JP7610782B2 - Surface-coated cutting tools - Google Patents
Surface-coated cutting tools Download PDFInfo
- Publication number
- JP7610782B2 JP7610782B2 JP2021049160A JP2021049160A JP7610782B2 JP 7610782 B2 JP7610782 B2 JP 7610782B2 JP 2021049160 A JP2021049160 A JP 2021049160A JP 2021049160 A JP2021049160 A JP 2021049160A JP 7610782 B2 JP7610782 B2 JP 7610782B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- average
- composite
- coated cutting
- crystal grains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).
従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体の表面に、被覆層を形成した被覆工具が知られており、優れた耐摩耗性を発揮することが知られている。
そして、被覆工具の耐久性を向上させるべく、被覆層の改善についての種々の提案がなされている。
2. Description of the Related Art Conventionally, coated tools have been known in which a coating layer is formed on the surface of a tool substrate such as a tungsten carbide (hereinafter abbreviated as WC)-based cemented carbide, and are known to exhibit excellent wear resistance.
In order to improve the durability of the coated tool, various proposals have been made for improving the coating layer.
例えば、特許文献1には、工具基体の表面上に(Al1-xVx)の窒化物、炭窒化物、窒酸化物および炭窒化酸化物のいずれか(xは0.24~0.45)を被覆した被覆工具が記載され、該被覆工具は刃先の欠けやチッピング、被覆層の剥離を防止し、良好な湿潤性を有するとされている。 For example, Patent Document 1 describes a coated tool having a surface of a tool substrate coated with any one of nitrides, carbonitrides, oxynitrides, and oxycarbonitrides of (Al 1-x V x ) (x is 0.24 to 0.45), and it is said that the coated tool prevents chipping and breakage of the cutting edge and peeling of the coating layer and has good wettability.
本発明は、前記事情や前記提案を鑑みてなされたものであって、耐欠損性をより向上させた被覆工具を提供することを目的する。 The present invention was made in consideration of the above circumstances and proposals, and aims to provide a coated tool with improved chipping resistance.
本発明の実施形態に係る表面被覆切削工具は、
工具基体と該工具基体の表面に被覆層を有し、
1)前記被覆層は、その平均層厚が1.0~20.0μmであって、その組成を組成式:(V1-xAlx)(CyN1-y)で表したとき、xの平均含有割合xavgが0.76~0.95、yの平均含有割合yavgが0.000~0.015であるVとAlの複合窒化物層または複合炭窒化物層を有し、
2)前記複合窒化物層または複合炭窒化物層は、NaCl型面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を有し、
3)前記工具基体の表面の法線方向に対する前記結晶粒のそれぞれの{110}面の法線方向のなす傾斜角のうち、0~45度の範囲内にある傾斜角を0.25度毎に区分した傾斜角度分布の各区分における度数分布において、0~10度の前記区分のいずれかに最高度数が存在し、かつ、前記0~10度の前記区分の度数分布の和が、前記傾斜角度分布の度数全体の和の45%以上を占めること。
The surface-coated cutting tool according to an embodiment of the present invention comprises:
A tool substrate and a coating layer on a surface of the tool substrate,
1) The coating layer has an average layer thickness of 1.0 to 20.0 μm, and comprises a composite nitride layer or composite carbonitride layer of V and Al, in which, when the composition is expressed by the composition formula (V 1-x Al x ) (C y N 1-y ), the average x content x avg is 0.76 to 0.95 and the average y content y avg is 0.000 to 0.015,
2) The composite nitride layer or composite carbonitride layer has composite nitride or composite carbonitride crystal grains having a NaCl type face-centered cubic structure,
3) In a frequency distribution of inclination angles of the normal direction of each {110} plane of the crystal grain relative to the normal direction of the surface of the tool base, inclination angles in the range of 0 to 45 degrees are divided into increments of 0.25 degrees, the maximum frequency is present in one of the 0 to 10 degree divisions, and the sum of the frequency distributions of the 0 to 10 degree divisions accounts for 45% or more of the total sum of frequencies of the inclination angle distribution.
さらに、前記実施形態に係る表面被覆切削工具は、以下の(1)~(7)の各事項の1または2以上を満足してもよい。ただし、(4)と(5)を同時に満足しない。 Furthermore, the surface-coated cutting tool according to the above embodiment may satisfy one or more of the following items (1) to (7). However, it does not satisfy both (4) and (5) at the same time.
(1)前記結晶粒は、面積加重平均した平均結晶粒子幅が0.1~2.0μm、面積加重平均した平均アスペクト比が2.0~10.0の柱状晶であり、<001>で表される等価な結晶方位のいずれか一つの方位に沿って、その粒内にAlの含有割合が極大値と極小値をとる繰返し変化を有し、前記xの前記極大値の平均値と前記極小値と平均値との差Δxが0.03~0.10であるものを含む。 (1) The crystal grains are columnar crystals having an area-weighted average crystal grain width of 0.1 to 2.0 μm and an area-weighted average aspect ratio of 2.0 to 10.0, and include those having a repeated change in the Al content ratio within the grains, taking maximum and minimum values along any one of the equivalent crystal orientations represented by <001>, and a difference Δx between the average value of the maximum values and the average value of the minimum values of x is 0.03 to 0.10.
(2)前記結晶粒は、平均結晶粒子幅が0.1~2.0μm、平均アスペクト比が2.0~10.0の柱状晶であり、<001>で表される等価な結晶方位のいずれか一つの方位に沿って、その粒内にAlの含有割合が極大値と極小値をとる繰返し変化を有し、前記繰返し変化の平均間隔が3~100nmであって、前記方位に対して直交する面内での前記xの変化幅x0が0.01以下であること。 (2) The crystal grains are columnar crystals with an average crystal grain width of 0.1 to 2.0 μm and an average aspect ratio of 2.0 to 10.0, and have a repeating change in which the Al content ratio has a maximum value and a minimum value along one of the equivalent crystal orientations represented by <001>, the average interval of the repeating change is 3 to 100 nm, and the change width x0 of x in a plane perpendicular to the orientation is 0.01 or less.
(3)前記結晶粒の格子定数aは、立方晶VNの格子定数aVNと立方晶AlNの格子定数aAlNに対して、0.05aVN+0.95aAlN≦a≦0.24aVN+0.76aAlNの関係を満たすこと。 (3) The lattice constant a of the crystal grains satisfies the relationship 0.05a VN + 0.95a AlN ≦a ≦ 0.24a VN + 0.76a AlN with respect to the lattice constant a VN of cubic VN and the lattice constant a AlN of cubic AlN.
(4)前記複合窒化物または複合炭窒化物層は、前記NaCl型面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒のみからなること。
(4) The complex nitride or complex carbonitride layer is composed only of crystal grains of the complex nitride or complex carbonitride having the NaCl type face-centered cubic structure .
(5)前記複合窒化物または複合炭窒化物層は、六方晶構造を有する微結晶粒が存在し、該微結晶粒の占める面積割合が30%以下であって、かつ、その平均粒径が0.01~0.30μmであること。 (5) The composite nitride or composite carbonitride layer contains microcrystalline grains having a hexagonal crystal structure, the area ratio of the microcrystalline grains is 30% or less, and the average grain size is 0.01 to 0.30 μm.
(6)前記工具基体と前記VとAlの複合窒化物層または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20.0μmの合計平均層厚を有する下部層が存在すること。 (6) Between the tool substrate and the V and Al composite nitride layer or composite carbonitride layer, there is a lower layer consisting of one or more Ti compound layers selected from the group consisting of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer, and having a total average layer thickness of 0.1 to 20.0 μm.
(7)前記複合窒化物層または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1.0~25.0μmの合計平均層厚で存在すること。 (7) An upper layer including at least an aluminum oxide layer is present on the upper portion of the composite nitride layer or composite carbonitride layer with a total average layer thickness of 1.0 to 25.0 μm.
前記によれば、耐欠損性の向上した表面被覆切削工具を得ることができる。 As a result of the above, it is possible to obtain a surface-coated cutting tool with improved chipping resistance.
本発明者は、VとAlの複合窒化物層または複合炭窒化物層(以下、(VAl)(CN)層ということがある)を被覆した被覆工具について、検討を行ったところ、VとAlの複合窒化物層または複合炭窒化物層を単に被覆しただけでは耐欠損性が十分ではないことを知見した。 The inventors have investigated coated tools coated with a composite nitride layer of V and Al or a composite carbonitride layer (hereinafter sometimes referred to as a (VAl)(CN) layer) and found that simply coating with a composite nitride layer of V and Al or a composite carbonitride layer does not provide sufficient chipping resistance.
そこで、検討を重ねた結果、(VAl)(CN)層の{110}面の法線方向を工具基体の表面に垂直な方向(工具基体の表面の法線方向)に特定の態様で配向するようにすると、耐欠損性が向上することを見出した。 As a result of further investigation, it was discovered that chipping resistance can be improved by orienting the normal direction of the {110} plane of the (VAl)(CN) layer in a specific manner perpendicular to the surface of the tool base (normal direction to the surface of the tool base).
以下では、本発明の実施形態に係る表面被覆切削工具について説明する。
なお、本明細書および特許請求の範囲において、数値範囲を「L~M」(L、Mは共に数値)で表現するときは、その範囲は上限値(M)および下限値(L)を含んでおり、上限値(M)と下限値(L)の単位は同じである。
Hereinafter, a surface-coated cutting tool according to an embodiment of the present invention will be described.
In this specification and claims, when a numerical range is expressed as "L to M" (where L and M are both numerical values), the range includes an upper limit value (M) and a lower limit value (L), and the upper limit value (M) and the lower limit value (L) have the same units.
I.被覆層
本実施形態の被覆層(2)は、図1に示すように、工具基体(1)の表面上に存在し、(VAl)(CN)層(3)を含む。工具基体(1)と(VAl)(CN)層(3)との間には、下部層(4)を有してもよく、(VAl)(CN)層の表面には上部層(5)を有してもよい。
以下、(VAl)(CN)層を中心に説明する。
I. Coating Layer The coating layer (2) of this embodiment is present on the surface of the tool substrate (1) and includes a (VAl)(CN) layer (3) as shown in Figure 1. A lower layer (4) may be present between the tool substrate (1) and the (VAl)(CN) layer (3), and an upper layer (5) may be present on the surface of the (VAl)(CN) layer.
The following description will focus on the (VAl)(CN) layer.
1.(VAl)(CN)層
(1)平均層厚
(VAl)(CN)層の平均層厚は、1.0~20.0μmであることが好ましい。その理由は、平均層厚が1.0μm未満では、平均層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、平均層厚が20.0μmを超えると、(VAl)(CN)層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
1. (VAl)(CN) Layer (1) Average Layer Thickness The average layer thickness of the (VAl)(CN) layer is preferably 1.0 to 20.0 μm. The reason is that if the average layer thickness is less than 1.0 μm, the average layer thickness is too thin to ensure sufficient wear resistance over long-term use, while if the average layer thickness exceeds 20.0 μm, the crystal grains of the (VAl)(CN) layer tend to become coarse, making chipping more likely to occur.
(2)組成
(VAl)(CN)層の組成は、組成を組成式:(V1-xAlx)(CyN1-y)で表したとき、xの平均含有割合xavgが0.76~0.95、yの平均含有割合yavgが0.000~0.015であることが好ましい。
(2) Composition When the composition of the (VAl)(CN) layer is expressed by the composition formula (V 1-x Al x )(C y N 1-y ), it is preferable that the average x content x avg is 0.76 to 0.95 and the average y content y avg is 0.000 to 0.015.
その理由は、以下のとおりである。xavgが0.76未満では、(VAl)(CN)層の耐摩耗性が十分ではなく、一方、0.95を超えると、(VAl)(CN)層の脆化が生じやすく耐欠損性が低下するためである。また、yavgは前記範囲にあるとき、(VAl)(CN)層と工具基体または後述する下部層との密着性が向上し、切削加工時の衝撃を緩和して、被覆層の耐欠損性が確実に向上するためである。 The reason is as follows: if x avg is less than 0.76, the wear resistance of the (VAl)(CN) layer is insufficient, while if it exceeds 0.95, the (VAl)(CN) layer is easily embrittled and its chipping resistance is reduced. Also, when y avg is within the above range, the adhesion between the (VAl)(CN) layer and the tool base or the lower layer described later is improved, the impact during cutting is mitigated, and the chipping resistance of the coating layer is reliably improved.
なお、(V1-xAlx)と(CyN1-y)との比は特に限定されるものではないが、(V1-xAlx)を1とするとき、(CyN1-y)との比は0.8~1.2とすることが好ましい。その理由は、(V1-xAlx)に対する(CyN1-y)の比が前記範囲内であれば、より確実に本発明の目的が達成できるためである。 Although the ratio of (V 1-x Al x ) to (C y N 1-y ) is not particularly limited, it is preferable that the ratio of (V 1-x Al x ) to (C y N 1-y ) is 0.8 to 1.2 when (V 1-x Al x ) is 1. The reason for this is that if the ratio of (C y N 1-y ) to (V 1-x Al x ) is within the above range, the object of the present invention can be achieved more reliably.
(3)NaCl型面心立方構造
(VAl)(CN)層には、NaCl型面心立方構造を有する結晶粒が含まれていることが好ましい。すなわち、縦断面(工具基体の表面の微小な凹凸を無視して、平らな面として扱ったとき、工具基体の表面に垂直な断面)において、NaCl型の面心立方構造の結晶粒の占める面積割合が60%以上、より好ましくは80%以上、全ての結晶粒(面積割合が100%)がNaCl型の面心立方構造であってもよい。
(3) NaCl-type face-centered cubic structure The (VAl)(CN) layer preferably contains crystal grains having a NaCl-type face-centered cubic structure. That is, in a longitudinal section (a section perpendicular to the surface of the tool base when the surface is treated as a flat surface ignoring minute irregularities on the surface of the tool base), the area ratio of crystal grains having a NaCl-type face-centered cubic structure is 60% or more, more preferably 80% or more, and all crystal grains (area ratio is 100%) may have a NaCl-type face-centered cubic structure.
(4){110}面の法線方向の傾斜分布
(VAl)(CN)層に対して、電子線後方散乱解析法(EBSD:Electron Backscatter Diffraction)を用いて、NaCl型面心立方構造を有する結晶粒に対して、
[1]工具基体の表面の法線方向に対して、この結晶粒の{110}面の法線方向(図2で7で表される方向)がなす傾斜角を測定し、
[2]その傾斜角のうち0~45度の範囲内にある傾斜角を0.25度毎に区分し、
[3」各区分に存在する度数を集計して傾斜角度度数分布を求めたとき、
この求めた傾斜角度度数分布において、0~10度の範囲にある区分のいずれかに最高ピーク(度数の最大値)があり、かつ、この0~10度の範囲にある度数の和が、0~45度の範囲に存在する度数の和に対して45%以上の割合で存在することが好ましい。
この割合は、50%以上がより好ましく、55%以上がより一層好ましい。
このような傾斜角度数分布を有することにより、耐摩耗性を維持しつつ靭性が向上するため、被覆層の耐欠損性が確実に向上する。
(4) Gradient distribution in the normal direction of the {110} plane For the (VAl)(CN) layer, electron backscatter diffraction (EBSD) was used to determine the gradient distribution in the normal direction of the {110} plane for crystal grains having a NaCl-type face-centered cubic structure.
