JP7609363B2 - Ultrasound Imaging Device - Google Patents
Ultrasound Imaging Device Download PDFInfo
- Publication number
- JP7609363B2 JP7609363B2 JP2020034547A JP2020034547A JP7609363B2 JP 7609363 B2 JP7609363 B2 JP 7609363B2 JP 2020034547 A JP2020034547 A JP 2020034547A JP 2020034547 A JP2020034547 A JP 2020034547A JP 7609363 B2 JP7609363 B2 JP 7609363B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- excitation
- ultrasonic
- shear wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012285 ultrasound imaging Methods 0.000 title description 9
- 230000005284 excitation Effects 0.000 claims description 54
- 238000003384 imaging method Methods 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 42
- 238000012545 processing Methods 0.000 claims description 35
- 238000002604 ultrasonography Methods 0.000 claims description 24
- 239000000523 sample Substances 0.000 claims description 18
- 238000010586 diagram Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 6
- 210000002615 epidermis Anatomy 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 230000005279 excitation period Effects 0.000 claims description 2
- 239000000872 buffer Substances 0.000 claims 2
- 238000001514 detection method Methods 0.000 description 48
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 22
- 210000001519 tissue Anatomy 0.000 description 21
- 230000009467 reduction Effects 0.000 description 20
- 210000003205 muscle Anatomy 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 230000017531 blood circulation Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 210000002027 skeletal muscle Anatomy 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 210000003195 fascia Anatomy 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 238000001612 separation test Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Images
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Description
本発明は、超音波を用いて生体物(人体又は動物)の生体組織の硬さを映像化する超音波映像装置に関し、特に、雑音低減効果を有するもの、並びに、当該超音波映像装置を備えた超音波映像システムに関する。 The present invention relates to an ultrasonic imaging device that uses ultrasonic waves to visualize the hardness of biological tissue in a living body (human or animal), and in particular to an ultrasonic imaging device that has a noise reduction effect, as well as an ultrasonic imaging system that includes the ultrasonic imaging device.
リハビリテーションにおける理学療法室、マッサージにおける治療室、スポーツ医学におけるトレーニング室等に持ち込んで骨格筋の硬さや変化を定量的に測定しようとする要求がある。つまり従来技術では難しかった骨格筋の硬さを定量的に評価して、その結果をリハビリテーション、マッサージ、トレーニングの効果判定、有効な治療、トレーニング計画の策定等に結び付けたいという要求である。このような要求には、生体硬さの映像化法CD-SWIを使うことが選択肢になると考えられるが、この時、大型の超音波診断装置ではなくフィールドで使える小型で可搬型のエコー装置(タブレットエコー:プローブ内に電子回路やCPUを組み込んで、これをタブレットやPCに接続することで超音波診断を行う装置)にCD-SWI法を組み込んで使う必要がある。超音波を用いて生体物(人体又は動物)の生体組織の硬さを映像化する超音波映像方法として、従来、WO2015/151972(特許文献1参照)が開示される。しかし、このようなタブレットエコー装置は大型の超音波診断装置に比べて雑音が大きく、上記の骨格筋の硬さ計測法を組み込んでも雑音の影響を大きく受けて不鮮明で定量性の低い画像しか得られない場合が多い。 There is a demand for quantitative measurement of skeletal muscle stiffness and changes in physical therapy rooms for rehabilitation, treatment rooms for massage, training rooms for sports medicine, etc. In other words, there is a demand to quantitatively evaluate skeletal muscle stiffness, which was difficult with conventional technology, and to link the results to rehabilitation, massage, and training effectiveness assessment, effective treatment, and training plan formulation. To meet such demands, it is considered that the use of CD-SWI, a biological stiffness imaging method, is an option, but in this case, it is necessary to incorporate the CD-SWI method into a small, portable echo device that can be used in the field (tablet echo: a device that performs ultrasonic diagnosis by incorporating electronic circuits and a CPU in a probe and connecting it to a tablet or PC) rather than a large ultrasound diagnostic device. WO2015/151972 (see Patent Document 1) has been disclosed as an ultrasound imaging method for imaging the stiffness of biological tissues of a living body (human body or animal) using ultrasound. However, such tablet echo devices have higher noise levels than larger ultrasound diagnostic devices, and even if the above-mentioned skeletal muscle stiffness measurement method is incorporated, the images obtained are often unclear and of low quantitative quality due to the large noise impact.
超音波を用いて生体物(人体又は動物)の生体組織の硬さを映像化する超音波映像方法として、従来、WO2015/151972(特許文献1参照)が開示される。
また他に従来、被検体に対し超音波接触子によって超音波を3次元状にスキャンし、このスキャンにより検出された被採取部の組織を、前記被検体内に2重構造の穿刺針を挿入してその外針から内針を突出させることにより前記被採取部に差し込んで採取するものであって、超音波のスキャンデータに基づいて前記被採取部の画像、及び前記被検体内に挿入される穿刺針の画像を生成する画像生成手段と、この画像生成手段により生成された前記被採取部の画像、及び前記穿刺針の画像を表示する表示手段を具備するものが開示される(特許文献2参照)。
A conventional ultrasound imaging method for imaging the hardness of biological tissue of a living body (human or animal) using ultrasound is disclosed in WO2015/151972 (see Patent Document 1).
Another conventional method disclosed is to use an ultrasound contact to three-dimensionally scan a subject with ultrasound, and then insert a double-structured puncture needle into the subject and protrude an inner needle from an outer needle to insert it into the subject and collect tissue from the tissue, the method comprising: image generation means for generating an image of the subject based on ultrasound scan data and an image of the puncture needle being inserted into the subject; and display means for displaying the image of the subject generated by the image generation means and the image of the puncture needle (see Patent Document 2).
この装置において、穿刺針には微小振動を付与する励振器が設置され、この励振器により振動される穿刺針のドプラ効果の影響を受けたエコー信号をプローブが受信することにより、穿刺針の外針から突出する内針の動きが認識されるようになっている。ここで前記画像生成手段は、前記穿刺針の内針が前記被採取部に差し込まれる直前において、仮に前記内針が前記外針から突出されたとしたら前記被採取部から採取されることが期待される組織を前記表示手段に画像として表示させるものである。同文献によれば、被採取部の組織の採取に先立ち、表示手段を見るだけで被採取部のどこの部位が採取できるのかを予測することができ、所望する組織を確実に採取することができる、とされる。 In this device, an exciter that applies minute vibrations is installed in the puncture needle, and the probe receives echo signals influenced by the Doppler effect of the puncture needle vibrated by this exciter, thereby recognizing the movement of the inner needle protruding from the outer needle of the puncture needle. Here, the image generating means displays, on the display means, as an image, the tissue that is expected to be collected from the sampled portion if the inner needle were to protrude from the outer needle just before the inner needle of the puncture needle is inserted into the sampled portion. According to the document, it is possible to predict which part of the sampled portion will be collected by simply looking at the display means prior to collecting tissue from the sampled portion, and it is possible to reliably collect the desired tissue.
またほかに従来、振動する穿刺針からの超音波エコーのドプラ信号に基づいて前記穿刺針の画像を生成する超音波撮像方法であって、1音線当たり2回の超音波送受信で得たパケット長が2のエコー信号に関するMTI処理により前記ドップラ信号を求めることを特徴とする超音波撮像方法が開示される(特許文献3参照)。 In addition, a conventional ultrasound imaging method has been disclosed that generates an image of a vibrating puncture needle based on the Doppler signal of an ultrasound echo from the needle, and that is characterized in that the Doppler signal is obtained by MTI processing of an echo signal with a packet length of 2 obtained by transmitting and receiving ultrasound twice per sound ray (see Patent Document 3).
これは、1音線当たり2回の超音波送受信で得たパケット長が2のエコー信号間でMTI処理を行なってドプラシフトを求めるものである。同文献によれば、1音線当たり最小限の超音波送受信回数でドプラシフトが求まり、撮像が高速化し、また、撮像視野が広がる、とされる。 This involves performing MTI processing between echo signals with a packet length of 2 obtained by two ultrasound transmissions per sound ray to determine the Doppler shift. According to the document, the Doppler shift can be determined with a minimum number of ultrasound transmissions per sound ray, which speeds up imaging and widens the imaging field of view.
しかしながら、上記文献1記載のようなタブレットエコー装置は、小型化又はデバイス化すると、大型の超音波診断装置に比べて雑音が大きく、上記の骨格筋の硬さ計測法を組み込んでも雑音の影響を大きく受けて不鮮明で定量性の低い画像しか得られない場合が多い。つまり、装置を小型化するか、或いは簡易制御プログラム上で動作可能にアプリケーション化すると、処理精度の問題によって雑音の大きな元信号しか受信できず、生体組織の硬さ映像を鮮明に得ることができない、という問題が顕著であった。
However, when a tablet echo device such as that described in the above-mentioned
特に、超音波加振による元信号を基に雑音低減処理を行う場合、元信号が持つ特徴である「生体組織内へせん断波を励起するための加振が特定周波数の連続正弦波で行われる」ことを前提とする。このため、超音波加振の生体物への加振、或いは受信機との位置関係が安定しなければ、加振波が乱れてしまい、雑音(ノイズ)が大きく混入したり、連続正弦波という前提での処理を行えない場合がある。 In particular, when noise reduction processing is performed based on the original signal generated by ultrasonic excitation, it is assumed that the excitation for exciting shear waves in biological tissue is performed with a continuous sine wave of a specific frequency, which is a characteristic of the original signal. For this reason, if the ultrasonic excitation of the biological object or the positional relationship with the receiver is not stable, the excitation wave will be disturbed, causing significant noise to be mixed in, or it may not be possible to perform processing based on the assumption of a continuous sine wave.
なお、上記文献2、3に記載の各装置は、穿刺針を生体物内に穿刺して測定を行うことが前提であり、穿刺の位置又は深さ、ひいでは穿刺者の技術に依存して取得映像が制限されてしまうという課題があった。この理由として、留置針を静脈内に正しく留置することが難しいことが挙げられる。 The devices described in the above-mentioned documents 2 and 3 are based on the premise that a puncture needle is inserted into a living subject to perform measurements, and have the problem that the captured images are limited depending on the puncture position or depth, and ultimately on the technique of the person performing the puncture. One reason for this is that it is difficult to correctly place the indwelling needle in the vein.
そこで本発明は、雑音の大きな超音波診断装置でも、CD-SWI法による生体組織の硬さ映像が得られる雑音低減技術を開発することを課題とする。 The objective of this invention is to develop a noise reduction technique that allows images of biological tissue stiffness to be obtained using the CD-SWI method even with ultrasound diagnostic equipment that produces a lot of noise.
上記課題を解決すべく本発明では以下の手段を講じている。但し以下において構成の名称に続けて記載する数字乃至アルファベットは、図面の理解のために便宜的に付した符号であり、これによって構成の概念ないし形状、構造を限定する趣旨ではない。 In order to solve the above problems, the present invention takes the following measures. However, in the following, the numbers or letters following the names of the components are symbols added for the convenience of understanding the drawings, and are not intended to limit the concept, shape, or structure of the components.
(1)(正弦波加振によるフィルタリングと流速推定)
生体物の表皮に接触させた状態で生体物内の特定方向へ、特定周波数の正弦波振動を加振する加振器と、
複数の超音波振動子を送信子・受信子それぞれ同配列で二次元配列したプローブと、
プローブで受信した元信号からせん断波の超音波映像信号を生成し出力する信号処理装置と、
信号処理装置による超音波映像信号を表示する表示装置と、を少なくとも具備した超音波映像装置であって、
前記信号処理装置は、正弦波振動の特定周波数に対応した周波数域の正弦波信号のみを通過させる帯域通過フィルタリングのステップと、
受信した元信号において、周期性及び半周期での対称性を有する特定信号について、超音波のパルス繰り返し周波数を増幅させた増幅信号を取得し、この増幅信号に基づいて、加振による流速値を推定する流速推定ステップと、の各ステップを順に行うことを特徴とする、超音波映像装置。
(1) (Filtering and flow velocity estimation using sinusoidal excitation)
a vibrator that applies a sinusoidal vibration of a specific frequency in a specific direction within the living body while being in contact with the epidermis of the living body;
A probe in which multiple ultrasonic transducers are arranged two-dimensionally with the same arrangement for both transmitters and receivers;
a signal processing device that generates and outputs an ultrasonic image signal of a shear wave from the original signal received by the probe;
A display device that displays an ultrasonic image signal from the signal processing device,
The signal processing device includes a step of band-pass filtering for passing only a sinusoidal signal in a frequency range corresponding to a specific frequency of a sinusoidal vibration;
a flow velocity estimation step of estimating a flow velocity value due to excitation based on an amplified signal obtained by amplifying an ultrasonic pulse repetition frequency for a specific signal having periodicity and symmetry in a half cycle in a received original signal, and
(2)
前記流速推定ステップは、受信超音波を直交検波して得られた、1周期中の複数の特定信号それぞれについて自己相関による加算処理を行った自己相関値(Is)を導出し、
導出した複数の自己相関値(Is)を平均化して流速値を求める、ことで、
オーバーサンプリングによる増幅信号を基に、加振に基づく流速値を求める流速演算ステップを行う。
(2)
The flow velocity estimation step derives an autocorrelation value (Is) by performing an addition process based on autocorrelation on each of a plurality of specific signals in one period obtained by orthogonal detection of the received ultrasonic wave,
Averaging the derived multiple autocorrelation values (Is) to obtain a flow velocity value,
A flow velocity calculation step is performed to obtain a flow velocity value based on the vibration based on the amplified signal obtained by oversampling.
(3)前記加振器は、特定の複数周期の信号を加振するものであり、
前記信号処理装置は、加振した各周期の特定信号それぞれについて、自己相関による加算処理を行った自己相関値(Is)を導出し、特定の複数周期それぞれに対応する自己相関値を演算し、
複数周期それぞれの対応する自己相関値の平均値を比較して、推定流速値を求めることが好ましい。
(3) The vibrator excites a signal having a specific number of periods,
The signal processing device derives an autocorrelation value (Is) by performing an addition process based on autocorrelation for each specific signal of each excitation period, and calculates an autocorrelation value corresponding to each of the specific multiple periods;
It is preferable to compare average values of the autocorrelation values corresponding to each of a plurality of periods to obtain an estimated flow velocity value.
(4)(二次元配列のマップ表示)
上記いずれかに記載の超音波映像装置においては、
表示装置が、所定の検出面範囲内の血流状態(血流内の異物の流れ方)を連続的に検知し、動画として連続的に表示することが好ましい。
異物通過を動画として、前記二次元マップ上の対応位置に表示することで、通過する異物の通過有無だけでなく、通過の情報(大きさ、速度、位置等)を容易に得ることができる。
(4) (Map display of two-dimensional array)
In any one of the ultrasonic imaging devices described above,
It is preferable that the display device continuously detects the state of blood flow (the flow of foreign matter in the blood flow) within a predetermined detection surface range and continuously displays it as a moving image.
By displaying the passing of a foreign object as a video at a corresponding position on the two-dimensional map, it is possible to easily obtain not only the presence or absence of a passing foreign object, but also information about the passing of the foreign object (size, speed, position, etc.).
(5)(連結冶具)
上記いずれかに記載の超音波映像装置においては、プローブの受送信部と加振器の加振部とが並行方向を向くと共に一定の距離及び一定範囲内の角度を保つよう、プローブの受送信部と加振器の加振部とを連結する連結冶具をさらに具備する。
(5) (Connecting jig)
In any of the ultrasonic imaging devices described above, a connecting tool is provided that connects the transmitting and receiving unit of the probe and the excitation unit of the excitation device so that the transmitting and receiving units of the probe and the excitation unit of the excitation device are oriented in parallel directions and maintain a constant distance and an angle within a certain range.
(6)
さらに、二次元配列された各受信子の検出信号によって検出された伝播速度を、表示装置において二次元配列した二次元検出画像領域の二次元マップ上に表示し、二次元配列された各受信子のうち一部の受信子の検出信号によって検出された伝播速度の値を色彩化して、前記二次元マップ上の対応位置に表示することが好ましい。
検出面に合わせた2次元配列のマップ表示を行うことで、マップ上の生体組織の硬さ画像を直感的に得ることができる。
(6)
Furthermore, it is preferable that the propagation velocities detected by the detection signals of each of the two-dimensionally arranged receivers are displayed on a two-dimensional map of a two-dimensional detection image area arranged two-dimensionally on a display device, and that the values of the propagation velocities detected by the detection signals of some of the two-dimensionally arranged receivers are colored and displayed at corresponding positions on the two-dimensional map.
By displaying a two-dimensional array map aligned with the detection surface, a stiffness image of the biological tissue on the map can be obtained intuitively.
(7)(時間遅れ補正項によるドプラフォーカシング)
上記いずれかに記載の超音波映像装置においては、例えばさらに、二次元配列された複数の受信子による反射波のデータを、各座標の伝播速度値列としてタイムベースごとに連続的に保存し、この伝播速度値列のデータ群に基づいて、タイムベースごとの伝播速度の可変を差分画像としてタイムベースごとに連続的に作成し、初期保存した伝播速度の二次元画像と前期連続的に作成した差分画像のデータとに基づいて、2次元領域の伝播速度の処理画像を検出深さの情報と共に表示装置に連続的に動画表示することが好ましい。
なお、空間的な時間遅れを幾何的に解析し立式し、さらに超音波素子単体の音場特性、アレイ全体の音場特性を考慮した単純式に置き換えることで、時間遅れを補正する。簡易判別でありながら多くの情報を伴うドプラフォーカシングを連続的に行うことができる。
(7) (Doppler focusing with time delay correction term)
In any of the ultrasonic imaging devices described above, it is preferable to further store data of reflected waves from a plurality of receivers arranged two-dimensionally as a sequence of propagation velocity values for each coordinate for each time base, and based on a data group of the propagation velocity value sequences, continuously create a difference image of the propagation velocity for each time base, and continuously display a processed image of the propagation velocity in the two-dimensional region together with information on the detection depth on a display device, based on the two-dimensional image of the propagation velocity initially stored and the data of the difference image continuously created.
In addition, the spatial time delay is geometrically analyzed and formulated, and then replaced with a simple formula that takes into account the sound field characteristics of the ultrasonic element itself and the sound field characteristics of the entire array, thereby correcting the time delay. This allows for continuous Doppler focusing, which is a simple discrimination method but also carries a lot of information.
(5)(異物種の判別表示)
上記いずれかに記載の超音波映像装置においては、例えばさらに、各振動子で受信した超音波信号を、時間軸を含む情報として分析し、異物オブジェクトの固さ、大きさ、及び流通速度に基づく判別基準によって、生体組織の硬さを予め分類した複数種類のオブジェクトモデルのいずれかに判別し、表示画面において、前記判別したオブジェクトモデルに1対1対応した色又は形状で、前記所定の連続時間に亘って、前記二次元マップ上の対応位置に表示することが好ましい。
(6)超音波映像装置方法
本発明の超音波映像装置方法は、複数の超音波振動子を送信子・受信子それぞれ同配列で二次元配列し、この二次元配列によって構成される検出面範囲を超音波検知する検知ステップと、
前記二次元配列された複数の超音波振動子の受信子による反射波のデータを、時間領域又は周波数領域のいずれかによって送信から受信までの時間遅れを補正する補正項によって補正するステップと、
二次元配列された複数の超音波振動子の受信子によって検出された生体組織のオブジェクトモデルの差分を、表示装置の表示画面における前記検知ステップの検出面範囲に対応した表示領域において、一部の受信子の検出信号を受信した特定の受信子に対応する前記二次元マップ上の対応位置に上書き表示する表示ステップとを、各ステップそれぞれ連続時間に亘って連続的に実行する。
(5) (Identification of type of foreign matter)
In any of the ultrasonic imaging devices described above, it is preferable that the ultrasonic signals received by each transducer are further analyzed as information including a time axis, and the hardness of the biological tissue is classified into one of a plurality of types of object models based on discrimination criteria based on the hardness, size, and flow speed of the foreign object, and the determined object model is displayed on the display screen in a color or shape that corresponds one-to-one to the determined object model at a corresponding position on the two-dimensional map over the specified continuous time period.
(6) Ultrasonic Imaging Device Method The ultrasonic imaging device method of the present invention includes a detection step of arranging a plurality of ultrasonic transducers in a two-dimensional manner with the same arrangement of transmitters and receivers, and detecting ultrasonic waves in a detection surface range formed by this two-dimensional array;
A step of correcting data of reflected waves by receivers of the plurality of ultrasonic transducers arranged two-dimensionally using a correction term that corrects a time delay from transmission to reception in either a time domain or a frequency domain;
A display step is performed in which the difference in the object model of the biological tissue detected by the receivers of a plurality of ultrasonic transducers arranged in a two-dimensional array is overwritten and displayed at a corresponding position on the two-dimensional map corresponding to a specific receiver that received the detection signal of some of the receivers in a display area corresponding to the detection surface range of the detection step on the display screen of the display device, and each step is executed continuously over a continuous time.
本発明によって提供される超音波映像装置及び超音波映像装置方法は、上記のとおり、超音波の発信素子と受信素子とを同じ配列で二次元配列し、この二次元配列によって構成される検出面範囲を所定の連続時間に亘って超音波検知すると共に、表示装置においても同配列で二次元配列してマップ表示する構成を採用しているため、他の超音波映像装置の組み込み等による複雑な構造をとることなく、通過する異物の状況(数、大きさ、形状、通過位置)に関する情報を高精度に得ることができるものとなった。 As described above, the ultrasonic imaging device and ultrasonic imaging method provided by the present invention adopt a configuration in which ultrasonic transmitting and receiving elements are arranged in the same two-dimensional array, ultrasonic waves are detected over a predetermined continuous time period over a detection surface area formed by this two-dimensional array, and the display device also arranges the ultrasonic waves in the same two-dimensional array and displays them as a map. This makes it possible to obtain information regarding the status (number, size, shape, passing position) of passing foreign objects with high accuracy without using a complex structure due to the incorporation of other ultrasonic imaging devices.
以下、本発明を実施するための形態例を、実施例として示す各図と共に説明する。
図1に示す本発明の実施例1の超音波映像装置は、複数の超音波振動子を送信子・受信子それぞれ同配列で二次元配列した第一検出デバイスP1,第二検出デバイスP2と、これら各検出デバイスP1,P2による超音波振動を制御し信号を送受信させる制御装置2と、制御装置2によって受信した反射波のデータを補正及び増幅処理する処理装置1と、処理装置1によって処理された反射波のデータに関する情報を表示する表示領域M1を備えた表示装置と、から装置構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The ultrasonic imaging device of the first embodiment of the present invention shown in Figure 1 is composed of a first detection device P1 and a second detection device P2 in which a plurality of ultrasonic transducers are arranged in a two-dimensional manner with the same arrangement for both transmitters and receivers, a control device 2 that controls ultrasonic vibrations by each of these detection devices P1 and P2 and transmits and receives signals, a
雑音の大きな超音波診断装置でも、CD-SWI法による生体組織の硬さ映像が得られる雑音低減技術を開発することが目的である。雑音低減処理では、超音波診断装置で得られる元信号のCD-SWI法に固有な時間的、周波数的な特徴に着目して、この特徴を持つ信号だけを抽出、強調することが重要であり、今回の発明はCD-SWI法による硬さ映像において元信号が持つ特徴「生体組織内へせん断波を励起するための加振が特定周波数の連続正弦波で行われる」ことを積極的に利用したもので、1正弦波加振に特化したMTI Filter(Moving Target Indicator)、2正弦波加振に特化した流速推定、の2つの方法包含する正弦波加振に特化した雑音低減技術を導入することで、タブレット型超音波映像装置のような雑音の大きい超音波映像装置でも硬さ映像を得て、硬さの定量計測を行う。 The objective is to develop a noise reduction technology that allows images of biological tissue stiffness using the CD-SWI method to be obtained even with ultrasound diagnostic equipment with high noise. In noise reduction processing, it is important to focus on the time and frequency characteristics of the original signal obtained by the ultrasound diagnostic equipment that are specific to the CD-SWI method, and to extract and emphasize only signals that have these characteristics. This invention actively utilizes the characteristic of the original signal in the stiffness image obtained by the CD-SWI method, that "the excitation to excite shear waves in biological tissue is performed with a continuous sine wave of a specific frequency." By introducing a noise reduction technology specialized for sine wave excitation that includes two methods, an MTI Filter (Moving Target Indicator) specialized for 1 sine wave excitation and flow velocity estimation specialized for 2 sine wave excitation, stiffness images can be obtained even with ultrasound imaging equipment with high noise, such as tablet-type ultrasound imaging equipment, and quantitative measurement of stiffness can be performed.
実施例1は2つの検出デバイスP1,P2と有線で併接続された制御装置2が記憶部R、表示装置M2、入力装置I2を備え、各受信子のチャンネルに対応した信号がケーブルCによって処理装置1に接続される。処理装置1にはスイッチS,調整装置V,スピーカー及び検出デバイスP1,P2の係止部が設けられ、表示装置M1,入力装置Iに有線又は無線接続される。
In the first embodiment, a control device 2 connected in parallel to two detection devices P1 and P2 by wire includes a memory unit R, a display device M2, and an input device I2, and signals corresponding to the channels of each receiver are connected to a
図10に示すように正弦波で振動している加振器(S)から、生体組織中にせん断波が励起され、このせん断波は生体組織内を伝播する。この時、超音波プローブ(P)で同時に超音波を送信すると、生体組織内から反射し超音波プローブで受信される超音波には、加振によりドプラ効果が生じ周波数がわずかに変調された信号が得られる。ここで図10の(AM)(OW)は加振を行うための増幅器、加振器、および加振周波数を決める制御装置である。超音波プローブで得た信号は、直交検波後、IQ信号としてPCやタブレット等の信号処理装置からなるせん断波映像システム(AW)に取り込まれる。本発明は、この映像システム内に組み込まれる雑音低減技術に関するものである。最終的に得られた画像は表示装置(W)で表示される。 As shown in FIG. 10 , a shear wave is excited in biological tissue from a vibrator (S) vibrating with a sine wave, and this shear wave propagates through the biological tissue. At this time, when an ultrasonic wave is simultaneously transmitted from an ultrasonic probe (P), the ultrasonic wave reflected from the biological tissue and received by the ultrasonic probe has a Doppler effect due to the vibration, and a signal with a slightly modulated frequency is obtained. Here, (AM) and (OW) in FIG. 10 are an amplifier for vibration, a vibrator , and a control device that determines the vibration frequency. After quadrature detection, the signal obtained by the ultrasonic probe is taken into a shear wave imaging system (AW) consisting of a signal processing device such as a PC or tablet as an IQ signal. The present invention relates to a noise reduction technology incorporated in this imaging system. The finally obtained image is displayed on a display device (W).
図3に示す本発明の実施例2の超音波映像装置は、複数の超音波振動子を送信子・受信子それぞれ同配列で二次元配列した第三検出デバイスP3´/第四検出デバイスR3のいずれかと、この第三検出デバイスP3´/第四検出デバイスR3のいずれかとケーブルCで接続された制御装置2と、制御装置2によって受信し送信された反射波のデータを受信し処理するサーバー装置Sと、から装置構成される。実施例2は2つの検出デバイスP3´,R3のいずれかとケーブルCで有線接続された処理装置1兼制御装置2が、入力装置I3兼用の静電式表示装置M3を備え、処理装置1兼制御装置2が、サーバー装置Sとの間で無線信号を送受信する。
The ultrasonic imaging device of the second embodiment of the present invention shown in FIG. 3 is composed of either a third detection device P3' or a fourth detection device R3 in which a plurality of ultrasonic transducers are arranged two-dimensionally with the same arrangement of transmitters and receivers, a control device 2 connected to either the third detection device P3' or the fourth detection device R3 by a cable C, and a server device S that receives and processes the data of the reflected waves received and transmitted by the control device 2. In the second embodiment, the
(検出デバイス)
検出デバイスは第一検出デバイスP1のような方形の検出面形状でもよいし、第二検出デバイスP2のような円形の検出面形状でもよい。実施例1の超音波映像装置は、第一検出デバイスP1,第二検出デバイスP2の2種の検出面形状の検出デバイスを併接続可能に有する。実施例2の超音波映像装置は、第三検出デバイスP3´/第四検出デバイスR3の2種の検出面形状の検出デバイスのいずれかをそれぞれ交換によって単独接続可能に有する。
(Detection Device)
The detection device may have a rectangular detection surface shape like the first detection device P1, or a circular detection surface shape like the second detection device P2. The ultrasonic imaging device of the first embodiment has detection devices with two types of detection surface shapes, the first detection device P1 and the second detection device P2, which can be connected in parallel. The ultrasonic imaging device of the second embodiment has detection devices with two types of detection surface shapes, the third detection device P3'/fourth detection device R3, which can be connected independently by replacing them.
図4に、本発明のせん断波映像システムの信号処理のフローチャートを示す。このせん断波映像システムの信号処理について説明する。まず、ある定められた一定の周波数fvの正弦波で加振を行うと、得られる直交検波後のI,Q信号には、周期T=1/fvで同じ波形が繰り返えす「信号の周期性(以降、周期性と呼ぶ)」と、1周期の前半分と後半分で符号が異なるがその絶対値は同じになる「信号の対称性(以降、対称性と呼ぶ)」という2つの特徴がある。この特徴は従来の血流計測では得られないものであり、これら特徴を持つ信号を抽出および強調して、CD-SWI法でせん断波の映像再生を行う。 Figure 4 shows a flowchart of the signal processing of the shear wave imaging system of the present invention. The signal processing of this shear wave imaging system will now be described. First, when excitation is performed with a sine wave of a certain fixed frequency fv, the I and Q signals obtained after quadrature detection have two characteristics: "signal periodicity (hereafter referred to as periodicity)," in which the same waveform repeats with a period T = 1/fv, and "signal symmetry (hereafter referred to as symmetry)," in which the signs are different in the first and second halves of one period but the absolute values are the same. This characteristic cannot be obtained with conventional blood flow measurements, and signals with these characteristics are extracted and emphasized to reproduce shear wave images using the CD-SWI method.
周期性と対称性を有する信号を抽出、強調するために、2つの方法を用いる。これが今回の発明の要点になるが、この2つの方法とは、1周期性に着目した、正弦波加振に特化したMTI Filterと、2対称性及び周期性に着目した、正弦波加振に特化した流速推定である。まず、図2に示すように、直交検波信号I,Q信号の各々対して周波数fv付近の信号のみを通過させる「正弦波加振に特化したMTI Filter」を適用し、その後、信号の周期性と半周期での信号の対称性(符号が異なるが絶対値は幅は同じ)に着目した「正弦波加振に特化した流速推定」を行う。 Two methods are used to extract and emphasize signals that have periodicity and symmetry. This is the main point of this invention, and these two methods are an MTI filter specialized for sinusoidal excitation that focuses on 1-periodicity, and flow velocity estimation specialized for sinusoidal excitation that focuses on 2-symmetry and periodicity. First, as shown in Figure 2, an "MTI filter specialized for sinusoidal excitation" that passes only signals near frequency fv is applied to each of the quadrature detection signals I and Q, and then "flow velocity estimation specialized for sinusoidal excitation" is performed that focuses on the periodicity of the signal and the symmetry of the signal over a half cycle (the signs are different but the absolute values are the same width).
本発明の作用を説明するために、まずCD-SWI法におけるオーバーサンプリング(周波数条件のオーバーサンプリングへの拡張)を示し、その後、本発明の要点である正弦波加振に特化した雑音除去技術について示す。 To explain the operation of the present invention, we will first show oversampling in the CD-SWI method (extension of frequency conditions to oversampling), and then show the noise reduction technology specialized for sinusoidal excitation, which is the key point of the present invention.
(CD-SWI法におけるオーバーサンプリング(周波数条件のオーバーサンプリングへの拡張))
CD-SWI法の周波数条件を数式1に示す。この条件はCD-SWI法でせん断波の波面がカラーフロー画像上に現れるための条件である。ただし、fν:加振周波数、fprf:超音波のパルス繰返し周波数、m:0または整数である。
(Oversampling in the CD-SWI method (extension of frequency conditions to oversampling))
The frequency condition for the CD-SWI method is shown in
数式1は、次式のように書き直すことができる。
(2以上の整数)であり、n=1が従来のCD-SWI法における周波数条件になる。
(an integer of 2 or more), where n=1 is the frequency condition in the conventional CD-SWI method.
数式3は下記数式4のようにも書くことができる。
Equation 3 can also be written as
この時、加振周波数の逆数で与えられる1周期に入る超音波パルス数Nsは、次の数式5で与えられる。
(正弦波加振に特化した雑音除去)
次に、正弦波加振に特化した雑音除去について説明する。硬さ映像では、前記数式4で表される周波数で正弦波加振を行う。このため得られる信号は固有の特徴を持ち、この特徴を持つ信号だけを抽出したり強調したりすると、雑音成分を有効に抑制できる。
具体的には正弦波加振に特化したMTI Filterと、正弦波加振に特化した流速推定の2つの方法を導入する。
(Noise reduction specialized for sinusoidal vibration)
Next, we will explain noise removal specialized for sinusoidal vibration. For stiffness images, sinusoidal vibration is performed at a frequency expressed by the
Specifically, we introduce two methods: an MTI filter specialized for sinusoidal excitation and flow velocity estimation specialized for sinusoidal excitation.
((b-1) 正弦波加振に特化したMTI(Moving Target Indicator) Filter)
まず、正弦波加振に特化したMTI(Moving
Target Indicator) Filterにつていて説明する。一般に用いられる血流計測用のMTI Filter MTI Filter (Moving Target Indicator Filter)は、非常に低い周波数成分である体動や拍動による信号を抑圧するために、例えば50Hzの遮断周波数を持つ高域通過フィルターが用いられる。
((b-1) MTI (Moving Target Indicator) Filter specialized for sinusoidal excitation)
First, we used MTI (Moving Target Induction) which is specialized for sine wave excitation.
This section explains the Moving Target Indicator (MTI) filter, a commonly used blood flow measurement filter. The MTI filter (Moving Target Indicator Filter) is a high-pass filter with a cutoff frequency of, for example, 50 Hz, in order to suppress signals caused by body movement and pulsation, which are very low frequency components.
しかしCD-SWI法を映像法として使う硬さの映像では、加振周波数はPRF(パルス繰り返し周波数)に同期した整数倍の周波数(前記数式4)に近い値を使う。例えばPRF=1000Hzとすると、加振周波数は62.5Hz付近の周波数になる(この時、加振周波数はPRFの16分の1)。このためI,Q信号の加振周波数成分のスペクトラムが大きくなるので、加振周波数を通過帯域とする帯域通過フィルターをMTI Filterとして用いると信号に含まれる雑音成分を有効に抑圧できる。
However, for stiffness images using the CD-SWI imaging method, the excitation frequency is close to an integer multiple frequency (
((b-2)正弦波加振に特化した流速推定)
つぎに、(b-2)正弦波加振に特化した流速推定について説明する。CD-SWI法での加振は正弦波で行われるので、記録される信号(I、Q信号)は周期性(加振周波数の逆数の周期Tv)と、1周期内の信号に対しては信号の対称性(1周期の信号の中で、前1/2周期と後ろ1/2周期の加振信号は符号が逆転しているが絶対値は同じ)を持つ。
このため、周期Tvを有し、かつTv内で対称性を有する信号を強調して流速推定を行うと、雑音成分を抑圧できる。このような信号を強調するために、ステップ1:I,Q信号の自己相関の導出と、ステップ2:流速推定とからなる、2ステップの流速推定を導入する。
((b-2) Flow velocity estimation specialized for sinusoidal excitation)
Next, (b-2) flow velocity estimation specialized for sinusoidal excitation will be explained. Since excitation in the CD-SWI method is performed with a sine wave, the recorded signals (I, Q signals) have periodicity (period Tv is the inverse of the excitation frequency) and signal symmetry with respect to the signal within one period (within one period of the signal, the signs of the excitation signals in the
Therefore, noise components can be suppressed by emphasizing a signal that has a period Tv and is symmetric within Tv to estimate the flow velocity. To emphasize such a signal, we introduce a two-step flow velocity estimation method consisting of step 1: deriving the autocorrelation of the I and Q signals, and step 2: estimating the flow velocity.
(ステップ1:I,Q信号の自己相関の導出)
まず、ステップ1:I,Q信号の自己相関の導出によって信号の強調を行う。前記数式5に示されるように加振周波数1周期中にNs本の超音波が受信できるので受信超音波を直交検波した信号I(i),Q(i) (iは受信番号)に対して、下記数式6,7で自己相関Isを求める。
(Step 1: Derive the autocorrelation of I and Q signals)
First, in
(ステップ2:流速推定)
つぎに、ステップ2:流速推定によって信号の強調を行う。Isより下記数式8,9で加振により生じる流速値を求める。
(Step 2: Estimating flow velocity)
Next, in step 2, the signal is enhanced by estimating the flow velocity. The flow velocity value caused by the excitation is calculated from Is using the following formulas 8 and 9.
この方法では上記数式7で示される信号の平均化が雑音成分の抑圧に貢献する。 In this method, the signal averaging shown in Equation 7 above contributes to suppressing noise components.
上記数式6、7、8、9は、加振周波数1周期分の信号処理を述べたものであるが、複数周期の信号を用いることができる場合には、各周期内の信号に数式7の加算処理を適用後、数式8、9で流速推定を行うことで雑音低減が可能になる。 The above formulas 6, 7, 8, and 9 describe the signal processing for one period of the excitation frequency. However, when a signal with multiple periods can be used, noise can be reduced by applying the addition process of formula 7 to the signal within each period and then estimating the flow velocity using formulas 8 and 9.
数式7で示す符号を考慮した平均化処理を図5、図6に示す。図5は前記数式7でオーバーサンプリング率n=4の場合であり、図6はn=2の場合である。 The averaging process that takes into account the sign shown in Equation 7 is shown in Figures 5 and 6. Figure 5 shows the case where the oversampling rate in Equation 7 is n=4, and Figure 6 shows the case where n=2.
(雑音低減の2つの方法の原理と効果)
雑音低減のために導入した2つの方法の原理と効果を図7にまとめた。
(Principles and Effects of Two Noise Reduction Methods)
The principles and effects of the two methods introduced for noise reduction are summarized in FIG.
(数値シミュレーション)
本発明の雑音低減技術の効果を評価するために数値シミュレーションを行った。数値シミュレーションでは、超音波診断装置から得られる直交検波信号(I,Q信号)に対して、独立に正規性白色雑音を加え、雑音低減処理を導入しない従来法と雑音低減処理を導入した方法とで流速マップを求めた。せん断波は、画面横方向に伝播するものと仮定し、画面内、横方向に4本の速度値が高い部分(縦じま)が現れるせん断波の波長に設定した。
結果を図8に示す。
(Numerical Simulation)
A numerical simulation was performed to evaluate the effect of the noise reduction technology of the present invention. In the numerical simulation, Gaussian white noise was added independently to the quadrature detection signals (I, Q signals) obtained from an ultrasound diagnostic device, and flow velocity maps were obtained using a conventional method without noise reduction processing and a method with noise reduction processing. The shear wave was assumed to propagate in the horizontal direction of the screen, and the wavelength of the shear wave was set to a value at which four high velocity values (vertical stripes) appeared in the horizontal direction of the screen.
The results are shown in Figure 8.
図8の上段3図は雑音低減を行わない従来法の画像であり、下段3図は本発明における正弦波加振に特化した雑音低減を導入した場合の結果で、信号と雑音パワーの比を0.25、1、4と変えて比較を行った。上下図の比較より、どの信号と雑音パワーの比に対しても、正弦波加振に特化した雑音低減を導入すると、せん断波の位相変化による4本の縦縞がより明瞭に現れ、この方法の有効性が確認される。 The top three figures in Figure 8 are images taken using the conventional method without noise reduction, while the bottom three figures show the results when noise reduction specialized for sinusoidal excitation according to the present invention is introduced, with a comparison made by changing the signal to noise power ratio to 0.25, 1, and 4. Comparing the top and bottom figures, regardless of the signal to noise power ratio, when noise reduction specialized for sinusoidal excitation is introduced, the four vertical stripes caused by the phase change of the shear wave appear more clearly, confirming the effectiveness of this method.
図9に、本発明の雑音低減技術(超音波映像処理)の有効性を定量的に評価した評価グラフを示す。評価量として、せん断波の伝播速度(硬さの定量値)を規定した。図9の縦軸は伝播速度推定値の変動係数(標準偏差を平均値で除したもの)であり、この値が小さいほど安定して速度推定ができることを示している。一方、図9の横軸は信号パワーで規格化した雑音パワーであり、この値が大きいほど加えた雑音が大きいことを示す。
本発明の処理方法は従来法に比べて高い雑音に対する耐性を示しており、例えば、速度推定値の変動係数5%で比較すると、従来法では信号パワーで規格化した雑音パワーは2.6までしか許容されないのに対して、本発明の処理方法では60まで許容でき、両者の比である雑音耐性の改善率は23倍に達する。
Fig. 9 shows an evaluation graph quantitatively evaluating the effectiveness of the noise reduction technology (ultrasonic image processing) of the present invention. The propagation velocity of the shear wave (quantitative value of stiffness) was specified as the evaluation quantity. The vertical axis of Fig. 9 is the coefficient of variation (standard deviation divided by average value) of the propagation velocity estimation value, and the smaller this value, the more stable the velocity estimation can be performed. On the other hand, the horizontal axis of Fig. 9 is the noise power normalized by the signal power, and the larger this value, the larger the added noise.
The processing method of the present invention exhibits higher resistance to noise than conventional methods. For example, when comparing the coefficient of variation of the velocity estimates at 5%, the conventional method can tolerate a noise power normalized by the signal power of only 2.6, whereas the processing method of the present invention can tolerate a noise power of up to 60, resulting in a 23-fold improvement in noise resistance.
図10、図11に被験者A,Bそれぞれの生体僧帽筋での二重加振による出力画像の例を示す。この解析では、タブレット型超音波映像装置からI,Q信号を取り出し、この信号からせん断波の波面を再生した。超音波繰返し周波数は1000Hz、加振周波数は62.2Hzであり、これはオーバーサンプリング率n=4に相当する。厳密には加振周波数62.5Hzがn=4の条件に合致するが、CD-SWI法では映像に適する加振周波数に上下5Hz程度の許容幅があることより、実験で用いた周波数でも映像化が可能になる。 Figures 10 and 11 show examples of output images from double excitation of the living trapezius muscle of subjects A and B, respectively. In this analysis, I and Q signals were extracted from a tablet-type ultrasound imaging device, and the wavefront of the shear wave was reconstructed from these signals. The ultrasound repetition frequency was 1000 Hz, and the excitation frequency was 62.2 Hz, which corresponds to an oversampling rate of n = 4. Strictly speaking, an excitation frequency of 62.5 Hz meets the condition of n = 4, but since the CD-SWI method has a tolerance of about 5 Hz above and below the excitation frequency suitable for imaging, imaging is possible even with the frequency used in the experiment.
具体的には、2人の被験者の僧帽筋に対して小型の加振器で加振を行ったときの、浅い部分(0-24mm)、深い部分(24-48mm)それぞれの超音波受信信号を、写真中に示すタブレット型超音波映像装置に出力して記録した。図8の各図は、この時のBモード像である。 Specifically, when two subjects' trapezius muscles were excited with a small vibrator, the ultrasound signals received from the shallow part (0-24 mm) and deep part (24-48 mm) were output to the tablet-type ultrasound imaging device shown in the photograph and recorded. Each figure in Figure 8 is a B-mode image at that time.
従来法では、雑音の影響により、せん断波の伝播図には非常に細かな高周波数のパターンがアーティファクトとして生じていた。一方、本発明の処理方法により雑音が有効に抑制され、従来法のようなアーティファクトは生じない。僧帽筋内を伝播していくせん断波を二次元画像として明瞭に出力し記録することができる。 In conventional methods, the influence of noise caused very fine high-frequency patterns to appear as artifacts in the shear wave propagation diagram. On the other hand, the processing method of the present invention effectively suppresses noise, and no artifacts like those in conventional methods appear. Shear waves propagating within the trapezius muscle can be clearly output and recorded as two-dimensional images.
(作用効果)
生体硬さの映像系であるCD-SWI法で生体書式内部を伝わるせん断波を映像化しようとするとき、拍動や体動などの生体由来の雑音、超音波のスペックルに由来する雑音、超音波の受信装置の雑音など雑音の影響を受けて、せん断波の映像が得にくいことがある。
(Action and Effect)
When attempting to visualize shear waves propagating inside a biological tissue using the CD-SWI method, which is an imaging system for biological stiffness, it can be difficult to obtain an image of the shear waves due to the influence of noise such as noise from the biological tissue, such as pulsation and body movement, noise from ultrasound speckle, and noise from the ultrasound receiving device.
CD-SWI法は正弦波で加振するので、得られる超音波信号には一般の血流の映像化では見られない特徴が現れる。この特徴は加振周波数の逆数の周期での周期性であり、1周期内の信号の対称性である。 Since the CD-SWI method uses a sine wave excitation, the ultrasound signal obtained exhibits characteristics not seen in general blood flow imaging. These characteristics are periodicity with a period equal to the inverse of the excitation frequency, and symmetry of the signal within one period.
この信号の周期性と対称性に着目して雑音を抑制する方法を組み込んだ映像装置を使うことで高雑音下であってもCD-SWI法により明瞭なせん断波の映像が得られる。 By using imaging equipment incorporating a method for suppressing noise that focuses on the periodicity and symmetry of this signal, clear images of shear waves can be obtained using the CD-SWI method even in high-noise environments.
(6)(その他)
上記のほか、各振動子で受信した超音波信号をスペクトル分析し、学習を経た多層ニューラルネット解析によって、異物オブジェクトを大きさ又は硬さの異なる複数種類のオブジェクトスペクトルモデルのいずれかに判別し、判別したオブジェクトスペクトルモデルに1対1対応した色又は形状でマップ上に表示することができる。検出面に合わせたマップ表示を行い、二次元配列された複数の各受信子と隣接する受信子とが重複して信号検出することで、異物オブジェクトの概形、厚さ(深度)が明瞭に認識できる。
(6) (Other)
In addition to the above, the ultrasonic signal received by each transducer is spectrally analyzed, and the foreign object is classified into one of a plurality of object spectrum models having different sizes or hardness by a multi-layer neural network analysis after learning, and is displayed on a map in a color or shape that corresponds one-to-one to the classified object spectrum model. By displaying the map according to the detection surface and detecting signals by overlapping each of the plurality of two-dimensionally arranged receivers with adjacent receivers, the general shape and thickness (depth) of the foreign object can be clearly recognized.
(超音波映像装置方法)
また、本発明の超音波映像装置方法は、超音波映像装置によって非接触で探触データを取得する上記いずれかの超音波映像装置と、取得された探触データを分析する分析装置とを具備してなる。この超音波映像装置方法における超音波映像装置は、筋肉の片さ試験のほか、内蔵の腫瘍又は硬化部の検出に用いられる(図12)。
図12は、本発明の超音波映像装置による僧帽筋への運動負荷による硬さの変化グラフである。1回当たり5kgのダンベルシュラッグ10往復を行って運動負荷をかけたときの、せん断波の伝播速度を調べたところ、負荷前と比べて僧帽筋の硬さが伝播速度2倍程度まで上昇していた。
図13は、本発明の超音波映像装置による僧帽筋の運動負荷による硬さの、探査深度比較グラフを示す。負荷前と1回目の運動直後の伝播速度を縦軸に規定し、浅い部分と深い部分の伝播速度差Vtを横軸に規定する。同じ被験者の同じ個所の僧帽筋であっても、浅い部分では伝播速度が下がる傾向にある一方、深い部分では伝播速度がほぼ一定の割合で上がっていることが確認される。また、深い部分では伝播速度の変化にばらつきがあることが確認される。
図14は、1回目の運動負荷直後の伝播速度差と、浅部-深部の伝播速度差との相関グラフである。Vt=(浅部の伝播速度)-(深部の伝播速度)とし、負荷前から1回目までの運動直後の伝播速度差を縦軸に規定し、浅い部分と深い部分の伝播速度差Vtを横軸に規定する。相関係数0.83であり、一定の相関関係にあることが確認される。
図15は、痛みのある筋膜に対し、超音波エコ-ガイド下で生理食塩水を注入したときの、せん断波の伝播速度の変化例を示したグラフである。生理食塩水を注入することで、せん断波伝播速度が時間経過と共に一定の割合で上昇していることが確認される。
(Ultrasonic Imaging Method)
The ultrasonic imaging method of the present invention includes any one of the ultrasonic imaging devices described above for acquiring non-contact probe data by the ultrasonic imaging device, and an analysis device for analyzing the acquired probe data. The ultrasonic imaging device in the ultrasonic imaging method is used for muscle separation tests and for detecting tumors or hardening in internal organs (FIG. 12).
12 is a graph showing the change in stiffness of the trapezius muscle due to exercise load, as measured by the ultrasonic imaging device of the present invention. When the exercise load was applied by performing 10 rounds of dumbbell shrugs with a weight of 5 kg each time, the propagation velocity of the shear wave was examined, and it was found that the stiffness of the trapezius muscle had increased to about twice the propagation velocity before the load was applied.
13 shows a comparative graph of the exploration depth of the stiffness of the trapezius muscle due to exercise load using the ultrasonic imaging device of the present invention. The vertical axis indicates the propagation velocity before the load and immediately after the first exercise, and the horizontal axis indicates the propagation velocity difference Vt between the shallow and deep parts. Even for the same part of the trapezius muscle of the same subject, it is confirmed that the propagation velocity tends to decrease in the shallow part, while the propagation velocity increases at a nearly constant rate in the deep part. It is also confirmed that there is variation in the change in the propagation velocity in the deep part.
14 is a correlation graph between the propagation velocity difference immediately after the first exercise load and the propagation velocity difference between the shallow and deep parts. Vt = (propagation velocity of the shallow part) - (propagation velocity of the deep part), and the propagation velocity difference from before loading to immediately after the first exercise is defined on the vertical axis, and the propagation velocity difference Vt between the shallow and deep parts is defined on the horizontal axis. The correlation coefficient is 0.83, confirming that there is a certain correlation.
Fig. 15 is a graph showing an example of the change in shear wave propagation velocity when saline is injected into painful fascia under ultrasound echo guidance. It can be seen that the shear wave propagation velocity increases at a constant rate over time by injecting saline.
Claims (5)
複数の超音波振動子を送信子・受信子それぞれ同配列で二次元配列したプローブと、
プローブで受信した元信号からせん断波の超音波映像信号を生成し出力する信号処理装置と、
信号処理装置による超音波映像信号を表示する表示装置と、を少なくとも具備した超音波映像装置であって、
前記信号処理装置は、
前記正弦波振動の特定周波数に対応した、前記特定周波数と同一の対応周波数及びその前後帯域の正弦波信号のみを抽出し及び強調し、この抽出し及び強調した正弦波信号について、信号の周期性と半周期での信号の絶対値の対称性に基づいてせん断波伝播速度の推定を行い、生体物の表皮に接触させたプローブの二次元配列に対応した所定の二次元領域内における、各点の推定せん断波伝播速度からなるせん断波伝播図画像を、せん断波の再生画像として連続生成することを特徴とする、超音波映像装置。 a vibrator that applies a sinusoidal vibration of a single specific frequency in a specific direction within the living body while being in contact with the epidermis of the living body;
A probe in which multiple ultrasonic transducers are arranged two-dimensionally with the same arrangement for both transmitters and receivers;
a signal processing device that generates and outputs an ultrasonic image signal of a shear wave from the original signal received by the probe;
A display device that displays an ultrasonic image signal from the signal processing device,
The signal processing device includes:
An ultrasonic imaging device characterized in that only sine wave signals of the same frequency as a specific frequency of the sinusoidal vibration and the bands surrounding the specific frequency are extracted and emphasized, and a shear wave propagation velocity is estimated for the extracted and emphasized sine wave signals based on the periodicity of the signal and the symmetry of the absolute value of the signal in a half cycle, and a shear wave propagation diagram image consisting of the estimated shear wave propagation velocity at each point within a predetermined two-dimensional region corresponding to the two-dimensional arrangement of a probe in contact with the epidermis of a living body is continuously generated as a reconstructed image of the shear wave .
受信した元信号において、周期性及び半周期での対称性を有する特定信号について、超音波のパルス繰り返し周波数を、対称性を有する特定信号の自己相関の導出によって増幅させた増幅信号を取得し、この増幅信号に基づいて、加振による生体物内への正弦波信号に応じて得られた、増幅信号によるせん断波伝播速度の流速値を推定する流速推定ステップと、の各ステップを順に行うことを特徴とする、請求項1に記載の超音波映像装置。 The signal processing device performs band pass filtering to pass only sinusoidal signals having a frequency range corresponding to the specific frequency, the sinusoidal signals having a frequency that is an integer multiple of the specific frequency and a frequency range before and after the specific frequency;
a flow velocity estimation step of estimating a flow velocity value of a shear wave propagation velocity due to the amplified signal, which is obtained in response to a sinusoidal signal caused by vibration excitation in a living body, based on the amplified signal, for a specific signal having periodicity and symmetry in a half cycle in the received original signal , by amplifying the pulse repetition frequency of the ultrasound by deriving the autocorrelation of the specific signal having symmetry, and
プローブの元信号の取得時刻に対応して、元信号を輝度に変換した前記二次元領域のBモード画像を、所定のバッファ数だけオンタイムで生成して連続的に蓄積し出力すると共に、
プローブの元信号の前記取得時刻に対応したせん断波伝播図を、前記所定のバッファ数と同じかそれ以下の枚数だけオンタイムで生成して、連続的又は断続的に蓄積し出力し、
前記表示装置は、所定の二次元領域のBモード画像とせん断波伝播図とを、取得時刻に対応して同期させ、重ね合わせ画像として連続表示する、請求項1に記載の超音波映像装置。 The signal processing device includes:
A B-mode image of the two-dimensional region obtained by converting the original signal into brightness in response to the acquisition time of the original signal of the probe is generated in real time for a predetermined number of buffers, and is continuously stored and output;
generating shear wave propagation diagrams corresponding to the acquisition times of the original signals of the probe in real time in a number equal to or less than the predetermined number of buffers, and continuously or intermittently storing and outputting the shear wave propagation diagrams;
2. The ultrasonic imaging device according to claim 1, wherein said display device continuously displays a B-mode image of a predetermined two-dimensional region and a shear wave propagation diagram as a superimposed image, in synchronization with each other in accordance with acquisition times.
前記信号処理装置は、加振した各周期の特定信号それぞれについて、自己相関による加算処理を行った自己相関値を導出し、特定の複数周期それぞれに対応する自己相関値を演算し、
複数周期それぞれの対応する自己相関値の平均値を比較して推定流速値を求める、請求項1又は2のいずれか記載の超音波映像装置。 The vibrator excites a specific signal having a plurality of periods,
The signal processing device derives an autocorrelation value by performing an addition process based on autocorrelation for each specific signal of each excitation period, and calculates an autocorrelation value corresponding to each of the specific multiple periods;
3. The ultrasonic imaging apparatus according to claim 1, wherein the estimated flow velocity value is obtained by comparing average values of the autocorrelation values corresponding to each of a plurality of periods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020034547A JP7609363B2 (en) | 2020-02-29 | 2020-02-29 | Ultrasound Imaging Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020034547A JP7609363B2 (en) | 2020-02-29 | 2020-02-29 | Ultrasound Imaging Device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021137081A JP2021137081A (en) | 2021-09-16 |
JP7609363B2 true JP7609363B2 (en) | 2025-01-07 |
Family
ID=77666785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020034547A Active JP7609363B2 (en) | 2020-02-29 | 2020-02-29 | Ultrasound Imaging Device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7609363B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008136880A (en) | 2008-01-29 | 2008-06-19 | Takeshi Shiina | Ultrasonic diagnostic system, strain distribution display method, and elastic modulus display method |
US20130267847A1 (en) | 2012-04-05 | 2013-10-10 | Tadashi Tamura | Methods and apparatus for ultrasound imaging |
JP2014217605A (en) | 2013-05-09 | 2014-11-20 | 国立大学法人群馬大学 | Video system and image forming method |
WO2015151972A1 (en) | 2014-04-02 | 2015-10-08 | 国立大学法人群馬大学 | Ultrasonic imaging system |
JP2019180870A (en) | 2018-04-11 | 2019-10-24 | 国立大学法人群馬大学 | Ultrasonic video system and device |
-
2020
- 2020-02-29 JP JP2020034547A patent/JP7609363B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008136880A (en) | 2008-01-29 | 2008-06-19 | Takeshi Shiina | Ultrasonic diagnostic system, strain distribution display method, and elastic modulus display method |
US20130267847A1 (en) | 2012-04-05 | 2013-10-10 | Tadashi Tamura | Methods and apparatus for ultrasound imaging |
JP2015512273A (en) | 2012-04-05 | 2015-04-27 | 日立アロカメディカル株式会社 | Method and apparatus for ultrasound imaging |
JP2014217605A (en) | 2013-05-09 | 2014-11-20 | 国立大学法人群馬大学 | Video system and image forming method |
WO2015151972A1 (en) | 2014-04-02 | 2015-10-08 | 国立大学法人群馬大学 | Ultrasonic imaging system |
US20170014104A1 (en) | 2014-04-02 | 2017-01-19 | National University Corporation Gunma University | Ultrasonic imaging system |
JP2019180870A (en) | 2018-04-11 | 2019-10-24 | 国立大学法人群馬大学 | Ultrasonic video system and device |
Also Published As
Publication number | Publication date |
---|---|
JP2021137081A (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11635514B2 (en) | Imaging methods and apparatuses for performing shear wave elastography imaging | |
US11493616B2 (en) | Method and a device for imaging a visco-elastic medium | |
US9554770B2 (en) | High pulse repetition frequency for detection of tissue mechanical property with ultrasound | |
CN100548224C (en) | Utilize ultrasound detection inner narrow with the equipment of identification by its tissue that causes vibration | |
JP4842933B2 (en) | Diagnostic imaging equipment | |
US10779799B2 (en) | Method for ultrasound elastography through continuous vibration of an ultrasound transducer | |
KR102309904B1 (en) | Shear Wave Elastography Method and Apparatus for Imaging Anisotropic Media | |
US7803116B2 (en) | Transcutaneous localization of arterial bleeding by two-dimensional ultrasonic imaging of tissue vibrations | |
CN114173670B (en) | Viscoelasticity measurement method and ultrasonic measurement system | |
KR101935514B1 (en) | Frequency compounding in elasticity imaging | |
JP4297699B2 (en) | Method and apparatus for rendering spectral distortion | |
KR101914706B1 (en) | Motion independence in acoustic radiation force impulse imaging | |
WO2007110669A1 (en) | Image data processing systems | |
CN110269643A (en) | Self-adapting clutter filtering in the ultrasonic imaging based on acoustic radiation power | |
JP7609363B2 (en) | Ultrasound Imaging Device | |
US6913574B2 (en) | Method and apparatus for measuring elastic characteristics of a medium by using ultrasound images | |
US20170156701A1 (en) | System and method for gradient-based k-space search for shear wave velocity dispersion estimation | |
Schlaikjer et al. | Maximum likelihood blood velocity estimator incorporating properties of flow physics | |
KR101117544B1 (en) | Ultrasound Diagnostic System and Method For Forming Elastic Image | |
JP2005058533A (en) | Ultrasonic diagnostic apparatus | |
JP2024073674A (en) | Apparatus and method for displaying body tissue hardness | |
CN119745425A (en) | Viscoelasticity measurement method and ultrasonic measurement system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231017 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240528 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241211 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7609363 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |