[go: up one dir, main page]

JP7600573B2 - METHOD FOR REGENERATING CATALYST AND METHOD FOR PRODUCING AROMATIC COMPOUND USING THE SAME - Google Patents

METHOD FOR REGENERATING CATALYST AND METHOD FOR PRODUCING AROMATIC COMPOUND USING THE SAME Download PDF

Info

Publication number
JP7600573B2
JP7600573B2 JP2020151127A JP2020151127A JP7600573B2 JP 7600573 B2 JP7600573 B2 JP 7600573B2 JP 2020151127 A JP2020151127 A JP 2020151127A JP 2020151127 A JP2020151127 A JP 2020151127A JP 7600573 B2 JP7600573 B2 JP 7600573B2
Authority
JP
Japan
Prior art keywords
catalyst
aromatic compounds
zeolite
aromatic compound
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020151127A
Other languages
Japanese (ja)
Other versions
JP2022045504A (en
Inventor
綾 石本
智洋 林
尚太 中岡
誠 花谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020151127A priority Critical patent/JP7600573B2/en
Publication of JP2022045504A publication Critical patent/JP2022045504A/en
Application granted granted Critical
Publication of JP7600573B2 publication Critical patent/JP7600573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、芳香族化合物を製造した際の芳香族化合物製造用触媒を効率よく再生する方法であると共に、脂肪族炭化水素及び/又は脂環式炭化水素の炭化水素原料から芳香族化合物を製造するものであり、特に該再生の工程を付加することにより、安定的に触媒の反応と再生を繰り返し、触媒への負荷を低減する安定性に優れる芳香族化合物の製造方法に関するものである。 The present invention relates to a method for efficiently regenerating a catalyst used in the production of aromatic compounds when aromatic compounds are produced, and also to a method for producing aromatic compounds from a hydrocarbon feedstock of aliphatic hydrocarbons and/or alicyclic hydrocarbons. In particular, the present invention relates to a method for producing aromatic compounds with excellent stability, which reduces the load on the catalyst by stably repeating the reaction and regeneration of the catalyst by adding a regeneration step.

ベンゼンやトルエン、キシレン等の芳香族化合物は、多くの場合、石油精製により得られた原料油(例えばナフサなど)を、熱分解反応装置にて分解し、得られた熱分解生成物から蒸留又は抽出によって分離精製することで得られる。これらの芳香族化合物の製造方法では、芳香族化合物以外の熱分解生成物として、脂肪族炭化水素(パラフィン系、オレフィン系、アセチレン系、脂環系の炭化水素)が副生する。そのため、芳香族化合物の製造に伴って、脂肪族炭化水素が同時に製造されるため、芳香族化合物の生産量は脂肪族炭化水素の生産量に見合って調整がなされ、おのずと生産量が制限されるものであった。 Aromatic compounds such as benzene, toluene, and xylene are often obtained by decomposing feedstock oil (such as naphtha) obtained from petroleum refining in a thermal cracking reactor, and then isolating and refining the resulting thermal cracking products by distillation or extraction. In these methods of producing aromatic compounds, aliphatic hydrocarbons (paraffinic, olefinic, acetylenic, and alicyclic hydrocarbons) are by-produced as thermal cracking products other than aromatic compounds. Therefore, since aliphatic hydrocarbons are produced simultaneously with the production of aromatic compounds, the production volume of aromatic compounds is adjusted in accordance with the production volume of aliphatic hydrocarbons, which naturally limits the production volume.

そして、脂肪族または脂環式炭化水素原料を、中細孔径ゼオライトを主に含んだ触媒と約400℃~約800℃程度の温度で接触させることにより、芳香族化合物を製造することが提案されている(例えば、特許文献1~2、非特許文献1~4参照。)。これら製造法には、熱分解による芳香族化合物の製造法と比較して、付加価値が低く、余剰な炭化水素原料から芳香族化合物が製造できるといった利点がある。 It has been proposed to produce aromatic compounds by contacting an aliphatic or alicyclic hydrocarbon feedstock with a catalyst that mainly contains medium pore size zeolite at a temperature of about 400°C to about 800°C (see, for example, Patent Documents 1-2 and Non-Patent Documents 1-4). Compared with the method of producing aromatic compounds by thermal decomposition, these production methods have the advantage that they have low added value and can produce aromatic compounds from surplus hydrocarbon feedstock.

芳香族化合物製造ゼオライト触媒による芳香族化合物の製造における課題は、芳香族化反応中にゼオライト触媒上に炭素質が蓄積して活性が低下する、いわゆるコーキングである。このコーキングによる活性低下を回復するため工業的には炭素質を燃焼除去する、再生工程を組み込み、反応と再生を交互に繰り返して実機運転を継続する。従ってコーキングによる活性低下は見かけ上活性が低下しているが、再生すれば可逆的に活性は戻る。しかし、再生工程において過度な発熱といった触媒に負荷のかかる状況が繰り返されると、不可逆的に触媒活性は低下する。さらに、再生工程は発熱反応であるため、反応器が熱暴走し、反応設備を損傷するという課題を発生する場合がある。 Aromatic Compound Production A problem with the production of aromatic compounds using zeolite catalysts is the accumulation of carbonaceous matter on the zeolite catalyst during the aromatization reaction, which reduces its activity, known as coking. To recover from the reduced activity caused by this coking, a regeneration process is incorporated in which the carbonaceous matter is burned off, and the actual operation of the plant is continued by alternating between reaction and regeneration. Therefore, although the reduction in activity caused by coking results in an apparent reduction in activity, the activity can be reversibly restored by regeneration. However, repeated stress situations on the catalyst, such as excessive heat generation during the regeneration process, will irreversibly reduce the catalytic activity. Furthermore, because the regeneration process is an exothermic reaction, there is a possibility that the reactor will go into thermal runaway, damaging the reaction equipment.

特許第3741455号Patent No. 3741455 特許第3264447号Patent No. 3264447

Industrial & Engineering Chemistry Research 第31巻、995頁(1992年)Industrial & Engineering Chemistry Research, Vol. 31, p. 995 (1992) Industrial & Engineering Chemistry Research 第26巻、647頁(1987年)Industrial & Engineering Chemistry Research, Vol. 26, p. 647 (1987) Applied Catalysis 第78巻、15頁(1991年)Applied Catalysis Vol. 78, p. 15 (1991) Microporous and Mesoporous Materials 第47巻、253頁(2001年)Microporous and Mesoporous Materials, Vol. 47, p. 253 (2001)

本発明は、芳香族化合物を製造した際の芳香族化合物製造用触媒を効率よく再生する方法、更には、脂肪族炭化水素及び/又は脂環式炭化水素の炭化水素原料から芳香族化合物を製造する際に、安定的に触媒の反応と再生を繰り返し、触媒への負荷を低減する安定性に優れる芳香族化合物の製造方法を提供するものである。 The present invention provides a method for efficiently regenerating a catalyst for producing aromatic compounds when aromatic compounds are produced, and further provides a method for producing aromatic compounds with excellent stability, which reduces the load on the catalyst by stably repeating the reaction and regeneration of the catalyst when producing aromatic compounds from a hydrocarbon feedstock of aliphatic hydrocarbons and/or alicyclic hydrocarbons.

本発明者は、上記の課題を解決するため鋭意検討を行った結果、炭化水素化合物から芳香族化合物を製造し、蓄積したコークの燃焼除去を行う際に、再生ガスの酸素濃度を制御するとともに、排ガスを循環再利用することで、低コストで安全かつ安定な触媒再生が可能となり、長期にわたって安定的に芳香族化合物を効率よく製造する製造方法となることを見出し、本発明を完成するに至った。 As a result of intensive research conducted by the inventors to solve the above problems, they discovered that when producing aromatic compounds from hydrocarbon compounds and burning off accumulated coke, controlling the oxygen concentration of the regeneration gas and recycling the exhaust gas enables safe and stable catalyst regeneration at low cost, resulting in a method for efficiently producing aromatic compounds stably over the long term, and thus completed the present invention.

即ち、本発明は、コーク付着により性能低下したゼオライトを活性成分として有する芳香族化合物製造用触媒に、酸素を2~5重量%含む再生ガスを接触し芳香族化合物製造用触媒を再生する際に接触後の排ガスの酸素濃度が0.5~1.5重量%となるように接触温度を380~530℃の間で制御すると共に、該排ガスの一部を酸素濃度が2~5重量%となるように空気と混合し再生ガスとして循環供給することを特徴とする芳香族化合物製造用触媒の再生方法に関するものである。 That is, the present invention relates to a method for regenerating a catalyst for aromatic compound production, characterized in that when a catalyst for aromatic compound production having zeolite as an active ingredient, the performance of which has been reduced by coke adhesion, is contacted with a regeneration gas containing 2 to 5% by weight of oxygen to regenerate the catalyst for aromatic compound production, the contact temperature is controlled between 380 and 530°C so that the oxygen concentration of the exhaust gas after contact is 0.5 to 1.5% by weight, and a portion of the exhaust gas is mixed with air so that the oxygen concentration is 2 to 5% by weight, and circulated and supplied as the regeneration gas.

以下に、本発明について詳細に説明する。 The present invention is described in detail below.

本発明の芳香族化合物製造用触媒の再生方法は、コーク付着により性能低下したゼオライトを活性成分として有する芳香族化合物製造用触媒に、酸素を2~5重量%含む再生ガスを接触し芳香族化合物製造用触媒を再生する際に接触後の排ガスの酸素濃度が0.5~1.5重量%となるように接触温度を380~530℃の間で制御すると共に、該排ガスの一部を酸素濃度が2~5重量%となるように制御しながら空気と混合し再度再生ガスとして循環供給するものである。このような再生方法とすることにより、安定的に安全・効率よく芳香族化合物製造用触媒の再生が可能となるものである。そして、再生ガスとして空気に混合する排ガスの割合としては酸素を2~5重量%含む再生ガスとすることが可能であれば任意であり、特に排ガスとして排出される75~98重量%を混合することが好ましい。 The method for regenerating a catalyst for aromatic compound production of the present invention involves contacting a catalyst for aromatic compound production having zeolite as an active ingredient, the performance of which has been reduced by coke deposition, with a regeneration gas containing 2 to 5% oxygen by weight to regenerate the catalyst for aromatic compound production, controlling the contact temperature between 380 and 530°C so that the oxygen concentration of the exhaust gas after contact is 0.5 to 1.5% by weight, and mixing a portion of the exhaust gas with air while controlling the oxygen concentration to 2 to 5% by weight, and circulating and supplying it again as regeneration gas. This regeneration method makes it possible to regenerate a catalyst for aromatic compound production stably, safely, and efficiently. The proportion of exhaust gas to be mixed with air as regeneration gas can be any proportion as long as it is possible to obtain a regeneration gas containing 2 to 5% by weight of oxygen, and it is particularly preferable to mix 75 to 98% by weight of the exhaust gas discharged as exhaust gas.

(芳香族化合物製造用触媒)
本発明における芳香族化合物製造用触媒とは、ゼオライトを活性成分として含んでなるものである。該ゼオライトとしては、ゼオライトと称される範疇のものを含むものであれば特に限定されるものではなく、好ましくは10員環骨格構造を有するゼオライトであり、具体的には、AEL、EUO、FER、MWW、HEU、MEL、MFI、NES、MRE型等を含んでなるものである。そして、より芳香族化合物の反応選択性、生産性に優れるものとなることから、好ましくはMFI型を含んでなるものであり、さらに好ましくは下記(i)~(iv)に示す特性を満足するMFI型ゼオライトを挙げることができる。その際のMFI型とは、国際ゼオライト学会で定義される構造コードMFIに属するアルミノシリケート化合物を示すものである。
(Catalyst for producing aromatic compounds)
The catalyst for producing aromatic compounds in the present invention contains zeolite as an active component. The zeolite is not particularly limited as long as it is within the category of zeolite. Preferably, the zeolite has a 10-membered ring framework structure, and specifically includes AEL, EUO, FER, MWW, HEU, MEL, MFI, NES, MRE, etc. In order to obtain a zeolite having excellent reaction selectivity and productivity for aromatic compounds, it is preferable to use an MFI type zeolite, and more preferably an MFI type zeolite that satisfies the following characteristics (i) to (iv). In this case, the MFI type refers to an aluminosilicate compound that belongs to the structure code MFI defined by the International Zeolite Association.

(i)メソ細孔分布曲線がピークを有するものであり、該ピークの半値幅(hw)がhw≦20nm、該ピークの極大値(μ)が10nm≦μ≦20nmであり、該ピークに相当するメソ細孔のメソ細孔容積(pv)が0.05ml/g≦pvであるメソ細孔群を有する。
(ii)回折角を2θとした粉末X線回折測定において0.1~3度の範囲にピークを有さない。
(iii)平均粒子径(PD)がPD≦100nmである。
(iv)細孔径0.3nmから0.8nmの範囲の微分細孔容積値(dV/d(d))-ミクロ細孔の分布曲線が、極大値を有するものであり、最も微分細孔容積値(dV/d(d))の大きい値を示す細孔径が0.4~0.5nmの範囲にある。
(i) The mesopore distribution curve has a peak, the half width (hw) of the peak is hw≦20 nm, the maximum value (μ) of the peak is 10 nm≦μ≦20 nm, and the mesopore volume (pv) of the mesopores corresponding to the peak is 0.05 ml/g≦pv.
(ii) In powder X-ray diffraction measurement at a diffraction angle of 2θ, there is no peak in the range of 0.1 to 3 degrees.
(iii) the average particle diameter (PD) is PD≦100 nm;
(iv) The differential pore volume value (dV P /d(d P ))-micropore distribution curve in the pore diameter range of 0.3 nm to 0.8 nm has a maximum value, and the pore diameter showing the largest differential pore volume value (dV P /d(d P )) is in the range of 0.4 to 0.5 nm.

ここで、ミクロ細孔とは、IUPACで定義されたミクロ細孔であり、これは細孔直径が2nm以下の細孔を示す。また、メソ細孔とは、IUPACで定義されたメソ細孔であり、これは細孔直径が2~50nmの細孔を示すものである。そして、ミクロ細孔およびメソ細孔は、液体窒素温度における一般的な窒素吸着法により測定することができる。また、窒素吸着法で得られた測定結果を解析することにより、ミクロ細孔およびメソ細孔の細孔容積の値、および細孔分布曲線を得ることができる。その解析には、例えば以下の方法を使用することができる。 Here, micropores are defined by IUPAC as pores with a pore diameter of 2 nm or less. Mesopores are defined by IUPAC as pores with a pore diameter of 2 to 50 nm. Micropores and mesopores can be measured by a general nitrogen adsorption method at liquid nitrogen temperature. By analyzing the measurement results obtained by the nitrogen adsorption method, the pore volume values of micropores and mesopores and the pore distribution curves can be obtained. For example, the following method can be used for this analysis.

ミクロ細孔については、Saito-Foley法(AIChE Journal、1991年、37巻、頁429~436)で吸着過程を解析する。例えば、細孔直径が2nm以下に相当する範囲の窒素ガス脱着量を積算するとミクロ細孔の全細孔容積の値を得ることができる。また、最初に、縦軸が単位質量当りの窒素脱着量V(mL/g)、横軸がミクロ細孔直径d(nm)とする累積曲線を得てから、縦軸をミクロ細孔からの窒素ガス脱着量のミクロ細孔直径値での微分値(dV/d(d))とする微分細孔容積値(dV/d(d))-ミクロ細孔の分布曲線とすることにより、ミクロ細孔直径における単位質量当りの窒素脱着量の増加分のピークを得ることができる。 For micropores, the adsorption process is analyzed by the Saito-Foley method (AIChE Journal, 1991, Vol. 37, pp. 429-436). For example, the total pore volume of the micropores can be obtained by integrating the amount of nitrogen gas desorbed in the range corresponding to a pore diameter of 2 nm or less. In addition, first, a cumulative curve is obtained in which the vertical axis represents the amount of nitrogen desorbed per unit mass V P (mL/g) and the horizontal axis represents the micropore diameter d P (nm), and then a differential pore volume value (dV P /d(d P ))-micropore distribution curve in which the vertical axis represents the differential value (dV P /d(d P )) of the amount of nitrogen gas desorbed from the micropore at the micropore diameter value can be obtained, thereby obtaining a peak of the increase in the amount of nitrogen desorbed per unit mass at the micropore diameter.

メソ細孔については、Barret-Joyner-Halenda法(Journal of the American Chemical Society、1951年、頁373~380)で脱着過程を解析する。例えば、細孔直径が2nm以上50nm以下に相当する範囲の窒素ガス脱着量を積算するとメソ細孔の全細孔容積の値を得ることができる。 For mesopores, the desorption process is analyzed using the Barret-Joyner-Halenda method (Journal of the American Chemical Society, 1951, pp. 373-380). For example, the total pore volume of mesopores can be obtained by integrating the amount of nitrogen gas desorbed in the range corresponding to pore diameters of 2 nm to 50 nm.

また、最初に、縦軸が単位質量当りの窒素脱着量V(mL/g)、横軸がメソ細孔直径D(nm)とする累積曲線を得てから、縦軸をメソ細孔からの窒素ガス脱着量のメソ細孔直径値での微分値(d(V)/d(D))とすると、メソ細孔直径における単位質量当りの窒素脱着量の増加分のピークを得ることができる。 In addition, by first obtaining a cumulative curve with the nitrogen desorption amount per unit mass V (mL/g) on the vertical axis and the mesopore diameter D (nm) on the horizontal axis, and then changing the vertical axis to the differential value (d( V )/d( D )) of the nitrogen gas desorption amount from the mesopores with respect to the mesopore diameter value, it is possible to obtain the peak of the increase in the nitrogen desorption amount per unit mass at the mesopore diameter.

そして、PDは、例えば外表面積から以下の式(1)を用いて算出して求めることができる。
PD=6/S(1/2.29×10+0.18×10-6) (1)
(ここで、Sは外表面積(m/g)を示すものである。)
また、式(1)における外表面積(S(m/g))は、液体窒素温度における一般的な窒素吸着法を用い、t-plot法から求めることができる。例えば、tを吸着量の厚みとするときに、tについて0.6~1nmの範囲の測定点を直線近似し、得られた回帰直線の傾きから外表面積を求める方法である。
Then, PD can be calculated from the outer surface area using the following formula (1), for example.
PD=6/S (1/2.29×10 6 +0.18×10 −6 ) (1)
(Here, S indicates the external surface area (m 2 /g).)
The external surface area (S (m 2 /g)) in formula (1) can be determined by a t-plot method using a general nitrogen adsorption method at liquid nitrogen temperature. For example, when t is the thickness of the adsorption amount, measurement points in the range of 0.6 to 1 nm for t are linearly approximated, and the external surface area is determined from the slope of the obtained regression line.

ゼオライトの粒子径を測定する別の方法としては、例えば走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)の写真から任意の粒子を10個以上選んで、その表面積平均直径を求める方法を挙げることができる。 Another method for measuring the particle size of zeolite is to randomly select 10 or more particles from a scanning electron microscope (SEM) or transmission electron microscope (TEM) photograph and determine their surface area average diameter.

該MFI型ゼオライトの製造方法としては、例えば上記(i)~(iii)の特性を満足する原料であるMFI型ゼオライトの骨格中のアルミニウムをスチーム等によって脱アルミニウム化することにより製造することが可能である。その際のスチーム処理の温度は、例えば400~900℃であることが好ましく、特に450~800℃、更に500~700℃であることが好ましい。また、スチームの分圧としては、0.001~5MPaであることが好ましく、特に0.01~0.5MPa、更に0.05~0.2MPaであることが好ましい。スチームの濃度としては、例えば0.01~100vol%水蒸気/希釈ガスであることが好ましい。希釈ガスは、窒素等の不活性ガス、空気、酸素、一酸化炭素、二酸化炭素、またはその混合ガス等を用いることができる。スチーム処理時間については任意に選択可能である。さらには、スチーム処理の効果を高めるため、スチーム処理を含む焼成処理の前後にイオン交換をすることが好ましい。 The MFI zeolite can be produced, for example, by dealuminating the aluminum in the framework of MFI zeolite, which is a raw material that satisfies the above characteristics (i) to (iii), with steam or the like. The temperature of the steam treatment is preferably, for example, 400 to 900°C, particularly 450 to 800°C, and more preferably 500 to 700°C. The partial pressure of the steam is preferably 0.001 to 5 MPa, particularly 0.01 to 0.5 MPa, and more preferably 0.05 to 0.2 MPa. The concentration of the steam is preferably, for example, 0.01 to 100 vol% water vapor/dilution gas. The dilution gas may be an inert gas such as nitrogen, air, oxygen, carbon monoxide, carbon dioxide, or a mixture thereof. The steam treatment time can be selected arbitrarily. Furthermore, in order to enhance the effect of the steam treatment, it is preferable to perform ion exchange before and after the calcination treatment including the steam treatment.

また、上記(i)~(iii)の特性を満足する原料であるMFI型ゼオライトの製造方法としては、例えば以下の方法を挙げることができる。 The following method can be mentioned as an example of a method for producing MFI zeolite, a raw material that satisfies the above characteristics (i) to (iii).

テトラプロピルアンモニウム(以降、「TPA」とする場合もある。)水酸化物と水酸化ナトリウムの水溶液に不定形アルミノシリケートゲルを添加して懸濁させ、得られた懸濁液にMFI型ゼオライトを種晶として加え原料組成物とし、得られた原料組成物を結晶化させ、焼成することによりMFI型ゼオライトを得ることができる。 Amorphous aluminosilicate gel is added to an aqueous solution of tetrapropylammonium (hereinafter sometimes referred to as "TPA") hydroxide and sodium hydroxide to form a suspension, MFI type zeolite is added to the resulting suspension as seed crystals to form a raw material composition, and the resulting raw material composition is crystallized and fired to obtain MFI type zeolite.

本発明における芳香族化合物製造用触媒としては、その形態として、制限されるものではなく、例えばゼオライト粉末をそのまま触媒として用いること、圧縮成型を行い特定の形状物として用いること、バインダー等と混合し成形を行い特定の形状物として用いること、等のいずれの形態として用いることも可能である。 The form of the catalyst for producing aromatic compounds in the present invention is not limited, and it can be used in any form, such as using the zeolite powder as it is as a catalyst, compressing and molding it into a specific shape, or mixing it with a binder or the like and molding it into a specific shape.

(芳香族化合物製造用触媒の再生)
本発明の芳香族化合物製造用触媒の再生方法は、例えば炭化水素類から芳香族化合物を製造することでコークが付着し、性能が低下した芳香族化合物製造用触媒の触媒としての再生を行うものであり、コーク付着した芳香族化合物製造用触媒に、酸素を2~5重量%含む再生ガスを接触し芳香族化合物製造用触媒を再生する際に接触後の排ガスの酸素濃度が0.5~1.5重量%となるように接触温度を380~530℃の間で制御すると共に、該排ガスの一部を酸素濃度が2~5重量%となるように制御しながら空気と混合し再生ガスとして循環供給するものである。この際に排ガスを式(2)で計算される重量%で空気と混合することで酸素濃度2~5重量%に制御することが可能となる。
(21-再生ガス酸素濃度)/(21-該排ガス酸素濃度)×100 (2)
ここで、芳香族化合物製造用触媒を再生する際の再生ガスとしては、酸素含有量が2~5重量%であり、例えば空気又は酸素に窒素、アルゴン、ネオン等の不活性ガスを混合して調製したものを挙げることができる。その際には、混入する水蒸気によるゼオライトの比表面積低下や酸点の減少を抑制し、触媒活性や触媒寿命への影響を排除するために乾燥ガスであることが好ましい。そして、該再生ガスは、さらに酸素濃度が0.5~1.5重量%である排ガスの一部を混合したものであり、その際には排ガスの75~98重量%を混合し調製することが好ましい。また、循環供給の際には不活性ガスをも混合してもよい。
(Regeneration of catalysts for aromatic compound production)
The method for regenerating a catalyst for aromatic compound production of the present invention regenerates a catalyst for aromatic compound production whose performance has deteriorated due to the adhesion of coke, for example, during the production of aromatic compounds from hydrocarbons, and when the catalyst for aromatic compound production to which coke has adhered is contacted with a regeneration gas containing 2 to 5% by weight of oxygen to regenerate the catalyst for aromatic compound production, the contact temperature is controlled between 380 and 530°C so that the oxygen concentration of the exhaust gas after the contact is 0.5 to 1.5% by weight, and a part of the exhaust gas is mixed with air while controlling the oxygen concentration to 2 to 5% by weight, and circulated and supplied as the regeneration gas. In this case, the exhaust gas is mixed with air in the weight percentage calculated by formula (2), thereby making it possible to control the oxygen concentration to 2 to 5% by weight.
(21 - regeneration gas oxygen concentration) / (21 - exhaust gas oxygen concentration) x 100 (2)
Here, the regeneration gas used in regenerating the catalyst for producing aromatic compounds has an oxygen content of 2 to 5% by weight, and may be prepared by mixing air or oxygen with an inert gas such as nitrogen, argon, or neon. In this case, it is preferable to use a dry gas in order to suppress the reduction in the specific surface area of the zeolite and the reduction in acid sites caused by the mixed water vapor and to eliminate the influence on the catalytic activity and catalyst life. The regeneration gas is further mixed with a part of the exhaust gas having an oxygen concentration of 0.5 to 1.5% by weight, and in this case, it is preferable to mix 75 to 98% by weight of the exhaust gas and prepare the gas. In addition, an inert gas may be mixed when the gas is circulated and supplied.

本発明の芳香族化合物製造用触媒の再生は、該再生ガスを接触後の排ガスの酸素濃度が0.5~1.5重量%となるように接触温度を380~530℃の間で制御しながら芳香族化合物製造用触媒の再生を行うものであり、接触温度は、排ガスの酸素濃度が0.5~1.5重量%の範囲内であれば、380~530℃の間で適宜選択可能である。ここで、再生ガスの酸素含有量が2重量%未満である場合、又は、排ガスの酸素含有量が1.5重量%より大きい場合、コークの除去効率が悪く、触媒性能を回復することが困難となる。また、再生ガスの酸素含有量が5重量%を越える場合、又は、排ガスの酸素含有量が0.5重量%未満の場合、コーク燃焼が過剰に進行することで、触媒に含まれるゼオライト自体の劣化や反応器の損傷が発生する場合がある。 In the regeneration of the aromatic compound production catalyst of the present invention, the contact temperature is controlled between 380 and 530°C so that the oxygen concentration of the exhaust gas after contact with the regeneration gas is 0.5 to 1.5% by weight. The contact temperature can be appropriately selected between 380 and 530°C as long as the oxygen concentration of the exhaust gas is within the range of 0.5 to 1.5% by weight. Here, if the oxygen content of the regeneration gas is less than 2% by weight, or if the oxygen content of the exhaust gas is greater than 1.5% by weight, the efficiency of coke removal is poor, making it difficult to restore the catalytic performance. In addition, if the oxygen content of the regeneration gas exceeds 5% by weight, or if the oxygen content of the exhaust gas is less than 0.5% by weight, excessive coke combustion may cause deterioration of the zeolite contained in the catalyst itself or damage to the reactor.

芳香族化合物製造用触媒を再生する際の再生ガスの供給量、接触時間としては、触媒の再生が可能であれば特に制限はなく、中でも、芳香族化合物製造用触媒に堆積したコークを効率よく除去することが可能となることから、触媒体積に対する再生ガスを体積比で1:100~2000で供給することが好ましい。また、接触時間としては、30~65時間であることが好ましい。 There are no particular limitations on the amount of regeneration gas supplied and the contact time when regenerating a catalyst for aromatic compound production, so long as the catalyst can be regenerated. In particular, it is preferable to supply the regeneration gas at a volume ratio of 1:100 to 2000 to the catalyst volume, since this makes it possible to efficiently remove coke that has accumulated on the catalyst for aromatic compound production. In addition, the contact time is preferably 30 to 65 hours.

(芳香族化合物の製造)
本発明の芳香族化合物製造用触媒の再生方法は、コーク付着により性能の低下した触媒再生にそのまま適用することが可能である。さらにはより好ましい態様として芳香族化合物製造用触媒による芳香族化合物の製造と触媒の再生とを繰り返す製造方法への適用を挙げることができ、具体的にはゼオライトを活性成分として有する芳香族化合物製造用触媒に、炭素数2~6の脂肪族炭化水素及び/又は脂環式炭化水素を温度範囲400℃以上800℃以下で接触し芳香族化合物を製造する工程と、上記した芳香族化合物製造用触媒の再生方法を工程として含む芳香族化合物の製造方法を挙げることができる。
(Production of aromatic compounds)
The method for regenerating a catalyst for aromatic compound production of the present invention can be directly applied to the regeneration of a catalyst whose performance has been deteriorated due to coke adhesion.Furthermore, as a more preferred embodiment, it can be applied to a production method in which the production of aromatic compounds using a catalyst for aromatic compound production and the regeneration of the catalyst are repeated, and specifically, it can be applied to a production method of aromatic compounds, which includes a step of contacting a catalyst for aromatic compound production having zeolite as an active component with aliphatic hydrocarbons and/or alicyclic hydrocarbons having 2 to 6 carbon atoms at a temperature range of 400° C. to 800° C. to produce aromatic compounds, and the above-mentioned method for regenerating a catalyst for aromatic compound production as a step.

該炭素数2~6の脂肪族炭化水素及び/又は脂環族炭化水素としては、その範疇に属するものであれば如何なるものを挙げることができ、例えばエタン、エチレン、プロパン、プロピレン、シクロプロパン、n-ブタン、イソブタン、1-ブテン、2-ブテン、イソブテン、ブタジエン、シクロブテン、シクロブタン、n-ペンタン、1-ペンタン、2-ペンタン、1-ペンテン、2-ペンテン、3-ペンテン、n-ヘキサン、1-ヘキサン、2-ヘキサン、1-ヘキセン、2-ヘキセン、3-ヘキセン、ヘキサジエン、シクロヘキサン及びそれらの混合物等を挙げることができ、更には、石油類、例えばナフサの分解留分により得られる炭素数4の炭化水素蒸留混合物であるC4留分、炭素数5の炭化水素蒸留混合物であるC5留分、炭素数6の炭化水素蒸留混合物であるC6留分等をも挙げることができる。 The aliphatic and/or alicyclic hydrocarbons having 2 to 6 carbon atoms may be any that fall within the category, such as ethane, ethylene, propane, propylene, cyclopropane, n-butane, isobutane, 1-butene, 2-butene, isobutene, butadiene, cyclobutene, cyclobutane, n-pentane, 1-pentane, 2-pentane, 1-pentene, 2-pentene, 3-pentene, n-hexane, 1-hexane, 2-hexane, 1-hexene, 2-hexene, 3-hexene, hexadiene, cyclohexane, and mixtures thereof. In addition, examples of the aliphatic and/or alicyclic hydrocarbons having 2 to 6 carbon atoms include C4 fraction, which is a distillation mixture of hydrocarbons having 4 carbon atoms obtained by cracking fractions of petroleum, such as naphtha, C5 fraction, which is a distillation mixture of hydrocarbons having 5 carbon atoms, and C6 fraction, which is a distillation mixture of hydrocarbons having 6 carbon atoms.

芳香族化合物製造用触媒と接触し芳香族化合物を製造する際の温度範囲としては、400℃以上800℃以下を挙げることでき、特に生産効率に優れるものとなることから450℃以上650℃以下であることが好ましい。また、芳香族化合物製造用触媒に対する原料の供給量は、生産効率と芳香族収率を両立するものとしてガス体積比として1:50~2000であることが好ましく、特に1:100~1000であることが好ましい。そして、製造の際の圧力に制限はなく、例えば0.05MPa~5MPa程度の圧力範囲で製造を行うことが好ましい。原料を供給する際には、該炭化水素の単一ガス、混合ガス、およびこれらを窒素等の不活性ガス、水素、一酸化炭素、二酸化炭素から選ばれる単一または混合ガスにより希釈したものとして用いることもできる。 The temperature range for producing aromatic compounds by contacting with the aromatic compound production catalyst can be 400°C or higher and 800°C or lower, and is preferably 450°C or higher and 650°C or lower, as this provides particularly excellent production efficiency. The amount of raw material supplied to the aromatic compound production catalyst is preferably a gas volume ratio of 1:50 to 2000, particularly 1:100 to 1000, in order to achieve both production efficiency and aromatic yield. There is no restriction on the pressure during production, and it is preferable to produce the product at a pressure range of, for example, about 0.05 MPa to 5 MPa. When supplying the raw material, the hydrocarbon single gas, mixed gas, or a single or mixed gas diluted with an inert gas such as nitrogen, hydrogen, carbon monoxide, or carbon dioxide can be used.

製造の際の反応形式として制限はなく、例えば固定床、輸送床、流動床、移動床、多管式反応器のみならず連続流式、間欠流式、スイング式反応器、等を用いることができる。そして、特に効率的な芳香族化合物の製造方法となることからスイング式反応器による反応形式であることが好ましい。 There are no limitations on the reaction format used in the production, and for example, not only fixed bed, transport bed, fluidized bed, moving bed, and multi-tubular reactors, but also continuous flow, intermittent flow, and swing reactors can be used. Moreover, a reaction format using a swing reactor is preferable, as this is a particularly efficient method for producing aromatic compounds.

また、製造される芳香族化合物としては、芳香族化合物と称される範疇に属するものであれば特に制限はなく、例えばベンゼン、トルエン、キシレン、トリメチルベンゼン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、ナフタレン、メチルナフタレン等を挙げることができ、特に、ベンゼン、トルエン、キシレンであることが好ましい。 The aromatic compound produced is not particularly limited as long as it belongs to the category of aromatic compounds, and examples thereof include benzene, toluene, xylene, trimethylbenzene, ethylbenzene, propylbenzene, butylbenzene, naphthalene, and methylnaphthalene, with benzene, toluene, and xylene being particularly preferred.

本発明は、芳香族化合物を製造した際の芳香族化合物製造用触媒を効率よく再生する方法を提供する共に、脂肪族炭化水素及び/又は脂環式炭化水素の炭化水素原料から芳香族化合物を製造する際に、該再生を工程とすることにより、長期にわたり安定的に高い芳香族収率を得ることができる芳香族化合物の製造方法を提供するものであり、生産性・安定性に優れ工業的にも非常に有用なものである。 The present invention provides a method for efficiently regenerating a catalyst used in the production of aromatic compounds when aromatic compounds are produced, and also provides a method for producing aromatic compounds that can stably obtain a high aromatic yield over a long period of time by using the regeneration process as a step when producing aromatic compounds from aliphatic and/or alicyclic hydrocarbon raw materials, and is therefore highly productive, stable, and industrially useful.

以下に、本発明を実施例により具体的に説明する。 The present invention will be explained in detail below with reference to examples.

なお、実施例により用いたMFI型ゼオライト、芳香族化合物製造用触媒は以下の方法により測定・定義した。 The MFI zeolite and aromatic compound production catalysts used in the examples were measured and defined by the following methods.

~細孔分布、細孔直径、及び外表面積の測定~
ゼオライトの細孔分布、及び、細孔直径は窒素吸着測定により測定した。
- Measurement of pore distribution, pore diameter, and external surface area -
The pore distribution and pore diameter of the zeolite were measured by nitrogen adsorption measurements.

窒素吸着測定には、一般的な窒素吸着装置((商品名)BELSOAP-max、日本ベル社製)を用い、吸着側は相対圧(P/P)0.025間隔で測定した。脱着側は、相対圧0.05間隔で測定した。外表面積は、t-plot法により、吸着層の厚み(t=0.6~1.0nm)の範囲を直線近似して求めた。細孔分布曲線の解析には日本ベル社製のBELMaster(ver.2.3.1)を用いた。 A general nitrogen adsorption apparatus (product name: BELSOAP-max, manufactured by BEL Japan) was used for the nitrogen adsorption measurement, and the adsorption side was measured at relative pressure (P/P 0 ) intervals of 0.025. The desorption side was measured at relative pressure intervals of 0.05. The external surface area was determined by linear approximation of the thickness of the adsorption layer (t = 0.6 to 1.0 nm) using the t-plot method. BELMaster (ver. 2.3.1) manufactured by BEL Japan was used for the analysis of the pore distribution curve.

窒素吸着測定の吸着過程をSaito-Foley法(AIChE Journal、1991年、37巻、頁429~436)により解析し、横軸が細孔ミクロ直径の常数、縦軸が窒素ガスの脱着量の微分値であるミクロ細孔の細孔分布曲線を得た。 The adsorption process of the nitrogen adsorption measurement was analyzed using the Saito-Foley method (AIChE Journal, 1991, Vol. 37, pp. 429-436), and a micropore distribution curve was obtained in which the horizontal axis represents the constant of the micropore microdiameter and the vertical axis represents the differential value of the desorption amount of nitrogen gas.

そして、窒素吸着測定の脱着過程をBarret-Joyner-Halenda法(Journal of the American Chemical Society、1951年、頁373~380)にて解析し、横軸が細孔直径の常数、縦軸が窒素ガスの脱着量の微分値であるメソ細孔の細孔分布曲線を得た。メソ細孔の全細孔容積は、2nm以上50nm以下の範囲の窒素ガス脱着量を積算することにより求めた。 The desorption process of the nitrogen adsorption measurement was analyzed using the Barret-Joyner-Halenda method (Journal of the American Chemical Society, 1951, pp. 373-380), and a mesopore distribution curve was obtained in which the horizontal axis represents the pore diameter constant and the vertical axis represents the differential value of the amount of desorbed nitrogen gas. The total pore volume of the mesopores was calculated by integrating the amount of desorbed nitrogen gas in the range of 2 nm to 50 nm.

そして、メソ細孔からの窒素ガス脱着量のメソ細孔直径値での微分値(d(V/m)/d(D))のピークの内、最大のピークをガウス関数の強度近似で解析し、そのガウス関数の中心値(μ)から標準偏差の2倍(2σ)の範囲(=μ±2σ)内の直径を有するメソ細孔を均一メソ細孔と定義した。均一メソ細孔の細孔容積は、中心値(μ)を基準として±2σの範囲の窒素ガス脱着量を積算して求めた。 The maximum peak of the differential value (d(V/m)/d(D)) of the amount of nitrogen gas desorbed from the mesopores with respect to the mesopore diameter value was analyzed using the intensity approximation of a Gaussian function, and mesopores with diameters within a range of twice the standard deviation (2σ) (=μ±2σ) from the center value (μ) of the Gaussian function were defined as uniform mesopores. The pore volume of uniform mesopores was calculated by integrating the amount of nitrogen gas desorbed within a range of ±2σ based on the center value (μ).

~平均粒子径の測定~
外表面積から前記の式(1)を用いて平均粒子径を算出した。式(1)中、Sは外表面積(m/g)であり、PDは平均粒子径(m)である。式(1)における外表面積(S(m/g))は、液体窒素温度における窒素吸着法によりt-plot法から求めた。
~Measurement of average particle size~
The average particle diameter was calculated from the external surface area using the above formula (1). In formula (1), S is the external surface area (m 2 /g) and PD is the average particle diameter (m). The external surface area (S (m 2 /g)) in formula (1) was determined by the t-plot method using a nitrogen adsorption method at liquid nitrogen temperature.

~SiO/Alモル比の測定~
ゼオライトのSiO/Alモル比は、MFI型ゼオライトをフッ酸と硝酸の混合水溶液で溶解し、これを一般的なICP装置((商品名)OPTIMA3300DV,PerkinElmer社製)による誘導結合プラズマ発光分光分析(ICP-AES)で測定し、求めた。
~Measurement of SiO2 / Al2O3 molar ratio~
The SiO 2 /Al 2 O 3 molar ratio of the zeolite was determined by dissolving MFI zeolite in a mixed aqueous solution of hydrofluoric acid and nitric acid, and measuring the resultant by inductively coupled plasma atomic emission spectrometry (ICP-AES) using a general ICP apparatus ((trade name) OPTIMA 3300DV, manufactured by PerkinElmer).

~凝集径の測定~
凝集径として、動的散乱法によって凝集粒子径の体積平均径(D50)を測定した。測定には(商品名)マイクロトラックHRA(Model9320-x100)(日機装製)を用いた。測定において粒子屈折率は1.66、粒子の設定は透明非球状粒子、溶媒の液体屈折率は1.33とした。
~Measurement of aggregate size~
The volume average diameter (D 50 ) of the aggregate particle diameter was measured by a dynamic scattering method. A Microtrac HRA (Model 9320-x100) (manufactured by Nikkiso Co., Ltd.) (trade name) was used for the measurement. In the measurement, the particle refractive index was 1.66, the particles were set to transparent non-spherical particles, and the liquid refractive index of the solvent was 1.33.

~粉末X線回折の測定~
X線回折測定装置(スペクトリス社製、(商品名)X’pert PRO MPD)を用い、管電圧45kV、管電流40mAとしてCuKα1を用いて、大気中において測定した。0.04~5度の範囲を0.08度/ステップ、200秒/ステップで分析した。また、ダイレクトビームの吸収率で補正したバックグラウンドを除去している。
~ Powder X-ray diffraction measurement ~
Measurements were performed in air using an X-ray diffraction measurement device (Spectris Corporation, product name: X'pert PRO MPD) with a tube voltage of 45 kV and a tube current of 40 mA using CuKα1. The range of 0.04 to 5 degrees was analyzed at 0.08 degrees/step and 200 seconds/step. In addition, background correction based on the absorption rate of the direct beam was removed.

ピークの有無の確認は目視で行うことができるほか、ピークサーチプログラムを利用してもよい。ピークサーチプログラムは、一般的なプログラムが利用できる。例えば、横軸が2θ(度)、縦軸が強度(a.u.)の測定結果をSAVITSKY&GOLAYの式とSliding Polynomialフィルターで平滑化した後、2次微分を行ったときに、3点以上連続する負の値がある場合、ピークが存在すると判断した。 The presence or absence of a peak can be confirmed visually, or a peak search program can be used. A common peak search program can be used. For example, the measurement results, with the horizontal axis being 2θ (degrees) and the vertical axis being intensity (a.u.), were smoothed using the SAVITSKY & GOLAY formula and a sliding polynomial filter, and then the second derivative was performed. If there were three or more consecutive negative values, it was determined that a peak was present.

~芳香族化合物製造装置~
ステンレス製反応管(内径38mm、長さ4000mm)を用いた固定床気相流通式反応装置を用いた。反応管に、芳香族化合物製造用触媒を充填し、乾燥空気流通下での加熱前処理を行ったのち、原料ガスをフィードして、芳香族化合物の製造反応を行った。反応管は保温材により断熱し、加熱炉で加熱したガスを導入することで温度の制御を行った。反応器の装置条件および運転条件は、本実施例記載の条件に限定されるものではなく、適宜選択可能である。なお、芳香族化合物製造工程においては反応出口ガスおよび反応液を採取し、ガスクロマトグラフを用い、ガス成分および液成分を個別に分析した。ガス成分は、TCD検出器を備えたガスクロマトグラフ(島津製作所製、(商品名)GC-14B)を用いて分析した。充填剤は、Waters社製PorapakQ(商品名)またはGLサイエンス社製MS-5A(商品名)を用いた。液成分は、FID検出器を備えたガスクロマトグラフ(島津製作所製、(商品名)GC-2025)を用いて分析した。分離カラムは、キャピラリーカラム(GLサイエンス社製、(商品名)TC-1)を用いた。また、芳香族化合物製造用触媒再生工程においては、反応器出口の成分分析をジルコニア式酸素濃度計(横河電機製、(商品名)ZS8形)、レーザーガス分析計(横河電機製、(商品名)TDLS8000)で常時行った。反応器出口の排ガスの一部は反応器入口へ循環し、空気と循環ガス、窒素ガスの混合比で再生ガス流量と酸素濃度を制御した。
~Aromatic compound manufacturing equipment~
A fixed-bed gas-phase flow-type reactor using a stainless steel reaction tube (inner diameter 38 mm, length 4000 mm) was used. The reaction tube was filled with a catalyst for aromatic compound production, and a heat pretreatment was performed under a dry air flow. After that, the raw material gas was fed and the reaction for producing aromatic compounds was carried out. The reaction tube was insulated with a heat-insulating material, and the temperature was controlled by introducing gas heated in a heating furnace. The apparatus conditions and operating conditions of the reactor are not limited to those described in this embodiment, and can be appropriately selected. In the aromatic compound production process, the reaction outlet gas and the reaction liquid are sampled and analyzed by gas chromatography. The gas components were analyzed using a gas chromatograph equipped with a TCD detector (manufactured by Shimadzu Corporation, product name GC-14B). PorapakQ (trade name) manufactured by GL Sciences or MS-5A (trade name) manufactured by GL Sciences was used. The liquid components were analyzed using a gas chromatograph equipped with an FID detector (Shimadzu Corporation, product name: GC-2025). The separation column was a capillary column (GL Sciences, product name: TC-1). In the aromatic compound production catalyst regeneration process, the components at the reactor outlet were analyzed using a zirconia oxygen analyzer (manufactured by Yokogawa Electric Corporation, product name: ZS8 model) and a laser gas analyzer (Yokogawa A part of the exhaust gas from the reactor outlet was circulated to the reactor inlet, and the regeneration gas flow rate and oxygen concentration were controlled by the mixture ratio of air, circulating gas, and nitrogen gas. .

調製例1(原料ゼオライトの調製)
特開2013-227203号に記載の方法により、MFI型ゼオライトの製造を行った。
Preparation Example 1 (Preparation of Raw Zeolite)
MFI type zeolite was produced by the method described in JP 2013-227203 A.

テトラプロピルアンモニウム(以降、TPAと略記する場合がある。)水酸化物と水酸化ナトリウムの水溶液に不定形アルミノシリケートゲルを添加して懸濁させた。得られた懸濁液にMFI型ゼオライトを種晶として加え原料組成物とした。その際の種晶の添加量は、原料組成物中のAlとSiOの重量に対して、0.7重量%とした。 Amorphous aluminosilicate gel was added to an aqueous solution of tetrapropylammonium (hereinafter sometimes abbreviated as TPA) hydroxide and sodium hydroxide and suspended. MFI type zeolite was added as seed crystals to the resulting suspension to prepare a raw material composition. The amount of seed crystals added was 0.7% by weight based on the weight of Al2O3 and SiO2 in the raw material composition.

該原料組成物の組成は以下のとおりである。
SiO/Alモル比=48、TPA/Siモル比=0.05、Na/Siモル比=0.16、OH/Siモル比=0.21、HO/Siモル比=10。
The composition of the raw material composition is as follows:
SiO2 / Al2O3 molar ratio=48, TPA/Si molar ratio=0.05, Na/Si molar ratio=0.16, OH / Si molar ratio=0.21, H2O /Si molar ratio=10.

得られた原料組成物をステンレス製オートクレーブに密閉し、115℃で攪拌しながら4日間結晶化させ、スラリー状混合液を得た。結晶化後のスラリー状混合液を遠心沈降機で固液分離した後、十分量の純水で固体粒子を洗浄し、110℃で乾燥して乾燥粉末を得た。得られた乾燥粉末を1mol/Lの塩酸中に分散し、ろ過、乾燥させた。空気下、550℃で1時間焼成後、600℃、50%の水蒸気で2時間のスチーム処理を含む焼成処理を行った。得られた粉末を1mol/Lの塩酸中に分散し、ろ過、洗浄し、MFI型ゼオライトを得た。 The obtained raw material composition was sealed in a stainless steel autoclave and crystallized for 4 days while stirring at 115°C to obtain a slurry-like mixed liquid. The crystallized slurry-like mixed liquid was subjected to solid-liquid separation using a centrifugal settler, and the solid particles were washed with a sufficient amount of pure water and dried at 110°C to obtain a dry powder. The obtained dry powder was dispersed in 1 mol/L hydrochloric acid, filtered, and dried. After calcination at 550°C for 1 hour in air, a calcination treatment including steam treatment at 600°C with 50% water vapor for 2 hours was performed. The obtained powder was dispersed in 1 mol/L hydrochloric acid, filtered, and washed to obtain MFI-type zeolite.

得られたMFI型ゼオライトは、平均粒子径は38nm、SiO/Alモル比は55、メソ細孔の全細孔容積0.45ml/gであった。また、ミクロ細孔分布曲線は、細孔径0.4125nmに最も大きい微分細孔容積値を有する極大値を持つものであった。そして、メソ細孔分布曲線における均一メソ細孔のピークの半値幅は16nm、中心値は15nmであった。また、その均一メソ細孔の細孔容積は0.40ml/gであり、メソ細孔の全細孔容積に占める均一メソ細孔の細孔容積の割合は89%であった。また、得られたMFI型ゼオライトの粉末X線回折では、0.1~3度の範囲にピークは存在せず、メソ細孔が不規則に連結していることが示された。 The obtained MFI zeolite had an average particle size of 38 nm, a SiO 2 /Al 2 O 3 molar ratio of 55, and a total mesopore volume of 0.45 ml/g. The micropore distribution curve had a maximum value with the largest differential pore volume value at a pore diameter of 0.4125 nm. The half-width of the peak of the uniform mesopores in the mesopore distribution curve was 16 nm, and the center value was 15 nm. The pore volume of the uniform mesopores was 0.40 ml/g, and the ratio of the pore volume of the uniform mesopores to the total pore volume of the mesopores was 89%. In addition, the powder X-ray diffraction of the obtained MFI zeolite showed that there was no peak in the range of 0.1 to 3 degrees, indicating that the mesopores were irregularly connected.

調製例2(原料ゼオライトの成形)
調製例1で得られたMFI型ゼオライト100重量部に対して、シリカ(日産化学工業社製、(商品名)スノーテックスN-30G)43重量部、セルロース4重量部、純水30重量部を加え混練した。そして、混練物を直径3.0mm、長さ2.0~5.5mm(平均長さ4.5mm)の円柱状の成形体とした。これを100℃で1晩乾燥した後、600℃で2時間焼結し芳香族化合物製造用触媒を調製した。
Preparation Example 2 (Forming of raw zeolite)
43 parts by weight of silica (product name Snowtex N-30G, manufactured by Nissan Chemical Industries, Ltd.), 4 parts by weight of cellulose, and 30 parts by weight of pure water were added to 100 parts by weight of the MFI zeolite obtained in Preparation Example 1 and kneaded. The kneaded product was then formed into a cylindrical molded body having a diameter of 3.0 mm and a length of 2.0 to 5.5 mm (average length 4.5 mm). This was dried overnight at 100°C and then sintered at 600°C for 2 hours to prepare a catalyst for producing aromatic compounds.

実施例1
調製例2により得られた芳香族化合物製造用触媒2.0kgを上記した芳香族化合物製造装置に充填し、原料である脂肪族炭化水素としてブテン類混合ガス(1-ブテン60%+トランスブテン15%+イソブテン15%+シスブテン10%)を用い、下記条件にて芳香族化合物の製造を行った。その後、コーク付着の生じた芳香族化合物製造用触媒に酸素濃度が3重量%となるように窒素により空気を希釈した再生ガスを排ガスの酸素濃度(反応器出口酸素濃度)が0.7~1.3%となるように再生ガスの温度を450~520℃の間で制御しながら接触すると共に、酸素濃度3重量%を維持するように排ガスの80~95重量%を空気と混合し再生ガスとして循環供給を行い芳香族化合物製造用触媒の再生を行った。芳香族化合物製造用触媒の再生条件を下記に示す。そして、芳香族化合物の製造と芳香族化合物製造用触媒の再生を繰り返し、芳香族化合物の製造評価を10回行った。芳香族化合物の製造と触媒の再生を繰り返した芳香族製造用触媒は、安定したブテン類転化率、ベンゼン収率、トルエン収率、キシレン収率を示し、再生時の熱暴走もなく安定運転が可能であった。結果を表1に示す。
Example 1
2.0 kg of the aromatic compound production catalyst obtained in Preparation Example 2 was loaded into the aromatic compound production apparatus described above, and a mixed gas of butenes (60% 1-butene + 15% trans-butene + 15% isobutene + 10% cis-butene) was used as the aliphatic hydrocarbon raw material to produce aromatic compounds under the following conditions. Thereafter, the catalyst for aromatic compound production on which coke had been deposited was contacted with a regeneration gas in which air was diluted with nitrogen so that the oxygen concentration was 3% by weight, while controlling the temperature of the regeneration gas between 450 and 520°C so that the oxygen concentration of the exhaust gas (oxygen concentration at the reactor outlet) was 0.7 to 1.3%, and 80 to 95% by weight of the exhaust gas was mixed with air and circulated as a regeneration gas to maintain an oxygen concentration of 3% by weight, thereby regenerating the catalyst for aromatic compound production. The regeneration conditions for the catalyst for aromatic compound production are shown below. Then, the production of aromatic compounds and the regeneration of the catalyst for aromatic compound production were repeated, and the evaluation of the production of aromatic compounds was performed 10 times. The aromatics production catalyst, which had been repeatedly subjected to aromatic compound production and catalyst regeneration, showed stable butenes conversion, benzene yield, toluene yield, and xylene yield, and was capable of stable operation without thermal runaway during regeneration. The results are shown in Table 1.

(芳香族化合物製造条件)
反応(触媒)温度:570℃。
原料ガス:ブテン類混合ガス3.0kg/時間。
触媒体積に対する原料ガスの体積の比:1:480。
反応時間:48時間。
(Aromatic compound production conditions)
Reaction (catalysis) temperature: 570°C.
Feed gas: butenes mixed gas 3.0 kg/hour.
Ratio of the volume of the feed gas to the volume of the catalyst: 1:480.
Reaction time: 48 hours.

(芳香族化合物製造用触媒再生条件)
再生温度:450℃~520℃。
再生ガス酸素濃度:3重量%。
反応器出口酸素濃度:0.7~1.3重量%。
触媒体積に対する再生ガスの体積の比:1:720。
圧力:0.1MPaG。
再生時間:35時間。
(Catalyst regeneration conditions for aromatic compound production)
Regeneration temperature: 450℃~520℃.
Regeneration gas oxygen concentration: 3% by weight.
Reactor outlet oxygen concentration: 0.7 to 1.3% by weight.
Ratio of regeneration gas volume to catalyst volume: 1:720.
Pressure: 0.1MPaG.
Play time: 35 hours.

実施例2
芳香族化合物製造条件、芳香族化合物製造用触媒再生条件を下記の条件とした以外は、実施例1と同様の方法により芳香族化合物の製造と芳香族化合物製造用触媒の再生を繰り返し、10回の評価を行った。芳香族化合物の製造と触媒の再生を繰り返した芳香族製造用触媒は、安定したブテン類転化率、ベンゼン収率、トルエン収率、キシレン収率を示し、再生時の熱暴走もなく安定運転が可能であった。結果を表2に示す。
Example 2
Except for the aromatic compound production conditions and aromatic compound production catalyst regeneration conditions being as follows, the aromatic compound production and aromatic compound production catalyst regeneration were repeated 10 times in the same manner as in Example 1, and evaluation was performed. The aromatic compound production catalyst that had been repeatedly subjected to aromatic compound production and catalyst regeneration showed stable butenes conversion, benzene yield, toluene yield, and xylene yield, and no thermal runaway occurred during regeneration, allowing stable operation. The results are shown in Table 2.

(芳香族化合物製造条件)
反応(触媒)温度:585℃。
原料ガス:ブテン類混合ガス4.0kg/時間。
触媒体積に対する原料ガスの体積の比:1:650。
反応時間:48時間。
(Aromatic compound production conditions)
Reaction (catalysis) temperature: 585°C.
Feed gas: butenes mixed gas 4.0 kg/hour.
Ratio of the volume of the feed gas to the volume of the catalyst: 1:650.
Reaction time: 48 hours.

(芳香族化合物製造用触媒再生条件)
再生温度:430℃~520℃。
再生ガス酸素濃度:3重量%。
反応器出口酸素濃度:0.7~1.3重量%。
触媒体積に対する再生ガスの体積の比:1:980。
圧力:0.15MPaG。
再生時間:40時間
(Catalyst regeneration conditions for aromatic compound production)
Regeneration temperature: 430℃~520℃.
Regeneration gas oxygen concentration: 3% by weight.
Reactor outlet oxygen concentration: 0.7 to 1.3% by weight.
Ratio of regeneration gas volume to catalyst volume: 1:980.
Pressure: 0.15MPaG.
Playback time: 40 hours

実施例3
芳香族化合物製造条件、芳香族化合物製造用触媒再生条件を下記の条件とした以外は、実施例1と同様の方法により芳香族化合物の製造と芳香族化合物製造用触媒の再生を繰り返し、10回の評価を行った。反応と再生を繰り返した芳香族製造用触媒は、安定したブテン類転化率、ベンゼン収率、トルエン収率、キシレン収率を示し、再生時の熱暴走もなく安定運転が可能であった。結果を表3に示す。
Example 3
Except for the aromatic compound production conditions and aromatic compound production catalyst regeneration conditions being as follows, the aromatic compound production and aromatic compound production catalyst regeneration were repeated 10 times in the same manner as in Example 1, and evaluation was performed. The aromatic compound production catalyst that had been repeatedly subjected to reaction and regeneration showed stable butenes conversion, benzene yield, toluene yield, and xylene yield, and no thermal runaway occurred during regeneration, allowing stable operation. The results are shown in Table 3.

(芳香族化合物製造条件)
反応(触媒)温度:600℃。
原料ガス:ブテン類混合ガス2.0kg/時間。
触媒体積に対する原料ガスの体積の比:1:310。
反応時間:48時間。
(Aromatic compound production conditions)
Reaction (catalysis) temperature: 600°C.
Feed gas: butenes mixed gas 2.0 kg/hour.
Ratio of the volume of the feed gas to the volume of the catalyst: 1:310.
Reaction time: 48 hours.

(芳香族化合物製造用触媒再生条件)
再生温度:470℃~520℃。
再生ガス酸素濃度:4.5重量%。
反応器出口酸素濃度:0.8~1.5重量%・
触媒体積に対する再生ガスの体積の比:1;470。
圧力:0.2MPaG。
再生時間:42時間。
(Catalyst regeneration conditions for aromatic compound production)
Regeneration temperature: 470℃~520℃.
Regeneration gas oxygen concentration: 4.5% by weight.
Reactor outlet oxygen concentration: 0.8 to 1.5% by weight
Ratio of regeneration gas volume to catalyst volume: 1;470.
Pressure: 0.2MPaG.
Play time: 42 hours.

比較例1
再生ガス酸素濃度を7重量%とした以外は、実施例1と同様の方法により芳香族化合物の製造と芳香族化合物製造用触媒の再生の繰り返し、10回の評価を行った。
Comparative Example 1
The production of aromatic compounds and the regeneration of the catalyst for producing aromatic compounds were repeated 10 times in the same manner as in Example 1, except that the oxygen concentration of the regeneration gas was set to 7% by weight, and evaluation was performed.

5サイクル目からブテン類転化率が低下し始め、6回目からはベンゼン収率、トルエン収率、キシレン収率の合計が明らかに低下し始める結果となった。評価結果を表4に示す。 The butenes conversion rate began to decrease from the fifth cycle, and from the sixth cycle the total benzene yield, toluene yield, and xylene yield began to decrease significantly. The evaluation results are shown in Table 4.

比較例2
再生温度の制御を行わず550℃とした以外は、実施例1と同様の方法により芳香族化合物の製造と芳香族化合物製造用触媒の再生の繰り返し、10回の評価を行った。
Comparative Example 2
The production of aromatic compounds and the regeneration of the catalyst for producing aromatic compounds were repeated 10 times in the same manner as in Example 1, except that the regeneration temperature was not controlled but was set at 550°C.

4サイクル目からブテン類転化率およびベンゼン収率、トルエン収率、キシレン収率の合計が明らかに低下し始める結果となった。評価結果を表5に示す。 From the fourth cycle onwards, the butenes conversion rate and the total benzene yield, toluene yield and xylene yield began to clearly decline. The evaluation results are shown in Table 5.

比較例3
再生ガス酸素濃度を1.5重量%とし、反応器出口酸素濃度を0.5~1.0重量%となるように制御した以外は、実施例2と同様の方法により芳香族化合物の製造と芳香族化合物製造用触媒の再生の繰り返しを試みたが、コーク除去が不十分であり、芳香族化合物の製造評価を継続して行うことができなかった。
Comparative Example 3
An attempt was made to repeatedly produce aromatic compounds and regenerate the catalyst for producing aromatic compounds in the same manner as in Example 2, except that the oxygen concentration in the regeneration gas was set to 1.5% by weight and the oxygen concentration at the reactor outlet was controlled to be 0.5 to 1.0% by weight. However, coke removal was insufficient, and it was not possible to continue evaluating the production of aromatic compounds.

比較例4
再生ガス酸素濃度を10重量%とし、反応器出口酸素濃度を7.0~8.0重量%となるように制御した以外は、実施例3と同様の方法により芳香族化合物の製造と芳香族化合物製造用触媒の再生の繰り返しを試みたが、再生時に反応器内温が650℃を超えるという課題が発生し、安定な再生が出来ず、芳香族化合物の製造評価を行うことが出来なかった。
Comparative Example 4
An attempt was made to repeatedly produce aromatic compounds and regenerate the catalyst for producing aromatic compounds in the same manner as in Example 3, except that the oxygen concentration in the regeneration gas was set to 10% by weight and the oxygen concentration at the reactor outlet was controlled to be 7.0 to 8.0% by weight. However, a problem occurred in which the temperature inside the reactor exceeded 650°C during regeneration, making stable regeneration impossible and making it impossible to evaluate the production of aromatic compounds.

本発明は、芳香族化合物を製造した際の芳香族化合物製造用触媒を効率よく再生する方法を提供する共に、脂肪族炭化水素及び/又は脂環式炭化水素の炭化水素原料から芳香族化合物を製造する際に、該再生方法を工程とすることにより、触媒の反応と再生を繰り返すものであり、生産性・安定性・安全性に優れ工業的にも非常に有用なものである。 The present invention provides a method for efficiently regenerating a catalyst for producing aromatic compounds when aromatic compounds are produced, and by using the regeneration method as a process for producing aromatic compounds from aliphatic and/or alicyclic hydrocarbon raw materials, the reaction and regeneration of the catalyst are repeated, making the method highly productive, stable, and safe and extremely useful industrially.

Claims (8)

コーク付着により性能低下したゼオライトを活性成分として有する芳香族化合物製造用触媒に、酸素を2~5重量%含む再生ガスを接触し芳香族化合物製造用触媒を再生する際に接触後の排ガスの酸素濃度が0.5~1.5重量%となるように接触温度を380~530℃の間で制御すると共に、該排ガスの75~98重量%を酸素濃度が2~5重量%となるように空気と混合し再生ガスとして循環供給することを特徴とする芳香族化合物製造用触媒の再生方法。 A method for regenerating a catalyst for producing aromatic compounds, comprising contacting a catalyst for producing aromatic compounds having zeolite as an active ingredient, the performance of which has been reduced by the adhesion of coke, with a regeneration gas containing 2 to 5% by weight of oxygen to regenerate the catalyst, the method comprising controlling the contact temperature between 380 and 530°C so that the oxygen concentration of the exhaust gas after the contact is 0.5 to 1.5% by weight, and mixing 75 to 98% by weight of the exhaust gas with air so that the oxygen concentration is 2 to 5% by weight, and circulating and supplying the mixed gas as the regeneration gas. ゼオライトがMFI型ゼオライトであることを特徴とする請求項1に記載の芳香族化合物製造用触媒の再生方法。 The method for regenerating a catalyst for producing aromatic compounds according to claim 1, characterized in that the zeolite is an MFI type zeolite. ゼオライトが、下記(i)~(iv)に示す特性を満足するMFI型ゼオライトであることを特徴とする請求項1又は2に記載の芳香族化合物製造用触媒の再生方法。
(i)メソ細孔分布曲線がピークを有するものであり、該ピークの半値幅(hw)がhw≦20nm、該ピークの中心値(μ)が10nm≦μ≦20nmであり、該ピークに相当するメソ細孔のメソ細孔容積(pv)が0.05ml/g≦pvであるメソ細孔群を有する。
(ii)回折角を2θとした粉末X線回折測定において0.1~3度の範囲にピークを有さない。
(iii)平均粒子径(PD)がPD≦100nmである。
(iv)細孔径0.3nmから0.8nmの範囲の微分細孔容積値(dV/d(d))-ミクロ細孔の分布曲線が、極大値を有するものであり、最も微分細孔容積値(dV/d(d))の大きい値を示す細孔径が0.4~0.5nmの範囲にある。
3. The method for regenerating a catalyst for aromatic compound production according to claim 1, wherein the zeolite is an MFI type zeolite that satisfies the following characteristics (i) to (iv):
(i) The mesopore distribution curve has a peak, the half width (hw) of the peak is hw≦20 nm, the center value (μ) of the peak is 10 nm≦μ≦20 nm, and the mesopore volume (pv) of the mesopores corresponding to the peak is 0.05 ml/g≦pv.
(ii) In powder X-ray diffraction measurement at a diffraction angle of 2θ, there is no peak in the range of 0.1 to 3 degrees.
(iii) the average particle diameter (PD) is PD≦100 nm;
(iv) The differential pore volume value (dV P /d(d P ))-micropore distribution curve in the pore diameter range of 0.3 nm to 0.8 nm has a maximum value, and the pore diameter showing the largest differential pore volume value (dV P /d(d P )) is in the range of 0.4 to 0.5 nm.
ゼオライトが、ゼオライト製造時の焼成処理の際にスチーム処理を加えた焼成処理を行ったものであることを特徴とする請求項1~3のいずれかに記載の芳香族化合物製造用触媒の再生方法。 4. The method for regenerating a catalyst for aromatic compound production according to claim 1, wherein the zeolite is one that has been subjected to a calcination treatment in which steam treatment is added during the calcination treatment in the production of the zeolite . 芳香族化合物製造用触媒に対して再生ガスを体積比で1:100~2000の割合で供給することを特徴とする請求項1~4のいずれかに記載の芳香族化合物製造用触媒の再生方法。 A method for regenerating a catalyst for producing aromatic compounds according to any one of claims 1 to 4, characterized in that the regeneration gas is supplied to the catalyst for producing aromatic compounds at a volume ratio of 1:100 to 2000. ゼオライトを活性成分として有する芳香族化合物製造用触媒に、炭素数2~6の脂肪族炭化水素及び/又は脂環式炭化水素を温度範囲400℃以上800℃以下で接触し芳香族化合物を製造する工程と、請求項1~5のいずれかに記載の芳香族化合物製造用触媒の再生方法を工程として含むものであることを特徴とする芳香族化合物の製造方法。 A method for producing aromatic compounds, comprising the steps of: contacting an aromatic compound production catalyst having zeolite as an active ingredient with an aliphatic hydrocarbon and/or alicyclic hydrocarbon having 2 to 6 carbon atoms at a temperature range of 400°C to 800°C to produce aromatic compounds; and a method for regenerating the aromatic compound production catalyst according to any one of claims 1 to 5. 芳香族化合物製造用触媒に対して炭素数2~6の脂肪族炭化水素及び/又は脂環式炭化水素を体積比で1:50~2000の割合で供給することを特徴とする請求項6に記載の芳香族化合物の製造方法。 The method for producing aromatic compounds according to claim 6, characterized in that aliphatic hydrocarbons and/or alicyclic hydrocarbons having 2 to 6 carbon atoms are supplied to the catalyst for producing aromatic compounds in a volume ratio of 1:50 to 2000. 芳香族化合物がベンゼン、トルエン、キシレンからなる群のうち少なくとも1つ含むものである、ことを特徴とする請求項6又は7に記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to claim 6 or 7, characterized in that the aromatic compound contains at least one of the group consisting of benzene, toluene, and xylene.
JP2020151127A 2020-09-09 2020-09-09 METHOD FOR REGENERATING CATALYST AND METHOD FOR PRODUCING AROMATIC COMPOUND USING THE SAME Active JP7600573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020151127A JP7600573B2 (en) 2020-09-09 2020-09-09 METHOD FOR REGENERATING CATALYST AND METHOD FOR PRODUCING AROMATIC COMPOUND USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020151127A JP7600573B2 (en) 2020-09-09 2020-09-09 METHOD FOR REGENERATING CATALYST AND METHOD FOR PRODUCING AROMATIC COMPOUND USING THE SAME

Publications (2)

Publication Number Publication Date
JP2022045504A JP2022045504A (en) 2022-03-22
JP7600573B2 true JP7600573B2 (en) 2024-12-17

Family

ID=80774371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020151127A Active JP7600573B2 (en) 2020-09-09 2020-09-09 METHOD FOR REGENERATING CATALYST AND METHOD FOR PRODUCING AROMATIC COMPOUND USING THE SAME

Country Status (1)

Country Link
JP (1) JP7600573B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302291A (en) 2007-06-07 2008-12-18 Meidensha Corp Method for regenerating aromatization catalyst for aromatizing lower hydrocarbon
JP2011502779A (en) 2007-11-14 2011-01-27 シェブロン フィリップス ケミカル カンパニー エルピー Characterization of catalysts by identifying rapid deactivation threshold points
JP2012162649A (en) 2011-02-07 2012-08-30 Takuma Co Ltd System and method for producing diesel fuel
WO2017094806A1 (en) 2015-12-03 2017-06-08 旭化成株式会社 Method for producing propylene or aromatic hydrocarbon
JP2019136700A (en) 2018-02-09 2019-08-22 東ソー株式会社 Regeneration method of catalyst for producing aromatic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302291A (en) 2007-06-07 2008-12-18 Meidensha Corp Method for regenerating aromatization catalyst for aromatizing lower hydrocarbon
JP2011502779A (en) 2007-11-14 2011-01-27 シェブロン フィリップス ケミカル カンパニー エルピー Characterization of catalysts by identifying rapid deactivation threshold points
JP2012162649A (en) 2011-02-07 2012-08-30 Takuma Co Ltd System and method for producing diesel fuel
WO2017094806A1 (en) 2015-12-03 2017-06-08 旭化成株式会社 Method for producing propylene or aromatic hydrocarbon
JP2019136700A (en) 2018-02-09 2019-08-22 東ソー株式会社 Regeneration method of catalyst for producing aromatic compound

Also Published As

Publication number Publication date
JP2022045504A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP6733501B2 (en) Aromatic compound production catalyst and method for producing aromatic compound
JP6780369B2 (en) Aromatic compound production catalyst and method for producing aromatic compounds
JP6404352B2 (en) Composite catalyst, method for producing composite catalyst, method for producing lower olefin, and method for regenerating composite catalyst
JP2023014129A (en) Zinc oxide modified mfi type zeolite and method for manufacturing aromatic compound using the same
JP6953711B2 (en) Metal-containing MFI-type zeolite and catalyst for producing aromatic compounds
JP7600573B2 (en) METHOD FOR REGENERATING CATALYST AND METHOD FOR PRODUCING AROMATIC COMPOUND USING THE SAME
JP7271975B2 (en) Method for regenerating aromatic compound production catalyst
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
JP7443684B2 (en) New zeolite and catalyst for producing aromatic hydrocarbons containing it
JP7508816B2 (en) Olefin production catalyst
JP7547902B2 (en) Novel silver-containing zeolite and catalyst containing same for producing aromatic hydrocarbons
JP5023639B2 (en) Propylene production method
JP7293622B2 (en) METHOD FOR REGENERATING METAL ION-SUPPORTED ZEOLITE CATALYST
JP7396052B2 (en) Catalyst for producing aromatic compounds
JP7218553B2 (en) Method for regenerating silver ion-supported zeolite catalyst
JP7452205B2 (en) alcohol conversion catalyst
JP2023108285A (en) Method for producing hydrocarbon compound
JP6527364B2 (en) Process for producing a product containing butadiene
JP7632039B2 (en) Silver-alkaline earth metal-containing MFI type zeolite and catalyst for producing hydrocarbons
JP2023055080A (en) MFI-type zeolite and catalyst for hydrocarbon production containing the same
JP7501347B2 (en) Alkaline earth metal-containing MFI type zeolite and catalyst for producing hydrocarbons
JP2022175167A (en) Catalyst for converting thermal decomposition products of hydrocarbon-based plastics and method for producing lower hydrocarbons using the same
JP2023055086A (en) Metal-containing mfi type zeolite and catalyst for hydrocarbon compound production containing the same
JP2024040713A (en) Hydrothermal resistant zinc-containing MFI type zeolite molded body
JP2024070854A (en) Method and apparatus for converting waste plastic pyrolysis oil into light olefins with high yields

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241118

R150 Certificate of patent or registration of utility model

Ref document number: 7600573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150