[1] Measure the inclination angle of the normal direction of the {110} plane of this crystal grain (
[2] Divide the inclination angles within the range of 0 to 45 degrees into increments of 0.25 degrees,
[3] When the frequency distribution of the inclination angle is calculated by tallying up the frequencies in each category,
In the determined inclination angle frequency distribution, it is preferable that the highest peak (maximum frequency) is in one of the sections in the range of 0 to 10 degrees, and that the sum of the frequencies in this range of 0 to 10 degrees is 45% or more of the sum of the frequencies in the range of 0 to 45 degrees.
This ratio is more preferably 50% or more, and even more preferably 55% or more.
By having such a distribution of the inclination angles, the toughness is improved while the wear resistance is maintained, and therefore the chipping resistance of the coating layer is reliably improved.
なお、傾斜角度数分布を求めるに当たり、理想的なランダム配向の場合、傾斜角度数は工具基体の表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値になるように規格化を行う。 When calculating the distribution of the number of inclination angles, in the case of an ideal random orientation, the number of inclination angles is normalized so that it is a constant value regardless of the inclination angle between the normal direction of a certain crystal plane and the normal direction of the surface of the tool base.
ここで、工具基体の表面とは、縦断面の観察像における、工具基体と被覆層の界面粗さの平均線とする。すなわち、工具基体がインサートのような平面の表面を有するときは、前記縦断面においてエネルギー分散型X線分析法(EDS:Energy dispersive X-ray spectroscopy)を用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層(後述する下部層が存在すれば、被覆層の代わりに下部層を用いる)と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向(層厚方向)とする。 Here, the surface of the tool base is defined as the average line of the interface roughness between the tool base and the coating layer in the observation image of the longitudinal section. In other words, when the tool base has a flat surface like an insert, element mapping is performed on the longitudinal section using energy dispersive X-ray spectroscopy (EDS), and the interface between the coating layer (if a lower layer, as described below, exists, the lower layer is used instead of the coating layer) and the tool base is determined by performing known image processing on the obtained element map, and the average line is arithmetically determined for the roughness curve of the interface between the coating layer and the tool base thus obtained, and this is defined as the surface of the tool base. The direction perpendicular to this average line is defined as the direction perpendicular to the tool base (layer thickness direction).
また、工具基体がドリルのように曲面の表面を有する場合であっても、被覆層の層厚に対して工具径が十分に大きければ、測定領域における被覆層と工具基体との間の界面は略平面となることから、同様の手法により工具基体の表面を決定することができる。すなわち、例えばドリルであれば、軸方向に垂直な断面の被覆層の縦断面においてEDSを用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向(層厚方向)とする。 Even if the tool base has a curved surface like a drill, if the tool diameter is sufficiently large compared to the thickness of the coating layer, the interface between the coating layer and the tool base in the measurement area will be approximately flat, so the surface of the tool base can be determined using a similar method. That is, for example, in the case of a drill, element mapping is performed using EDS on the longitudinal section of the coating layer in a section perpendicular to the axial direction, and the interface between the coating layer and the tool base is determined by performing known image processing on the obtained element map, and the average line is arithmetically determined for the roughness curve of the interface between the coating layer and the tool base thus obtained, and this is taken as the surface of the tool base. The direction perpendicular to this average line is taken as the direction perpendicular to the tool base (layer thickness direction).
(5)平均粒子幅とアスペクト比
(VAl)(CN)層のNaCl型面心立方構造を有する結晶粒は、平均結晶粒子幅が0.1~2.0μm、平均アスペクト比が2.0~10.0の柱状晶であることがより好ましい。
(5) Average Grain Width and Aspect Ratio The crystal grains having a NaCl type face-centered cubic structure in the (VAl)(CN) layer are more preferably columnar crystals having an average crystal grain width of 0.1 to 2.0 μm and an average aspect ratio of 2.0 to 10.0.
その理由は、平均粒子幅が0.1μmよりも小さい微粒になると粒界の増加による耐塑性変形性の低下、耐酸化性の低下により異常損傷に至りやすくなり、一方、平均粒子幅Wが3.00μmよりも大きくなると粗大に成長した粒子の存在により、靱性が低下しやすくなるためである。 The reason for this is that when the average grain width is smaller than 0.1 μm, the increase in grain boundaries reduces plastic deformation resistance and oxidation resistance, leading to abnormal damage. On the other hand, when the average grain width W is greater than 3.00 μm, the toughness is likely to decrease due to the presence of coarsely grown particles.
また、平均アスペクト比が2.0よりも小さい粒状結晶になると切削時に被覆層表面に生じるせん断応力に対してその界面(結晶粒界)が破壊起点となりやすくなってしまいチッピングの原因となり、一方、平均アスペクト比が10.0を超えると、切削時に刃先に微小なチッピングが生じ、隣り合う柱状組織に欠けが生じた場合に、被覆層の表面に生じるせん断応力に対しての抗力が小さくなりやすく、柱状組織が破断することによって一気に損傷が進行し、大きなチッピングを生じるためである。 In addition, when the average aspect ratio of the granular crystals is smaller than 2.0, the interface (grain boundary) is likely to become the starting point of fracture due to the shear stress generated on the surface of the coating layer during cutting, causing chipping. On the other hand, when the average aspect ratio exceeds 10.0, micro-chipping occurs on the cutting edge during cutting, and when chipping occurs in the adjacent columnar structure, the resistance to the shear stress generated on the surface of the coating layer is likely to be small, and the columnar structure breaks, causing the damage to progress rapidly and resulting in large chipping.
ここで、平均均粒子幅と平均アスペクト比の算出方法について説明する。
まず、被覆層の工具基体に平行な方向の50μmの観察視野(縦断面)において結晶粒界を判定する。結晶粒界の判定方法としては、電子線後方散乱回折装置を用いてこの観察視野面内を二次元的に0.01μm間隔で解析し、観察視野面内のNaCl型面心立方構造の結晶格子を有する測定点を求める。このNaCl型面心立方構造の結晶格子を有する測定点の中で、隣接する測定点(以下、ピクセルという)の間で5度以上の方位差がある場合、または隣接するピクセルがNaCl型面心立方構造の結晶格子を有しない場合、そのピクセル同士の境界を粒界と定義する。
Here, the method of calculating the average grain width and the average aspect ratio will be described.
First, the grain boundaries are determined in a 50 μm observation field (longitudinal section) parallel to the tool substrate of the coating layer. The method of determining the grain boundaries is to use an electron backscatter diffraction device to analyze the observation field plane two-dimensionally at intervals of 0.01 μm to obtain measurement points having a crystal lattice of a NaCl type face-centered cubic structure in the observation field plane. Among the measurement points having the crystal lattice of the NaCl type face-centered cubic structure, if there is an orientation difference of 5 degrees or more between adjacent measurement points (hereinafter referred to as pixels), or if adjacent pixels do not have a crystal lattice of a NaCl type face-centered cubic structure, the boundary between the pixels is defined as a grain boundary.
そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界判定を行い、結晶粒を特定する。 The area surrounded by the grain boundary is then defined as one crystal grain. However, a single pixel that has an orientation difference of 5 degrees or more from all of its adjacent pixels is not considered a crystal grain; a pixel that is connected to two or more pixels is treated as a crystal grain. In this way, the grain boundary determination is performed and the crystal grains are identified.
次に、ある結晶粒iに対して工具基体の表面と垂直方向(層厚方向)の最大長さHi、工具基体の表面と平行方向の最大長さである粒子幅Wi、および面積Siを求める。結晶粒iのアスペクト比AiはAi=Hi/Wiとして算出する。このようにして、観察視野内の少なくとも20以上(i=1~20以上)の結晶粒の粒子幅W1~Wn(n≧20)を[数1]により面積加重平均し、前記結晶粒の平均粒子幅Wとする。また、同様にして前記結晶粒のアスペクト比A1~An(n≧20)を求め、[数2]により面積加重平均して、前記結晶粒の平均アスペクト比Aとする。 Next, for a certain crystal grain i, the maximum length H i in the direction perpendicular to the surface of the tool base (layer thickness direction), the grain width W i which is the maximum length in the direction parallel to the surface of the tool base, and the area S i are obtained. The aspect ratio A i of the crystal grain i is calculated as A i =H i /W i . In this manner, the grain widths W 1 to W n (n≧20) of at least 20 or more (i=1 to 20 or more) crystal grains in the observation field are area-weighted averaged by [Math. 1] to obtain the average grain width W of the crystal grains. Similarly, the aspect ratios A 1 to A n (n≧20) of the crystal grains are obtained and area-weighted averaged by [Math. 2] to obtain the average aspect ratio A of the crystal grains.
(6)Alの含有割合の繰返し変化
[1]極大値と極小値
図2に模式的に示すように、(VAl)(CN)層のNaCl型面心立方構造を有する結晶粒(6)は、<001>で表される等価な結晶方位のうちの一つの方位(10)に沿って、Alの含有割合(すなわち、Vの含有割合でもある)について、Al含有量が相対的に多い領域(8)に極大値と、Al含有量が相対的に少ない領域(9)に極小値を繰り返す、繰返し変化を有することがより好ましい。
(6) Repeated Change in Al Content [1] Maximum and Minimum Values As shown in FIG. 2, it is more preferable that the crystal grains (6) having a NaCl-type face-centered cubic structure in the (VAl)(CN) layer have a repeating change in the Al content (i.e., the V content) along one of the equivalent crystal orientations (10) represented by <001>, in which the Al content (i.e., the V content) has a maximum value in a region (8) where the Al content is relatively high and a minimum value in a region (9) where the Al content is relatively low.
ここで、Alの含有割合(すなわち、Vの含有割合でもある)とは、例えば、図3に模式的に示す変化をいう。図3では、極大値、極小値のそれぞれが同じ値であり、隣接する極大値と極小値の間隔も同じであるが、本明細書および特許請求の範囲でいうAl含有割合の繰返し変化とは、Al含有割合が極大値と極小値を交互にとるように変化すればよく、極大値および極小値が、それぞれ、同じ値であっても同じ値でなくてもよく、隣接する極大値と極小値の間隔も同じであっても、同じでなくてもよい。 Here, the Al content (i.e., the V content) refers to, for example, the change shown diagrammatically in FIG. 3. In FIG. 3, the maximum and minimum values are the same, and the interval between adjacent maximum and minimum values is also the same, but the repeated change in the Al content in this specification and claims means that the Al content changes so that it alternates between maximum and minimum values, and the maximum and minimum values may or may not be the same, and the interval between adjacent maximum and minimum values may or may not be the same.
Alの含有割合における極大値の平均値と極小値の平均値との差は、前述の組成式:(V1-xAlx)(CyN1-y)におけるxの差(Δx)が、0.03~0.10であることがより好ましい。これにより、NaCl型面心立方構造を有する結晶粒内に適正な歪が生じ、被覆層の硬さが確実に向上する。 It is more preferable that the difference between the average value of the maximum value and the average value of the minimum value in the Al content ratio, that is, the difference (Δx) of x in the above-mentioned composition formula: (V1 - xAlx )( CyN1 -y ), is 0.03 to 0.10. This causes appropriate distortion in the crystal grains having a NaCl-type face-centered cubic structure, and reliably improves the hardness of the coating layer.
すなわち、Δxが0.03未満であると、前述の歪が小さく、被覆層が十分な硬さを有しないことがあり、一方、0.10を超えるとこの歪が大きくなりすぎて、格子欠陥が増え、被覆層の硬さが低下してしまうことがある。 That is, if Δx is less than 0.03, the aforementioned distortion is small and the coating layer may not have sufficient hardness, whereas if it exceeds 0.10, the distortion becomes too large, increasing lattice defects and decreasing the hardness of the coating layer.
[2]繰返し変化の間隔
極大値と極小値の繰返しの間隔の平均値は、3~100nmであることがより好ましい。その理由は、3nm未満であると、被覆層の靭性が低下することがあり、一方、100nmを超えると、被覆層の硬さの向上が期待できないことがあるためである。
[2] Interval of Repeated Changes The average value of the interval between the repeated maximum and minimum values is more preferably 3 to 100 nm, because if it is less than 3 nm, the toughness of the coating layer may decrease, whereas if it exceeds 100 nm, improvement in the hardness of the coating layer may not be expected.
極大値と極小値の繰返しの間隔は、結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って、ライン分析を行い、Alの含有割合を測定し、グラフ化することにより求められる。なお、グラフ化して解析するに当たり公知のノイズ除去方法(例えば、移動平均法)を用いる。 The interval between the repetition of the maximum and minimum values is determined by performing a line analysis along one of the equivalent crystal orientations represented by <001> of the crystal grains, measuring the Al content, and graphing the results. Note that a known noise removal method (e.g., the moving average method) is used for graphing and analysis.
すなわち、図3に示すようにAl含有割合の繰返し変化を示す曲線に対して、この曲線を横切る直線mを引く。この直線mは、前記曲線に囲まれた領域の面積が直線mの上側と下側とで等しくなるように引いたものである。そして、この直線mがAlの含有割合の繰返し変化を示す曲線を横切る領域毎に、Alの含有割合の極大値または極小値を求めるとともに、両者の間隔を測定し、複数箇所におけるこの測定値を平均することによって、(VAl)(CN)におけるAlの含有割合の繰返し変化の平均間隔を求める。 That is, as shown in FIG. 3, a straight line m is drawn across the curve showing the repeated changes in the Al content. This straight line m is drawn so that the area of the region surrounded by the curve is equal above and below line m. Then, for each region where line m crosses the curve showing the repeated changes in the Al content, the maximum or minimum value of the Al content is found, and the distance between the two is measured. The measured values at multiple points are averaged to find the average distance of the repeated changes in the Al content in (VAl)(CN).
[3]繰返し変化のある方向と直交する面
さらに、Al含有割合の極大値と極小値の繰返し変化のある方向に直交する面(繰返し変化のある方向を法線とする面。図2では、番号(10)の方向を法線とする面)内では、前記組成式:(V1-xAlx)(CyN1-y)におけるxの変化幅(すなわち、最大値と最小値の差)x0は、0.01以下であることがより好ましい。
このx0がこの範囲にあるとき、より確実に、被覆層の硬度と耐欠損性の向上がなされる。
[3] Plane perpendicular to the direction of repeated change Furthermore, in a plane perpendicular to the direction of repeated change between the maximum and minimum values of the Al content (a plane having the direction of repeated change as its normal line; in FIG. 2, a plane having the direction of number (10) as its normal line), the variation range of x in the composition formula (V 1-x Al x ) (C y N 1-y ) (i.e., the difference between the maximum and minimum values) x0 is more preferably 0.01 or less.
When x0 is within this range, the hardness and chipping resistance of the coating layer are improved more reliably.
(7)NaCl型面心立方構造を有する結晶粒の格子定数
(VAl)(CN)層について、X線回折装置を用い、Cu-Kα線を線源としてX線回折試験を実施し、NaCl型の面心立方構造の結晶粒の格子定数aを求めたとき、格子定数aが、立方晶VN(JCPDS00-035-0768)の格子定数aVN:4.1392Åと立方晶AlN(JCPDS00-046-1200)の格子定数aAlN:4.0450Åに対して、0.05aVN+0.95aAlN=4.050≦a≦0.24aVN+0.76aAlN=4.068の関係を満たすことがより好ましい。この関係を満たすとき、より高い硬さを示すことにより、(VAl)(CN)層はより優れた耐摩耗性に加えて、より優れた耐衝撃性を備える。
(7) Lattice constant of crystal grains having a NaCl-type face-centered cubic structure When an X-ray diffraction test is performed on a (VAl)(CN) layer using an X-ray diffractometer with Cu-Kα radiation as a radiation source to determine the lattice constant a of crystal grains having a NaCl-type face-centered cubic structure, it is more preferable that the lattice constant a satisfies the relationship of 0.05a VN + 0.95a AlN = 4.050≦a≦0.24a VN + 0.76a AlN = 4.068, where a VN of cubic VN (JCPDS00-035-0768) is 4.1392 Å and a AlN of cubic AlN (JCPDS00-046-1200) is 4.0450 Å. When this relationship is satisfied, by exhibiting a higher hardness, the (VAl)(CN) layer has a better impact resistance in addition to a better wear resistance.
(8)六方晶構造を有する微結晶粒
(VAl)(CN)層を縦断面で観察したとき、NaCl型面心立方構造を有する結晶粒のそれぞれは、柱状晶であって、その粒界部に六方晶構造の微結晶粒が30%以下の面積割合で存在してもよい。
(8) Microcrystal grains having a hexagonal crystal structure When the (VAl)(CN) layer is observed in a vertical cross section, each of the crystal grains having a NaCl-type face-centered cubic structure may be a columnar crystal, and the microcrystal grains having a hexagonal crystal structure may be present at the grain boundaries in an area ratio of 30% or less.
この30%以下の面積割合で、六方晶構造を有する微結晶粒が存在すると、NaCl型面心立方構造を有する結晶粒の粒界での滑りが抑制され、被覆層の靭性が確実に向上する。しかし、面積割合が30%を超えると、NaCl型面心立方構造を有する結晶粒が少なくなって、被覆層硬さが低下してしまうことがある。 When fine crystal grains with a hexagonal crystal structure are present at an area ratio of 30% or less, slippage at the grain boundaries of crystal grains with a NaCl-type face-centered cubic structure is suppressed, and the toughness of the coating layer is reliably improved. However, if the area ratio exceeds 30%, the number of crystal grains with a NaCl-type face-centered cubic structure decreases, and the hardness of the coating layer may decrease.
また、六方晶構造を有する微結晶粒の平均粒径は、0.01~0.30μmであることがより好ましい。その理由は平均粒径が0.01μm未満であると、前述の粒界すべりの抑制が不十分であることがあり、一方、0.30μmを超えると、被覆層内と歪が大きくなってしまい被覆層の硬さが低下することがあるためである。 The average grain size of the microcrystal grains having a hexagonal crystal structure is more preferably 0.01 to 0.30 μm. This is because if the average grain size is less than 0.01 μm, the aforementioned grain boundary sliding may not be sufficiently suppressed, while if it exceeds 0.30 μm, the distortion within the coating layer may become large, causing the hardness of the coating layer to decrease.
ここで、平均粒径は、微結晶粒の面積を求め、それに相当する円の径とする。 Here, the average grain size is calculated by finding the area of the microcrystal grains and taking the diameter of the circle that corresponds to this area.
2.下部層
本実施形態の(VAl)(CN)層を含む被覆層は、それだけでも十分に前記目的を達成するが、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20.0μmの合計平均層厚を有する下部層を設けた場合には、この層が奏する効果と相俟って、被覆工具としてより優れた特性が発揮される。ただし、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の働きが十分に発揮されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
2. Lower layer The coating layer including the (VAl)(CN) layer of this embodiment sufficiently achieves the above-mentioned object, but when a lower layer is provided which is made of one or more Ti compound layers selected from the group consisting of Ti carbide layers, nitride layers, carbonate layers and carbonitride layers and has a total average thickness of 0.1 to 20.0 μm, the coated tool exhibits more excellent properties in combination with the effects of this layer. However, when a lower layer is provided which is made of one or more Ti compound layers selected from the group consisting of Ti carbide layers, nitride layers, carbonate layers and carbonitride layers, if the total average thickness of the lower layer is less than 0.1 μm, the function of the lower layer is not fully exhibited, whereas if it exceeds 20.0 μm, the crystal grains tend to become coarse, making chipping more likely to occur.
3.上部層
また、本実施形態の(VAl)(CN)層を含む被覆層に、酸化アルミニウム層を含む合計の平均層厚が1.0~25.0μmとなる上部層を設けると、被覆工具として優れた特性がより一層発揮されて好ましい。ここで、合計平均層厚が1.0μm未満であると、上部層の働きが十分に発揮されず、一方、25.0μmを超えると、チッピングが発生しやすくなる。
3. Upper layer In addition, when an upper layer having a total average layer thickness including an aluminum oxide layer of 1.0 to 25.0 μm is provided on the coating layer including the (VAl)(CN) layer of this embodiment, the excellent properties of the coated tool are further exhibited, which is preferable. If the total average layer thickness is less than 1.0 μm, the function of the upper layer is not fully exhibited, while if it exceeds 25.0 μm, chipping is likely to occur.
II.工具基体
(1)材質
材質は、従来公知の工具基体の材質であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例をあげるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体のいずれかであることが好ましい。
II. Material of the Tool Base (1) Any material that is a conventionally known material for a tool base can be used as long as it does not impede the achievement of the object of the present invention. For example, the material is preferably any one of cemented carbide (WC-based cemented carbide, WC, Co, and carbonitrides of Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), and cBN sintered body.
(2)形状
工具基体の形状は、切削工具として用いられる形状であれば特段の制約はなく、インサートの形状、ドリルの形状が例示できる。
(2) Shape The shape of the tool body is not particularly limited as long as it is a shape usable as a cutting tool, and examples of the shape include the shapes of an insert and a drill.
III.製造方法
本実施形態の(VAl)(CN)層の製造方法は、例えば、NH3ガスとH2ガスからなるガス群Aと、VCl4、AlCl3、N2、H2からなるガス群Bを用いて、CVD法により行うことができる。
III. Manufacturing Method The (VAl)(CN) layer of this embodiment can be manufactured by a CVD method using, for example, a gas group A consisting of NH3 gas and H2 gas, and a gas group B consisting of VCl4 , AlCl3 , N2 , and H2 .
ここで、ガス群Aとガス群Bとは、熱CVD装置の反応容器内の空間で被成膜物の直前までガスを分離して供給し、被成膜物の直前でガス群Aとガス群Bが混合し、反応させるようにする。これは、互いに反応活性の高いガス種を成膜領域にわたって均一に供給して、皮膜を均一に成膜するために有効である。詳細な技術内容は、例えば、特許6511798号公報に開示されている。 Here, gas group A and gas group B are supplied separately in the space inside the reaction vessel of the thermal CVD device up to just before the object to be deposited, and then gas group A and gas group B are mixed and reacted just before the object to be deposited. This is effective for uniformly supplying gas species with high reactivity to each other over the deposition area to deposit a uniform film. The detailed technical content is disclosed, for example, in Patent Publication No. 6511798.
同公報に記載されている成膜装置は、図4~6に示すガス供給管を有しており、その構造を説明する。
図4、5に示すように、その中心(13)を中心に所定の回転速度で回転する円筒管であるガス供給管(11)は、その軸心方向に沿って延びる仕切部材(12)により、内部をほぼ二等分され、ガス群A流通部(14)とガス群B流通部(15)を有している。
The film forming apparatus described in this publication has a gas supply pipe as shown in FIGS. 4 to 6, and its structure will be described below.
As shown in Figures 4 and 5, the gas supply pipe (11), which is a cylindrical pipe that rotates at a predetermined rotational speed around its center (13), has its interior divided into approximately two equal parts by a partition member (12) extending along its axial direction, and has a gas group A flow section (14) and a gas group B flow section (15).
ガス供給管(11)には、図4に示すようにほぼ同じ高さの位置にある噴出口対(20)を構成するガス群A噴出口(16)とガス群B噴出口(17)が高さ方向に沿って複数設けられている。 The gas supply pipe (11) is provided with multiple gas group A nozzles (16) and gas group B nozzles (17) along the height direction, which constitute a pair of nozzles (20) located at approximately the same height as shown in FIG. 4.
図5に示すガス群A噴出口(16)とガス群B噴出口(17)は、同じ噴出口対(20)に属しており、ガス群A噴出口(16)の外周側開口端の中心(18)とガス群B噴出口(17)の外周側開口端の中心(19)のなす角度がαである。 The gas group A nozzle (16) and the gas group B nozzle (17) shown in FIG. 5 belong to the same nozzle pair (20), and the angle between the center (18) of the outer peripheral opening end of the gas group A nozzle (16) and the center (19) of the outer peripheral opening end of the gas group B nozzle (17) is α.
また、図6に示すように、高さ方向(軸方向)に隣り合う2つの噴出口対(20)における原料ガス群A噴出口16同士の軸周りの相対角度がβ1、高さ方向(軸方向)に隣り合う2つの噴出口対(20)における原料ガス群B噴出口17同士の軸周りの相対角度のβ2である。そして、高さ方向(軸方向)に隣り合うガス群A噴出口(16)とガス群B噴出口(17)の軸周りの相対角度は、それぞれ、γ1、γ2である。
As shown in FIG. 6, the relative angle around the axis between the raw gas
IV.測定方法
(1)平均層厚
前述のとおり工具基体の表面を決定した後、工具基体の表面に対して垂直な方向に沿って複数の分析ライン(例えば5本)で測定を行う。(VAl)(CN)層の平均層厚は、Al原子が出現し、その含有割合が1原子%となったところを隣接層との境界と定め、分析ライン毎の層厚を求め、平均をとって平均層厚とする。
IV. Measurement method (1) Average layer thickness After determining the surface of the tool base as described above, measurements are made along multiple analysis lines (e.g., five lines) in a direction perpendicular to the surface of the tool base. The average layer thickness of the (VAl)(CN) layer is determined by determining the layer thickness for each analysis line and averaging it to determine the average layer thickness, which is defined as the boundary with the adjacent layer where Al atoms appear and their content rate becomes 1 atomic %.
(2)組成
(VAl)(CN)層の組成は、以下のようにして求める。
Alの平均含有割合xavgについては、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合xavgを求める。
(2) Composition The composition of the (VAl)(CN) layer is determined as follows.
The average Al content x avg is determined by irradiating a polished surface of a sample with an electron beam from the surface side of the sample using an electron probe microanalyzer (EPMA), and calculating the average Al content x avg from the 10-point average of the characteristic X-ray analysis results obtained.
Cの平均含有割合yavgについては、二次イオン質量分析(SIMS:Secondary Ion Mass Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行う。 The average content ratio y avg of C was determined by secondary ion mass spectroscopy (SIMS). An ion beam was irradiated to a 70 μm×70 μm area from the surface side of the sample, and the concentration of the components released by the sputtering action was measured in the depth direction.
(3)NaCl型面心立方構造を有する結晶粒
透過型電子顕微鏡(TEM)による電子線回折により、(VAl)(CN)層の結晶構造を同定し、NaCl型面心立方構造であることを確認し、その面積割合を求める。
(3) Crystal grains having a NaCl-type face-centered cubic structure The crystal structure of the (VAl)(CN) layer is identified by electron beam diffraction using a transmission electron microscope (TEM), it is confirmed that it is a NaCl-type face-centered cubic structure, and its area ratio is calculated.
(4)傾斜角度数分布
(VAl)(CN)層の傾斜角度数分布については、縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡(FE-SEM:Field-Emission Scanning Electron Microscope)の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在するNaCl型面心立方構造を有する結晶粒の個々に照射する。
(4) Tilt Angle Number Distribution Regarding the tilt angle number distribution of the (VAl)(CN) layer, the longitudinal section is set as the polished surface in the lens barrel of a field emission scanning electron microscope (FE-SEM), and an electron beam with an accelerating voltage of 15 kV and an irradiation current of 1 nA is irradiated to each of the crystal grains having a NaCl type face-centered cubic structure present within the measurement range of the polished cross-sectional surface at an incident angle of 70 degrees on the polished surface.
EBSD法を用いて、工具基体の表面と水平方向に長さ50μm、工具基体の表面と垂直な方向の断面に沿って層厚の距離までの測定範囲内の被覆層について0.01μm/stepの間隔で、工具基体の表面の法線(前記研磨面における工具基体の表面と垂直な方向)に対して、(VAl)(CN)層の結晶面である{110}面の法線がなす傾斜角を測定する。 Using the EBSD method, the inclination angle of the normal to the {110} crystal plane of the (VAl)(CN) layer relative to the normal to the tool base surface (the direction perpendicular to the tool base surface at the polished surface) is measured at intervals of 0.01 μm/step for the coating layer within a measurement range of 50 μm in length horizontally to the tool base surface and along a cross section perpendicular to the tool base surface up to the layer thickness.
そして、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0~10度の範囲内に存在する度数のピークの存在(最高度数)を確認し、かつ0~10度の範囲内に存在する度数の割合を求める。 Then, based on the measurement results, the measured tilt angles within the range of 0 to 45 degrees are divided into 0.25 degree increments, and the number of degrees within each division is tallied to confirm the presence of a peak in the number of degrees (highest number of degrees) within the range of 0 to 10 degrees, and to determine the percentage of the number of degrees within the range of 0 to 10 degrees.
以下、実施例をあげて本発明を説明するが、本発明は実施例に限定されるものではない。すなわち、工具基体としてWC基超硬合金を用いたインサート切削工具をあげるが、工具基体の材質は前述のものであればよく、その形状は前述のとおりドリル等の形状であってもよい。 The present invention will be explained below with reference to examples, but the present invention is not limited to these examples. In other words, an insert cutting tool using a WC-based cemented carbide as the tool base will be given, but the material of the tool base may be as described above, and the shape of the tool base may be a drill or the like, as described above.
1.工具基体の製造
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr3C2粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形した。
1. Manufacturing of tool base body As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr3C2 powder and Co powder, all having an average particle size of 1 to 3 μm, were prepared. These raw material powders were mixed according to the composition shown in Table 1, and wax was added thereto, and the mixture was mixed in acetone using a ball mill for 24 hours. The mixture was dried under reduced pressure and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa.
その後、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、三菱マテリアル社製LOGU1207040PNER-Mのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 The compact was then vacuum sintered in a vacuum of 5 Pa at a specified temperature in the range of 1370 to 1470°C for 1 hour. After sintering, tool bases A to C made of WC-based cemented carbide with the insert shape of Mitsubishi Materials Corporation's LOGU1207040PNER-M were manufactured.
2.成膜
工具基体A~Cの表面に、CVD装置を用いて、(VAl)(CN)層を成膜し、表5、6に示す実施例1~10を得た。成膜条件は、表2に示すとおりであったが、概ね、次のとおりであった。
2. Film formation A (VAl)(CN) layer was formed on the surface of each of the tool substrates A to C using a CVD apparatus to obtain Examples 1 to 10 shown in Tables 5 and 6. The film formation conditions were as shown in Table 2, and were generally as follows:
反応ガス組成(ガス成分の含有割合は、ガス群Aとガス群Bの合計を100容量%とする容量%である):
ガス群A NH3:2.0~3.0%、H2:55~60%
ガス群B:AlCl3:0.6~0.9%、VCl4:0.2~0.3%、
Al(CH3)3:0.0~0.5%、N2:0.0~12.0%、
H2:残
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:700~850℃
Reaction gas composition (the content ratio of gas components is expressed as volume % with the total of gas group A and gas group B being 100 volume %):
Gas group A NH3 : 2.0-3.0%, H2 : 55-60%
Gas group B: AlCl 3 : 0.6 to 0.9%, VCl 4 : 0.2 to 0.3%,
Al(CH 3 ) 3 : 0.0 to 0.5%, N 2 : 0.0 to 12.0%,
H2 : Residual reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700 to 850°C
ここで、ガス群Aとガス群Bは、それぞれ、前記特許6511798号公報に記載されたCVD装置の、原料ガスA、原料ガスBとして供給された。ガス供給管の回転速度、ガス供給管の噴出孔角度は以下のとおりであった。
ガス供給管の回転速度:5~20rpm
ガス供給管の噴出孔角度:
α:180°
β1およびβ2:155°
γ1およびγ2:25°
Here, gas group A and gas group B were supplied as source gas A and source gas B, respectively, in the CVD apparatus described in the above-mentioned Japanese Patent No. 6511798. The rotation speed of the gas supply pipe and the nozzle angle of the gas supply pipe were as follows:
Gas supply pipe rotation speed: 5 to 20 rpm
Gas supply pipe nozzle angle:
α: 180°
β1 and β2: 155°
γ1 and γ2: 25°
なお、実施例4~10については、表3に示す条件により表4に示す下部層および/または上部層を成膜した。 For Examples 4 to 10, the lower layer and/or upper layer shown in Table 4 were formed under the conditions shown in Table 3.
比較のために、工具基体A~Cの表面に表2に示す成膜条件によって、(VAl)(CN)層を成膜し、表5、6に示す比較例1~10を得た。
比較例工程については原料ガスを2系統に分離せずに1本のガス供給管から熱CVD装置の反応容器内に供給した。そのため、ガス群A噴出口(16)とガス群B噴出口(17)の区別はなく噴出口対(20)は存在しないガス供給管を用いた。
なお、比較例4~10については、表3に示す条件により表4に示す下部層および/または上部層を成膜した。
For comparison, a (VAl)(CN) layer was formed on the surface of tool substrates A to C under the film-forming conditions shown in Table 2, and Comparative Examples 1 to 10 shown in Tables 5 and 6 were obtained.
In the comparative example process, the source gas was not separated into two systems but was supplied into the reaction chamber of the thermal CVD device from one gas supply pipe. Therefore, a gas supply pipe was used that did not have a distinction between the gas group A nozzle (16) and the gas group B nozzle (17) and did not have a nozzle pair (20).
In addition, for Comparative Examples 4 to 10, the lower layer and/or the upper layer shown in Table 4 were formed under the conditions shown in Table 3.
前記実施例1~10、比較例1~10について、前述した方法を用いて、平均Al含有割合xavgと平均C含有割合yavgを算出した。また、工具基体の表面の法線方向に対して{110}面の法線がなすそれぞれの傾斜角度数分布において、傾斜角度数の最高度数が0~10度内の区分に存在するかを確認すると共に、傾斜角が0~10度の範囲内に存在する度数の割合を求めた。さらに、Alの組成変化の<001>で表される等価の方位に沿ったAl含有割合の繰返し変化の有無とAl含有割合の極大値の平均と極小値の平均との差、その平均の繰返し間隔、さらには、その方位に直交する面内のAl含有割合の変化についても測定した。 The average Al content x avg and the average C content y avg were calculated for the above-mentioned Examples 1 to 10 and Comparative Examples 1 to 10 using the above-mentioned method. In addition, in each distribution of the number of inclination angles made by the normal line of the {110} plane with respect to the normal direction of the surface of the tool base, it was confirmed whether the maximum frequency of the number of inclination angles was in the range of 0 to 10 degrees, and the proportion of the frequency in which the inclination angle was in the range of 0 to 10 degrees was obtained. Furthermore, the presence or absence of repeated changes in the Al content along the equivalent orientation represented by <001> of the composition change of Al, the difference between the average maximum value and the average minimum value of the Al content, the average repetition interval, and further the change in the Al content in the plane perpendicular to the orientation were also measured.
加えて、NaCl型の面心立方構造を有する結晶粒の割合、NaCl型の面心立方構造を有するTiNおよびAlNの格子定数、NaCl型の面心立方構造を有する柱状晶の粒界部に存在する微粒径の結晶粒の面積割合を測定した。
また、平均層厚は、各構成層の縦断面に対して、走査型電子顕微鏡(倍率5000倍)を用いて観察し、観察視野内の5点の層厚を測定して平均して求めた。
In addition, the proportion of crystal grains having a NaCl type face-centered cubic structure, the lattice constants of TiN and AlN having a NaCl type face-centered cubic structure, and the area proportion of fine crystal grains present at the grain boundaries of columnar crystals having a NaCl type face-centered cubic structure were measured.
The average layer thickness was determined by observing the longitudinal section of each constituent layer using a scanning electron microscope (magnification: 5000 times), measuring the layer thickness at five points within the observation field, and averaging the results.
これらの結果を表5、6にまとめた。また、図7に実施例8における工具基体の表面の法線方向に対して、NaCl型面心立方構造の結晶粒の{110}面の法線方向のなす傾斜角の度数分布を示した。 These results are summarized in Tables 5 and 6. Figure 7 shows the frequency distribution of the inclination angle between the normal direction of the surface of the tool base in Example 8 and the normal direction of the {110} plane of the crystal grains of the NaCl type face-centered cubic structure.
続いて、実施例1~10および比較例1~10について、いずれもカッタ径32mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、合金鋼SCM440の湿式正面フライス加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, for Examples 1 to 10 and Comparative Examples 1 to 10, a wet face milling test was carried out on alloy steel SCM440 while the specimens were clamped to the tip of a tool steel cutter with a cutter diameter of 32 mm using a fixture, and the flank wear width of the cutting edge was measured.
切削試験:湿式正面フライス切削加工
被削材:JIS・SCM440幅
切削速度:190m/min
切り込みap:6.0mm
切り込みae:20mm
一刃送り量:0.12mm/刃
切削時間:80分
Cutting test: Wet face milling Workpiece material: JIS/SCM440 Width Cutting speed: 190m/min
Cutting depth: 6.0 mm
Cut ae: 20mm
Feed per blade: 0.12 mm/blade Cutting time: 80 minutes
表7に、切削試験の結果を示す。なお、比較例1~10については、刃先欠損が原因で寿命に至ったため、寿命に至るまでの時間を示す。 The results of the cutting test are shown in Table 7. For Comparative Examples 1 to 10, the cutting edge fracture caused the tool to reach the end of its life, so the time to reach the end of its life is shown.
表7に示す結果から明らかなように、実施例はいずれも刃先欠損の発生がなく、耐欠損生が向上しており、長期にわたって優れた切削性能を発揮する。
これに対して、比較被例1~10は、いずれも刃先欠損が発生し、短時間で使用寿命に至っている。
As is clear from the results shown in Table 7, none of the examples experienced chipping at the cutting edge, and chipping resistance was improved, demonstrating excellent cutting performance over a long period of time.
In contrast, in all of Comparative Examples 1 to 10, chipping occurred at the cutting edge, and the cutting edge reached the end of its useful life in a short period of time.
1 工具基体
2 被覆層
3 (VAl)(CN)層
4 下部層
5 上部層
6 (VAl)(CN)層のNaCl型面心立方構造を有する結晶粒
7 (VAl)(CN)層のNaCl型面心立方構造を有する結晶粒の{110}面の法線方向
8 Alの含有量が相対的に多い領域
9 Alの含有量が相対的に少ない領域
10 <001>で表される等価な結晶方位
11 ガス供給管
12 仕切り部材
13 ガス供給管の中心
14 ガス群A流通部
15 ガス群B流通部
16 ガス群A噴出口
17 ガス群B噴出口
18 ガス群A噴出口の外周側開口端の中心
19 ガス群B噴出口の外周側開口端の中心
20 噴出口対
α 角度
β1 角度
β2 角度
γ1 角度
γ2 角度
1
Claims (8)
1)前記被覆層は、その平均層厚が1.0~20.0μmであって、その組成を組成式:(V1-xAlx)(CyN1-y)で表したとき、xの平均含有割合xavgが0.76~0.95、yの平均含有割合yavgが0.000~0.015であるVとAlの複合窒化物層または複合炭窒化物層を有し、
2)前記複合窒化物層または複合炭窒化物層は、NaCl型面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を有し、
3)前記工具基体の表面の法線方向に対する前記結晶粒のそれぞれの{110}面の法線方向のなす傾斜角のうち、0~45度の範囲内にある傾斜角を0.25度毎に区分した傾斜角度分布の各区分における度数分布において、0~10度の前記区分のいずれかに最高度数が存在し、かつ、前記0~10度の前記区分の度数分布の和が、前記傾斜角度分布の度数全体の和の45%以上を占めること、
を特徴とする表面被覆切削工具。 A surface-coated cutting tool having a tool substrate and a coating layer on a surface of the tool substrate,
1) The coating layer has an average layer thickness of 1.0 to 20.0 μm, and comprises a composite nitride layer or composite carbonitride layer of V and Al, in which, when the composition is expressed by the composition formula (V 1-x Al x ) (C y N 1-y ), the average x content x avg is 0.76 to 0.95 and the average y content y avg is 0.000 to 0.015,
2) The composite nitride layer or composite carbonitride layer has composite nitride or composite carbonitride crystal grains having a NaCl type face-centered cubic structure,
3) In a frequency distribution of inclination angles of the normal direction of each {110} plane of the crystal grain relative to the normal direction of the surface of the tool base, the inclination angles in the range of 0 to 45 degrees are divided into increments of 0.25 degrees, and the maximum frequency is present in any of the inclination angle distributions of 0 to 10 degrees, and the sum of the frequency distributions of the inclination angle distributions of 0 to 10 degrees accounts for 45% or more of the sum of the frequencies of the entire inclination angle distribution.
A surface-coated cutting tool comprising:
The surface-coated cutting tool according to any one of claims 1 to 7, characterized in that an upper layer including at least an aluminum oxide layer is present on the upper portion of the composite nitride layer or composite carbonitride layer, with a total average layer thickness of 1.0 to 25.0 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021049160A JP7610782B2 (en) | 2021-03-23 | 2021-03-23 | Surface-coated cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021049160A JP7610782B2 (en) | 2021-03-23 | 2021-03-23 | Surface-coated cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022147772A JP2022147772A (en) | 2022-10-06 |
JP7610782B2 true JP7610782B2 (en) | 2025-01-09 |
Family
ID=83462449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021049160A Active JP7610782B2 (en) | 2021-03-23 | 2021-03-23 | Surface-coated cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7610782B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005271106A (en) | 2004-03-23 | 2005-10-06 | Sumitomo Electric Hardmetal Corp | Coated cutting tool |
JP2006249574A (en) | 2005-02-08 | 2006-09-21 | Kobe Steel Ltd | Hard coating, target for forming hard coating, and method for forming hard coating |
JP2016064471A (en) | 2014-09-25 | 2016-04-28 | 三菱マテリアル株式会社 | Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance |
JP2016064485A5 (en) | 2014-09-25 | 2016-06-16 | ||
JP2016137537A (en) | 2015-01-27 | 2016-08-04 | 三菱マテリアル株式会社 | Surface-coated cutting tool excellent in chipping resistance and wear resistance |
JP2019177424A (en) | 2018-03-30 | 2019-10-17 | 三菱マテリアル株式会社 | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5924507B2 (en) | 2014-09-25 | 2016-05-25 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
-
2021
- 2021-03-23 JP JP2021049160A patent/JP7610782B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005271106A (en) | 2004-03-23 | 2005-10-06 | Sumitomo Electric Hardmetal Corp | Coated cutting tool |
JP2006249574A (en) | 2005-02-08 | 2006-09-21 | Kobe Steel Ltd | Hard coating, target for forming hard coating, and method for forming hard coating |
JP2016064471A (en) | 2014-09-25 | 2016-04-28 | 三菱マテリアル株式会社 | Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance |
JP2016064485A5 (en) | 2014-09-25 | 2016-06-16 | ||
JP2016137537A (en) | 2015-01-27 | 2016-08-04 | 三菱マテリアル株式会社 | Surface-coated cutting tool excellent in chipping resistance and wear resistance |
JP2019177424A (en) | 2018-03-30 | 2019-10-17 | 三菱マテリアル株式会社 | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance |
Also Published As
Publication number | Publication date |
---|---|
JP2022147772A (en) | 2022-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6478100B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
EP3103572B1 (en) | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance | |
KR20180135497A (en) | Surface-coated cutting tool and method of producing the same | |
WO2014132995A1 (en) | Surface-coated cutting tool | |
JP7231885B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance | |
JP7610782B2 (en) | Surface-coated cutting tools | |
JP7610781B2 (en) | Surface-coated cutting tools | |
WO2020166683A1 (en) | Surface-coated cutting tool | |
JP2020131424A (en) | Surface-coated cutting tool | |
JP6550661B2 (en) | Method of manufacturing surface coated cutting tool | |
JP7541279B2 (en) | Surface-coated cutting tools | |
US11998992B2 (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP7190111B2 (en) | surface coated cutting tools | |
JP2023105884A (en) | Surface-coated cutting tool | |
JP7137149B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance | |
JP2022147773A (en) | Surface-coated cutting tool | |
JP7492678B2 (en) | Surface-coated cutting tools | |
WO2021177406A1 (en) | Surface-coated cutting tool | |
JP7125013B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance | |
US20240189921A1 (en) | Cutting tools | |
JP7486045B2 (en) | Surface-coated cutting tools | |
JP7329180B2 (en) | surface coated cutting tools | |
JP7510107B2 (en) | Surface-coated cutting tools | |
WO2023190000A1 (en) | Surface-coated cutting tool | |
JP7198412B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7610782 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |