薄膜層に占める酸化亜鉛、または酸化チタンと酸化亜鉛の混合物の含有量は10~50質量%、特に15~35質量%が好ましい。このような超微粒子の酸化亜鉛、及び酸化チタンは、白顔料に適した粒子径から遠ざかることで隠蔽性が低下して薄膜層を透明化すると同時に、超微粒子であることで単位質量に対する表面積(比表面積)が増大し、酸化亜鉛の有するUVA(紫外線A波)遮蔽効果、及び酸化チタンの有するUVB(紫外線B波)遮蔽効果が飛躍的に向上する。超微粒子酸化亜鉛、及び超微粒子酸化チタンは、質量比率10:6~6:10の混合物、特に10:10の混合物で用いることが好ましい。超微粒子の酸化亜鉛、及び酸化チタンにおいても、同じ理由で段落〔0026〕に記載した表面処理によって光触媒活性が封止されたものが好ましい。薄膜層は、オルガノシリケート化合物、またはシラノール基含有有機シラン化合物のゾルゲル縮合体により主構成される。オルガノシリケート化合物は、化学式:SinOn-1(OR)2(n+1)で表される4官能加水分解性シラン化合物であり、式中、Rは炭素原子数1~10のアルキル基(特に炭素数1~3の低級アルキル基)、またはアリール基(特にフェニル基)、nは4官能加水分解性シラン化合物の縮合分子数を表す多量化度(n量体)で、1以上の整数、nが1の化合物として、テトラメトキシシラン「Si(OCH3)4」、テトラエトキシシラン「Si(OC2H5)4」、テトラプロポキシシラン「Si(OC3H7)4」、テトラブトキシシラン「Si(OC4H9)4」、テトラフェノキシシラン「Si(OC6H6)4」、ジメトキシジエトキシシラン「Si(OCH3)2(OC2H5)2」などである。nが2以上の化合物は4官能加水分解性シラン化合物が加水分解して生成するシラノール基同士の反応で2分子以上が縮合して生成する多量体であり、nの表す多量化度は多量体1分子中に含有するSi原子数を意味する。本発明においては多量化度2~10、好ましくは4~6のテトラメトキシシラン、またはテトラエトキシシランを加水分解して得られるシラノール基含有シラン化合物を用いることがゾルゲル縮合体の構造が細密化され好ましい。薄膜層を形成する塗工液(水/アルコール)に含有する、オルガノシリケートの加水分解生成物の濃度は5~50質量%、特に10~40質量%の範囲が好ましい。またこの塗工液中には薄膜層の柔軟性、屈曲性を付与するためにセルロースナノファイバーを、オルガノシリケートの加水分解生成物の濃度に対して1~10質量%含むことができる。セルロースナノファイバーは、平均アスペクト比(平均繊維長/平均繊維径)10以上50以下、平均繊維径3nm~100nm、平均繊維長100μm以下、特に300nm~500nmの短繊維を用い、これらはシランカップリング剤、ホウ酸化合物、リン酸化合物、ケイ酸化合物などで化学変性されたものであってもよい。 In addition, as an embodiment of the heat-shielding composite sheet of the present invention, a thin film layer containing zinc oxide or a mixture of titanium oxide and zinc oxide and having a layer thickness of 3 to 20 μm can be formed on a thermoplastic resin layer. The zinc oxide and titanium oxide have a primary average particle size of 10 to 50 nm and a coating layer on the particle surface, and the content of zinc oxide or a mixture of titanium oxide and zinc oxide in the thin film layer is preferably 10 to 50 mass %, particularly preferably 15 to 35 mass %. Such ultrafine zinc oxide and titanium oxide are far from the particle size suitable for white pigments, so that the hiding power is reduced and the thin film layer becomes transparent, and at the same time, the surface area (specific surface area) per unit mass is increased due to the ultrafine particles, so that the UVA (ultraviolet A wave) shielding effect of zinc oxide and the UVB (ultraviolet B wave) shielding effect of titanium oxide are dramatically improved. It is preferable to use ultrafine zinc oxide and ultrafine titanium oxide in a mixture with a mass ratio of 10:6 to 6:10, particularly a mixture with a mass ratio of 10:10. For the same reason, it is preferable that the photocatalytic activity of ultrafine particles of zinc oxide and titanium oxide is blocked by the surface treatment described in paragraph [0026]. The thin film layer is mainly composed of an organosilicate compound or a sol-gel condensate of a silanol group-containing organic silane compound. The organosilicate compound is a tetrafunctional hydrolyzable silane compound represented by the chemical formula Si n O n-1 (OR) 2 (n+1) , in which R is an alkyl group having 1 to 10 carbon atoms (particularly a lower alkyl group having 1 to 3 carbon atoms) or an aryl group (particularly a phenyl group), and n is the degree of polymerization (n-mer) representing the number of condensed molecules of the tetrafunctional hydrolyzable silane compound and is an integer of 1 or more. Examples of compounds in which n is 1 include tetramethoxysilane "Si(OCH 3 ) 4 ," tetraethoxysilane "Si(OC 2 H 5 ) 4 ," tetrapropoxysilane "Si(OC 3 H 7 ) 4 ," tetrabutoxysilane "Si(OC 4 H 9 ) 4 ," tetraphenoxysilane "Si(OC 6 H 6 ) 4 ," and dimethoxydiethoxysilane "Si(OCH 3 ) 2 (OC 2 H 5 ) 2 ". Compounds with n of 2 or more are polymers formed by condensation of two or more molecules by the reaction between silanol groups formed by hydrolysis of a tetrafunctional hydrolyzable silane compound, and the degree of polymerization represented by n means the number of Si atoms contained in one molecule of the polymer. In the present invention, it is preferable to use a silanol group-containing silane compound obtained by hydrolysis of tetramethoxysilane or tetraethoxysilane having a degree of polymerization of 2 to 10, preferably 4 to 6, since the structure of the sol-gel condensate is finely densified. The concentration of the hydrolysis product of organosilicate contained in the coating liquid (water/alcohol) for forming the thin film layer is preferably in the range of 5 to 50 mass%, particularly 10 to 40 mass%. In addition, this coating liquid may contain cellulose nanofibers in an amount of 1 to 10 mass% relative to the concentration of the hydrolysis product of organosilicate in order to impart flexibility and bendability to the thin film layer. The cellulose nanofibers used are short fibers having an average aspect ratio (average fiber length/average fiber diameter) of 10 to 50, an average fiber diameter of 3 nm to 100 nm, and an average fiber length of 100 μm or less, particularly 300 nm to 500 nm, and these may be chemically modified with a silane coupling agent, a boric acid compound, a phosphoric acid compound, a silicic acid compound, or the like.
また、本発明の遮熱性複合体シートの態様として、熱可塑性樹脂層上にオルガノシリケート化合物、またはシラノール基含有有機シラン化合物のゾルゲル縮合体を主体とする薄膜層を形成することができる。この薄膜層内には、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上の光触媒性金属酸化物を含有することが好ましい。この光触媒性金属酸化物は、平均粒子径50nm以下、特に20nm以下が好ましく、この粒子径サイズでは比表面積が広大となり、十分な光触媒活性を発現することで、油性の煤塵汚れなどを分解し、降雨によりセルフクリーニング除去することができる。それによって本発明の遮熱性複合体シートの遮熱効果を長期間安定持続させることができる。この薄膜層の形成にはゾル状態の光触媒性金属酸化物を用い、薄膜層に対して10~50質量%含有することが好ましい。これらの光触媒性金属酸化物には、Pt,Rh,RuO2 ,Nb,Cu,Sn,NiOなどの金属及び金属酸化物を相乗化剤として添加することができる。本発明の遮熱性複合体シートが受ける紫外線は薄膜層を透過し、さらに熱可塑性樹脂層を透過するが、薄膜層では、透過する紫外線エネルギーの一部が光触媒性金属酸化物の活性化に消費されるので、下に位置する熱可塑性樹脂層に到達する紫外線エネルギーは減衰したものとなる。従って薄膜層を熱可塑性樹脂層上に配置することは熱可塑性樹脂層の保護となり、如いては遮熱性複合体シートの耐用年数を延長することに寄与する。光触媒性金属酸化物は光触媒活性による酸化還元で、有機物を分解する作用を有するので、薄膜層は、オルガノシリケート化合物、またはシラノール基含有有機シラン化合物のゾルゲル縮合体を主体として、薄膜層の摩耗負荷に対する抵抗耐性を向上させ、遮熱性複合体シートの長期使用を可能とする。また薄膜層に、シランカップリング剤(アミノシラン、ビニルシラン、エポキシシラン、メタクリルシラン、アクリルシラン、クロルシラン、メルカプトシラン、イソシアヌレートシラン、イソシアネートシランなど)を1~10質量%含ませて、シランカップリング剤の加水分解物が、ゾルゲル縮合体と光触媒性金属酸化物との間に結合して介在する効果によって、薄膜層の耐屈曲性と摩耗負荷に対する抵抗耐性をより向上させることができる。薄膜層は3~15μmの層厚で、薄膜層に含む光触媒性金属酸化物の量は10~50質量%、好ましくは5~35質量%である。また、セルフクリーニングとは、光触媒活性で分解された汚物(煤塵、タール)、黴、藻などの有機物残滓が降雨で洗い流されることで汚物などが付着する以前の外観を取り戻す効果である。薄膜層は、段落〔0027〕に記載したオルガノシリケート化合物、またはシラノール基含有有機シラン化合物のゾルゲル縮合体により主構成され、薄膜層の耐摩耗性、及び耐久性をより延長するために無機コロイド(シリカゾル、アンチモンゾル、アルミナゾル、ジルコニアゾルなど)をオルガノシリケートの加水分解生成物の濃度に対して1~25質量%含むことができる。 In addition, as an embodiment of the heat-shielding composite sheet of the present invention, a thin film layer mainly composed of an organosilicate compound or a sol-gel condensate of a silanol group-containing organic silane compound can be formed on a thermoplastic resin layer. This thin film layer preferably contains at least one photocatalytic metal oxide selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide. This photocatalytic metal oxide preferably has an average particle size of 50 nm or less, particularly 20 nm or less, and with this particle size, the specific surface area becomes large and sufficient photocatalytic activity is exhibited, thereby decomposing oily soot and dust stains and allowing self-cleaning removal by rainfall. This allows the heat-shielding effect of the heat-shielding composite sheet of the present invention to be stably maintained for a long period of time. To form this thin film layer, a photocatalytic metal oxide in a sol state is preferably used, and is preferably contained in an amount of 10 to 50 mass% relative to the thin film layer. Metals and metal oxides such as Pt, Rh, RuO2 , Nb, Cu, Sn, NiO, etc. can be added to these photocatalytic metal oxides as synergistic agents. The ultraviolet light received by the heat-shielding composite sheet of the present invention passes through the thin film layer and then through the thermoplastic resin layer, but in the thin film layer, a part of the ultraviolet energy passing through is consumed for activating the photocatalytic metal oxide, so that the ultraviolet energy reaching the thermoplastic resin layer located below is attenuated. Therefore, disposing the thin film layer on the thermoplastic resin layer protects the thermoplastic resin layer, and thus contributes to extending the service life of the heat-shielding composite sheet. Since the photocatalytic metal oxide has the function of decomposing organic matter by oxidation-reduction due to photocatalytic activity, the thin film layer is mainly composed of an organosilicate compound or a sol-gel condensate of a silanol group-containing organosilane compound, and improves the resistance of the thin film layer to abrasion load, enabling the heat-shielding composite sheet to be used for a long time. In addition, the thin film layer contains 1 to 10 mass % of a silane coupling agent (aminosilane, vinylsilane, epoxysilane, methacrylsilane, acrylicsilane, chlorosilane, mercaptosilane, isocyanurate silane, isocyanate silane, etc.), and the hydrolyzate of the silane coupling agent is bonded and interposed between the sol-gel condensate and the photocatalytic metal oxide, thereby further improving the bending resistance and resistance to abrasion load of the thin film layer. The thin film layer has a thickness of 3 to 15 μm, and the amount of photocatalytic metal oxide contained in the thin film layer is 10 to 50 mass %, preferably 5 to 35 mass %. In addition, self-cleaning is an effect in which organic residues such as dirt (soot, tar), mold, and algae decomposed by photocatalytic activity are washed away by rainfall, thereby restoring the appearance before the dirt and the like were attached. The thin film layer is mainly composed of the organosilicate compound described in paragraph [0027] or a sol-gel condensate of a silanol group-containing organosilane compound, and may contain 1 to 25 mass % of an inorganic colloid (silica sol, antimony sol, alumina sol, zirconia sol, etc.) relative to the concentration of the organosilicate hydrolysis product in order to further extend the abrasion resistance and durability of the thin film layer.
本発明の遮熱性複合体シートの熱可塑性樹脂層には、必要に応じて任意の添加剤を含むことができる。耐候性向上に寄与する添加剤として、酸化防止剤(ヒンダードフェノール系、ホスファイト系、イオウ系、ビタミンE系など)、艶消剤として、シリカ、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウムなど、着色剤として有機系顔料、無機系顔料、アルミ光輝性顔料、パール顔料、染料など、帯電防止剤として、界面活性剤、イオン性液体、導電性カーボン、カーボンナノチューブ、フラーレンなど、耐炎剤として、セピオライト、モンモリロナイト、スメクタイトなど、耐摩耗強化剤として、イソシアネート、アクリレート、エポキシ、シランカップリング剤、シリコーンオイルなど、その他、抗菌剤、防黴剤、抗ウイルス剤、などが挙げられる。熱可塑性樹脂層は、例えば軟質塩化ビニル樹脂コンパウンドをカレンダー法、またはTダイス押出法で厚さ0.1mm~1.0mmに溶融圧延(延伸)して得ることができる。また例えば軟質塩化ビニル樹脂ペーストゾルをコーティング、またはディッピングし、これを加熱ゲル化させることで厚さ0.05mm~0.5mmに被膜形成させて得ることができる。 The thermoplastic resin layer of the heat-shielding composite sheet of the present invention may contain any additives as necessary. Additives that contribute to improving weather resistance include antioxidants (hindered phenols, phosphites, sulfur, vitamin E, etc.), matting agents such as silica, calcium silicate, magnesium silicate, and aluminum silicate, colorants such as organic pigments, inorganic pigments, aluminum luster pigments, pearl pigments, and dyes, antistatic agents such as surfactants, ionic liquids, conductive carbon, carbon nanotubes, and fullerenes, flame retardants such as sepiolite, montmorillonite, and smectite, abrasion resistance enhancers such as isocyanates, acrylates, epoxies, silane coupling agents, and silicone oils, and other antibacterial agents, antifungal agents, and antiviral agents. The thermoplastic resin layer can be obtained, for example, by melt-rolling (stretching) a soft polyvinyl chloride resin compound to a thickness of 0.1 mm to 1.0 mm using a calendar method or a T-die extrusion method. For example, a soft polyvinyl chloride resin paste sol can be coated or dipped, then heated to gel, forming a film with a thickness of 0.05 mm to 0.5 mm.
本発明の遮熱性複合体シートに用いる布帛は織物が好ましく、マルチフィラメント糸条、短繊維紡績糸条、及びカバリング糸条、から選ばれた1種以上の糸条を含んで、1)経糸条及び緯糸条からなる織物、または2)経糸条及び左上/右上バイアス糸条からなる三軸織物、または3)経糸条、緯糸条及び左上/右上バイアス糸条からなる四軸織物、の何れかである。特に経糸条及び緯糸条からなる平織物、斜子織物(2×2、3×3、4×4などの正則斜子織、3×2、4×2、4×3、5×3、2×3、2×4、3×4、3×5などの不規則斜子織)、綾織物(経糸、緯糸とも最少3本ずつ用いた最小構成単位を有する:3枚斜文、4枚斜文、5枚斜文、6枚斜文など)、朱子織物(経糸、緯糸とも最少5本ずつ用いた最小構成単位を有する:2飛び、3飛び、4飛び、5飛びなどの正則朱子)、その他、模紗織物、もじり織物(紗織物、絽織物)などが使用できる。特に三軸織物、四軸織物などを使用すれば、糸条同士の交差が複雑、かつ緻密となり、多軸方向に拡がるネットワークによって遮熱性複合体シートに加えられる屈曲、はためきなどの外力ストレスの伝播性が増し、ストレスを広域に分散して受け流すことでダメージを緩和し、同時に引裂などの外力に対する抵抗力を増強する。織物の目付量は100~500g/m2で、空隙率(糸条の交絡によって生じる空間の総和の占有率)はターポリンでは6~25%程度、帆布では0~10%程度が好ましい。これらの織物には精練、漂白、染色、柔軟化、撥水、防黴、防炎、カレンダー、などの公知の染色整理加工を施したものを使用することもできる。ターポリンは布帛の両面に熱可塑性樹脂フィルムをラミネート積層した形態で、帆布は布帛の両面に液状の熱可塑性樹脂組成物を含浸塗工し、それを皮膜化した形態である。 The fabric used in the heat-shielding composite sheet of the present invention is preferably a woven fabric, and contains one or more types of yarn selected from multifilament yarn, staple fiber spun yarn, and covering yarn, and is either 1) a woven fabric made of warp yarn and weft yarn, or 2) a triaxial fabric made of warp yarn and upper left/upper right bias yarn, or 3) a quadriaxial fabric made of warp yarn, weft yarn, and upper left/upper right bias yarn. In particular, plain weave fabrics made of warp and weft threads, twill fabrics (regular twill weaves such as 2x2, 3x3, and 4x4, and irregular twill weaves such as 3x2, 4x2, 4x3, 5x3, 2x3, 2x4, 3x4, and 3x5), twill fabrics (having a minimum structural unit of at least three warp and weft threads: 3-sheet twill, 4-sheet twill, 5-sheet twill, 6-sheet twill, etc.), satin fabrics (having a minimum structural unit of at least five warp and weft threads: regular twill with 2 jumps, 3 jumps, 4 jumps, 5 jumps, etc.), and other imitation gauze fabrics and twisted fabrics (sha fabrics, ro fabrics) can be used. In particular, when a triaxial or quadriaxial woven fabric is used, the intersections between the threads become complex and dense, and the network that spreads in the multiaxial direction increases the propagation of external stress such as bending and fluttering applied to the heat-shielding composite sheet, dispersing and deflecting the stress over a wide area, mitigating damage and at the same time increasing resistance to external forces such as tearing. The fabric weight is 100 to 500 g/ m2 , and the porosity (the total occupancy rate of the space generated by the entanglement of the threads) is preferably about 6 to 25% for tarpaulin and about 0 to 10% for canvas. These fabrics can also be used after undergoing known dyeing and finishing processes such as scouring, bleaching, dyeing, softening, water repellency, mildew resistance, flame resistance, and calendaring. Tarpaulin is a form in which a thermoplastic resin film is laminated on both sides of a fabric, and canvas is a form in which a liquid thermoplastic resin composition is impregnated and coated on both sides of a fabric and then coated with the composition.
織物(布帛)を構成する糸条は、合成繊維、天然繊維、半合成繊維、無機繊維、及びこれらの2種以上から成る混合繊維など、何れの繊維も使用できるが、汎用的には、ポリプロピレン繊維、ポリエチレン繊維、ポリビニルアルコール繊維、ポリエステル(ポリエチレンテレフタレート:PET、ポリブチレンテレフタレート:PBT、ポリナフタレンテレフタレート:PNTなど)繊維、ナイロン繊維、及び、これらの混用繊維(混撚・合撚)などの合成繊維による、1)マルチフィラメント糸条、2)短繊維紡績糸条、3)及びカバリング糸条、から選ばれた1種以上の糸条が使用できる。マルチフィラメント糸条は、ナイロン、ポリエステルなどの熱可塑性樹脂を紡糸口金から押出して紡糸した長繊維紡原糸を3~5倍に延伸した長繊維紡糸束(50~500本のフィラメント束)を無撚のまま、または10~200回/m撚りを掛けた、繊度125~2000デニール(139~2222dtex)の糸条が使用できる。これらのマルチフィラメント糸条には、タスラン糸条、ウーリー糸条などの嵩高加工糸条を包含する。短繊維紡績糸条は、ナイロン、ポリエステルなどの熱可塑性樹脂を紡糸口金から押出して紡糸した長繊維紡糸束(延伸していてもよい)を3.8~5.8mm長程度に切断したステープルを開繊練条したスライバを引き伸ばしたロービング(粗糸)とし、これに所定の番手太さにドラフトと撚りを掛けてトウ紡績したものである。撚糸は単糸または単糸2本を引き揃えてS(右)撚りもしくはZ(左)撚りしたもの、また単糸または単糸2本を引き揃えて下撚りした加撚糸を2本引き揃えて上撚りを掛けてなる双糸が挙げられる。これらの撚糸の撚り回数は200~2000回/m程度である。またカバリング糸条は、上記マルチフィラメント糸束の外周に上記短繊維を巻き付けたカバリング糸条が挙げられ、本願においては芯鞘複合糸条もカバリング糸条に包含する。 The yarns constituting the woven fabric (cloth) can be any type of fiber, including synthetic fibers, natural fibers, semi-synthetic fibers, inorganic fibers, and mixed fibers consisting of two or more of these. Generally, however, one or more types of yarns selected from 1) multifilament yarns, 2) staple spun yarns, and 3) and covering yarns made of synthetic fibers such as polypropylene fibers, polyethylene fibers, polyvinyl alcohol fibers, polyester (polyethylene terephthalate: PET, polybutylene terephthalate: PBT, polynaphthalene terephthalate: PNT, etc.) fibers, nylon fibers, and mixed fibers (mixed and twisted) of these fibers can be used. The multifilament yarn may be a long fiber spun bundle (50 to 500 filament bundle) obtained by extruding a thermoplastic resin such as nylon or polyester from a spinneret and spinning the long fiber raw yarn 3 to 5 times, which is either untwisted or twisted 10 to 200 times/m to obtain a yarn having a fineness of 125 to 2000 denier (139 to 2222 dtex). These multifilament yarns include bulky processed yarns such as taslan yarn and woolly yarn. The short fiber spun yarn is a roving (coarse yarn) obtained by stretching a sliver by opening and kneading a long fiber spun bundle (which may be stretched) obtained by extruding a thermoplastic resin such as nylon or polyester from a spinneret and spinning the long fiber spun bundle (which may be stretched) into a length of about 3.8 to 5.8 mm, which is then drafted and twisted to a predetermined count to produce a tow spinning. Examples of twisted yarns include single yarns or two single yarns that are aligned and twisted in an S (right) or Z (left) direction, and two-ply yarns that are aligned and twisted in a first twist, each of which is a single yarn or two single yarns that are aligned and twisted in a second direction. The number of twists of these twisted yarns is about 200 to 2000 times/m. Examples of covered yarns include covered yarns in which the short fibers are wrapped around the outer circumference of the multifilament yarn bundle, and in this application, core-sheath composite yarns are also included in the covered yarns.
特に本発明の遮熱性複合体シートの引張破壊強度、引裂(切裂)強度、防爆耐圧、耐熱性、及び耐火性などを向上させるために特別な布帛(織物)を用いることができる。この布帛には、フッ素樹脂繊維、全芳香族ポリエステル繊維、全芳香族ポリアミド繊維などのマルチフィラメント糸条を主体とする織物設計、あるいは上記汎用合成繊維による糸条との併用設計(リップストップ構造の挿入)が適している。また国土交通大臣認定の不燃材料(テント構造物用不燃膜材)の用途向けには、ガラス繊維、シリカ繊維、アルミナ繊維、シリカアルミナ繊維、炭素繊維、及び、これらの混用繊維(混撚・合撚)などの無機マルチフィラメント糸条を主体とする織物が適している。そして特に引張破壊強度、引裂(切裂)強度、防爆耐圧、耐熱性、及び耐火性などを飛躍的に向上させるために、織物が、ポリベンゾイミダゾール(PBI)系、ポリベンゾオキサゾール(PBO)系、ポリベンゾチアゾール(PBT)系、及びこれらの共重合高分子(ベンゾイミダゾール-ベンゾオキサゾール共重合系、ベンゾイミダゾール-ベンゾチアゾール共重合系、ベンゾオキサゾール-ベンゾチアゾール共重合系、ベンゾイミダゾール-ベンゾオキサゾール-ベンゾチアゾール共重合系、芳香族ポリアミド成分を含む上記共重合系)、の群から選ばれた1種以上の芳香族複素環高分子繊維からなる糸条(マルチフィラメント糸条、短繊維紡績糸条、カバリング糸条)を主体に含む織物設計、あるいは上記汎用繊維による糸条との併用(リップストップ構造の挿入)が適している。リップストップ構造とは例えば、ポリエステル繊維糸条を経糸条及び緯糸条とする平織物において、経糸条、及び緯糸条の任意の位置に芳香族複素環高分子繊維からなる糸条を規則的、またはランダムに配列したもので、外観上、格子柄(または変則格子柄)を形成する織物、三軸織物、四軸織物が適している。具体的に経糸群及び緯糸群の糸条配列1,2,3,4,5・・・n(nは整数)において、10の倍数(10,20,30・・・)本目毎に、芳香族複素環高分子繊維糸条が挿入され、格子模様を形成するような態様である。また四軸織物において、経糸、緯糸、左上バイアス糸、右上バイアス糸の何れか、または全部を全て香族複素環高分子繊維糸条とすることもでき、具体的に経糸と緯糸を香族複素環高分子繊維糸条、左上バイアス糸と右上バイアス糸を他の繊維糸条とする構成、または左上バイアス糸と右上バイアス糸を他の香族複素環高分子繊維糸条、経糸と緯糸を他の繊維糸条とする構成である。 In particular, special fabrics (woven materials) can be used to improve the tensile breaking strength, tear strength, explosion-proof pressure resistance, heat resistance, and fire resistance of the heat-shielding composite sheet of the present invention. For this fabric, a fabric design based mainly on multifilament yarns such as fluororesin fibers, wholly aromatic polyester fibers, and wholly aromatic polyamide fibers, or a combined design with yarns made of the above-mentioned general-purpose synthetic fibers (insertion of a ripstop structure) is suitable. In addition, for applications as non-flammable materials certified by the Minister of Land, Infrastructure, Transport and Tourism (non-flammable membrane materials for tent structures), fabrics based mainly on inorganic multifilament yarns such as glass fibers, silica fibers, alumina fibers, silica alumina fibers, carbon fibers, and mixed fibers thereof (mixed and twisted). In particular, in order to dramatically improve the tensile breaking strength, tear (cut) strength, explosion-proof pressure resistance, heat resistance, and fire resistance, it is suitable to design a textile mainly containing yarns (multifilament yarns, staple spun yarns, covered yarns) made of one or more aromatic heterocyclic polymer fibers selected from the group consisting of polybenzimidazole (PBI)-based, polybenzoxazole (PBO)-based, polybenzothiazole (PBT)-based, and copolymers thereof (benzimidazole-benzoxazole copolymers, benzimidazole-benzothiazole copolymers, benzoxazole-benzothiazole copolymers, benzimidazole-benzoxazole-benzothiazole copolymers, and the above copolymers containing an aromatic polyamide component), or to use the textile in combination with yarns made of the above general-purpose fibers (insertion of a ripstop structure). The ripstop structure is, for example, a plain weave fabric having polyester fiber yarns as warp and weft, in which yarns made of aromatic heterocyclic polymer fibers are regularly or randomly arranged at arbitrary positions of the warp and weft, and is suitable for a woven fabric, triaxial fabric, or quadraxial fabric that forms a lattice pattern (or irregular lattice pattern) in appearance. Specifically, in the yarn arrangement 1, 2, 3, 4, 5...n (n is an integer) of warp and weft groups, aromatic heterocyclic polymer fiber yarns are inserted every multiple of 10 (10, 20, 30...) to form a lattice pattern. In addition, in a four-axis woven fabric, any or all of the warp, weft, upper left bias yarn, and upper right bias yarn can be aromatic heterocyclic polymer fiber yarns. Specifically, the warp and weft can be aromatic heterocyclic polymer fiber yarns, and the upper left bias yarn and upper right bias yarn can be other fiber yarns, or the upper left bias yarn and upper right bias yarn can be other aromatic heterocyclic polymer fiber yarns, and the warp and weft can be other fiber yarns.
本発明の遮熱性複合体シートのターポリン態様は、熱可塑性樹脂組成物(特に好ましくは塩化ビニル樹脂/可塑剤など)を熱混練し、カレンダー法、またはTダイス押出法で溶融圧延した厚さが0.1mm~1.0mm、特に0.15mm~0.3mmフィルム(シート)が使用できる。また織物に対する樹脂加工は、熱ロール/ゴムロールの連続圧着ユニットを1~2と、冷却ロールユニット、及び巻取ユニットを有するラミネーターを用い、ラミネーターの1回通しまたは2回通しの工程により熱溶融圧着した樹脂加工物織物である。ターポリンは、カレンダー成型して得たフィルムをラミネーターにより目開き織物の両面に熱圧着して製造され、厚さ0.5~1.5mm、質量500~2000g/mの範囲の「(薄膜層)/熱可塑性樹脂層/布帛(マルチフィラメント糸条)/熱可塑性樹脂層」の態様が、大型テント(パビリオン)、サーカステント、テント倉庫、建築空間の膜屋根(天井)、日除けテントなどの膜構造物に使用できる。帆布の態様は、溶液状の熱可塑性樹脂組成物(特に好ましくは塩化ビニル樹脂/可塑剤などによるペースト)を織物の表面、及び内部にナイフコート、クリアランスコートなどのコーティング法により含浸塗工し、これを熱乾燥、または加熱ゲル化させるか、または溶液状の熱可塑性樹脂組成物(特に好ましくは塩化ビニル樹脂ペースト)を充填した液浴中に織物を浸漬し、これを引き上げると同時に1対のゴムロール間で圧搾し、直後に熱乾燥、または加熱ゲル化させるディッピング法によって製造された樹脂加工物織物である。帆布の製造は、塩化ビニル樹脂/可塑剤などによるペーストによるディッピング法が適し、厚さ0.3~0.8mm、質量400~1000g/mの範囲の「(薄膜層)/熱可塑性樹脂層/布帛(短繊維紡績糸条)/熱可塑性樹脂層」態様が、トラック幌、トラック荷台シート、屋形テント、シートハウスなどの用途に適している。この段落で「(薄膜層)/」は任意の追加層であるが、耐用年数の延長の観点において本発明の遮熱性複合体シートの最良の態様である。 The tarpaulin embodiment of the heat-shielding composite sheet of the present invention can be a film (sheet) having a thickness of 0.1 mm to 1.0 mm, particularly 0.15 mm to 0.3 mm, which is obtained by hot kneading a thermoplastic resin composition (particularly preferably vinyl chloride resin/plasticizer, etc.) and melt rolling it by a calendar method or a T-die extrusion method. The resin processing of the woven fabric is performed using a laminator having one or two continuous heat roll/rubber roll compression units, a cooling roll unit, and a winding unit, and the resulting resin-processed woven fabric is hot melt-pressed by a single pass or two passes through the laminator. Tarpaulin is produced by thermocompressing a film obtained by calendar molding onto both sides of an open-mesh fabric using a laminator, and the embodiment of "(thin film layer)/thermoplastic resin layer/fabric (multifilament yarn)/thermoplastic resin layer" having a thickness of 0.5 to 1.5 mm and a mass of 500 to 2000 g/m can be used for membrane structures such as large tents (pavilions), circus tents, tent warehouses, membrane roofs (ceilings) for architectural spaces, and sunshade tents. The embodiment of canvas is a resin-processed fabric produced by impregnating and coating the surface and interior of a fabric with a solution-type thermoplastic resin composition (particularly preferably a paste of vinyl chloride resin/plasticizer, etc.) by a coating method such as knife coating or clearance coating, and then thermally drying or heat-gelling the fabric, or by immersing the fabric in a liquid bath filled with a solution-type thermoplastic resin composition (particularly preferably a vinyl chloride resin paste), and simultaneously pulling it out and squeezing it between a pair of rubber rolls, followed immediately by thermal drying or heat-gelling the fabric by a dipping method. The canvas is produced by a dipping method using a paste of polyvinyl chloride resin/plasticizer, etc., and a "(thin film layer)/thermoplastic resin layer/fabric (short fiber spun yarn)/thermoplastic resin layer" configuration with a thickness of 0.3 to 0.8 mm and a mass of 400 to 1000 g/m is suitable for applications such as truck canopies, truck bed sheets, rooftop tents, and sheet houses. In this paragraph, "(thin film layer)/" is an optional additional layer, but is the best configuration of the heat-shielding composite sheet of the present invention in terms of extending the service life.
本発明の遮熱性複合体シートの具体例、及び性能について、下記の実施例及び比較例を挙げて更に説明する。
〈耐候促進試験〉
JIS K5600-7-7「塗料一般試験方法(第7部)塗膜の長期耐久性」に準拠して、耐候促進機1000時間、2000時間、2500時間、3000時間の照射ごとにシート片の変色を色差ΔE(JIS Z8729)で評価した。(促進前のシート片を基準とする)
ΔE=0~2.9 : 1=着色を認めない(適合)
ΔE=3~5.9 : 2=僅かな着色を認める(適合)
ΔE=6~11.9 : 3=薄い褐色に変色(外観に影響する)
ΔE=12~19.9 : 4=茶褐色に変色(外観異常)
ΔE=20~ : 5=黒褐色に変色(外観異常)
〈耐候促進試験後の屈曲耐久性〉
耐候促進機1000時間、2000時間、2500時間、3000時間の照射時間ごとのシート片を用い、JIS L1096の 8.19項「摩耗強さB法(スコット法)」により、1kgf荷重500回の屈曲揉みの負荷を与えた時の熱可塑性樹脂層の摩耗状態、及び亀裂の有無を、デジタルマイクロスコープ(VHX-1000:(株)キーエンス)を使用して熱可塑性樹脂層の100倍の拡大画像観察を行い評価した。
1:熱可塑性樹脂層に異常を認めない(適合)
2:熱可塑性樹脂層に軽微な亀裂を認めるが、剥離、脱落は認めない(適合)
3:熱可塑性樹脂層に多数の亀裂を生じ外観に影響している
4:熱可塑性樹脂層に多数の亀裂を生じ、亀裂片の剥離、脱落を伴う
5:熱可塑性樹脂層が劣化、脱落して布帛が露出している
〈遮熱率(%)〉
太陽光線を想定した赤外線ランプを使用し、シート材料が輻射熱を遮蔽する割合をシートの遮熱率として、以下の試験方法に従って測定した。
〈試験環境〉
内径が、高さ60cm×幅70cm×長さ70cmの外気温遮断性と気密性とを有する箱型構造体の天井部中央に赤外線ランプ(100V,125W,アイR型:岩崎電気(株))を取り付け、またこの試験箱内部の底面部の中央には熱流量計(Shothrm HFM熱流量計:昭和電工(株)製)のセンサーを取り付けた台座(高さ8cm)を構成した。このとき天井部から赤外線ランプ先端までの距離は22cm、赤外線ランプ先端からセンサーまでの距離は30cmである。(22cm+30cm+8cm=60cm)この環境でランプを点灯し、熱流量(kcal/m2h)を1分ごとに測定し、30分後の熱流量qn(kcal/m2h)を測定した。箱型構造体内の温度を20℃まで戻した後、このセンサーを取り付けた台座上に試験シート片(タテ10cm×ヨコ10cmサイズ)を乗せ、その上に厚さ3.5mmの透明ガラス板を載せた状態でランプを点灯し、熱流量(kcal/m2h)を1分ごとに測定し、30分後の熱流量qc(kcal/m2h)を測定し、式(2)に従って遮熱率pf(%)を算出した。
遮熱率pf(%)=〔(qn-qc)/qn〕×100・・・(1)
遮熱率pf(%)は数値が大きいほど遮熱効果が高いと判断する
〈光線透過率(%)>
JIS Z8722(条件g)に準拠し、コニカミノルタ(株)製の分光測色計CM-36dGVにより測定した。
Specific examples and performance of the heat shielding composite sheet of the present invention will be further described with reference to the following examples and comparative examples.
Accelerated weathering test
In accordance with JIS K5600-7-7 "General coating test methods (Part 7) Long-term durability of coating film," the discoloration of the sheet pieces was evaluated in terms of color difference ΔE (JIS Z8729) after 1000 hours, 2000 hours, 2500 hours, and 3000 hours of exposure to a weathering accelerator (based on the sheet pieces before acceleration).
ΔE = 0 to 2.9: 1 = No coloring allowed (compliant)
ΔE = 3 to 5.9: 2 = slight coloring is observed (compliant)
ΔE = 6 to 11.9: 3 = Discoloration to light brown (affects appearance)
ΔE=12-19.9: 4=discolored to brown (abnormal appearance)
ΔE=20~: 5=discolored to blackish brown (abnormal appearance)
<Flexural durability after accelerated weathering test>
Using sheet pieces exposed to the weathering accelerator for 1000 hours, 2000 hours, 2500 hours, and 3000 hours, a load of 1 kgf was applied to the sheet pieces by bending and kneading 500 times according to JIS L1096, Section 8.19 "Abrasion strength method B (Scott method)". The abrasion state of the thermoplastic resin layer and the presence or absence of cracks were evaluated by observing a 100x magnified image of the thermoplastic resin layer using a digital microscope (VHX-1000: Keyence Corporation).
1: No abnormality was found in the thermoplastic resin layer (compliant)
2: Minor cracks are observed in the thermoplastic resin layer, but no peeling or falling off is observed (Compliant)
3: Numerous cracks have occurred in the thermoplastic resin layer, affecting the appearance. 4: Numerous cracks have occurred in the thermoplastic resin layer, with cracked pieces peeling off and falling off. 5: The thermoplastic resin layer has deteriorated and fallen off, exposing the fabric. <Heat shielding rate (%)>
An infrared lamp simulating sunlight was used, and the rate at which the sheet material blocks radiant heat was taken as the heat shielding rate of the sheet, and was measured according to the following test method.
Test environment
An infrared lamp (100V, 125W, iR type: Iwasaki Electric Co., Ltd.) was attached to the center of the ceiling of a box-shaped structure with an inner diameter of 60cm high x 70cm wide x 70cm long, which has outside air temperature insulation and airtightness, and a base (8cm high) with a heat flow meter (Shothrm HFM heat flow meter: Showa Denko Co., Ltd.) sensor attached was configured in the center of the bottom surface inside the test box. At this time, the distance from the ceiling to the tip of the infrared lamp was 22cm, and the distance from the tip of the infrared lamp to the sensor was 30cm. (22cm + 30cm + 8cm = 60cm) The lamp was turned on in this environment, and the heat flow (kcal/ m2h ) was measured every minute, and the heat flow qn (kcal/ m2h ) after 30 minutes was measured. After the temperature inside the box-shaped structure was returned to 20°C, a test sheet piece (10 cm long x 10 cm wide) was placed on the base on which the sensor was attached, and a 3.5 mm thick transparent glass plate was placed on top of it. The lamp was then turned on and the heat flow (kcal/ m2h ) was measured every minute. The heat flow qc (kcal/ m2h ) after 30 minutes was measured, and the heat shielding rate pf (%) was calculated according to equation (2).
Heat shielding rate pf (%) = [(qn - qc) / qn] x 100 ... (1)
The higher the heat shielding rate pf (%), the higher the heat shielding effect is judged to be. (Light transmittance (%))
The measurement was performed in accordance with JIS Z8722 (condition g) using a spectrophotometer CM-36dGV manufactured by Konica Minolta, Inc.
[実施例1]
〈布帛(1)〉
1000デニール(1111dtex)のポリエチレンテレタレート(PET)繊維(フィラメント数192本)からなり、S撚50T/mを施したPETマルチフィラメント糸条を経糸群及び緯糸群に用い、経糸群は1インチ間16本の織組織とし、また緯糸群は1インチ間16本の織組織とする平織物を布帛に用いた。この布帛(1)の質量は150g/m2、空隙率(目抜け部総和)は14%であった。
〈ターポリン〉
この布帛(1)を基材として、その両面に下記〔配合1〕の軟質塩化ビニル樹脂組成物からなる厚さ0.2mmのカレンダー成型フィルムを表裏の熱可塑性樹脂層として、ラミネーターでの熱圧着による溶融ラミネートを施して、厚さ0.7mm、質量830g/m2のターポリン(1)を得た。
〔配合1〕:軟質塩化ビニル樹脂組成物(コンパウンド)
塩化ビニル樹脂(重合度1300) 100質量部
フタル酸ジイソノニル(可塑剤:Mw419) 55質量部
リン酸トリクレジル(防炎可塑剤) 10質量部
エポキシ化大豆油(安定剤兼可塑剤) 5質量部
バリウム/亜鉛複合安定剤 2質量部
三酸化アンチモン(難燃剤) 10質量部
表面処理酸化チタン粒子(一次平均粒子径1μm) 10質量部
※酸化アルミニウムによる表面処理(最外層ステアリン酸処理)
ヒンダードフェノール系酸化防止剤 0.5質量部
ベンゾトリアゾール系互変異性体 3質量部
※エノール型として〔化1〕において、2位-水酸基(1個)/ケトン基(0個)のベ
ンゼン環(5位tert-ブチル基)1個の1位Cと、ベンゾトリアゾール環(置換基なし)
とのC-N結合体によるMW267の有機化合物
※ケト型として〔化2〕において、水酸基(0個)/2位-ケトン基(1個)のベンゼ
ン環(5位tert-ブチル基)1個の1位Cと、ベンゾトリアゾール環(置換基なし)との
C-N結合体(MW267)
※1位、2位、5位、はベンゼン環の炭素の位置を表す
N-OR型ヒンダードアミン 1質量部
※ビス(1-ウンデカオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)
カーボネート(MW681)
※〔化7〕において、R1~R4が全てメチル基、R5がウンデシル基(-C11H23)
[Example 1]
<Fabric (1)>
The warp and weft groups were made of 1000 denier (1111 dtex) polyethylene terephthalate (PET) fibers (192 filaments) and S-twisted 50 T/m of PET multifilament yarn, with the warp group having a weave of 16 threads per inch and the weft group having a weave of 16 threads per inch, forming a plain weave fabric. The mass of this fabric (1) was 150 g/ m2 , and the void ratio (total of open areas) was 14%.
<Tarpaulin>
This fabric (1) was used as a substrate, and on both sides thereof, a 0.2 mm-thick calendar-molded film made of the soft vinyl chloride resin composition shown in [Formulation 1] below was used as a front and back thermoplastic resin layer, and melt-laminated by thermocompression bonding with a laminator to obtain a tarpaulin (1) having a thickness of 0.7 mm and a mass of 830 g/ m2 .
[Formulation 1]: Soft polyvinyl chloride resin composition (compound)
Vinyl chloride resin (degree of polymerization 1300) 100 parts by weight Diisononyl phthalate (plasticizer: Mw 419) 55 parts by weight Tricresyl phosphate (flame retardant plasticizer) 10 parts by weight Epoxidized soybean oil (stabilizer and plasticizer) 5 parts by weight Barium/zinc composite stabilizer 2 parts by weight Antimony trioxide (flame retardant) 10 parts by weight Surface-treated titanium oxide particles (average primary particle size 1 μm) 10 parts by weight * Surface treatment with aluminum oxide (outermost layer stearic acid treatment)
Hindered phenol antioxidant 0.5 parts by weight Benzotriazole tautomer 3 parts by weight *As an enol type, in [Chemical formula 1], the 1st C of one benzene ring (5th tert-butyl group) with 2-hydroxyl group (1 group) / ketone group (0 groups) and the benzotriazole ring (no substituent)
Organic compound of MW267 formed by C-N bond with hydroxyl group (0)/2-ketone group (1) in [Chemical formula 2] as keto type, C-N bond between 1-C of one benzene ring (5-tert-butyl group) and benzotriazole ring (no substituent) (MW267)
*1st, 2nd, and 5th positions indicate the carbon positions of the benzene ring. N-OR type hindered amine 1 part by mass *Bis(1-undecaoxy-2,2,6,6-tetramethylpiperidin-4-yl)
Carbonate (MW 681)
In the formula 7, R 1 to R 4 are all methyl groups, and R 5 is an undecyl group (-C 11 H 23 ).
[実施例2]
実施例1の〔配合1〕のベンゾトリアゾール系互変異性体3質量部を、トリアジン系互変異性体3質量部に置き換えた〔配合2〕を用いた以外は実施例1と同様として、厚さ0.7mm、質量830g/m2のターポリン(2)を得た。
※トリアジン系互変異性体は、エノール型として〔化3〕において、2位-水酸基(1個)/ケトン基(0個)のベンゼン環(4位ブトキシ基)3個の各々1位Cと、1,3,5-トリアジン環の2,4,6位CによるC-C結合体によるMW367の有機化合物
※ケト型として〔化4〕において、水酸基(0個)/2位-ケトン基(1個)のベンゼン環(4位ブトキシ基)3個の各々1位Cと、1,3,5-トリアジン環の2,4,6位CによるC-C結合体(MW367)
※1位、2位、4位はベンゼン環の炭素の位置を表し、トリアジン環の2,4,6位Cは炭素の位置、1,3,5位は窒素Nの位置を表す
[Example 2]
A tarpaulin (2) having a thickness of 0.7 mm and a mass of 830 g/m2 was obtained in the same manner as in Example 1, except that [Blend 2] was used in which 3 parts by mass of the benzotriazole tautomer in [Blend 1] of Example 1 was replaced with 3 parts by mass of a triazine tautomer.
*Triazine tautomers are organic compounds with MW367 in the enol form (chemical formula 3) consisting of the 1st C of each of the three benzene rings (butoxy group at 4th position) with 1 hydroxyl group at 2nd position/0 ketone group at 2nd position and the C-C bond at 2, 4, and 6th positions of the 1,3,5-triazine ring. *Keto form (chemical formula 4) consisting of the 1st C of each of the three benzene rings (butoxy group at 4th position) with 0 hydroxyl group/1 ketone group at 2nd position and the C-C bond at 2, 4, and 6th positions of the 1,3,5-triazine ring (MW367).
* The 1st, 2nd, and 4th positions represent the carbon positions of the benzene ring, the 2nd, 4th, and 6th positions of the triazine ring represent the carbon positions, and the 1st, 3rd, and 5th positions represent the nitrogen positions.
[実施例3]
実施例1の〔配合1〕のベンゾトリアゾール系互変異性体3質量部を、ジフェニルケトン系互変異性体3質量部に置き換えた〔配合3〕を用いた以外は実施例1と同様として、厚さ0.7mm、質量830g/m2のターポリン(3)を得た。
※ジフェニルケトン系互変異性体は、エノール型として〔化5〕において、2位-水酸基(1個)/ケトン基(0個)/4位-オクトキシ基(1個)のベンゼン環(他の置換基なし)1個の1位Cと、ベンゼン環(他の置換基なし)とがC=Oを介在して結合したMW296の有機化合物
※ケト型として〔化6〕において、水酸基(0個)/2位-ケトン基(1個)/4位-オクトキシ基(1個)のベンゼン環(他の置換基なし)1個の1位Cと、ベンゼン環(他の置換基なし)とがC=Oを介在して結合(MW296)
※1位、2位、4位はベンゼン環の炭素の位置を表す
[Example 3]
A tarpaulin (3) having a thickness of 0.7 mm and a mass of 830 g/m2 was obtained in the same manner as in Example 1, except that [Blend 3] was used in which 3 parts by mass of the benzotriazole tautomer in [Blend 1] of Example 1 was replaced with 3 parts by mass of a diphenyl ketone tautomer.
*Diphenyl ketone tautomers are organic compounds with MW296 in the enol form [Chemical formula 5], in which the 1st C of one benzene ring (no other substituents) with 2-hydroxyl group (1), ketone group (0), and 4-octoxy group (1) is bonded to the benzene ring (no other substituents) via a C=O. *In the keto form [Chemical formula 6], the 1st C of one benzene ring (no other substituents) with hydroxyl group (0), 2-ketone group (1), and 4-octoxy group (1) is bonded to the benzene ring (no other substituents) via a C=O (MW296).
*1st, 2nd, and 4th positions represent the carbon positions of the benzene ring.
[実施例4]
実施例1の〔配合1〕に、一次平均粒子径0.2μmの酸化チタン粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)1質量部と、一次平均粒子径0.2μmの酸化亜鉛粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)1質量部を追加した〔配合4〕を用いた以外は実施例1と同様として、厚さ0.7mm、質量833g/m2のターポリン(4)を得た。
[Example 4]
A tarpaulin (4) having a thickness of 0.7 mm and a mass of 833 g/m2 was obtained in the same manner as in Example 1, except that [Blend 4] was used in which 1 part by mass of titanium oxide particles (surface-treated with aluminum hydroxide/outermost layer-treated with stearic acid) having a primary average particle diameter of 0.2 μm and 1 part by mass of zinc oxide particles (surface-treated with aluminum hydroxide/outermost layer-treated with stearic acid) having a primary average particle diameter of 0.2 μm was added to [Blend 1] in Example 1 .
[実施例5]
実施例2の〔配合2〕に、一次平均粒子径0.2μmの酸化チタン粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)1質量部と、一次平均粒子径0.2μmの酸化亜鉛粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)1質量部を追加した〔配合5〕を用いた以外は実施例2と同様として、厚さ0.7mm、質量833g/m2のターポリン(5)を得た。
[Example 5]
A tarpaulin (5) having a thickness of 0.7 mm and a mass of 833 g/m2 was obtained in the same manner as in Example 2, except that [Blend 5] was used in which 1 part by mass of titanium oxide particles (surface-treated with aluminum hydroxide/outermost layer-treated with stearic acid) having a primary average particle diameter of 0.2 μm and 1 part by mass of zinc oxide particles (surface-treated with aluminum hydroxide/outermost layer-treated with stearic acid) having a primary average particle diameter of 0.2 μm was added to [Blend 2] in Example 2 .
[実施例6]
実施例3の〔配合3〕に、一次平均粒子径0.2μmの酸化チタン粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)1質量部と、一次平均粒子径0.2μmの酸化亜鉛粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)1質量部を追加した〔配合6〕を用いた以外は実施例3と同様として、厚さ0.7mm、質量833g/m2のターポリン(6)を得た。
[Example 6]
A tarpaulin (6) having a thickness of 0.7 mm and a mass of 833 g/m2 was obtained in the same manner as in Example 3, except that [Blend 6] was used in which 1 part by mass of titanium oxide particles (surface-treated with aluminum hydroxide/outermost layer-treated with stearic acid) having a primary average particle diameter of 0.2 μm and 1 part by mass of zinc oxide particles (surface-treated with aluminum hydroxide/outermost layer-treated with stearic acid) having a primary average particle diameter of 0.2 μm was added to [Blend 3] in Example 3.
[実施例7]
実施例1のターポリン(1)の片表面に、一次平均粒子径10nmの酸化チタン粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)と、一次平均粒子径10nmの酸化亜鉛粒子(水酸化アルミニウム表面処理/最外層ステアリン酸処理)を、1:1質量比で含むゾルゲル縮合体による薄膜層(1~3μm)を追加した以外は実施例1と同様として、厚さ0.7mm、質量835g/m2のターポリン(7)を得た。薄膜層の形成は〔配合7〕の溶液を120メッシュのグラビアロールコーターにて実施した。
〔配合7〕:薄膜層
エチルシリケート(Si(OC2H5)4:SiO2換算40質量%)
※[Si5O4(OC2H5)12]のテトラエトキシシラン5量体 100質量部
加水分解触媒:2%塩酸 5質量部
酸化チタン(粒子径10nm) 2質量部
酸化亜鉛(粒子径10nm) 2質量部
ビニル系シランカップリング剤(ビニルトリメトキシシラン) 5質量部
ホウ酸エステル化変性セルロースナノファイバー(2質量%水溶液) 100質量部
※3質量%ホウ酸+78質量%エチルセロソルブの水溶液をカルボキシメチル化セルロ
ースナノファイバー「セルロースの1級、2級水酸基(2,3,6位)をカルボキシメ
チル化」のカルボキシメチル基に反応させた変性体:繊維幅3~10nm:繊維長30
~100μm
[Example 7]
A tarpaulin (7) having a thickness of 0.7 mm and a mass of 835 g/m2 was obtained in the same manner as in Example 1, except that a thin film layer (1 to 3 μm) of a sol-gel condensate containing titanium oxide particles having a primary average particle size of 10 nm (surface treated with aluminum hydroxide/outermost layer treated with stearic acid) and zinc oxide particles having a primary average particle size of 10 nm (surface treated with aluminum hydroxide/outermost layer treated with stearic acid) in a 1:1 mass ratio was added to one surface of the tarpaulin (1) of Example 1. The thin film layer was formed by using a solution of [Blend 7] with a 120 mesh gravure roll coater.
[Formulation 7]: Thin film layer
Ethyl silicate (Si(OC 2 H 5 ) 4 : 40% by mass in terms of SiO 2 )
* Tetraethoxysilane pentamer of [ Si5O4 ( OC2H5 ) 12 ] 100 parts by weight Hydrolysis catalyst: 2% hydrochloric acid 5 parts by weight Titanium oxide (particle diameter 10 nm) 2 parts by weight Zinc oxide (particle diameter 10 nm) 2 parts by weight Vinyl silane coupling agent (vinyltrimethoxysilane) 5 parts by weight Boric acid ester modified cellulose nanofiber (2% aqueous solution) 100 parts by weight *A modified product in which an aqueous solution of 3% boric acid + 78% ethyl cellosolve reacts with the carboxymethyl groups of carboxymethylated cellulose nanofiber (the primary and secondary hydroxyl groups (2, 3, and 6 positions of cellulose) are carboxymethylated): fiber width 3-10 nm; fiber length 30
~100μm
[実施例8]
実施例2のターポリン(2)の片表面に、実施例7と同じゾルゲル縮合体による薄膜層を追加した以外は実施例2と同様として、厚さ0.7mm、質量835g/m2のターポリン(8)を得た。
[Example 8]
A tarpaulin (8) having a thickness of 0.7 mm and a mass of 835 g/m2 was obtained in the same manner as in Example 2, except that a thin film layer of the same sol-gel condensate as in Example 7 was added to one surface of the tarpaulin (2) of Example 2 .
[実施例9]
実施例3のターポリン(3)の片表面に、実施例7と同じゾルゲル縮合体による薄膜層を追加した以外は実施例3と同様として、厚さ0.7mm、質量835g/m2のターポリン(9)を得た。
[Example 9]
A tarpaulin (9) having a thickness of 0.7 mm and a mass of 835 g/ m2 was obtained in the same manner as in Example 3, except that a thin film layer of the same sol-gel condensate as in Example 7 was added to one surface of the tarpaulin (3) of Example 3.
[実施例10]
実施例1のターポリン(1)の片表面に、一次平均粒子径10nmの光触媒性酸化チタン(表面処理なし)を含むゾルゲル縮合体による薄膜層(1~3μm)を追加した以外は実施例1と同様として、厚さ0.7mm、質量834g/m2のターポリン(10)を得た。薄膜層の形成は〔配合8〕の溶液を120メッシュのグラビアロールコーターにて実施した。
〔配合8〕:薄膜層
エチルシリケート(Si(OC2H5)4:SiO2換算40質量%)
※[Si5O4(OC2H5)12]のテトラエトキシシラン5量体 100質量部
加水分解触媒:2%塩酸 5質量部
光触媒性酸化チタンゾル 50質量部
※硝酸酸性:粒子径10nm:固形分30質量%エタノール溶液
ビニル系シランカップリング剤(ビニルトリメトキシシラン) 5質量部
シリカゾル(粒子径12nm:固形分30質量%エタノール溶液) 50質量部
[Example 10]
A tarpaulin (10) having a thickness of 0.7 mm and a mass of 834 g/m2 was obtained in the same manner as in Example 1, except that a thin film layer (1 to 3 μm) of a sol-gel condensate containing photocatalytic titanium oxide (untreated) with a primary average particle size of 10 nm was added to one surface of the tarpaulin (1) of Example 1. The thin film layer was formed by using a solution of [Blend 8] with a 120 mesh gravure roll coater.
[Formulation 8]: Thin film layer
Ethyl silicate (Si(OC 2 H 5 ) 4 : 40% by mass in terms of SiO 2 )
* Tetraethoxysilane pentamer of [ Si5O4 ( OC2H5 ) 12 ] 100 parts by weight Hydrolysis catalyst: 2% hydrochloric acid 5 parts by weight Photocatalytic titanium oxide sol 50 parts by weight *Nitric acid acid: Particle diameter 10 nm: 30% solids in ethanol solution Vinyl silane coupling agent (vinyltrimethoxysilane) 5 parts by weight Silica sol (particle diameter 12 nm: 30% solids in ethanol solution) 50 parts by weight
[実施例11]
実施例2のターポリン(2)の片表面に、実施例10と同じゾルゲル縮合体による薄膜層を追加した以外は実施例2と同様として、厚さ0.7mm、質量834g/m2のターポリン(11)を得た。
[Example 11]
A tarpaulin (11) having a thickness of 0.7 mm and a mass of 834 g/m2 was obtained in the same manner as in Example 2, except that a thin film layer of the same sol-gel condensate as in Example 10 was added to one surface of the tarpaulin (2) of Example 2 .
[実施例12]
実施例3のターポリン(3)の片表面に、実施例10と同じゾルゲル縮合体による薄膜層を追加した以外は実施例3と同様として、厚さ0.7mm、質量834g/m2のターポリン(12)を得た。
[Example 12]
A tarpaulin (12) having a thickness of 0.7 mm and a mass of 834 g/ m2 was obtained in the same manner as in Example 3, except that a thin film layer of the same sol-gel condensate as in Example 10 was added to one surface of the tarpaulin (3) of Example 3.
表面処理酸化チタン粒子(一次平均粒子径1μm)、ケト/エノール型互変異性体、及びN-OR型ヒンダードアミン、を必須成分として含有する熱可塑性樹脂層が形成された、実施例1~3のターポリン(1)~(3)は、遮熱性、及び耐候性に優れ、特に耐候性の向上(紫外線劣化軽減)により耐用年数の延長が可能となることが、比較例1~3で得られたシートとのとの対比で明らかとなった。特に表面処理酸化チタン粒子(一次粒子径0.2μm)を用いた比較例1のシートでは耐候性には優れるものの十分な遮熱効果が得られなくなり、またケト/エノール型互変異性体を省略した比較例2のシートでは遮熱効果には優れるものの十分な耐候性が得られなくなり、またN-OR型ヒンダードアミンを省略した比較例3のシートにおいても遮熱効果には優れるものの十分な耐候性が得られなくなる。また、実施例1~3の遮熱性複合体シートの熱可塑性樹脂層に、一次平均粒子径0.2μmの表面処理酸化チタン粒子と、一次平均粒子径0.2μmの表面処理酸化亜鉛粒子を1:1質量比で追加した実施例4~6のターポリン(4)~(6)は、熱可塑性樹脂層での紫外線遮蔽効果(紫外線A波・B波)が向上し、遮熱性、及び耐候性に優れ、特に耐候性の向上(紫外線劣化軽減)により更なる耐用年数の延長が可能となることが、実施例1~3のシートとのとの対比で明らかとなった。また、実施例1~3の遮熱性複合体シートの熱可塑性樹脂層上に、一次平均粒子径10nmの表面処理酸化チタン粒子と、一次平均粒子径10nmの表面処理酸化亜鉛粒子を1:1質量比で含むゾルゲル縮合体による薄膜層を追加した実施例7~9のターポリン(7)~(9)は、熱可塑性樹脂層に対する紫外線遮蔽効果(紫外線A波・B波)が向上し、遮熱性、及び耐候性に優れ、特に耐候性の向上(紫外線劣化軽減)により更なる耐用年数の延長が可能となることが、実施例1~3のシートとのとの対比で明らかとなった。また、実施例1~3の遮熱性複合体シートの熱可塑性樹脂層上に、一次平均粒子径10nmの光触媒性酸化チタンを含むゾルゲル縮合体による薄膜層を追加した実施例10~12のターポリン(10)~(12)は、熱可塑性樹脂層のセルフクリーニング効果が発現し、遮熱性、及び耐候性に優れ、特に防汚性の向上により更なる耐用年数の延長が可能となることが、実施例1~3のシートとのとの対比で明らかとなった。この結果、廃棄頻度(膜構造物の張替交換)を減らして廃棄する膜材(ターポリン)量を削減し、同時に膜材(ターポリン)の生産量を削減することで、二酸化炭素排出の要因となる石化資源の消費を抑え、地球環境保全に貢献するものとすることができるようになる。 The tarpaulins (1) to (3) of Examples 1 to 3, which are formed with a thermoplastic resin layer containing surface-treated titanium oxide particles (average primary particle size 1 μm), keto/enol tautomers, and N-OR hindered amine as essential components, are excellent in heat shielding properties and weather resistance, and in particular, the improved weather resistance (reduction of ultraviolet degradation) makes it possible to extend the service life, as revealed by comparison with the sheets obtained in Comparative Examples 1 to 3. In particular, the sheet of Comparative Example 1, which uses surface-treated titanium oxide particles (primary particle size 0.2 μm), has excellent weather resistance but does not provide a sufficient heat shielding effect, while the sheet of Comparative Example 2, which omits the keto/enol tautomers, has excellent heat shielding effects but does not provide sufficient weather resistance, and the sheet of Comparative Example 3, which omits the N-OR hindered amine, also has excellent heat shielding effects but does not provide sufficient weather resistance. Furthermore, the tarpaulins (4) to (6) of Examples 4 to 6, in which surface-treated titanium oxide particles having an average primary particle size of 0.2 μm and surface-treated zinc oxide particles having an average primary particle size of 0.2 μm were added in a 1:1 mass ratio to the thermoplastic resin layer of the heat-shielding composite sheets of Examples 1 to 3, showed improved ultraviolet shielding effect (ultraviolet-A and ultraviolet-B waves) in the thermoplastic resin layer, excellent heat shielding properties and weather resistance, and in particular, improved weather resistance (reduction of ultraviolet degradation) enabled further extension of the service life, as revealed by comparison with the sheets of Examples 1 to 3. Furthermore, the tarpaulins (7) to (9) of Examples 7 to 9, in which a thin film layer made of a sol-gel condensate containing surface-treated titanium oxide particles having an average primary particle size of 10 nm and surface-treated zinc oxide particles having an average primary particle size of 10 nm in a 1:1 mass ratio was added onto the thermoplastic resin layer of the heat-shielding composite sheets of Examples 1 to 3, showed an improved ultraviolet shielding effect (ultraviolet-A and ultraviolet-B waves) for the thermoplastic resin layer, excellent heat shielding properties and weather resistance, and in particular, improved weather resistance (reduction of ultraviolet degradation) enabled a further extension of the service life, as revealed by a comparison with the sheets of Examples 1 to 3. In addition, the tarpaulins (10) to (12) of Examples 10 to 12, which have a thin film layer of a sol-gel condensate containing photocatalytic titanium oxide with a primary average particle size of 10 nm added to the thermoplastic resin layer of the heat-shielding composite sheets of Examples 1 to 3, exhibit a self-cleaning effect in the thermoplastic resin layer, and are excellent in heat-shielding properties and weather resistance, and in particular, the improved stain resistance makes it possible to further extend the service life, as revealed by comparison with the sheets of Examples 1 to 3. As a result, the frequency of disposal (replacing and replacing the membrane structure) is reduced, reducing the amount of membrane material (tarpaulin) to be disposed of, and at the same time, the production volume of the membrane material (tarpaulin) is reduced, thereby reducing the consumption of petrochemical resources that cause carbon dioxide emissions and contributing to the conservation of the global environment.
[比較例1]
実施例1の熱可塑性樹脂層[配合1]の表面処理酸化チタン粒子(一次平均粒子径1μm)10質量部を、表面処理酸化チタン粒子(一次粒子径0.2μm)10質量部に置き換えた[配合9]を用いた以外は実施例1と同様として、厚さ0.7mm、質量830g/m2のターポリン(13)を得た。近赤外線領域(780~2500nm)の反射効果が高い一次平均粒子径1μmの表面処理酸化チタン粒子の使用を省略したことで、ターポリン(13)の遮熱性はターポリン(1)よりも劣るものとなった。但し耐候性はターポリン(1)と同等であった。
[Comparative Example 1]
A tarpaulin (13) having a thickness of 0.7 mm and a mass of 830 g/m2 was obtained in the same manner as in Example 1, except that 10 parts by mass of the surface-treated titanium oxide particles (primary average particle diameter 1 μm) in the thermoplastic resin layer [blending 1] of Example 1 was replaced with 10 parts by mass of surface-treated titanium oxide particles (primary particle diameter 0.2 μm). By omitting the use of the surface-treated titanium oxide particles having a primary average particle diameter of 1 μm, which have a high reflectivity in the near-infrared region (780 to 2500 nm), the heat insulation property of the tarpaulin (13) was inferior to that of the tarpaulin (1). However, the weather resistance was equivalent to that of the tarpaulin (1).
[比較例2]
実施例1の熱可塑性樹脂層[配合1]からベンゾトリアゾール系互変異性体3質量部を省略し、N-OR型ヒンダードアミン1質量部を3質量部に変更した[配合10]を用いた以外は実施例1と同様として、厚さ0.7mm、質量830g/m2のターポリン(14)を得た。紫外線エネルギーを分子振動エネルギーに変換放出する効果の高い互変異性体の使用を省略したことで、ターポリン(14)の耐候性はターポリン(1)よりも劣るものとなり長期間使用に耐えないものであった。但し遮熱性はターポリン(1)と同等であった。
[Comparative Example 2]
A tarpaulin (14) having a thickness of 0.7 mm and a mass of 830 g/m2 was obtained in the same manner as in Example 1, except that 3 parts by mass of the benzotriazole-based tautomer was omitted from the thermoplastic resin layer [blending 1] of Example 1, and 1 part by mass of the N-OR type hindered amine was changed to 3 parts by mass [blending 10] was used. By omitting the use of the tautomer, which is highly effective in converting and releasing ultraviolet energy into molecular vibration energy, the weather resistance of the tarpaulin (14) was inferior to that of the tarpaulin (1), and it was not durable for long-term use. However, the heat shielding property was equivalent to that of the tarpaulin (1).
[比較例3]
実施例1の熱可塑性樹脂層[配合1]からN-OR型ヒンダードアミン1質量部を省略した[配合11]を用いた以外は実施例1と同様として、厚さ0.7mm、質量830g/m2のターポリン(15)を得た。紫外線のダメージで発生する有害なラジカルの攻撃の連鎖進行を抑止する効果の高いN-OR型ヒンダードアミンの使用を省略したことで、ターポリン(15)の耐候性はターポリン(1)よりも劣るものとなり長期間使用に耐えないものであった。但し遮熱性はターポリン(1)と同等であった。
[Comparative Example 3]
A tarpaulin (15) having a thickness of 0.7 mm and a mass of 830 g/m2 was obtained in the same manner as in Example 1, except that [blending 11] was used, which was obtained by omitting 1 part by mass of the N-OR type hindered amine from the thermoplastic resin layer [blending 1] of Example 1. By omitting the use of the N-OR type hindered amine, which is highly effective in inhibiting the chain progression of attacks by harmful radicals generated by damage from ultraviolet rays, the weather resistance of the tarpaulin (15) was inferior to that of the tarpaulin (1) and was not durable for long-term use. However, the heat insulation property was equivalent to that of the tarpaulin (1).
[比較例4]
実施例1の熱可塑性樹脂層[配合1]のN-OR型ヒンダードアミン1質量部を、N-H型ヒンダードアミンである、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(MW481)1質量部に置き換えた[配合12]を用いた以外は実施例1と同様として、厚さ0.7mm、質量830g/m2のターポリン(16)を得た。塩化ビニル樹脂に効果の高いN-OR型ヒンダードアミンの使用を省略してN-H型ヒンダードアミンに変更したことにより、紫外線劣化で塩化ビニル樹脂から発生する遊離の塩素ラジカル(Cl・)が、N-H型ヒンダードアミンのラジカル無害化サイクルを阻害して十分な耐候性を得ることができず、実施例1のターポリン(1)ほどの長期間使用に耐えないもので、耐候促進3000hrの色差ΔEの評価ランクが「4」、屈曲揉みの評価ランクが「3」であった。但し遮熱性はターポリン(1)と同等の60.2%であった。
[Comparative Example 4]
A tarpaulin (16) having a thickness of 0.7 mm and a mass of 830 g/m 2 was obtained in the same manner as in Example 1, except that 1 part by mass of the N-OR type hindered amine in the thermoplastic resin layer [blending 1] of Example 1 was replaced with 1 part by mass of bis(2,2,6,6-tetramethyl- 4 -piperidyl)sebacate (MW481), which is an N-H type hindered amine, was used [blending 12]. By omitting the use of the N-OR type hindered amine, which is highly effective against vinyl chloride resin, and changing it to an N-H type hindered amine, the free chlorine radical (Cl.) generated from the vinyl chloride resin due to ultraviolet degradation inhibits the radical detoxification cycle of the N-H type hindered amine, making it impossible to obtain sufficient weather resistance, and it was not able to withstand long-term use like the tarpaulin (1) of Example 1, and the evaluation rank of the color difference ΔE after 3000 hours of accelerated weather resistance was "4", and the evaluation rank of the bending kneading was "3". However, the heat insulation property was 60.2%, which is the same as that of tarpaulin (1).
本発明により、採光性、遮熱性、及び耐候性に優れたテント膜構造物用の複合体シート(ターポリン、帆布などの複合体シート)を得ることができるようになり、テント膜構造物用の膜材(遮熱性複合体シート)の耐用年数が延長されることによって、廃棄頻度(すなわち張替交換)が減り、廃棄する膜材量の削減となり、同時に膜材の生産量が削減されることで石化資源の使用量が減り、二酸化炭素排出減による地球環境の保全に貢献することを可能とする。具体的に、屋内スポーツ施設、イベントパビリオン、移動サーカス、プラネタリウム、テント倉庫などの長期使用(10~15年)のテント構造物に最適な膜材となり、さらに、建築養生(防音)シート、パーゴラシェード(膜天井)、ファサードシート、昇降式シートシャッター、間仕切りシート、トラック幌、野積防水シート、屋形テントなどの10年未満の用途にも展開可能である。 The present invention makes it possible to obtain a composite sheet (composite sheet of tarpaulin, canvas, etc.) for tent membrane structures with excellent lighting, heat shielding, and weather resistance, and by extending the service life of the membrane material (heat shielding composite sheet) for tent membrane structures, the frequency of disposal (i.e., replacement) is reduced, and the amount of membrane material to be disposed of is reduced. At the same time, the amount of membrane material produced is reduced, which reduces the amount of petrochemical resources used, and contributes to the conservation of the global environment by reducing carbon dioxide emissions. Specifically, this membrane material is ideal for long-term (10 to 15 years) tent structures such as indoor sports facilities, event pavilions, traveling circuses, planetariums, and tent warehouses, and can also be used for applications lasting less than 10 years, such as architectural protection (soundproofing) sheets, pergola shades (membrane ceilings), facade sheets, lift-up sheet shutters, partition sheets, truck canopies, outdoor waterproof sheets, and rooftop tents.
Claims (6)
から選ばれた1種以上
から選ばれた1種以上 The heat shielding composite sheet according to claim 1, wherein the benzotriazole tautomers are an enol isomer (Ia) [Chemical formula 1] having a skeleton formed of a C-N bond between one benzene ring (which may have one or two types selected from an alkyl group, a branched alkyl group, and an alkyl-substituted benzyl group) having a hydroxyl group (1 to 2 groups)/ketone group (0 groups) and a benzotriazole ring (which may have a substituent); and a keto isomer (IIa) [Chemical formula 2] having a skeleton formed of a C-N bond between one benzene ring (which may have one or two types selected from an alkyl group, a branched alkyl group, and an alkyl-substituted benzyl group) having a hydroxyl group (0 to 1 groups)/ketone group (1 group) and a benzotriazole ring (which may have a substituent).
R2,R3は、アルキル置換フェニル基、及び/または水酸基置換フェニル基
R2,R3は、アルキル置換フェニル基、及び/または水酸基置換フェニル基 The heat shielding composite sheet according to claim 1, wherein the triazine-based tautomers are an enol-type isomer (Ib) [Chemical formula 3] having a main skeleton of a C-C bond between 1 to 3 benzene rings (which may have an alkyloxy group) having 1 to 2 hydroxyl groups/0 ketone groups and a 1,3,5-triazine ring (which may have an alkyl-substituted phenyl group and/or a hydroxyl-substituted phenyl group), and a keto-type isomer (IIb) [Chemical formula 4] having a main skeleton of a C-C bond between 1 to 3 benzene rings (which may have an alkyloxy group) having 1 to 2 hydroxyl groups/ 1 ketone group and a 1,3,5-triazine ring (which may have an alkyl-substituted phenyl group and/or a hydroxyl-substituted phenyl group).
直鎖アルキル基、または分枝アルキル基、c)1個以上の-O-,-S-,
-SO-,-SO2-,-CO-,-COO-,-OCO-,-CONR-,
-NRCO-または-NR-を含む上記b)のアルキル基、d)炭素数3~20
のアルケニル基、e)炭素数6~10のアリール基、f)炭素数1~20のアルキル
基、炭素数5~12のシクロアルキル基、及び炭素数7~15のフェニルアルキル基
から選択された1~3個の置換基を有するアリール基
R5は炭素数2~18のアルキル基、または、炭素数5~12のシクロアルキル基 The heat shielding composite sheet according to any one of claims 1 to 4, wherein the N-OR type hindered amine has, at the N-position of the hindered amine structure, one or more substituents selected from an alkoxy group having 2 to 18 carbon atoms and a cycloalkoxy group having 5 to 12 carbon atoms , and is represented by the following [Chemical Formula 7] :
-SO-, -SO 2 -, -CO-, -COO-, -OCO-, -CONR-,
the alkyl group of the above b) containing —NRCO— or —NR—;
e) an aryl group having 6 to 10 carbon atoms; f) an aryl group having 1 to 3 substituents selected from an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, and a phenylalkyl group having 7 to 15 carbon atoms. R 5 is an alkyl group having 2 to 18 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.
2. The heat shielding composite sheet according to claim 1, wherein the thermoplastic resin layer further contains zinc oxide or a mixture of titanium oxide and zinc oxide, and the zinc oxide and titanium oxide have a coating layer on the particle surface and have an average primary particle size of 0.3 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022184009A JP7610858B2 (en) | 2022-11-17 | 2022-11-17 | Heat-shielding composite sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022184009A JP7610858B2 (en) | 2022-11-17 | 2022-11-17 | Heat-shielding composite sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2024073030A JP2024073030A (en) | 2024-05-29 |
JP7610858B2 true JP7610858B2 (en) | 2025-01-09 |
Family
ID=91226551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022184009A Active JP7610858B2 (en) | 2022-11-17 | 2022-11-17 | Heat-shielding composite sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7610858B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7638001B2 (en) | 2022-11-29 | 2025-03-03 | 平岡織染株式会社 | Waterproof sheet for heat-shielding tent membrane structures with excellent weather resistance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009279814A (en) | 2008-05-21 | 2009-12-03 | Hiraoka & Co Ltd | Heat-shielding film material |
JP2010099959A (en) | 2008-10-24 | 2010-05-06 | Hiraoka & Co Ltd | Highly translucent film material |
JP2013031929A (en) | 2011-07-30 | 2013-02-14 | Hiraoka & Co Ltd | Tarpaulin and jointed body manufactured by heat-fusing the same |
JP2015100942A (en) | 2013-11-22 | 2015-06-04 | 平岡織染株式会社 | Heat insulating film material excellent in daylighting property |
JP2021109345A (en) | 2020-01-08 | 2021-08-02 | 凸版印刷株式会社 | Flame-retardant polyolefin-based decorative material |
-
2022
- 2022-11-17 JP JP2022184009A patent/JP7610858B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009279814A (en) | 2008-05-21 | 2009-12-03 | Hiraoka & Co Ltd | Heat-shielding film material |
JP2010099959A (en) | 2008-10-24 | 2010-05-06 | Hiraoka & Co Ltd | Highly translucent film material |
JP2013031929A (en) | 2011-07-30 | 2013-02-14 | Hiraoka & Co Ltd | Tarpaulin and jointed body manufactured by heat-fusing the same |
JP2015100942A (en) | 2013-11-22 | 2015-06-04 | 平岡織染株式会社 | Heat insulating film material excellent in daylighting property |
JP2021109345A (en) | 2020-01-08 | 2021-08-02 | 凸版印刷株式会社 | Flame-retardant polyolefin-based decorative material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7638001B2 (en) | 2022-11-29 | 2025-03-03 | 平岡織染株式会社 | Waterproof sheet for heat-shielding tent membrane structures with excellent weather resistance |
Also Published As
Publication number | Publication date |
---|---|
JP2024073030A (en) | 2024-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5126792B2 (en) | High translucent film material | |
JP5146962B2 (en) | Thermal barrier film material | |
JP6191054B2 (en) | Thermal barrier mesh shade | |
JP6213988B2 (en) | Fabric-like thermal barrier film material | |
JP7610858B2 (en) | Heat-shielding composite sheet | |
JP2007131004A (en) | Thermal barrier and anti-fouling film material | |
JP4529046B2 (en) | Flexible antifouling non-combustible film material | |
JP3994191B2 (en) | Thermal barrier antifouling film material | |
JP2011093280A (en) | Near infrared ray shielding sheet and method of manufacturing the same | |
JP4517178B2 (en) | Daylighting film material with excellent thermal insulation effect | |
JP5062615B2 (en) | Natural fiber-like mesh sheet with excellent heat insulation | |
Kim | Ultraviolet protection finishes for textiles | |
JP7241403B2 (en) | industrial sheet material | |
EP2811818B1 (en) | Flame retardant cloth | |
JP6212822B2 (en) | Thermal barrier film material with excellent daylighting | |
JP7289141B2 (en) | Antifouling coating film-forming composition, antifouling coating film, and industrial material sheet with antifouling coating film | |
JP7445319B2 (en) | composite sheet | |
EP3310570A1 (en) | Insulating elements and structures | |
JP6368913B2 (en) | Highly translucent film material with heat insulation and heat retention | |
JP7638001B2 (en) | Waterproof sheet for heat-shielding tent membrane structures with excellent weather resistance | |
JP4491639B2 (en) | Flexible antifouling film | |
EP2789732B1 (en) | Resin-coated flame-retardant glass fiber bundle and resin-coated flame-retardant fiber woven fabric | |
JP2024106088A (en) | Heat-shielding sheet with excellent weather resistance | |
JP2024117329A (en) | Colored heat shielding sheet | |
JP4474610B2 (en) | Flame retardant film material with excellent daylighting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241010 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7610858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |