[go: up one dir, main page]

JP7606719B1 - Coating composition and photocatalytic coating film - Google Patents

Coating composition and photocatalytic coating film Download PDF

Info

Publication number
JP7606719B1
JP7606719B1 JP2024141647A JP2024141647A JP7606719B1 JP 7606719 B1 JP7606719 B1 JP 7606719B1 JP 2024141647 A JP2024141647 A JP 2024141647A JP 2024141647 A JP2024141647 A JP 2024141647A JP 7606719 B1 JP7606719 B1 JP 7606719B1
Authority
JP
Japan
Prior art keywords
coating composition
titanium oxide
weight
acrylic adhesive
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024141647A
Other languages
Japanese (ja)
Inventor
実 中園
晶平 前田
奉文 松永
雅典 平尾
Original Assignee
株式会社シーエヌアーツ
日本ナノテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シーエヌアーツ, 日本ナノテック株式会社 filed Critical 株式会社シーエヌアーツ
Priority to JP2024141647A priority Critical patent/JP7606719B1/en
Application granted granted Critical
Publication of JP7606719B1 publication Critical patent/JP7606719B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】各種製品の表面状態を問わず、優れた耐久性を発揮する光触媒塗膜及びそれに用いられる塗料組成物を提供する
【解決手段】光触媒を含む塗料組成物は、ペルオキソチタン酸とアンモニウムイオンとを含み、酸化チタン微粒子が水中に分散し、30万以上80万以下の重合平均分子量を有するアクリル系共重合体が水中に分散したエマルジョン型アクリル系粘着剤を、塗料組成物の総重量に対して0.15重量%~3.0重量%の割合で含む。
【選択図】なし
[Problem] To provide a photocatalytic coating film that exhibits excellent durability regardless of the surface condition of various products, and a coating composition used therein. [Solution] The coating composition containing a photocatalyst contains peroxotitanic acid and ammonium ions, titanium oxide fine particles dispersed in water, and an emulsion-type acrylic adhesive in which an acrylic copolymer having a polymerization average molecular weight of 300,000 or more and 800,000 or less is dispersed in water, in a ratio of 0.15% by weight to 3.0% by weight based on the total weight of the coating composition.
[Selection diagram] None

Description

本発明は、光触媒を含む塗料組成物及びこれを用いた光触媒塗膜に関する。 The present invention relates to a coating composition containing a photocatalyst and a photocatalytic coating film using the same.

光触媒は、光の照射により触媒作用を示す物質であり、触媒作用で生ずる活性酸素やヒドロキシラジカルは、細菌やウイルス等の有機物を分解する。これに着目して、人の手指が触れる各種製品の表面部分(以下、「基材表面ともいう」)に光触媒を含む光触媒塗膜を形成することがある。光触媒塗膜の形成に利用される塗料組成物としては例えば特許文献1に記載されたものが知られている。 Photocatalysts are substances that exhibit catalytic action when irradiated with light, and the active oxygen and hydroxyl radicals generated by the catalytic action decompose organic matter such as bacteria and viruses. With this in mind, photocatalyst coating films containing photocatalysts are sometimes formed on the surfaces of various products that come into contact with human fingers (hereinafter also referred to as "substrate surfaces"). One example of a coating composition used to form a photocatalyst coating film is known, which is described in Patent Document 1.

このものでは、光触媒としての酸化チタン微粒子を水中に分散させた分散液を塗料組成物とし、酸化チタン微粒子を基材表面に結合させるバインダーが含まれていない。そのため、基材表面に微細な凹凸があれば、塗料組成物を基材表面に塗布したときに、凹部に酸化チタン微粒子が入り込み、この状態で硬化することで(即ち、アンカー効果により)、基材表面に定着することになる。一方、製品の部分が例えば樹脂製であり、基材表面が平滑であるような場合、酸化チタン微粒子を効果的に定着させることができず、光触媒塗膜が剥がれ易くなって耐久性が劣るという問題がある。また、基材表面に対する酸化チタン微粒子の定着性を向上させるため、基材表面に例えばバインダーを含む下地膜を形成した後、この下地膜上に酸化チタン微粒子を含む塗料組成物を塗装して光触媒塗膜を形成することもできるが、これでは塗装工程が煩雑になってしまう。 In this coating composition, a dispersion of titanium oxide fine particles as a photocatalyst dispersed in water is used as the coating composition, and no binder is included to bind the titanium oxide fine particles to the substrate surface. Therefore, if the substrate surface has fine irregularities, when the coating composition is applied to the substrate surface, the titanium oxide fine particles will enter the recesses and will be fixed to the substrate surface by hardening in this state (i.e., due to the anchor effect). On the other hand, if the product part is made of resin, for example, and the substrate surface is smooth, the titanium oxide fine particles cannot be fixed effectively, and the photocatalytic coating film is easily peeled off, resulting in poor durability. In addition, in order to improve the fixation of the titanium oxide fine particles to the substrate surface, a base film containing, for example, a binder can be formed on the substrate surface, and then a coating composition containing titanium oxide fine particles can be applied on this base film to form a photocatalytic coating film, but this makes the coating process complicated.

特許第2875993号公報Patent No. 2875993

本発明は、以上の点に鑑み、各種製品の表面状態を問わず、優れた耐久性を発揮する光触媒塗膜及びそれに用いられる塗料組成物を提供することをその課題とするものである。 In view of the above, the present invention aims to provide a photocatalytic coating film that exhibits excellent durability regardless of the surface condition of various products, and a coating composition for use therein.

上記課題を解決するために、本発明の光触媒を含む塗料組成物は、ペルオキソチタン酸とアンモニウムイオンとを含み、酸化チタン微粒子が水中に分散し、平均粒径が50nm以下の酸化チタン微粒子を塗料組成物の総重量に対して0.4重量%~13.4重量%の範囲で含み、30万以上80万以下の重合平均分子量を有するポリアクリル酸及びポリアクリル酸塩の少なくとも一方が水中に分散したエマルジョン型アクリル系粘着剤を、料組成物の総重量に対して0.15重量%~3.0重量%の割合で含むことを特徴とする In order to solve the above problems, the coating composition containing the photocatalyst of the present invention contains peroxotitanic acid and ammonium ions, titanium oxide microparticles dispersed in water, titanium oxide microparticles having an average particle size of 50 nm or less in a range of 0.4 wt % to 13.4 wt % based on the total weight of the coating composition, and an emulsion-type acrylic adhesive in which at least one of polyacrylic acid and a polyacrylate salt having a polymerization average molecular weight of 300,000 or more and 800,000 or less is dispersed in water, in a proportion of 0.15 wt % to 3.0 wt % based on the total weight of the coating composition .

また、本発明の光触媒塗膜は、上記塗料組成物から形成されることを特徴とする。ここで、本願発明者らの鋭意研究の結果、次のことを知見するのに至った。即ち、ペルオキソチタン酸とアンモニウムイオンとを含み、酸化チタン微粒子が分散した塗料組成物に、30万以上80万以下の重合平均分子量を有するアクリル系共重合体が水中に分散したエマルジョン型アクリル系粘着剤を、その総重量に対して0.15重量%~3.0重量%で配合して塗装して得られた光触媒塗膜は、その緻密度が向上することを知見するのに至った。このような知見を基に、上記塗料組成物を塗装して得られる光触媒塗膜は、上記アクリル系粘着剤を含まないものと比較して、酸化チタン微粒子同士の強固性が増強され、酸化チタン微粒子の基材表面に対する定着性が向上することで、光触媒塗膜の硬度が飛躍的に向上する。本発明の光触媒塗膜は、樹脂製の基材表面に塗装されたものでも、JIS K 5600-5-4に基づく引っかき硬度(鉛筆法)試験で4H以上の硬度を有し、優れた耐久性を発揮する。また、本発明の塗料組成物を基材表面に直接塗装すれば、上記硬度を有する光触媒塗膜が得られるため、下地膜等を形成する必要がなく、塗装工程が煩雑にならない。なお、本発明の塗料組成物に含まれるアクリル系粘着剤は、酸化チタン微粒子を基材表面に結合させるものではなく、酸化チタン微粒子同士の強固性を増強させ、より強固に硬化させる役割を担う。 The photocatalytic coating film of the present invention is characterized in that it is formed from the above-mentioned paint composition. Here, as a result of the intensive research of the present inventors, the following has been discovered. That is, it has been discovered that the photocatalytic coating film obtained by mixing an emulsion-type acrylic adhesive in which an acrylic copolymer having a polymerization average molecular weight of 300,000 to 800,000 is dispersed in water with a paint composition containing peroxotitanic acid and ammonium ions and titanium oxide fine particles dispersed therein, at 0.15% by weight to 3.0% by weight relative to the total weight of the paint composition, and applying the mixture has improved density. Based on this discovery, the photocatalytic coating film obtained by applying the above-mentioned paint composition has enhanced strength between the titanium oxide fine particles and improved adhesion of the titanium oxide fine particles to the substrate surface, compared to a photocatalytic coating film obtained by applying the above-mentioned paint composition, and the hardness of the photocatalytic coating film is dramatically improved by this. The photocatalytic coating film of the present invention, even when applied to the surface of a resin substrate, has a hardness of 4H or more in a scratch hardness (pencil method) test based on JIS K 5600-5-4, and exhibits excellent durability. In addition, if the coating composition of the present invention is directly applied to the surface of a substrate, a photocatalytic coating film having the above-mentioned hardness is obtained, so there is no need to form a base film or the like, and the coating process is not complicated. Note that the acrylic adhesive contained in the coating composition of the present invention does not bond the titanium oxide fine particles to the surface of the substrate, but rather plays the role of increasing the strength of the titanium oxide fine particles themselves and hardening them more firmly.

また、本発明の光触媒塗膜は、光触媒塗膜中の酸化チタン微粒子がバインダーに埋もれてしまうといった不具合が生じず、酸化チタン微粒子が塗膜表面に表出される。その結果、酸化チタン微粒子の表面は光照射を受けやすくなると共に、酸化チタン微粒子の表面と細菌やウイルス等の有機物との接触面が増加することで、光触媒塗膜の光触媒作用が向上する。また、本発明の光触媒塗膜は、88%以上の可視光線透過率を有する透明膜であり、印字や着色等が施された基材表面に光触媒塗膜を塗装した場合でも、基材表面の印字等の視認性は損なわれない。なお、本発明において、バインダーとは、アクリル、エポキシやウレタン等の有機材料を主成分とする有機バインダーや、シリカ、アルミナや酸化亜鉛等の無機材料を主成分とする無機バインダーをいう。 In addition, the photocatalytic coating film of the present invention does not suffer from the problem that the titanium oxide fine particles in the photocatalytic coating film are buried in the binder, and the titanium oxide fine particles are exposed to the coating film surface. As a result, the surface of the titanium oxide fine particles is more susceptible to light irradiation, and the contact area between the surface of the titanium oxide fine particles and organic matter such as bacteria and viruses is increased, thereby improving the photocatalytic action of the photocatalytic coating film. In addition, the photocatalytic coating film of the present invention is a transparent film with a visible light transmittance of 88% or more, and even when the photocatalytic coating film is applied to the surface of a substrate that has been printed or colored, the visibility of the printing, etc. on the substrate surface is not impaired. In addition, in the present invention, the binder refers to an organic binder whose main component is an organic material such as acrylic, epoxy, or urethane, or an inorganic binder whose main component is an inorganic material such as silica, alumina, or zinc oxide.

また、本発明の塗料組成物は、酸化チタン以外の金属及び金属化合物並びに金属イオンの少なくとも1つ以上を更に含むことが好ましい。この場合、例えば金属化合物として酸化銅(CuO)等の銅化合物や金属イオンとして銀イオン(Ag+)を含む塗料組成物を塗装して得られる光触媒塗膜は、光照射を受けていないときでも、銅化合物や銀イオンにより、細菌やウイルス等の有機物を分解することができる。また、酸化チタン以外の金属や金属化合物を含むことで、酸化チタンの光触媒作用を可視光領域で増感させることができる。 In addition, the coating composition of the present invention preferably further contains at least one of metals and metal compounds other than titanium oxide and metal ions. In this case, for example, a photocatalytic coating film obtained by applying a coating composition containing a copper compound such as copper oxide (CuO) as a metal compound and a silver ion (Ag + ) as a metal ion can decompose organic matter such as bacteria and viruses by the copper compound or silver ion even when not exposed to light irradiation. In addition, by containing a metal or metal compound other than titanium oxide, the photocatalytic action of titanium oxide can be enhanced in the visible light region.

本発明の光触媒塗膜の可視光線透過率を示すスペクトル。1 is a spectrum showing the visible light transmittance of the photocatalytic coating film of the present invention.

以下、光触媒として酸化チタン微粒子を水中に分散して含む塗料組成物及びこれを塗装して得られる光触媒塗膜を例に本発明の実施形態を説明する。酸化チタン微粒子とは、平均粒径が50nm以下(代表的な粒径が4nm~20nm)であるものをいう。酸化チタン微粒子の粒径が50nmよりも大きくなると、酸化チタン微粒子が凝縮し、沈殿し易くなる等の不具合が生じる。また、酸化チタン微粒子の平均粒径は、透過電子顕微鏡により酸化チタン微粒子の画像を撮像及び解析する等の公知の方法により求めることができるため、詳細な説明は省略する。 Below, an embodiment of the present invention will be described using as an example a coating composition containing titanium oxide fine particles dispersed in water as a photocatalyst and a photocatalytic coating film obtained by applying the same. Titanium oxide fine particles refer to particles having an average particle size of 50 nm or less (typical particle size is 4 nm to 20 nm). If the particle size of the titanium oxide fine particles is greater than 50 nm, problems such as the titanium oxide fine particles condensing and easily settling will occur. In addition, the average particle size of the titanium oxide fine particles can be determined by known methods such as capturing and analyzing images of the titanium oxide fine particles using a transmission electron microscope, and therefore a detailed description will be omitted.

塗料組成物を得るのに際しては、先ず、ペルオキソチタン酸とアンモニウムイオンとを含み、酸化チタン微粒子が分散した酸化チタン微粒子分散液を調製する。酸化チタン微粒子分散液の調製には、例えば、上記特許文献(特許第2875993号公報)記載の方法が利用できるが、酸化チタン微粒子分散液はこれに限定されず、他の方法により調製したものや市販のものを用いることができる。酸化チタン微粒子の原料となるチタン含有物質としては、例えば水酸化チタン、酸化チタンや水酸化チタンゲル等の微粒子が分散した分散液を用いることができる。水酸化チタンゲルを原料とする場合、塩化チタン、硫酸チタン等の無機チタン化合物の水溶液をアンモニアや水酸化ナトリウム等と反応させる等の方法によって調製したものを用いることができる。そして、分散液中の水酸化チタンゲルや酸化チタン等の微粒子を分離し、これら微粒子を懸濁した懸濁液に過酸化水素水を混合することで、水酸化チタンや酸化チタン等を反応させて、ペルオキソチタン酸溶液を調製する。 When preparing the coating composition, first, a titanium oxide fine particle dispersion liquid containing peroxotitanic acid and ammonium ions and in which titanium oxide fine particles are dispersed is prepared. For example, the method described in the above patent document (Patent Publication No. 2875993) can be used to prepare the titanium oxide fine particle dispersion liquid, but the titanium oxide fine particle dispersion liquid is not limited to this, and one prepared by other methods or commercially available one can be used. As the titanium-containing substance that is the raw material for the titanium oxide fine particles, for example, a dispersion liquid in which fine particles such as titanium hydroxide, titanium oxide, and titanium hydroxide gel are dispersed can be used. When titanium hydroxide gel is used as the raw material, one prepared by a method such as reacting an aqueous solution of an inorganic titanium compound such as titanium chloride or titanium sulfate with ammonia or sodium hydroxide can be used. Then, the fine particles such as titanium hydroxide gel and titanium oxide in the dispersion liquid are separated, and the suspension in which these fine particles are suspended is mixed with hydrogen peroxide water to react with titanium hydroxide, titanium oxide, etc., to prepare a peroxotitanic acid solution.

溶液中の未反応の過酸化水素を分解させた後、この溶液を95℃~100℃の温度で4時間~8時間加熱する。これにより、ペルオキソ基を有するアナターゼ型酸化チタンの結晶核が生じ、表面がペルオキソ基で修飾されたアナターゼ型酸化チタン微粒子が水中に分散した酸化チタン微粒子分散液が得られる。また、この時、酸化チタン微粒子分散液のpH(例えば7~8.6)やイオン強度(例えばアンモニウムイオン濃度が100ppm~500ppmの範囲となるように)を適宜調整する。得られた酸化チタン微粒子分散液中には、ペルオキソチタン酸とアンモニウムイオンとが含まれ、ペルオキソチタン酸の少なくとも一部は、アンモニウムイオンが配位したペルオキソチタン錯体として存在する。このペルオキソチタン錯体は、全体としてプラスの電荷を帯びており、この電荷によって、ペルオキソチタン酸錯体が吸着した酸化チタン微粒子が、互いに反発することで、酸化チタン微粒子の凝集を防ぎ、酸化チタン微粒子が水中に安定して分散する。このため、上記方法で酸化チタン微粒子分散液を調製する場合、酸化チタン微粒子を水中に分散させる分散剤や有機溶媒等の助剤が不要となる(言い換えると、上記方法で得られる酸化チタン微粒子分散液には、水以外に特別な助剤等が含まれない)。また、上記酸化チタン微粒子分散液を用いて得られる本発明の塗料組成物には、ペルオキソチタン酸が塗料組成物の総重量に対して0.09重量%~0.4重量%の範囲で含まれることが好ましく、酸化チタン微粒子(酸化チタン)が塗料組成物の総重量に対して0.4重量%~13.4重量%の範囲で含まれることが好ましい。 After the unreacted hydrogen peroxide in the solution is decomposed, the solution is heated at a temperature of 95°C to 100°C for 4 to 8 hours. This generates crystal nuclei of anatase-type titanium oxide having peroxo groups, and a titanium oxide fine particle dispersion liquid is obtained in which anatase-type titanium oxide fine particles whose surfaces are modified with peroxo groups are dispersed in water. At this time, the pH (e.g., 7 to 8.6) and ionic strength (e.g., so that the ammonium ion concentration is in the range of 100 ppm to 500 ppm) of the titanium oxide fine particle dispersion liquid are appropriately adjusted. The obtained titanium oxide fine particle dispersion liquid contains peroxotitanic acid and ammonium ions, and at least a portion of the peroxotitanic acid exists as a peroxotitanic acid complex coordinated with ammonium ions. This peroxotitanic acid complex is positively charged overall, and this charge causes the titanium oxide fine particles to which the peroxotitanic acid complex is adsorbed to repel each other, preventing the titanium oxide fine particles from agglomerating, and the titanium oxide fine particles are stably dispersed in water. Therefore, when preparing a titanium oxide microparticle dispersion using the above method, auxiliary agents such as dispersants and organic solvents for dispersing titanium oxide microparticles in water are not required (in other words, the titanium oxide microparticle dispersion obtained using the above method does not contain any special auxiliary agents other than water). In addition, the coating composition of the present invention obtained using the titanium oxide microparticle dispersion preferably contains peroxotitanic acid in the range of 0.09% by weight to 0.4% by weight based on the total weight of the coating composition, and preferably contains titanium oxide microparticles (titanium oxide) in the range of 0.4% by weight to 13.4% by weight based on the total weight of the coating composition.

次に、酸化チタン微粒子分散液にアクリル系粘着剤を混合して塗料組成物を得る。アクリル系粘着剤としては、アクリル系共重合体が水性媒体等の溶媒に分散したエマルジョン型アクリル系粘着剤等(例えば、藤倉化成株式会社製、商品名「LKG-1101」、「LKG-1102」、「LKG-1104」、「LKG-1202A」、DIC株式会社製、商品名「ボンコートW-26」、「ボンコートW-386」、東亞合成株式会社製、商品名「HV-C9500」等)を用いることができる。この場合、アクリル系粘着剤に含まれるアクリル系共重合体の分子量(重合平均分子量)は、30万以上80万以下の範囲であることが好ましい。アクリル系共重合体の分子量が30万未満では、十分な粘着性が得られないため、酸化チタン微粒子同士の強固性が増強されず、これを塗装して得られる光触媒塗膜の硬度が4H以上とならない。一方で、アクリル系共重合体の分子量が80万を超えると、塗料組成物中の酸化チタン微粒子の凝縮・沈殿が生じ易くなり、これを塗装して得られる光触媒塗膜の硬度は4H以上とならない。また、アクリル系粘着剤に含まれるアクリル系共重合体としては、ポリアクリル酸ナトリウムやポリアクリル酸カリウム等のポリアクリル酸塩やポリアクリル酸が好ましい。なお、エマルジョン型アクリル系粘着剤のpHは中性域(7~8.6)であることが好ましく、カチオン系やアニオン系のアクリル系共重合体、また、ポリアクリル酸塩等と比較して極性が高いスチレン・アクリル酸共重合体を主成分とするエマルジョン型アクリル系粘着剤や、アルコール等の有機溶媒や分散剤等が含まれるエマルジョン型アクリル系粘着剤を用いる場合には、アクリル系粘着剤を混合することで、酸化チタン微粒子の沈殿を誘発する虞がある。 Next, the titanium oxide fine particle dispersion is mixed with an acrylic adhesive to obtain a coating composition. As the acrylic adhesive, an emulsion type acrylic adhesive in which an acrylic copolymer is dispersed in a solvent such as an aqueous medium (for example, Fujikura Kasei Co., Ltd., product names "LKG-1101", "LKG-1102", "LKG-1104", "LKG-1202A", DIC Corporation, product names "Boncoat W-26", "Boncoat W-386", Toagosei Co., Ltd., product name "HV-C9500", etc.) can be used. In this case, the molecular weight (weight average molecular weight) of the acrylic copolymer contained in the acrylic adhesive is preferably in the range of 300,000 to 800,000. If the molecular weight of the acrylic copolymer is less than 300,000, sufficient adhesion cannot be obtained, so the strength between the titanium oxide fine particles is not enhanced, and the hardness of the photocatalyst coating film obtained by coating this does not reach 4H or more. On the other hand, if the molecular weight of the acrylic copolymer exceeds 800,000, the titanium oxide fine particles in the coating composition are likely to condense and precipitate, and the hardness of the photocatalytic coating film obtained by applying this is not 4H or more. In addition, as the acrylic copolymer contained in the acrylic adhesive, polyacrylates such as sodium polyacrylate and potassium polyacrylate , and polyacrylic acid are preferable. The pH of the emulsion-type acrylic adhesive is preferably in the neutral range (7 to 8.6). When using an emulsion-type acrylic adhesive containing a styrene-acrylic acid copolymer, which has a higher polarity than cationic or anionic acrylic copolymers, or an emulsion-type acrylic adhesive containing an organic solvent such as alcohol or a dispersant, etc., mixing the acrylic adhesive may induce precipitation of titanium oxide fine particles.

また、塗料組成物中のアクリル系粘着剤の濃度は、塗料組成物の総重量に対して0.15重量%~3.0重量%の範囲であることが好ましい。アクリル系粘着剤の濃度が塗料組成物の総重量に対して0.15重量%未満の塗料組成物では、これを塗装して得られる光触媒塗膜の硬度が4H以上とならない。一方で、アクリル系粘着剤の濃度が塗料組成物の総重量に対して3.0重量%を超えると、塗料組成物中の酸化チタン微粒子の凝縮・沈殿が生じ、これを塗装して得られる光触媒塗膜の硬度は4H以上とならない。また、これを塗装して得られる光触媒塗膜は、白濁した塗膜になってしまうといった不具合が生じる。 The concentration of the acrylic adhesive in the coating composition is preferably in the range of 0.15% to 3.0% by weight based on the total weight of the coating composition. If the concentration of the acrylic adhesive is less than 0.15% by weight based on the total weight of the coating composition, the hardness of the photocatalytic coating film obtained by applying this coating composition will not be 4H or more. On the other hand, if the concentration of the acrylic adhesive exceeds 3.0% by weight based on the total weight of the coating composition, condensation and precipitation of the titanium oxide fine particles in the coating composition will occur, and the hardness of the photocatalytic coating film obtained by applying this coating composition will not be 4H or more. In addition, the photocatalytic coating film obtained by applying this coating composition will have the disadvantage of becoming a cloudy coating film.

酸化チタン微粒子分散液にアクリル系粘着剤を混合する際には、例えば不溶性の固体粒子や酸化チタン以外の金属及び金属化合物並びに金属イオン等、基材表面との濡れ性を向上させるための界面活性剤等を添加剤として加えることができる。金属及び金属化合物としては、例えば、窒化チタン(TiN)、炭化チタン(TiC)、銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)、鉄(Fe)、亜鉛(Zn)、ニッケル(Ni)、ニオブ(Nb)、コバルト(Co)、マンガン(Mn)、ジルコニウム(Zr)及び、これらの金属の酸化物、窒化物や炭酸塩等の金属化合物のうち、少なくとも1種以上を加えることができる。また、金属イオンとしては、例えば、銅イオン、銀イオン、金イオン、アルミニウムイオン、鉄イオン、亜鉛イオン、ニッケルイオン、ニオブイオン、コバルトイオン、マンガンイオン、ジルコニウムイオン及びこれら金属イオンを含む錯体のうち、少なくとも1種以上を加えることができる。これらの添加剤は、アクリル系粘着剤を混合する前の酸化チタン微粒子分散液またはアクリル系粘着剤が混合された塗料組成物に添加・混合することができる。 When mixing the acrylic adhesive with the titanium oxide microparticle dispersion, additives such as insoluble solid particles, metals and metal compounds other than titanium oxide, metal ions, and surfactants for improving wettability with the substrate surface can be added. Examples of metals and metal compounds include at least one of titanium nitride (TiN), titanium carbide (TiC), copper (Cu), silver (Ag), gold (Au), aluminum (Al), iron (Fe), zinc (Zn), nickel (Ni), niobium (Nb), cobalt (Co), manganese (Mn), zirconium (Zr), and metal compounds such as oxides, nitrides, and carbonates of these metals. Examples of metal ions include at least one of copper ions, silver ions, gold ions, aluminum ions, iron ions, zinc ions, nickel ions, niobium ions, cobalt ions, manganese ions, zirconium ions, and complexes containing these metal ions. These additives can be added and mixed into the titanium oxide microparticle dispersion before the acrylic adhesive is mixed in, or into the coating composition into which the acrylic adhesive is mixed.

上記のようにしてアクリル系粘着剤が混合された塗料組成物が得られると、これを基材表面に塗布することで光触媒塗膜を得ることができる。具体的には、アクリル系粘着剤が混合された塗料組成物を、20ml/m~40ml/mとなるように基材表面に塗布する。なお、塗料組成物の塗布には、例えばスプレーコータが用いられるが、塗布方法はこれに限定されるものではない。そして、塗料組成物を基材表面に塗布した後、塗料組成物を乾燥させることで、基材表面に光触媒塗膜が形成される。これにより得られる光触媒塗膜は、JIS K 5600-5-4に基づく引っかき硬度(鉛筆法)試験で4H以上の硬度を有する。なお、乾燥方法は、室温で乾燥させる方法や乾燥機を用いる方法等、公知のものを利用できる。 When the coating composition containing the acrylic adhesive is obtained as described above, a photocatalytic coating film can be obtained by applying the coating composition to the surface of the substrate. Specifically, the coating composition containing the acrylic adhesive is applied to the surface of the substrate so as to be 20 ml/m 2 to 40 ml/m 2. For example, a spray coater is used to apply the coating composition, but the application method is not limited thereto. Then, after the coating composition is applied to the surface of the substrate, the coating composition is dried to form a photocatalytic coating film on the surface of the substrate. The photocatalytic coating film thus obtained has a hardness of 4H or more in the scratch hardness (pencil method) test based on JIS K 5600-5-4. For the drying method, a method of drying at room temperature, a method using a dryer, or other known methods can be used.

以上説明したように、本実施形態によれば、30万以上80万以下の重合平均分子量を有するアクリル系共重合体が水中に分散したエマルジョン型アクリル系粘着剤が、塗料組成物の総重量に対して0.15重量%~3.0重量%の割合で含まれることで、本実施形態の塗料組成物を塗装して得られる光触媒塗膜は、塗装される製品の表面状態を問わず、4H以上の硬度を有し、優れた耐久性を発揮する。また、塗料組成物を基材表面に直接塗装すれば、4H以上の硬度を有する光触媒塗膜が得られるため、塗装工程が煩雑になることもない。 As explained above, according to this embodiment, the emulsion-type acrylic adhesive in which an acrylic copolymer having a polymerization average molecular weight of 300,000 or more and 800,000 or less is dispersed in water is contained in a ratio of 0.15% by weight to 3.0% by weight relative to the total weight of the paint composition, and the photocatalytic coating film obtained by applying the paint composition of this embodiment has a hardness of 4H or more and exhibits excellent durability regardless of the surface condition of the product to be painted. In addition, if the paint composition is applied directly to the surface of the substrate, a photocatalytic coating film having a hardness of 4H or more is obtained, so the painting process does not become complicated.

また、本実施形態の塗料組成物及びこれを塗装して得られる光触媒塗膜にはバインダーが含まれず、酸化チタン微粒子の表面が表出される。このため、酸化チタン微粒子の表面は光照射を受けやすくなると共に酸化チタン微粒子の表面と細菌やウイルス等の有機物との接触面が増加することで、光触媒塗膜の光触媒作用が向上する。また、この光触媒塗膜は、88%以上の可視光線透過率を有する透明膜であるため、印字や着色等が施された基材表面に光触媒塗膜を塗装する場合でも、基材表面の印字等の視認性が損なわれない。 The coating composition of this embodiment and the photocatalytic coating film obtained by applying the coating composition do not contain a binder, and the surface of the titanium oxide fine particles is exposed. This makes the surface of the titanium oxide fine particles more susceptible to light irradiation, and increases the contact area between the surface of the titanium oxide fine particles and organic matter such as bacteria and viruses, thereby improving the photocatalytic action of the photocatalytic coating film. Furthermore, since this photocatalytic coating film is a transparent film with a visible light transmittance of 88% or more, the visibility of the printing, etc. on the substrate surface is not impaired even when the photocatalytic coating film is applied to the surface of a substrate that has been printed, colored, etc.

また、塗料組成物が銀イオン(Ag+)等を更に含む場合には、塗料組成物を塗装して得られる光触媒塗膜は、光の照射を受けていないときでも、銀イオン等により、細菌やウイルス等の有機物を分解することができる。また、酸化チタン以外の金属や金属化合物を含むことで、酸化チタンの光触媒作用を可視光領域で増感させることができる。以下、本発明の実施例及び比較例について説明する。 In addition, when the coating composition further contains silver ions (Ag + ) or the like, the photocatalytic coating film obtained by applying the coating composition can decompose organic matter such as bacteria and viruses by the silver ions or the like even when not irradiated with light. In addition, by containing a metal or metal compound other than titanium oxide, the photocatalytic action of titanium oxide can be enhanced in the visible light region. Hereinafter, examples and comparative examples of the present invention will be described.

[実施例1]
0.6重量%の四塩化チタン水溶液1000mlに、2.5重量%のアンモニア水を110ml滴下し、沈殿した水酸化チタンを分離した。分離した水酸化チタンを180mlの蒸留水に懸濁し、この懸濁液に、30重量%の過酸化水素水を20ml混合してペルオキソチタン酸を得た。溶液中の未反応の過酸化水素水を分解させた後、溶液を100℃で6時間加熱した。そして、この時、アンモニア水を適宜滴下して、pH及びアンモニウムイオン濃度を調整した。これにより、ペルオキソチタン酸濃度が固形分量で0.23重量%、アンモニウムイオン濃度が300ppm、また酸化チタン微粒子の平均粒径が20nm以下であり、酸化チタンを固形分量で1.11重量%含む酸化チタン微粒子分散液を調製した。次に、この酸化チタン微粒子分散液72mlに蒸留水18mlを加えたものに対し、蒸留水で20重量%に調整したエマルジョン型アクリル系粘着剤(藤倉化成株式会社製、商品名「LKG-1101」、重合平均分子量43万のアクリル系共重合体溶液)を10ml混合し、塗料組成物の総重量に対して固形分量で0.17重量%のペルオキソチタン酸と塗料組成物の総重量に対して固形分量で0.8重量%の酸化チタンとを夫々含み、また塗料組成物の総重量に対して2.0重量%のエマルジョン型アクリル系粘着剤を含む塗料組成物を調製した。そして、5cm四方のABS樹脂製の基板を基材とし、この基板の片面に上記塗料組成物を30ml/mとなるように塗布した後、室温で2時間乾燥させて、厚さが約0.1μmの光触媒塗膜を得た。このようにして得られた光触媒塗膜が形成されたABS樹脂製の基板を複数枚作製し、これらを試験片として、JIS K 5600-5-4に基づいて、鉛筆(三菱鉛筆株式会社、ユニ)硬度を評価したところ、光触媒塗膜の硬度は4Hであった。
[Example 1]
110 ml of 2.5% by weight ammonia water was dropped into 1000 ml of 0.6% by weight titanium tetrachloride aqueous solution, and the precipitated titanium hydroxide was separated. The separated titanium hydroxide was suspended in 180 ml of distilled water, and 20 ml of 30% by weight hydrogen peroxide water was mixed with this suspension to obtain peroxotitanic acid. After the unreacted hydrogen peroxide water in the solution was decomposed, the solution was heated at 100°C for 6 hours. At this time, ammonia water was appropriately dropped to adjust the pH and ammonium ion concentration. As a result, a titanium oxide fine particle dispersion liquid was prepared in which the peroxotitanic acid concentration was 0.23% by weight in terms of solid content, the ammonium ion concentration was 300 ppm, the average particle size of titanium oxide fine particles was 20 nm or less, and the titanium oxide was contained in a solid content of 1.11% by weight. Next, 10ml of emulsion-type acrylic adhesive (manufactured by Fujikura Chemical Industries, Ltd., product name "LKG-1101", acrylic copolymer solution with weight average molecular weight of 430,000) adjusted to 20% by weight with distilled water was mixed into 72ml of this titanium oxide fine particle dispersion, and a coating composition was prepared that contains 0.17% by weight of peroxotitanic acid in solid content relative to the total weight of the coating composition, 0.8% by weight of titanium oxide in solid content relative to the total weight of the coating composition, and 2.0% by weight of emulsion-type acrylic adhesive in solid content relative to the total weight of the coating composition. Then, a 5cm square ABS resin substrate was used as the base material, and the coating composition was applied to one side of the substrate to 30ml/ m2 , and then dried at room temperature for 2 hours to obtain a photocatalytic coating film with a thickness of about 0.1μm. A number of ABS resin substrates having the photocatalytic coating film thus formed were prepared, and these were used as test pieces to evaluate the pencil hardness (Mitsubishi Pencil Co., Ltd., Uni) based on JIS K 5600-5-4. The hardness of the photocatalytic coating film was found to be 4H.

また、上記塗料組成物を用いて、白板強化ガラス板(厚み0.1cm)の片面に、上記塗料組成物を30ml/mとなるように塗布した後、室温で2時間乾燥させて、厚さが約0.1μmの光触媒塗膜を得た。この光触媒塗膜が形成されたガラス板の可視光線透過率を測定した。測定したスペクトルを図1中、実線で示す。図1のスペクトルから求めた可視光線(380nm~780nm)の平均透過率は88%であった。なお、上記塗料組成物を塗布する前の白板強化ガラス板の可視光線透過率を測定したスペクトルを図1中、一点鎖線で示す。図1のスペクトルから求めた可視光線(380nm~780nm)の平均透過率は90%であった。 In addition, the coating composition was used to coat one side of a white tempered glass plate (thickness 0.1 cm) with 30 ml/ m2 of the coating composition, and then dried at room temperature for 2 hours to obtain a photocatalytic coating film with a thickness of about 0.1 μm. The visible light transmittance of the glass plate on which this photocatalytic coating film was formed was measured. The measured spectrum is shown by a solid line in FIG. 1. The average transmittance of visible light (380 nm to 780 nm) obtained from the spectrum in FIG. 1 was 88%. The spectrum obtained by measuring the visible light transmittance of the white tempered glass plate before applying the coating composition is shown by a dashed line in FIG. 1. The average transmittance of visible light (380 nm to 780 nm) obtained from the spectrum in FIG. 1 was 90%.

[実施例2]
酸化チタン微粒子分散液72mlに、蒸留水に代えて0.28重量%の銀イオン(Ag+)水18mlを加えたものに対し、エマルジョン型アクリル系粘着剤(20重量%)を10ml混合する(即ち、塗料組成物中の銀イオン濃度を0.05重量%とする)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。また、この塗料組成物を用いて、上記実施例1と同様の方法により光触媒塗膜が形成されたガラス板を作製し、その可視光線透過率を測定したところ、平均透過率は88%以上であった。また、当該試験片について、以下の条件で、抗菌性及び抗ウイルス性を評価した。
<抗菌性試験>
抗菌性試験は、JIS Z 2801:2010の抗菌性試験方法に準拠し、フィルム密着法により行った。具体的には、上記試験片と上記塗料組成物が塗布されていないABS樹脂製基板とに、試験菌液として大腸菌液を夫々滴下した後、24時間培養した。そして、「log(塗料組成物が塗布されていないABS樹脂製基板1cm当たりの培養後生菌数)-log(試験片1cm当たりの培養後生菌数)」の式から、上記試験片の抗菌活性値を算出したところ、抗菌活性値は6.1であった。なお、抗菌活性値は、2.0以上であれば、抗菌性を有するものとして判断される。
<抗ウイルス活性試験>
抗ウイルス活性試験は、ISO 21702の抗菌性試験方法に準拠し、フィルム密着法により行った。具体的には、上記試験片と上記塗料組成物が塗布されていないABS樹脂製基板とに、試験ウイルス液としてインフルエンザウイルス懸濁液を夫々滴下した後、24時間静置した。そして、塗料組成物が塗布されていないABS樹脂製基板の24時間静置後のウイルス感染価(PFU/cm)の常用対数の平均と試験片の24時間静置後のウイルス感染価(PFU/cm)の常用対数の平均との差より、抗ウイルス活性値を算出したところ、上記試験片の抗ウイルス活性値は、4.3であった。なお、抗ウイルス活性値は、2.0以上であれば、抗ウイルス性を有するものとして判断される。
[Example 2]
A coating composition was prepared in the same manner as in Example 1 above, except that 10 ml of an emulsion-type acrylic adhesive (20 wt%) was mixed with 72 ml of titanium oxide microparticle dispersion liquid, instead of distilled water, and 18 ml of 0.28 wt% silver ion (Ag + ) water was added (i.e., the silver ion concentration in the coating composition was 0.05 wt%). In addition, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, and the hardness was 4H. In addition, a glass plate on which a photocatalytic coating film was formed was prepared using this coating composition in the same manner as in Example 1 above, and the visible light transmittance was measured, and the average transmittance was 88% or more. In addition, the antibacterial and antiviral properties of the test piece were evaluated under the following conditions.
<Antibacterial Test>
The antibacterial test was performed by a film adhesion method in accordance with the antibacterial test method of JIS Z 2801:2010. Specifically, E. coli liquid was dropped as a test bacteria liquid onto the above test piece and onto an ABS resin substrate not coated with the above coating composition, and then cultured for 24 hours. The antibacterial activity value of the above test piece was calculated from the formula "log (number of viable bacteria after culture per 1 cm2 of ABS resin substrate not coated with the coating composition) - log (number of viable bacteria after culture per 1 cm2 of test piece)" and was found to be 6.1. An antibacterial activity value of 2.0 or more is considered to be antibacterial.
<Antiviral activity test>
The antiviral activity test was performed by a film adhesion method in accordance with the antibacterial test method of ISO 21702. Specifically, influenza virus suspension was dropped as a test virus liquid onto the above test piece and the ABS resin substrate not coated with the above coating composition, and then left to stand for 24 hours. The antiviral activity value was calculated from the difference between the average common logarithm of the virus infectivity (PFU/cm 2 ) of the ABS resin substrate not coated with the coating composition after standing for 24 hours and the average common logarithm of the virus infectivity (PFU/cm 2 ) of the test piece after standing for 24 hours, and the antiviral activity value of the test piece was 4.3. Note that if the antiviral activity value is 2.0 or more, it is determined that the test piece has antiviral properties.

[比較例1]
酸化チタン微粒子分散液72mlに蒸留水18mlを加えたものに対し、エマルジョン型アクリル系粘着剤に代えて、蒸留水10mlを混合する(即ち、塗料組成物にエマルジョン型アクリル系粘着剤を含まない)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は2Hであった。
[Comparative Example 1]
A coating composition was prepared in the same manner as in Example 1, except that 10 ml of distilled water was mixed with 72 ml of titanium oxide microparticle dispersion liquid to which 18 ml of distilled water was added instead of the emulsion-type acrylic adhesive (i.e., the coating composition did not contain an emulsion-type acrylic adhesive). Furthermore, a test piece was prepared using this coating composition in the same manner as in Example 1, and the pencil hardness was evaluated, and the hardness was 2H.

[比較例2]
酸化チタン微粒子分散液72mlに蒸留水22mlを加えたものに対し、蒸留水で2.0重量%に調整したエマルジョン型アクリル系粘着剤を0.6ml混合する(即ち、塗料組成物の総重量に対してエマルジョン型アクリル系粘着剤を0.12重量%含む)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は2Hであった。
[Comparative Example 2]
A coating composition was prepared in the same manner as in Example 1 except that 0.6 ml of an emulsion-type acrylic adhesive adjusted to 2.0% by weight with distilled water was mixed with 72 ml of titanium oxide fine particle dispersion liquid and 22 ml of distilled water (i.e., the emulsion-type acrylic adhesive was contained in an amount of 0.12% by weight relative to the total weight of the coating composition). In addition, a test piece was prepared using this coating composition in the same manner as in Example 1, and the pencil hardness was evaluated, and the hardness was 2H.

[実施例3]
酸化チタン微粒子分散液72mlに蒸留水20.5mlを加えたものに対し、蒸留水で2.0重量%に調整したエマルジョン型アクリル系粘着剤を7.5ml混合する(即ち、塗料組成物の総重量に対してエマルジョン型アクリル系粘着剤を0.15重量%含む)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。また、この塗料組成物を用いて、上記実施例1と同様の方法により光触媒塗膜が形成されたガラス板を作製し、その可視光線透過率を測定したところ、平均透過率は88%以上であった。
[Example 3]
A coating composition was prepared in the same manner as in Example 1, except that 7.5 ml of emulsion-type acrylic adhesive adjusted to 2.0 wt% with distilled water was mixed with 20.5 ml of distilled water to 72 ml of titanium oxide fine particle dispersion (i.e., the emulsion-type acrylic adhesive was contained in 0.15 wt% with respect to the total weight of the coating composition). In addition, a test piece was prepared using this coating composition in the same manner as in Example 1, and the pencil hardness was evaluated, and the hardness was 4H. In addition, a glass plate on which a photocatalytic coating film was formed was prepared using this coating composition in the same manner as in Example 1, and the visible light transmittance was measured, and the average transmittance was 88% or more.

[実施例4]
酸化チタン微粒子分散液72mlに蒸留水25.5mlを加えたものに対し、エマルジョン型アクリル系粘着剤(20重量%)を2.5ml混合する(即ち、塗料組成物の総重量に対してエマルジョン型アクリル系粘着剤を0.5重量%含む)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。
[Example 4]
A coating composition was prepared in the same manner as in Example 1 above, except that 2.5 ml of emulsion-type acrylic adhesive (20% by weight) was mixed with 25.5 ml of distilled water added to 72 ml of titanium oxide fine particle dispersion (i.e., the emulsion-type acrylic adhesive was contained in an amount of 0.5% by weight relative to the total weight of the coating composition). Furthermore, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, resulting in a hardness of 4H.

[実施例5]
酸化チタン微粒子分散液72mlに蒸留水13mlを加えたものに対し、エマルジョン型アクリル系粘着剤(20重量%)を15ml混合する(即ち、塗料組成物の総重量に対してエマルジョン型アクリル系粘着剤を3.0重量%含む)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。
[Example 5]
A coating composition was prepared in the same manner as in Example 1 above, except that 15 ml of emulsion-type acrylic adhesive (20% by weight) was mixed with 13 ml of distilled water added to 72 ml of titanium oxide fine particle dispersion (i.e., the emulsion-type acrylic adhesive was contained in an amount of 3.0% by weight relative to the total weight of the coating composition). In addition, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, resulting in a hardness of 4H.

[比較例3]
酸化チタン微粒子分散液72mlに蒸留水12mlを加えたものに対し、20重量%のエマルジョン型アクリル系粘着剤を16ml混合する(即ち、塗料組成物の総重量に対してエマルジョン型アクリル系粘着剤を3.2重量%含む)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。このものでは、塗料組成物中の酸化チタン微粒子の凝縮・沈殿が生じることが確認された。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製したところ、得られた光触媒塗膜は白濁した塗膜であり、また鉛筆硬度を評価したところ、その硬度は2Hであった。
[Comparative Example 3]
A coating composition was prepared in the same manner as in Example 1 above, except that 16 ml of 20% by weight emulsion-type acrylic adhesive was mixed with 12 ml of distilled water added to 72 ml of titanium oxide microparticle dispersion (i.e., the total weight of the coating composition contained 3.2% by weight of emulsion-type acrylic adhesive). It was confirmed that condensation and precipitation of titanium oxide microparticles occurred in the coating composition. In addition, when a test piece was prepared using this coating composition in the same manner as in Example 1 above, the obtained photocatalytic coating film was a cloudy coating film, and when the pencil hardness was evaluated, the hardness was 2H.

[比較例4]
エマルジョン型アクリル系粘着剤として、蒸留水で20重量%に調整済みのエマルジョン型アクリル系粘着剤(大成ファインケミカル株式会社製、商品名「1HY-3025」、重合平均分子量25万のアクリル系共重合体溶液)を用いる点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は2Hであった。
[Comparative Example 4]
A coating composition was prepared in the same manner as in Example 1 above, except that an emulsion-type acrylic adhesive adjusted to 20% by weight with distilled water (manufactured by Taisei Fine Chemical Co., Ltd., product name "1HY-3025", an acrylic copolymer solution with a weight average molecular weight of 250,000) was used as the emulsion-type acrylic adhesive. In addition, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, and the hardness was 2H.

[実施例6]
エマルジョン型アクリル系粘着剤として、蒸留水で20重量%に調整済みのエマルジョン型アクリル系粘着剤(藤倉化成株式会社製、商品名「LKG-1104」、重合平均分子量30万のアクリル系共重合体溶液)を用いる点以外は、上記実施例1と同様の方法で塗料組成物を調製した。上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。
[Example 6]
A coating composition was prepared in the same manner as in Example 1 above, except that an emulsion-type acrylic adhesive (manufactured by Fujikura Kasei Co., Ltd., product name "LKG-1104", an acrylic copolymer solution with a weight average molecular weight of 300,000) adjusted to 20% by weight with distilled water was used as the emulsion-type acrylic adhesive. A coating composition was prepared in the same manner as in Example 1 above. In addition, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, and the hardness was 4H.

[実施例7]
エマルジョン型アクリル系粘着剤として、蒸留水で20重量%に調整済みのエマルジョン型アクリル系粘着剤(藤倉化成株式会社製、商品名「LKG-1202A」、重合平均分子量60万のアクリル系共重合体溶液)を用いる点以外は、上記実施例1と同様の方法で塗料組成物を調製した。上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。
[Example 7]
A coating composition was prepared in the same manner as in Example 1 above, except that an emulsion-type acrylic adhesive (manufactured by Fujikura Kasei Co., Ltd., product name "LKG-1202A", an acrylic copolymer solution with a weight average molecular weight of 600,000) adjusted to 20% by weight with distilled water was used as the emulsion-type acrylic adhesive. A coating composition was prepared in the same manner as in Example 1 above. In addition, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, and the hardness was 4H.

[実施例8]
エマルジョン型アクリル系粘着剤として、蒸留水で20重量%に調整済みのエマルジョン型アクリル系粘着剤(藤倉化成株式会社製、商品名「LKG-1102」、重合平均分子量77万のアクリル系共重合体溶液)を用いる点以外は、上記実施例1と同様の方法で塗料組成物を調製した。上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。
[Example 8]
A coating composition was prepared in the same manner as in Example 1 above, except that an emulsion-type acrylic adhesive (manufactured by Fujikura Kasei Co., Ltd., product name "LKG-1102", an acrylic copolymer solution with a weight average molecular weight of 770,000) adjusted to 20% by weight with distilled water was used as the emulsion-type acrylic adhesive. A coating composition was prepared in the same manner as in Example 1 above. In addition, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, and the hardness was 4H.

[比較例5]
エマルジョン型アクリル系粘着剤として、蒸留水で20重量%に調整済みのエマルジョン型アクリル系粘着剤(藤倉化成株式会社製、商品名「LKG-1008A」、重合平均分子量100万のアクリル系共重合体溶液)を用いる点以外は、上記実施例1と同様の方法で塗料組成物を調製した。このものでは、塗料組成物中の酸化チタン微粒子の凝縮・沈殿が生じることが確認された。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製したところ、得られた光触媒塗膜は白濁した塗膜であり、また鉛筆硬度を評価したところ、その硬度は2Hであった。
[Comparative Example 5]
A coating composition was prepared in the same manner as in Example 1 above, except that an emulsion-type acrylic adhesive adjusted to 20% by weight with distilled water (manufactured by Fujikura Kasei Co., Ltd., product name "LKG-1008A", an acrylic copolymer solution with a polymerization average molecular weight of 1,000,000) was used as the emulsion-type acrylic adhesive. It was confirmed that condensation and precipitation of titanium oxide particles occurred in the coating composition. In addition, when a test piece was prepared using this coating composition in the same manner as in Example 1 above, the obtained photocatalytic coating film was a cloudy coating film, and when the pencil hardness was evaluated, the hardness was 2H.

[実施例9]
酸化チタン微粒子分散液40mlに蒸留水50mlを加えたものに対し、エマルジョン型アクリル系粘着剤(20重量%)を10ml混合する(即ち、塗料組成物の総重量に対して固形分量で0.09重量%のペルオキソチタン酸と、塗料組成物の総重量に対して固形分量で0.4重量%の酸化チタンとを夫々含む)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。また、この塗料組成物を用いて、上記実施例1と同様の方法により光触媒塗膜が形成されたガラス板を作製し、その可視光線透過率を測定したところ、平均透過率は88%以上であった。
[Example 9]
A coating composition was prepared in the same manner as in Example 1 above, except that 10 ml of emulsion-type acrylic adhesive (20 wt%) was mixed with 50 ml of distilled water added to 40 ml of titanium oxide microparticle dispersion (i.e., the coating composition contained 0.09 wt% peroxotitanic acid in terms of solid content relative to the total weight of the coating composition and 0.4 wt% titanium oxide in terms of solid content relative to the total weight of the coating composition). In addition, a test piece was prepared using this coating composition in the same manner as in Example 1 above, and the pencil hardness was evaluated, and the hardness was 4H. In addition, a glass plate on which a photocatalytic coating film was formed was prepared using this coating composition in the same manner as in Example 1 above, and the visible light transmittance was measured, and the average transmittance was 88% or more.

[実施例10]
酸化チタン微粒子分散液90mlに対し、エマルジョン型アクリル系粘着剤(20重量%)を10ml混合する(即ち、塗料組成物の総重量に対して固形分量で0.2重量%のペルオキソチタン酸と、塗料組成物の総重量に対して固形分量で1.0重量%の酸化チタンとを夫々含む)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製したところ、その硬度は4Hであった。
[Example 10]
A coating composition was prepared in the same manner as in Example 1 except that 10 ml of an emulsion-type acrylic adhesive (20% by weight) was mixed with 90 ml of the titanium oxide microparticle dispersion (i.e., the coating composition contained 0.2% by weight of peroxotitanic acid in terms of solid content relative to the total weight of the coating composition, and 1.0% by weight of titanium oxide in terms of solid content relative to the total weight of the coating composition). A test piece was prepared using this coating composition in the same manner as in Example 1, and the hardness was 4H.

[実施例11]
酸化チタン粉体(テイカ株式会社製、商品名「AMT-100」、酸化チタン微粒子の平均粒径6nm)を用いて、分散液の総重量に対して固形分量で1.0重量%の酸化チタンを含む酸化チタン微粒子分散液(ペルオキソチタン酸濃度0.2重量%、アンモニウムイオン濃度300ppm)を調整した。この分散液90mlに対し、上記実施例1と同じく蒸留水で20重量%に調整したエマルジョン型アクリル系粘着剤(重合平均分子量43万のアクリル系共重合体溶液)を10ml混合し、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。
[Example 11]
Using titanium oxide powder (manufactured by Teika Corporation, product name "AMT-100", average particle diameter of titanium oxide fine particles is 6 nm), a titanium oxide fine particle dispersion (peroxotitanic acid concentration 0.2 wt%, ammonium ion concentration 300 ppm) containing 1.0 wt% titanium oxide in terms of solid content relative to the total weight of the dispersion was prepared. 10 ml of emulsion-type acrylic adhesive (acrylic copolymer solution with a polymerization average molecular weight of 430,000) adjusted to 20 wt% with distilled water as in Example 1 above was mixed with 90 ml of this dispersion, and a coating composition was prepared in the same manner as in Example 1 above. In addition, using this coating composition, a test piece was prepared in the same manner as in Example 1 above, and the pencil hardness was evaluated, and the hardness was 4H.

[実施例12]
酸化チタン微粒子分散液72mlに、蒸留水に代えて0.28重量%の酸化銅(CuO)溶液18mlを加えたものに対し、エマルジョン型アクリル系粘着剤を10ml混合する(即ち、塗料組成物中の酸化銅濃度を0.05重量%とする)点以外は、上記実施例1と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例1と同様の方法により試験片を作製して鉛筆硬度を評価したところ、その硬度は4Hであった。また、この塗料組成物を用いて、上記実施例1と同様の方法により光触媒塗膜が形成されたガラス板を作製し、その可視光線透過率を測定したところ、平均透過率は88%以上であった。
[Example 12]
A coating composition was prepared in the same manner as in Example 1 except that 10 ml of an emulsion-type acrylic adhesive was mixed with 72 ml of titanium oxide microparticle dispersion liquid, 18 ml of 0.28 wt % copper oxide (CuO) solution instead of distilled water (i.e., the copper oxide concentration in the coating composition was 0.05 wt %). In addition, a test piece was prepared using this coating composition in the same manner as in Example 1, and the pencil hardness was evaluated, and the hardness was 4H. In addition, a glass plate on which a photocatalytic coating film was formed was prepared using this coating composition in the same manner as in Example 1, and the visible light transmittance was measured, and the average transmittance was 88% or more.

[比較例6]
エマルジョン型アクリル系粘着剤に代えて、無機バインダーとして1.2重量%の酸化ケイ素溶液を10ml混合する点以外は、上記実施例2と同様の方法で塗料組成物を調製した。また、この塗料組成物を用いて、上記実施例2と同様の方法により試験片を作製して抗菌性及び抗ウイルス性を評価したところ、抗菌活性値、抗ウイルス活性値とも上記実施例2で得られた光触媒塗膜と比べて低い値を示した。
[Comparative Example 6]
A coating composition was prepared in the same manner as in Example 2 above, except that 10 ml of a 1.2 wt % silicon oxide solution was mixed as an inorganic binder instead of the emulsion-type acrylic adhesive. In addition, using this coating composition, test pieces were prepared in the same manner as in Example 2 above to evaluate the antibacterial and antiviral properties. Both the antibacterial and antiviral activity values showed lower values than the photocatalytic coating film obtained in Example 2 above.

上記実施例1~12及び比較例1~6の各塗料組成物の概要及びこれらを塗装して得られた光触媒塗膜の硬度を纏めて表1に示す。上記実施例1~12より、30万以上80万以下の重合平均分子量を有するアクリル系共重合体が水中に分散したエマルジョン型アクリル系粘着剤が、塗料組成物の総重量に対して0.15重量%~3.0重量%の割合で含まれるものでは、ABS樹脂製の基材表面に塗装された光触媒塗膜で、4H以上の硬度が得られた。これに対し、エマルジョン型アクリル系粘着剤を含まない、またはエマルジョン型アクリル系粘着剤が含まれる場合でも、塗料組成物の総重量に対してアクリル系粘着剤の濃度が0.15重量%未満の上記比較例1,2、アクリル系粘着剤に含まれるアクリル系共重合体の分子量が30万未満の上記比較例4では、4H以上の硬度が得られなかった。これらの結果より、30万以上の重合平均分子量を有するアクリル系共重合体が水中に分散したエマルジョン型アクリル系粘着剤が、塗料組成物の総重量に対して0.15重量%以上の割合で含まれるものを塗装して得られた光触媒塗膜では、優れた耐久性を発揮することが判った。一方で、エマルジョン型アクリル系粘着剤が塗料組成物の総重量に対して3.0重量%を超過する上記比較例3、アクリル系粘着剤に含まれるアクリル系共重合体の重合平均分子量が80万を超過する上記比較例5では、塗料組成物中の酸化チタン微粒子の凝縮・沈殿が生じ、4H以上の硬度が得られないことから、エマルジョン型アクリル系粘着剤としては、アクリル系共重合体の重合平均分子量が30万以上80万以下であり、そのようなエマルジョン型アクリル系粘着剤が塗料組成物の総重量に対して0.15重量%~3.0重量%の範囲で含まれることが好ましい。 Table 1 summarizes the outline of each coating composition of Examples 1 to 12 and Comparative Examples 1 to 6 and the hardness of the photocatalytic coating film obtained by coating them. From Examples 1 to 12, the hardness of the photocatalytic coating film coated on the surface of the ABS resin substrate was 4H or more when the emulsion-type acrylic adhesive, in which an acrylic copolymer having a polymerization average molecular weight of 300,000 or more and 800,000 or less is dispersed in water, was included in the coating composition at a ratio of 0.15% by weight to 3.0% by weight relative to the total weight of the coating composition. In contrast, the hardness of 4H or more was not obtained in Comparative Examples 1 and 2, which did not contain an emulsion-type acrylic adhesive or contained an emulsion-type acrylic adhesive but had an acrylic adhesive concentration of less than 0.15% by weight relative to the total weight of the coating composition, and in Comparative Example 4, in which the molecular weight of the acrylic copolymer contained in the acrylic adhesive was less than 300,000. From these results, it was found that the photocatalytic coating film obtained by coating with an emulsion-type acrylic adhesive in which an acrylic copolymer having a polymerization average molecular weight of 300,000 or more is dispersed in water and the emulsion-type acrylic adhesive is contained in a proportion of 0.15% by weight or more relative to the total weight of the paint composition exhibits excellent durability. On the other hand, in the above Comparative Example 3 in which the emulsion-type acrylic adhesive exceeds 3.0% by weight relative to the total weight of the paint composition, and the above Comparative Example 5 in which the polymerization average molecular weight of the acrylic copolymer contained in the acrylic adhesive exceeds 800,000, condensation and precipitation of the titanium oxide fine particles in the paint composition occurs, and a hardness of 4H or more cannot be obtained. Therefore, it is preferable that the emulsion-type acrylic adhesive has an acrylic copolymer polymerization average molecular weight of 300,000 or more and 800,000 or less, and such an emulsion-type acrylic adhesive is contained in the range of 0.15% by weight to 3.0% by weight relative to the total weight of the paint composition.

Figure 0007606719000001
Figure 0007606719000001

また、上記実施例9~12より、塗料組成物中の酸化チタン微粒子の種類や酸化チタン微粒子の量(酸化チタンの濃度)、ペルオキソチタン酸濃度やアンモニウムイオン濃度が変化しても、エマルジョン型アクリル系粘着剤を塗料組成物の総重量に対して0.15重量%~3.0重量%の範囲で含むものであれば、これらを塗装して得られた光触媒塗膜でも4H以上の硬度を発揮することが判った。 Furthermore, from Examples 9 to 12 above, it was found that even if the type of titanium oxide fine particles in the coating composition, the amount of titanium oxide fine particles (titanium oxide concentration), the peroxotitanic acid concentration, or the ammonium ion concentration changes, as long as the coating composition contains an emulsion-type acrylic adhesive in the range of 0.15% by weight to 3.0% by weight relative to the total weight of the coating composition, the photocatalytic coating film obtained by applying these exhibits a hardness of 4H or more.

また、上記実施例2,12より、酸化チタン微粒子及びエマルジョン型アクリル系粘着剤以外の添加剤として銀イオンや酸化銅を含むものでも、これら添加剤は光触媒塗膜の硬度に影響を与えず、エマルジョン型アクリル系粘着剤を塗料組成物の総重量に対して0.15重量%~3.0重量%の範囲で含むものであれば、これを塗装して得られた光触媒塗膜では4H以上の硬度を発揮することが判った。なお、上記実施例2,12の光触媒塗膜は、光の照射を受けていないときでも、光触媒塗膜に含まれる銀イオンや酸化銅により、細菌やウイルス等の有機物を分解することができる。また、上記実施例2で得られた光触媒塗膜は、バインダーが含まれる光触媒塗膜(上記比較例6)と比べて、抗菌活性値や抗ウイルス活性値が高く、バインダーが含まれないことで、抗菌活性値や抗ウイルス活性値が向上されることが確認された。 In addition, from the above Examples 2 and 12, it was found that even if the photocatalytic coating contains silver ions or copper oxide as additives other than titanium oxide fine particles and emulsion-type acrylic adhesive, these additives do not affect the hardness of the photocatalytic coating film, and if the emulsion-type acrylic adhesive is contained in the range of 0.15 wt% to 3.0 wt% relative to the total weight of the paint composition, the photocatalytic coating film obtained by applying this exhibits a hardness of 4H or more. Note that the photocatalytic coating films of Examples 2 and 12 above can decompose organic matter such as bacteria and viruses due to the silver ions and copper oxide contained in the photocatalytic coating film even when not exposed to light irradiation. In addition, the photocatalytic coating film obtained in Example 2 above has higher antibacterial activity value and antiviral activity value than the photocatalytic coating film containing a binder (Comparative Example 6 above), and it was confirmed that the antibacterial activity value and antiviral activity value are improved by not containing a binder.

なお、本発明は上記実施形態及び実施例に限定されるものではない。上記実施例では、酸化チタン微粒子として、表面がペルオキソ基で修飾されたアナターゼ型酸化チタン微粒子、表面が酸性リン酸エステルで修飾された酸化チタンナノ粒子分やルチル型酸化チタン微粒子が分散するものを例に説明したが、酸化チタン微粒子はこれに限定されない。酸化チタン微粒子として、例えば鉄イオン、銅やハロゲン化物等の担持物を用いることもできる。 The present invention is not limited to the above-mentioned embodiments and examples. In the above examples, the titanium oxide fine particles are described as being dispersed in anatase-type titanium oxide fine particles whose surface is modified with peroxo groups, titanium oxide nanoparticles whose surface is modified with acidic phosphate ester, and rutile-type titanium oxide fine particles, but the titanium oxide fine particles are not limited to these. Supports such as iron ions, copper, and halides can also be used as the titanium oxide fine particles.

また、上記実施例では、樹脂製の基材として、ABS樹脂製の基板を用いるものを例に説明したが、これに限定されず、PBT樹脂、POM樹脂、アクリル樹脂、PC樹脂等の樹脂製の基材に塗装する場合にも本発明を適用することができる。 In addition, in the above embodiment, an ABS resin substrate is used as the resin base material, but the present invention is not limited to this, and can also be applied to cases where coating is performed on resin base materials such as PBT resin, POM resin, acrylic resin, and PC resin.

Claims (3)

光触媒を含む塗料組成物であって、
ペルオキソチタン酸とアンモニウムイオンとを含み、酸化チタン微粒子が水中に分散したものにおいて、
平均粒径が50nm以下の酸化チタン微粒子を塗料組成物の総重量に対して0.4重量%~13.4重量%の範囲で含み、
30万以上80万以下の重合平均分子量を有するポリアクリル酸及びポリアクリル酸塩の少なくとも一方が水中に分散したエマルジョン型アクリル系粘着剤を、塗料組成物の総重量に対して0.15重量%~3.0重量%の割合で含むことを特徴とする塗料組成物。
A coating composition comprising a photocatalyst,
A dispersion of titanium oxide fine particles in water, comprising peroxotitanic acid and ammonium ions,
The coating composition contains titanium oxide fine particles having an average particle size of 50 nm or less in an amount ranging from 0.4% by weight to 13.4% by weight based on the total weight of the coating composition,
A coating composition comprising an emulsion-type acrylic pressure-sensitive adhesive in which at least one of polyacrylic acid and a polyacrylate salt, each having a weight average molecular weight of 300,000 or more and 800,000 or less, is dispersed in water, in a proportion of 0.15% by weight to 3.0% by weight relative to the total weight of the coating composition.
酸化チタン以外の金属及び金属化合物並びに金属イオンの少なくとも1つ以上を更に含むことを特徴とする請求項1記載の塗料組成物。 2. The coating composition according to claim 1, further comprising at least one of a metal other than titanium oxide, a metal compound, and a metal ion. 請求項1または2記載の塗料組成物から形成されることを特徴とする光触媒塗膜。 A photocatalytic coating film formed from the coating composition according to claim 1 or 2.
JP2024141647A 2024-08-22 2024-08-22 Coating composition and photocatalytic coating film Active JP7606719B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024141647A JP7606719B1 (en) 2024-08-22 2024-08-22 Coating composition and photocatalytic coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024141647A JP7606719B1 (en) 2024-08-22 2024-08-22 Coating composition and photocatalytic coating film

Publications (1)

Publication Number Publication Date
JP7606719B1 true JP7606719B1 (en) 2024-12-26

Family

ID=93933945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024141647A Active JP7606719B1 (en) 2024-08-22 2024-08-22 Coating composition and photocatalytic coating film

Country Status (1)

Country Link
JP (1) JP7606719B1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089704A (en) 1999-09-22 2001-04-03 Satoshi Yokoo Apparatus for forming transparent film of photocatalyst and product having transparent film of photocatalyst
JP2002003787A (en) 2000-06-19 2002-01-09 Toyokon:Kk Photocatalytic coating agent
JP2003252625A (en) 2001-12-28 2003-09-10 Shinto Paint Co Ltd Modified titania sol composition
JP2004136178A (en) 2002-10-16 2004-05-13 Mitsubishi Heavy Ind Ltd Photocatalyst precursor sol and method for producing the same, and photocatalyst body and method for producing the same
JP2006512463A (en) 2002-12-31 2006-04-13 プリズマライト インダストリー インコーポレイテッド Photocatalytically active water-based paint having self-cleaning action and method for producing the same
JP2008081712A (en) 2006-09-25 2008-04-10 Sun Medic Corp Photocatalytic coating
JP2010188226A (en) 2009-02-16 2010-09-02 Shin-Etsu Chemical Co Ltd Method for producing thin film of titanium oxide-based photocatalyst
WO2014017575A1 (en) 2012-07-26 2014-01-30 株式会社サクラクレパス Photocatalyst coating liquid, method for producing same, and photocatalyst
JP2014136785A (en) 2013-01-18 2014-07-28 Nippon Parkerizing Co Ltd Aqueous migration electrodeposition liquid composition for forming an electroconductive film and method for forming an electroconductive film
JP2017101155A (en) 2015-12-02 2017-06-08 サンスター技研株式会社 Set for photocatalyst coating
JP2018062546A (en) 2016-10-11 2018-04-19 大木 彬 Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same
JP2022130240A (en) 2021-02-25 2022-09-06 株式会社木下抗菌サービス Antiviral coating composition, antiviral coating method and antiviral material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089704A (en) 1999-09-22 2001-04-03 Satoshi Yokoo Apparatus for forming transparent film of photocatalyst and product having transparent film of photocatalyst
JP2002003787A (en) 2000-06-19 2002-01-09 Toyokon:Kk Photocatalytic coating agent
JP2003252625A (en) 2001-12-28 2003-09-10 Shinto Paint Co Ltd Modified titania sol composition
JP2004136178A (en) 2002-10-16 2004-05-13 Mitsubishi Heavy Ind Ltd Photocatalyst precursor sol and method for producing the same, and photocatalyst body and method for producing the same
JP2006512463A (en) 2002-12-31 2006-04-13 プリズマライト インダストリー インコーポレイテッド Photocatalytically active water-based paint having self-cleaning action and method for producing the same
JP2008081712A (en) 2006-09-25 2008-04-10 Sun Medic Corp Photocatalytic coating
JP2010188226A (en) 2009-02-16 2010-09-02 Shin-Etsu Chemical Co Ltd Method for producing thin film of titanium oxide-based photocatalyst
WO2014017575A1 (en) 2012-07-26 2014-01-30 株式会社サクラクレパス Photocatalyst coating liquid, method for producing same, and photocatalyst
JP2014136785A (en) 2013-01-18 2014-07-28 Nippon Parkerizing Co Ltd Aqueous migration electrodeposition liquid composition for forming an electroconductive film and method for forming an electroconductive film
JP2017101155A (en) 2015-12-02 2017-06-08 サンスター技研株式会社 Set for photocatalyst coating
JP2018062546A (en) 2016-10-11 2018-04-19 大木 彬 Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same
JP2022130240A (en) 2021-02-25 2022-09-06 株式会社木下抗菌サービス Antiviral coating composition, antiviral coating method and antiviral material

Similar Documents

Publication Publication Date Title
EP1052225B1 (en) Titanium oxide colloidal sol and process for the preparation thereof
CA2250962C (en) Siloxane star-graft polymers, ceramic powders coated therewith and method of preparing coated ceramic powders
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
TWI511788B (en) Water-repellent photocatalyst composition and water-repellent photocatalyst coating film
WO2014141812A1 (en) Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same
TW201439236A (en) Antimicrobial and antiviral composition, and method of producing the same
WO1998005589A1 (en) Method for coating amorphous titanium peroxide
US6479141B1 (en) Photocatalytic coating composition and product having photocatalytic thin film
JP2000051708A (en) Photocatalytic film and method for forming the same
JP2000001631A (en) Coating composition containing photocatalyst
EP1153999B1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP2988811B2 (en) Antibacterial agent
JP4672822B2 (en) Hydrophilic coating agent and surface hydrophilic substrate
JP7606719B1 (en) Coating composition and photocatalytic coating film
WO2002094718A1 (en) Coating material for inorganic-film formation and method of forming inorganic film from the coating material
JP2000191943A (en) Film-forming composition and its production
JPS63295682A (en) Anticorrosive paint composition
JP7023689B2 (en) Photocatalyst coating body and photocatalyst coating composition
EP1689525A1 (en) Transparent film-forming composition
JP4557197B2 (en) Photocatalyst composition and method for producing the same
JP2020076017A (en) Aqueous binder solution for photocatalytic coating agent, photocatalytic coating agent, cured product and article
JP4608042B2 (en) Coating agent for forming inorganic film, method for producing the same, and method for forming the inorganic film
JPH11123333A (en) Photocatalytic hydrophilic composition
JPH10204334A (en) Antibacterial clear resin coating and coated metal material using the same
JP2024169947A (en) Photocatalyst coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240822

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241206

R150 Certificate of patent or registration of utility model

Ref document number: 7606719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150