[go: up one dir, main page]

JP7598218B2 - Parking assistance device for electric vehicles - Google Patents

Parking assistance device for electric vehicles Download PDF

Info

Publication number
JP7598218B2
JP7598218B2 JP2020173298A JP2020173298A JP7598218B2 JP 7598218 B2 JP7598218 B2 JP 7598218B2 JP 2020173298 A JP2020173298 A JP 2020173298A JP 2020173298 A JP2020173298 A JP 2020173298A JP 7598218 B2 JP7598218 B2 JP 7598218B2
Authority
JP
Japan
Prior art keywords
speed limit
electric vehicle
parking assistance
power
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020173298A
Other languages
Japanese (ja)
Other versions
JP2022064583A (en
Inventor
史之 守屋
裕太 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2020173298A priority Critical patent/JP7598218B2/en
Publication of JP2022064583A publication Critical patent/JP2022064583A/en
Application granted granted Critical
Publication of JP7598218B2 publication Critical patent/JP7598218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、非接触充電用に電動車両の駐車を支援する電動車両の駐車支援装置に関する。 The present invention relates to a parking assistance device for an electric vehicle that assists in parking an electric vehicle for non-contact charging.

以前より、地上設備の送電コイルから電動車両の受電コイルへ非接触で電力を伝送し、電動車両の走行用バッテリを充電する非接触充電システムが提案されている。非接触充電システムにおいては、受電コイルの位置を送電コイルに合わせた状態で電力を伝送する必要がある。受電コイルは電動車両に取り付けられているため、受電コイルの位置合わせは、電動車両の駐車位置の調整により行われる。 Contactless charging systems have been proposed in the past that transmit power contactlessly from a power transmitting coil in ground equipment to a power receiving coil in an electric vehicle to charge the vehicle's traction battery. In contactless charging systems, power needs to be transmitted with the position of the power receiving coil aligned with the power transmitting coil. Because the power receiving coil is attached to the electric vehicle, the position of the power receiving coil is aligned by adjusting the parking position of the electric vehicle.

従来、受電コイルの位置合せの際には、送電コイルを位置合せ用に弱く励磁する一方、電動車両において受電コイルを介して上記の励磁を検出し、検出された励磁の大きさに基づいて受電コイルの位置が送電コイルに合ったか否かを判定するのが通常であった。 Conventionally, when aligning the receiving coil, the transmitting coil is weakly excited for alignment, while the excitation is detected via the receiving coil in the electric vehicle, and it is then determined whether the position of the receiving coil matches the transmitting coil based on the magnitude of the detected excitation.

特許文献1には、受電コイルの位置合せの際に電動車両の速度を制御して電動車両の駐車を支援する駐車支援装置について記載されている。この駐車支援装置は、受電コイルを介して検出された送電コイルの励磁の大きさに基づいて電動車両の速度を制御する。 Patent Document 1 describes a parking assistance device that assists in parking an electric vehicle by controlling the speed of the electric vehicle when aligning the power receiving coil. This parking assistance device controls the speed of the electric vehicle based on the magnitude of excitation of the power transmitting coil detected via the power receiving coil.

国際公開第2011/132271号International Publication No. 2011/132271

非接触充電を行う際、スムースにかつ短時間に受電コイルを位置合わせできるように、電動車両の駐車支援が行われると好ましい。しかしながら、特許文献1の駐車支援装置のように、送電コイルの励磁の検出に基づいて電動車両の速度を制御していたのでは、電動車両が高い車速で送電コイルに近づいた場合に、急減速しないと電動車両を適正な位置で停止できないという課題が生じる。 When performing contactless charging, it is preferable to provide parking assistance for an electric vehicle so that the position of the power receiving coil can be adjusted smoothly and quickly. However, if the speed of the electric vehicle is controlled based on the detection of the excitation of the power transmitting coil, as in the parking assistance device of Patent Document 1, a problem occurs in that if the electric vehicle approaches the power transmitting coil at a high vehicle speed, the electric vehicle cannot be stopped in the appropriate position unless it suddenly decelerates.

一方、急減速を避けるために、送電コイルの励磁が検出可能となる範囲よりはるか前から、電動車両をすぐに停止できる速度に制限すると、無駄に電動車両が低速で走行する時間が長くなり、受電コイルの位置合せに長い時間を要するという課題が生じる。 On the other hand, if the speed is limited to a level that allows the electric vehicle to be stopped immediately, long before the range in which excitation of the power transmitting coil can be detected, in order to avoid sudden deceleration, the electric vehicle will spend a long time traveling at a low speed, which creates the problem of it taking a long time to align the power receiving coil.

本発明は、スムースで短時間にコイルの位置合せを行うことのできる電動車両の駐車支援装置を提供することを目的とする。 The present invention aims to provide a parking assistance device for electric vehicles that can align the coil smoothly and in a short time.

請求項1に記載の発明は、
走行用の電力を蓄積する走行用バッテリと、地上設備の送電コイルから非接触で受電可能な受電コイルとを有し、前記受電コイルが受けた電力で前記走行用バッテリを充電する電動車両に搭載される電動車両の駐車支援装置であって、
前記電動車両と前記送電コイルとが水平方向に離れている状態で前記送電コイルまでの距離を検出可能な第1検出部と、
前記送電コイルの位置合せ用の励磁を前記受電コイルを介して検出する第2検出部と、
電動車両の走行の制御が可能な駐車支援制御部と、
を備え、
前記駐車支援制御部は、前記受電コイルの位置を前記送電コイルに合わせる駐車支援の際に、前記第1検出部の検出に基づき、前記送電コイルまでの距離が第1距離閾値以下となったら、前記電動車両の制限速度を、第1制限速度から当該第1制限速度よりも低速な第2制限速度に切り替える速度制御を行い、前記受電コイルの電圧が所定値より大きい場合に、前記第2検出部の検出に基づく前記電動車両の速度制御を行い、
前記駐車支援制御部は、前記第2検出部の検出に基づく速度制御において、まず、前記電動車両の制限速度を前記第2制限速度から当該第2制限速度よりも低い第3制限速度に切り替え、前記受電コイルの電圧が前記所定値よりも大きい第1閾値以上となったら、前記電動車両の制限速度を、第3制限速度から当該第3制限速度よりも低速な第4制限速度に切り替えることを特徴とする。
The invention described in claim 1 is
A parking assistance device for an electric vehicle is mounted on an electric vehicle, the parking assistance device having a battery for storing electric power for driving, and a power receiving coil capable of receiving electric power in a non-contact manner from a power transmitting coil of a ground facility, the parking assistance device charging the battery for driving with electric power received by the power receiving coil,
a first detection unit capable of detecting a distance to the power transmission coil in a state in which the electric vehicle and the power transmission coil are separated in a horizontal direction;
a second detection unit that detects an excitation for alignment of the power transmitting coil via the power receiving coil;
A parking assistance control unit capable of controlling driving of an electric vehicle;
Equipped with
the parking assist control unit, when performing parking assistance to align a position of the power receiving coil with the power transmitting coil, performs speed control to switch a speed limit of the electric vehicle from a first speed limit to a second speed limit that is slower than the first speed limit when a distance to the power transmitting coil becomes equal to or shorter than a first distance threshold based on detection by the first detection unit, and performs speed control of the electric vehicle based on detection by the second detection unit when a voltage of the power receiving coil is greater than a predetermined value;
The parking assistance control unit, in speed control based on detection by the second detection unit, first switches the speed limit of the electric vehicle from the second speed limit to a third speed limit lower than the second speed limit, and when the voltage of the power receiving coil becomes equal to or higher than a first threshold value higher than the predetermined value, switches the speed limit of the electric vehicle from the third speed limit to a fourth speed limit slower than the third speed limit .

請求項2記載の発明は、請求項1記載の電動車両の駐車支援装置おいて、
前記速度制御には制限速度を切り替える制御が含まれ、
前記第1検出部の検出に基づき切り替えられる制限速度は、前記第2検出部の検出に基づき切り替えられる制限速度よりも速度値が大きいことを特徴とする。
The present invention relates to a parking assistance device for an electric vehicle, comprising:
The speed control includes a control for switching a speed limit,
The speed limit that is switched based on the detection of the first detection unit has a speed value greater than the speed limit that is switched based on the detection of the second detection unit.

請求項3記載の発明は、請求項1又は請求項2に記載の電動車両の駐車支援装置おいて、
前記送電コイルまでの距離が前記第1距離閾値以下となったときの前記電動車両の位置から、水平方向において前記電動車両が前記送電コイルに到達する位置までの距離は、前記電動車両を前記第1制限速度から前記第2制限速度へ減速するのに要する制動距離以上であり、前記受電コイルの電圧が前記所定値より大きくなったときの前記電動車両の位置から、水平方向において前記電動車両が前記送電コイルに到達する位置までの距離は、前記電動車両を前記第2制限速度から前記第3制限速度へ減速するのに要する制動距離以上であることを特徴とする。
The present invention relates to a parking assistance device for an electric vehicle, comprising:
The distance from the position of the electric vehicle when the distance to the power transmission coil becomes equal to or less than the first distance threshold to the position where the electric vehicle reaches the power transmission coil in the horizontal direction is equal to or greater than the braking distance required to decelerate the electric vehicle from the first speed limit to the second speed limit, and the distance from the position of the electric vehicle when the voltage of the power receiving coil becomes greater than the predetermined value to the position where the electric vehicle reaches the power transmission coil in the horizontal direction is equal to or greater than the braking distance required to decelerate the electric vehicle from the second speed limit to the third speed limit .

請求項4記載の発明は、請求項1から請求項3のいずれか一項に記載の電動車両の駐車支援装置おいて、
前記第1制限速度と前記第2制限速度との差は、前記第2制限速度と前記第3制限速度との差よりも大きいことを特徴とする。
The invention according to claim 4 provides a parking assistance device for an electric vehicle according to any one of claims 1 to 3,
The difference between the first speed limit and the second speed limit is greater than the difference between the second speed limit and the third speed limit .

請求項5記載の発明は、請求項1から請求項4のいずれか一項に記載の電動車両の駐車
支援装置おいて、
前記第1距離閾値を決定するパラメータには、前記受電コイルの取り付け位置に生じる
可能性がある最大のズレ量が含まれることを特徴とする。
The invention according to claim 5 provides a parking assistance device for an electric vehicle according to any one of claims 1 to 4,
The parameters for determining the first distance threshold include a maximum amount of deviation that may occur in the attachment position of the power receiving coil.

本発明によれば、送電コイルの励磁の検出に基づく電動車両の速度制御に加えて、駐車支援制御部は、電動車両と送電コイルとが水平方向に離れている状態で送電コイルまでの距離を検出可能な第1検出部の検出に基づいて電動車両の速度制御を行う。したがって、駐車支援制御部は、電動車両の速度を、送電コイルの励磁を検出できない離れた箇所から制御することができ、この速度制御によって、電動車両が高い車速で送電コイルに近づくことで急減速を要するといった不都合や、送電コイルのはるか手前から電動車両が無駄に低速になるといった不都合を抑制できる。そして、スムースかつ短時間に受電コイルの位置を送電コイルに合わせることのできる駐車支援を実現できる。 According to the present invention, in addition to controlling the speed of the electric vehicle based on detection of the excitation of the power transmission coil, the parking assistance control unit controls the speed of the electric vehicle based on detection by the first detection unit that can detect the distance to the power transmission coil when the electric vehicle and the power transmission coil are separated horizontally. Therefore, the parking assistance control unit can control the speed of the electric vehicle from a distant location where the excitation of the power transmission coil cannot be detected, and this speed control can suppress inconveniences such as the electric vehicle approaching the power transmission coil at a high vehicle speed and having to suddenly decelerate, and inconveniences such as the electric vehicle slowing down unnecessarily far before the power transmission coil. It is also possible to realize parking assistance that can smoothly and quickly align the position of the power receiving coil with the power transmission coil.

本発明の実施形態に係る駐車支援装置及び電動車両を示すブロック図である。1 is a block diagram showing a parking assistance device and an electric vehicle according to an embodiment of the present invention. 駐車支援制御部が実行する非接触充電用の駐車支援処理の前半を示すフローチャートである。5 is a flowchart showing the first half of the parking assistance process for contactless charging executed by a parking assistance control unit. 駐車支援制御部が実行する非接触充電用の駐車支援処理の後半を示すフローチャートである。10 is a flowchart showing the second half of the parking assistance process for contactless charging executed by the parking assistance control unit. 駐車支援制御部が実行する送電コイルまでの距離取得処理を示すフローチャートである。5 is a flowchart showing a process of acquiring a distance to a power transmission coil, which is executed by a parking assistance control unit. 駐車支援処理の一例を説明するタイミングチャートである。4 is a timing chart illustrating an example of a parking assistance process.

以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態に係る駐車支援装置及び電動車両を示すブロック図である。本実施形態に係る電動車両1は、EV(Electric Vehicle)であり、駆動輪2と、駆動輪2に動力を出力する走行モータ3と、走行モータ3を駆動するインバータ4と、走行モータ3を駆動する電力を蓄積する走行用バッテリ5と、外部から供給される電力を用いて走行用バッテリ5を充電する車載充電器6と、運転支援の際に電動車両1の周囲を検出する車載カメラ8及び測距センサ9とを備える。車載カメラ8及び測距センサ9は、本発明に係る第1検出部の一例に相当する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a parking assistance device and an electric vehicle according to an embodiment of the present invention. The electric vehicle 1 according to this embodiment is an EV (Electric Vehicle), and includes drive wheels 2, a traction motor 3 that outputs power to the drive wheels 2, an inverter 4 that drives the traction motor 3, a traction battery 5 that stores power to drive the traction motor 3, an on-board charger 6 that charges the traction battery 5 using power supplied from an external source, and an on-board camera 8 and a distance measurement sensor 9 that detect the surroundings of the electric vehicle 1 during driving assistance. The on-board camera 8 and the distance measurement sensor 9 correspond to an example of a first detection unit according to the present invention.

さらに、電動車両1は、運転者から運転操作を受ける運転操作部21と、電動車両1の走行制御を行う走行制御部31と備える。運転操作部21は、アクセル操作部、制動操作部及び操舵操作部を含む。走行制御部31は、1つのECU(Electronic Control Unit)又は互いに連携して動作する複数のECUである。通常の走行モードの際、走行制御部31は、アクセル操作部及び制動操作部の操作量に基づきインバータ4を動作させて、走行モータ3を力行運転又は回生運転する。このような走行モータ3の運転により、運転操作に応じた電動車両1の走行が実現する。 The electric vehicle 1 further includes a driving operation unit 21 that receives driving operations from the driver, and a driving control unit 31 that controls the driving of the electric vehicle 1. The driving operation unit 21 includes an accelerator operation unit, a brake operation unit, and a steering operation unit. The driving control unit 31 is one ECU (Electronic Control Unit) or multiple ECUs that operate in conjunction with each other. In the normal driving mode, the driving control unit 31 operates the inverter 4 based on the operation amount of the accelerator operation unit and the brake operation unit, and performs power operation or regenerative operation of the driving motor 3. Such operation of the driving motor 3 realizes the driving of the electric vehicle 1 according to the driving operation.

さらに、電動車両1は、走行用バッテリ5の非接触充電を行うための構成として、地上設備100から非接触に電力を受ける非接触受電ユニット10と、非接触充電を行う前に電動車両1の駐車支援を行う駐車支援制御部32と、駐車支援を開始させるために運転者が操作する支援開始スイッチ22とを備える。駐車支援制御部32は、1つのECU又は互いに連携して動作する複数のECUである。非接触受電ユニット10は、地上設備100の送電コイル101と電磁結合して電力を受ける受電コイル11と、地上設備100と通信可能な通信部13と、地上設備100と連携して非接触充電用の受電制御を行う受電制御部12とを含む。受電コイル11は、電動車両1の車体底部に配置される。受電制御部12は、受電コイル11に生じる電圧を検出する電圧センサを含み、本発明に係る第2検出部として機能する。 Furthermore, the electric vehicle 1 includes a contactless power receiving unit 10 that receives power contactlessly from the ground equipment 100, a parking assistance control unit 32 that performs parking assistance for the electric vehicle 1 before contactless charging, and an assistance start switch 22 that the driver operates to start parking assistance, as components for contactless charging of the driving battery 5. The parking assistance control unit 32 is one ECU or multiple ECUs that operate in cooperation with each other. The contactless power receiving unit 10 includes a power receiving coil 11 that receives power by electromagnetically coupling with the power transmission coil 101 of the ground equipment 100, a communication unit 13 that can communicate with the ground equipment 100, and a power receiving control unit 12 that performs power receiving control for contactless charging in cooperation with the ground equipment 100. The power receiving coil 11 is disposed at the bottom of the body of the electric vehicle 1. The power receiving control unit 12 includes a voltage sensor that detects the voltage generated in the power receiving coil 11, and functions as a second detection unit according to the present invention.

上記の構成のうち、車載カメラ8、測距センサ9、支援開始スイッチ22、駐車支援制御部32及び受電制御部12が、本実施形態の駐車支援装置50に相当する。 Of the above configuration, the in-vehicle camera 8, the distance measurement sensor 9, the assistance start switch 22, the parking assistance control unit 32, and the power receiving control unit 12 correspond to the parking assistance device 50 of this embodiment.

地上設備100は、電動車両1が走行可能な走行レーン内に配置された送電コイル101と、電動車両1の通信部13と無線通信を行う通信部103と、電動車両1と連携して送電制御を行う送電制御部102と、送電コイル101に交流電流を流すインバータ104とを備える。電動車両1は、地上設備100の走行レーンを走行し、受電コイル11の位置を送電コイル101に合わせることで、非接触の電力伝送を開始することができる。受電コイル11に伝送された電力は車載充電器6へ送られ、車載充電器6が走行用バッテリ5を充電(非接触充電)する。非接触充電の際、受電制御部12と送電制御部102とが通信により連携することで、電力伝送の開始と停止、伝送される電力の大きさの調整を行うことができる。 The ground facility 100 includes a power transmission coil 101 arranged in a travel lane in which the electric vehicle 1 can travel, a communication unit 103 that performs wireless communication with the communication unit 13 of the electric vehicle 1, a power transmission control unit 102 that controls power transmission in cooperation with the electric vehicle 1, and an inverter 104 that passes AC current through the power transmission coil 101. The electric vehicle 1 travels along the travel lane of the ground facility 100, and can start contactless power transmission by aligning the position of the power receiving coil 11 with the power transmission coil 101. The power transmitted to the power receiving coil 11 is sent to the on-board charger 6, which charges the driving battery 5 (contactless charging). During contactless charging, the power receiving control unit 12 and the power transmission control unit 102 work together through communication to start and stop power transmission and adjust the amount of power to be transmitted.

<駐車支援処理>
続いて、非接触充電用に受電コイル11の位置を送電コイル101に合わせる駐車支援処理について説明する。図2及び図3は、駐車支援制御部が実行する非接触充電用の駐車支援処理を示すフローチャートである。図4は、駐車支援制御部が実行する送電コイルまでの距離取得処理を示すフローチャートである。
<Parking Assistance Processing>
Next, a parking assistance process for aligning the position of the power receiving coil 11 with the power transmitting coil 101 for non-contact charging will be described. Figures 2 and 3 are flowcharts showing the parking assistance process for non-contact charging executed by the parking assistance control unit. Figure 4 is a flowchart showing the process for acquiring the distance to the power transmitting coil executed by the parking assistance control unit.

駐車支援処理は、電動車両1が地上設備100の走行レーンに位置し、かつ、支援開始スイッチ22が操作されることで開始される。駐車支援処理が開始されると、まず、駐車支援制御部32は、地上設備100に位置合せ処理の開始を通知するよう、非接触受電ユニット10の受電制御部12へ要求を出力する(ステップS1)。この要求に基づき、受電制御部12は、通信部13を介して地上設備100に位置合せ処理の開始を通知し、この通知に基づいて地上設備100の送電コイル101に位置合せ用の弱い励磁が行われる。 The parking assistance process is started when the electric vehicle 1 is positioned in the driving lane of the ground facility 100 and the assistance start switch 22 is operated. When the parking assistance process is started, the parking assistance control unit 32 first outputs a request to the power receiving control unit 12 of the non-contact power receiving unit 10 to notify the ground facility 100 of the start of the alignment process (step S1). Based on this request, the power receiving control unit 12 notifies the ground facility 100 of the start of the alignment process via the communication unit 13, and based on this notification, weak excitation for alignment is performed on the power transmission coil 101 of the ground facility 100.

次に、駐車支援制御部32は、送電コイル101までの距離を取得する距離取得処理を実行する(ステップS2)。ステップS2又は後述のステップS5の距離取得処理では、図4に示すように、駐車支援制御部32は、車載カメラ8から映像を取り込み(ステップS21)、画像認識により映像から送電コイルの位置を検出する(ステップS22)。地上設備100において送電コイル101は予め定められたマーク等の識別体により位置が示されており、駐車支援制御部32は上記識別体を画像認識することで、送電コイル101の位置を検出できる。そして、駐車支援制御部32は、認識した位置までの距離を測距センサ9を用いて測定し(ステップS23)、送電コイル101までの距離を取得する。測距センサ9としては、例えばLiDAR(Light Detection and Ranging)、レーダー、ソナー等を適用できる。 Next, the parking assist control unit 32 executes a distance acquisition process to acquire the distance to the power transmission coil 101 (step S2). In the distance acquisition process of step S2 or step S5 described below, as shown in FIG. 4, the parking assist control unit 32 captures an image from the vehicle-mounted camera 8 (step S21) and detects the position of the power transmission coil from the image by image recognition (step S22). In the ground equipment 100, the position of the power transmission coil 101 is indicated by a predetermined identifier such as a mark, and the parking assist control unit 32 can detect the position of the power transmission coil 101 by image recognition of the identifier. The parking assist control unit 32 then measures the distance to the recognized position using the distance measurement sensor 9 (step S23) and acquires the distance to the power transmission coil 101. As the distance measurement sensor 9, for example, LiDAR (Light Detection and Ranging), radar, sonar, etc. can be applied.

なお、送電コイル101の位置の取得方法(位置の検出方法)は、上記の例に限られない。例えば、送電コイル101の位置情報が、地上設備100の座標データとして供給され、駐車支援制御部32が、地上設備100の座標を画像認識及び測距等を利用して識別することで、電動車両1から送電コイル101までの距離を計算により求めるようにしてもよい。また、駐車支援制御部32は、送電コイル101から予め定められた距離離れて配置された物体(ポール、輪留め等)をレーダー又はソナーにより識別及び測距することで、物体から所定距離離れて位置する送電コイル101までの距離を計算により求めるようにしてもよい。 The method of acquiring the position of the power transmission coil 101 (method of detecting the position) is not limited to the above example. For example, the position information of the power transmission coil 101 may be supplied as coordinate data of the ground equipment 100, and the parking assistance control unit 32 may calculate the distance from the electric vehicle 1 to the power transmission coil 101 by identifying the coordinates of the ground equipment 100 using image recognition, distance measurement, or the like. The parking assistance control unit 32 may also calculate the distance to the power transmission coil 101 located a predetermined distance from an object (pole, wheel stopper, etc.) by identifying and measuring the distance using radar or sonar to an object (pole, wheel stopper, etc.) located a predetermined distance away from the power transmission coil 101.

ステップS2で距離が取得されたら、駐車支援制御部32は、取得された距離が、第1距離閾値よりも長いか判別する(ステップS3)。その結果、YESであれば、電動車両1の制限速度を第1制限速度(例えば20km/h)に設定する(ステップS4)。一方、ステップS3の判別結果がNOであれば、例外であるとして位置合せ処理を終了し、処理をエラー処理へ移行する。 When the distance is acquired in step S2, the parking assistance control unit 32 determines whether the acquired distance is longer than the first distance threshold (step S3). If the result is YES, the speed limit of the electric vehicle 1 is set to the first speed limit (e.g., 20 km/h) (step S4). On the other hand, if the result of the determination in step S3 is NO, the alignment process is terminated as an exception, and the process transitions to error processing.

ステップS4の制限速度の設定は、駐車支援制御部32が走行制御部31へ制限速度の設定要求を行うことで実現される。制限速度の設定要求があると、走行制御部31は、設定された制限速度に従って走行制御を行う。すなわち、現在の車速(電動車両1の速度)が制限速度以下である場合、走行制御部31は、アクセル操作量が増しても、車速の上限を制限速度に制限する。また、走行制御部31は、現在の車速が制限速度より大きい場合、車速を所定のレート制御で制限速度まで落とす。所定のレート制御とは、電動車両1に急加速又は急減速を与えずに電動車両1の車速を要求車速に近づける制御であり、レート制御により。例えば30km/hの車速の状態で制限速度20km/hが設定された場合に、搭乗者が異常を感じない所定の減速度で車速が20km/hまで徐々に低下する。なお、レート制御は、走行制御部31が行ってもよいし、駐車支援制御部32が行ってもよい。 The setting of the speed limit in step S4 is realized by the parking assistance control unit 32 making a speed limit setting request to the driving control unit 31. When a speed limit setting request is made, the driving control unit 31 performs driving control according to the set speed limit. That is, if the current vehicle speed (the speed of the electric vehicle 1) is equal to or lower than the speed limit, the driving control unit 31 limits the upper limit of the vehicle speed to the speed limit even if the accelerator operation amount increases. In addition, if the current vehicle speed is higher than the speed limit, the driving control unit 31 reduces the vehicle speed to the speed limit by a predetermined rate control. The predetermined rate control is a control that brings the vehicle speed of the electric vehicle 1 closer to the required vehicle speed without suddenly accelerating or decelerating the electric vehicle 1, and is performed by the rate control. For example, when a speed limit of 20 km/h is set at a vehicle speed of 30 km/h, the vehicle speed is gradually reduced to 20 km/h at a predetermined deceleration that the passenger does not feel abnormal. The rate control may be performed by the driving control unit 31 or the parking assistance control unit 32.

制限速度が第1制限速度に設定されたら、次に、駐車支援制御部32は、ステップS5、S6のループ処理により、送電コイル101までの距離が第1距離閾値以下となったか判別する処理を行う。すなわち、駐車支援制御部32は、まず、送電コイル101までの距離取得処理を実行し(ステップS5)、次に、距離が第1距離閾値以下であるか判別し(ステップS6)、NOであれば処理をステップS5へ戻す。距離が第1距離閾値以下となって、ステップS6の判別結果がYESになると、駐車支援制御部32は、電動車両1の制限速度の設定を第2制限速度(例えば5km/h)に切り替える(ステップS7)。 Once the speed limit is set to the first speed limit, the parking assist control unit 32 then performs a process of determining whether the distance to the power transmission coil 101 is equal to or less than the first distance threshold through the loop process of steps S5 and S6. That is, the parking assist control unit 32 first executes a process of acquiring the distance to the power transmission coil 101 (step S5), then determines whether the distance is equal to or less than the first distance threshold (step S6), and if NO, returns the process to step S5. When the distance becomes equal to or less than the first distance threshold and the determination result of step S6 becomes YES, the parking assist control unit 32 switches the setting of the speed limit of the electric vehicle 1 to the second speed limit (e.g., 5 km/h) (step S7).

ステップS7の制限速度の設定は、駐車支援制御部32が走行制御部31へ制限速度の設定要求を行うことで実現される。制限速度の設定要求があると、その後、走行制御部31は設定された制限速度に従って走行制御を行う。すなわち、現在の車速が制限速度以下である場合、走行制御部31は、アクセル操作量が増しても、車速の上限を制限速度に制限する。また、走行制御部31は、現在の車速が制限速度より大きい場合、車速を上述した所定のレート制御で制限速度まで落とす。レート制御により。例えば20km/hの車速の状態で制限速度5km/hが設定された場合に、搭乗者が異常を感じない所定の減速度で車速が5km/hまで徐々に低下する。 The speed limit is set in step S7 by the parking assistance control unit 32 making a request to the driving control unit 31 to set the speed limit. When a speed limit setting request is made, the driving control unit 31 then performs driving control according to the set speed limit. That is, if the current vehicle speed is equal to or lower than the speed limit, the driving control unit 31 limits the upper limit of the vehicle speed to the speed limit even if the accelerator operation amount increases. Also, if the current vehicle speed is higher than the speed limit, the driving control unit 31 reduces the vehicle speed to the speed limit using the above-mentioned predetermined rate control. By rate control. For example, if a speed limit of 5 km/h is set at a vehicle speed of 20 km/h, the vehicle speed is gradually reduced to 5 km/h at a predetermined deceleration that does not cause the passenger to feel abnormal.

続いて、駐車支援制御部32は、ステップS8、S9のループ処理により、送電コイル101の位置合せ用の励磁が受電コイル11に作用する位置に到達したか判別する処理を行う。すなわち、駐車支援制御部32は、まず、受電コイル11の電圧(起電力)を受電制御部12へ問い合わせることでこの電圧値を取得し(ステップS8)、次に、受電コイル11の電圧がゼロより大きいか判別し(ステップS9)、NOであれば処理をステップS8に戻す。送電コイル101の励磁が受電コイル11に作用する上記の位置とは、鉛直方向から見て、送電コイル101と受電コイル11とに重なりが生じる位置に相当する。受電コイル11に送電コイル101の励磁が作用する位置まで電動車両1が移動し、ステップS9の判別結果がYESになると、駐車支援制御部32は、電動車両1の制限速度の設定を第3制限速度(例えば3km/h)に切り替える。制限速度の切替えにより、その後、走行制御部31は、上記と同様に、切り替えられた制限速度に従って走行制御を行う。 Next, the parking assistance control unit 32 performs a process of determining whether the positioning excitation of the power transmission coil 101 has reached a position where the excitation for positioning of the power transmission coil 101 acts on the power receiving coil 11 by loop processing of steps S8 and S9. That is, the parking assistance control unit 32 first obtains the voltage value of the power receiving coil 11 by inquiring of the power receiving control unit 12 about this voltage (electromotive force) (step S8), then determines whether the voltage of the power receiving coil 11 is greater than zero (step S9), and if NO, returns the process to step S8. The above-mentioned position where the excitation of the power transmission coil 101 acts on the power receiving coil 11 corresponds to a position where the power transmission coil 101 and the power receiving coil 11 overlap when viewed from the vertical direction. When the electric vehicle 1 moves to a position where the excitation of the power transmission coil 101 acts on the power receiving coil 11 and the determination result of step S9 becomes YES, the parking assistance control unit 32 switches the setting of the speed limit of the electric vehicle 1 to a third speed limit (e.g., 3 km/h). After the speed limit is changed, the driving control unit 31 performs driving control according to the changed speed limit in the same manner as described above.

制限速度を第3制限速度に切替えたら、駐車支援制御部32は、続く、ステップS10、S11のループ処理により、電動車両1が非接触の電力伝送が可能な位置に到達したか判別する処理を行う。すなわち、駐車支援制御部32は、まず、受電コイル11の電圧を受電制御部12に問い合わせることでこの電圧値を取得し(ステップS11)、次に、取得した電圧が非接触の電力伝送が可能な第1閾値以上であるか判別し(ステップS12)、NOであれば処理をステップS11に戻す。受電コイル11の中心が送電コイル101の中心に近づき、ステップS11の判別結果がYESになると、駐車支援制御部32は、電動車両1の制限速度の設定を第4制限速度(例えば1km/h)に切り替える(ステップS13)。制限速度の切替えにより、その後、走行制御部31は、上記と同様に切り替えられた制限速度に従って走行制御を行う。 After switching the speed limit to the third speed limit, the parking assistance control unit 32 performs the process of determining whether the electric vehicle 1 has reached a position where non-contact power transmission is possible by the loop process of steps S10 and S11. That is, the parking assistance control unit 32 first obtains the voltage value of the power receiving coil 11 by inquiring of the power receiving control unit 12 about this voltage (step S11), and then determines whether the obtained voltage is equal to or higher than the first threshold value at which non-contact power transmission is possible (step S12). If the result is NO, the process returns to step S11. When the center of the power receiving coil 11 approaches the center of the power transmitting coil 101 and the determination result of step S11 becomes YES, the parking assistance control unit 32 switches the setting of the speed limit of the electric vehicle 1 to the fourth speed limit (e.g., 1 km/h) (step S13). After the speed limit is switched, the driving control unit 31 performs driving control according to the switched speed limit in the same manner as above.

制限速度を第4制限速度に切替えたら、駐車支援制御部32は、続く、ステップS14、S15のループ処理より、電動車両1が最も効率の高い非接触の電力伝送が可能な位置に到達したか判別する処理を行う。すなわち、駐車支援制御部32は、まず、受電コイル11にの電圧を受電制御部12に問い合わせることでこの電圧値を取得し(ステップS14)、次に、取得した起電力が最大となる位置、すなわち、起電力が上昇からほぼ一定又は下降に転じる位置であるか判別し(ステップS15)、NOであれば処理をステップS14に戻す。受電コイル11が送電コイル101と最も高効率に結合する位置に達しすることで、ステップS15の判別結果がYESになると、駐車支援制御部32は、電動車両1を停止する(ステップS15)。そして、非接触充電を開始するため、受電制御部12に位置合せが完了したことを通知し、駐車支援処理を終了する。 After switching the speed limit to the fourth speed limit, the parking assistance control unit 32 performs the loop process of steps S14 and S15 to determine whether the electric vehicle 1 has reached a position where the most efficient contactless power transmission is possible. That is, the parking assistance control unit 32 first obtains the voltage value of the power receiving coil 11 by inquiring of the power receiving control unit 12 (step S14), and then determines whether the obtained voltage value is the maximum voltage, that is, the position where the electromotive force changes from increasing to being almost constant or decreasing (step S15). If the result is NO, the process returns to step S14. When the power receiving coil 11 reaches the position where the power transmitting coil 101 is most efficiently coupled with the power transmitting coil 101, and the result of the determination in step S15 becomes YES, the parking assistance control unit 32 stops the electric vehicle 1 (step S15). Then, in order to start contactless charging, the parking assistance control unit 32 notifies the power receiving control unit 12 that the alignment has been completed, and ends the parking assistance process.

受電制御部12は、位置合わせが完了した通知を受けると、電動車両1を駐車及び休止させ、地上設備100に送電開始を要求し、受電及び走行用バッテリ5の充電を開始する。その後、走行用バッテリ5の充電が完了すると、受電制御部12は、地上設備100に送電終了を要求し、受電と走行用バッテリ5の充電を終了する。 When the power receiving control unit 12 receives notification that alignment is complete, it parks and stops the electric vehicle 1, requests the ground equipment 100 to start transmitting power, and starts receiving power and charging the driving battery 5. After that, when charging of the driving battery 5 is completed, the power receiving control unit 12 requests the ground equipment 100 to end transmitting power, and ends receiving power and charging the driving battery 5.

<駐車支援処理の動作例>
図5は、非接触充電用の駐車支援処理の一例を説明するタイミングチャートである。上述の駐車支援処理によれば、図5の車速の欄に示すように、電動車両1は地上設備100の走行レーンにおいて急な減速を要さずにスムースかつ短時間に電動車両1を走行させ、受電コイル11の位置を地上設備100の送電コイル101に合わせることができる。
<Operation example of parking assistance processing>
Fig. 5 is a timing chart illustrating an example of parking assistance processing for contactless charging. According to the parking assistance processing described above, as shown in the vehicle speed column in Fig. 5, the electric vehicle 1 can travel smoothly and in a short time in the travel lane of the ground facility 100 without the need for sudden deceleration, and the position of the power receiving coil 11 can be aligned with the power transmitting coil 101 of the ground facility 100.

すなわち、電動車両1が送電コイル101から未だ遠く、駐車支援を開始した直後の期間T1には、地上設備100の走行レーンに進入する際の通常の速度(約30km/h以下)から容易に減速できる第1制限速度(例えば20km/h)に制限速度が設定される。この期間T1に、電動車両1は、急な減速なく制限速度まで車速を低減できる。 That is, during the period T1 immediately after the start of parking assistance while the electric vehicle 1 is still far from the power transmission coil 101, the speed limit is set to a first speed limit (e.g., 20 km/h) that allows easy deceleration from the normal speed (approximately 30 km/h or less) when entering the driving lane of the ground facility 100. During this period T1, the electric vehicle 1 can reduce its vehicle speed to the speed limit without sudden deceleration.

次に、電動車両1が送電コイル101から第1距離閾値まで近づくと(タイミングt1)、制限速度が第2制限速度(5km/h)に切り替えられる(期間T2)。ここで、第1距離閾値は、次のように設定されている。すなわち、電動車両1が第1距離閾値に到達したタイミングt1の位置から、水平方向において電動車両1が送電コイル101に到達するタイミングt2の位置までの距離が、第1制限速度から第2制限速度に減速を要する制動距離よりも長くなるように設定されている。 Next, when the electric vehicle 1 approaches the power transmission coil 101 to the first distance threshold (timing t1), the speed limit is switched to the second speed limit (5 km/h) (period T2). Here, the first distance threshold is set as follows. That is, it is set so that the distance from the position at time t1 when the electric vehicle 1 reaches the first distance threshold to the position at time t2 when the electric vehicle 1 reaches the power transmission coil 101 in the horizontal direction is longer than the braking distance required to decelerate from the first speed limit to the second speed limit.

ここで、上記の「水平方向において電動車両1が送電コイル101に到達する位置」とは、鉛直方向に見て、電動車両1の先端が送電コイル101と重なり始める位置に相当する。この位置は、受電コイル11に送電コイル101の励磁がまだ作用しない位置に相当する。上記の「第1制限速度から第2制限速度への減速に要する制動距離」とは、駐車支援で搭乗者に異常を感じさせない減速度として規定される最も大きな減速度で第1制限速度から第2制限速度へ減速できる制動距離を意味する。 The above "position where the electric vehicle 1 reaches the power transmission coil 101 in the horizontal direction" corresponds to the position where the tip of the electric vehicle 1 starts to overlap the power transmission coil 101 when viewed vertically. This position corresponds to the position where the excitation of the power transmission coil 101 does not yet act on the power receiving coil 11. The above "braking distance required to decelerate from the first speed limit to the second speed limit" refers to the braking distance required to decelerate from the first speed limit to the second speed limit at the greatest deceleration defined as the deceleration that does not cause the passenger to feel abnormal in parking assistance.

上記のような第1距離閾値の設定により、次のような作用が奏される。すなわち、図5の車速の欄の実速度のラインに示すように、電動車両1が第1距離閾値に達したタイミングt1で、仮に、電動車両1の実速度が第1制限速度のままであった場合でも、その後、駐車支援で規定される異常を感じさせない最大の減速度で電動車両1が減速した場合に、電動車両1が送電コイル101に達する前に、電動車両1の車速を第2制限速度まで低下することができる。したがって、その後、送電コイル101と受電コイル11とが近づいて受電コイル11に電圧が生じ始めるタイミングまでには、電動車両1の車速が第2制限速度以下になることが保証される。 The setting of the first distance threshold as described above provides the following effect. That is, as shown by the actual speed line in the vehicle speed column in FIG. 5, even if the actual speed of the electric vehicle 1 remains at the first speed limit at time t1 when the electric vehicle 1 reaches the first distance threshold, if the electric vehicle 1 subsequently decelerates at the maximum deceleration that does not cause the driver to feel abnormal as specified by the parking assistance, the vehicle speed of the electric vehicle 1 can be reduced to the second speed limit before the electric vehicle 1 reaches the power transmitting coil 101. Therefore, it is guaranteed that the vehicle speed of the electric vehicle 1 will be equal to or lower than the second speed limit by the time when the power transmitting coil 101 and the power receiving coil 11 approach each other and a voltage begins to be generated in the power receiving coil 11.

さらに、第2制限速度は、第3制限速度に近い速度に設定されている。したがって、その後、送電コイル101と受電コイル11とが重なり、電動車両1の細かな位置調整が行われる期間T3、T4には、速やかに電動車両1の車速を第3制限速度、続いて第4制限速度へと落とすことができる。そして、このような低速の速度制御により、細かな受電コイル11の位置合わせが可能となる。 Furthermore, the second speed limit is set to a speed close to the third speed limit. Therefore, during the subsequent periods T3 and T4 when the power transmission coil 101 and the power receiving coil 11 overlap and fine position adjustment of the electric vehicle 1 is performed, the vehicle speed of the electric vehicle 1 can be quickly reduced to the third speed limit and then to the fourth speed limit. This type of low-speed speed control enables fine alignment of the power receiving coil 11.

なお、第1距離閾値の設定は、次のように変更されてもよい。例えば、受電コイル11が、電動車両1の規定位置に取り付けられる一方、受電コイル11の取り付け位置に最大でズレ量αが生じる可能性があるとする。さらに、ここで、受電コイル11が規定位置に取り付けられていると仮定したときに、電動車両1が第1距離閾値に達した位置から受電コイル11が送電コイル101に重なり始める位置までが距離Lであるとする。このような場合、距離Lに最大のズレ量αを減じた長さ(L-α)が、上述の減速度で第1制限速度から第2制限速度まで減速できる制動距離以上となるように、第1距離閾値が設定されてもよい。このような設定によれば、受電コイル11の取り付け位置にズレが生じても、電動車両1が第1距離閾値に達してから、後に受電コイル11の電圧が検出されるまでに、電動車両1を第1制限速度から第2制限速度まで搭乗者に異常を感じさせずに減速することができる。 The setting of the first distance threshold may be changed as follows. For example, suppose that the power receiving coil 11 is attached to a specified position of the electric vehicle 1, but that the attachment position of the power receiving coil 11 may have a maximum deviation amount α. Furthermore, suppose that the power receiving coil 11 is attached to a specified position, and the distance from the position where the electric vehicle 1 reaches the first distance threshold to the position where the power receiving coil 11 starts to overlap the power transmitting coil 101 is the distance L. In such a case, the first distance threshold may be set so that the length (L-α) obtained by subtracting the maximum deviation amount α from the distance L is equal to or greater than the braking distance that allows the vehicle to decelerate from the first speed limit to the second speed limit at the above-mentioned deceleration. With such a setting, even if the attachment position of the power receiving coil 11 is deviated, the electric vehicle 1 can be decelerated from the first speed limit to the second speed limit without causing the passenger to feel any abnormality after the electric vehicle 1 reaches the first distance threshold and before the voltage of the power receiving coil 11 is detected later.

以上のように、本実施形態の駐車支援装置50及び電動車両1によれば、送電コイル101の位置合わせ用の励磁を受電コイル11を介して検出する受電制御部12と、電動車両1と送電コイル101とが水平方向に離れている状態で送電コイル101までの距離を検出可能な車載カメラ8及び測距センサ9と、を備える。そして、駐車支援制御部32は、受電コイル11の位置合わせの際に、送電コイル101の励磁の検出に基づく電動車両1の速度制御に加え、車載カメラ8及び測距センサ9による送電コイル101までの距離の検出に基づいて電動車両1の速度制御を行う。したがって、送電コイル101の励磁を検出できない離れた箇所から電動車両1の速度制御が可能となり、電動車両1が高い車速で送電コイル101に近づくことで急減速を要するといった不都合や、送電コイル101のはるか手前から電動車両1が無駄に低速になるといった不都合を抑制し、スムースで短時間に受電コイルの位置を送電コイルに合わせることのできる駐車支援を実現できる。 As described above, the parking assistance device 50 and electric vehicle 1 of this embodiment include a power receiving control unit 12 that detects excitation for aligning the power transmitting coil 101 via the power receiving coil 11, and an on-board camera 8 and a distance measurement sensor 9 that can detect the distance to the power transmitting coil 101 when the electric vehicle 1 and the power transmitting coil 101 are separated horizontally. When aligning the power receiving coil 11, the parking assistance control unit 32 controls the speed of the electric vehicle 1 based on detection of the excitation of the power transmitting coil 101, as well as on detection of the distance to the power transmitting coil 101 by the on-board camera 8 and the distance measurement sensor 9. This makes it possible to control the speed of the electric vehicle 1 from a distant location where the excitation of the power transmission coil 101 cannot be detected, and it is possible to suppress inconveniences such as the electric vehicle 1 approaching the power transmission coil 101 at a high vehicle speed and having to suddenly decelerate, or the electric vehicle 1 unnecessarily slowing down far before the power transmission coil 101, and to realize parking assistance that can smoothly and quickly align the position of the power receiving coil with the power transmission coil.

さらに、本実施形態の駐車支援装置50及び電動車両1によれば、電動車両1の速度制御には、制限速度を切替える制御が含まれる。また、車載カメラ8及び測距センサ9による送電コイル101までの距離の検出に基づいて切り替えられる制限速度(第1制限速度及び第2制限速度)の速度値は、送電コイル101の励磁の検出に基づき切り替えられる制限速度(第3制限速度及び第4制限速度)の速度値よりも大きい。このような制限速度の切替えにより、電動車両1が送電コイル101から離れているときには電動車両1が速やかに移動可能な速度制御が実現され、短時間での駐車支援を実現できる。 Furthermore, according to the parking assistance device 50 and the electric vehicle 1 of this embodiment, the speed control of the electric vehicle 1 includes control to switch the speed limit. Also, the speed value of the speed limit (first speed limit and second speed limit) that is switched based on the detection of the distance to the power transmission coil 101 by the on-board camera 8 and the distance measurement sensor 9 is greater than the speed value of the speed limit (third speed limit and fourth speed limit) that is switched based on the detection of the excitation of the power transmission coil 101. By switching the speed limit in this manner, speed control that allows the electric vehicle 1 to move quickly when the electric vehicle 1 is away from the power transmission coil 101 is realized, and parking assistance can be achieved in a short time.

さらに、本実施形態の駐車支援装置50及び電動車両1によれば、車載カメラ8及び測距センサ9による送電コイル101までの距離の検出に基づき、電動車両1から送電コイル101までの距離が第1距離閾値以下となったら、電動車両1の制限速度を第1制限速度からそれよりも低速な第2制限速度に切り替える。この制限速度の切替えにより、電動車両1が送電コイル101に近接するまでに、電動車両1を低い車速までスムースに減速することが可能となる。さらに、この減速により、続いて、電動車両1を、受電コイル11の細かな位置調整を可能とする、より低い車速まで、短い距離で減速することも容易となる。さらに、このような車速の制御を、複雑な制御動作を要せずに、距離に基づく制限速度の切替えといった少ない制御動作で実現することができる。 Furthermore, according to the parking assistance device 50 and the electric vehicle 1 of this embodiment, when the distance from the electric vehicle 1 to the power transmission coil 101 becomes equal to or less than the first distance threshold based on the detection of the distance to the power transmission coil 101 by the on-board camera 8 and the distance measurement sensor 9, the speed limit of the electric vehicle 1 is switched from the first speed limit to a slower second speed limit. This speed limit switching makes it possible to smoothly decelerate the electric vehicle 1 to a low vehicle speed before the electric vehicle 1 approaches the power transmission coil 101. Furthermore, this deceleration also makes it easy to subsequently decelerate the electric vehicle 1 to a lower vehicle speed over a short distance, which allows fine adjustment of the position of the power receiving coil 11. Furthermore, such vehicle speed control can be achieved with fewer control operations, such as switching the speed limit based on distance, without requiring complex control operations.

さらに、本実施形態の駐車支援装置50及び電動車両1によれば、電動車両1が第1距離閾値に達してから、電動車両1が送電コイル101に到達するまでの距離が、第1制限速度から第2制限速度へ減速できる制動距離以上になるように第1距離閾値が設定されている。したがって、受電コイル11が電動車両1の前寄り又は後寄りなどいずれの位置に取り付けられていても、受電コイル11と送電コイル101とが重なり始めるよりも前に、電動車両1を第2制限速度まで減速することが可能となる。よって、受電コイル11の一部が送電コイル101と重なって電動車両1をより減速する必要が生じた際に、急激な減速が生じてしまうという状況をより抑制することができる。 Furthermore, according to the parking assistance device 50 and the electric vehicle 1 of this embodiment, the first distance threshold is set so that the distance from when the electric vehicle 1 reaches the first distance threshold to when the electric vehicle 1 reaches the power transmission coil 101 is equal to or greater than the braking distance that allows deceleration from the first speed limit to the second speed limit. Therefore, regardless of whether the power receiving coil 11 is attached to the front or rear of the electric vehicle 1, it is possible to decelerate the electric vehicle 1 to the second speed limit before the power receiving coil 11 and the power transmission coil 101 begin to overlap. This makes it possible to further suppress a situation in which a sudden deceleration occurs when a part of the power receiving coil 11 overlaps with the power transmission coil 101 and it becomes necessary to further decelerate the electric vehicle 1.

さらに、本実施形態の駐車支援装置50及び電動車両1によれば、電動車両1が送電コイル101に近接する前に切り替えられる第2制限速度の速度値が、それ以前に設定されていた第1制限速度よりも、送電コイル101に近接した後に切り替えられる第3制限速度に近い。すなわち、第1制限速度と第2制限速度との差が、第2制限速度と第3制限速度との差よりも大きい。このような制限速度の設定により、受電コイル11が送電コイル101に近接する際には、既に電動車両1の車速が第3制限速度に近い速度まで低下しているので、その後の受電コイル11の細かな位置調整の処理にスムースに移行することが可能となる。 Furthermore, according to the parking assistance device 50 and the electric vehicle 1 of this embodiment, the speed value of the second speed limit to which the electric vehicle 1 is switched before approaching the power transmission coil 101 is closer to the third speed limit to which the electric vehicle 1 is switched after approaching the power transmission coil 101 than the first speed limit previously set. In other words, the difference between the first speed limit and the second speed limit is greater than the difference between the second speed limit and the third speed limit. By setting the speed limit in this way, when the power receiving coil 11 approaches the power transmitting coil 101, the vehicle speed of the electric vehicle 1 has already decreased to a speed close to the third speed limit, making it possible to smoothly transition to the process of finely adjusting the position of the power receiving coil 11 thereafter.

以上、本発明の実施形態について説明した。しかし、本発明は上記実施形態に限られない。例えば、上記実施形態では、送電コイルまでの距離を検出可能な第1検出部として、車載カメラ8と測距センサ9とを示したが、これらに限られず、離れた位置から送電コイルまでの距離が検出可能であれば、レーダー又はソナーなどの様々な検出器が適用されてもよい。また、上記実施形態では、電動車両の速度制御を、制限速度の切替えによって実現する例を示した。しかし、電動車両の速度制御には電動車両の実速度を直接に減速させる減速制御が含まれてもよい。その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。 The above describes an embodiment of the present invention. However, the present invention is not limited to the above embodiment. For example, in the above embodiment, the vehicle-mounted camera 8 and the distance measurement sensor 9 are shown as the first detection unit capable of detecting the distance to the power transmission coil, but the present invention is not limited to these, and various detectors such as radar and sonar may be applied as long as the distance to the power transmission coil from a remote position can be detected. In addition, in the above embodiment, an example is shown in which the speed control of the electric vehicle is realized by switching the speed limit. However, the speed control of the electric vehicle may include deceleration control that directly decelerates the actual speed of the electric vehicle. Other details shown in the embodiment can be changed as appropriate without departing from the spirit of the invention.

1 電動車両
2 駆動輪
3 走行モータ
4 インバータ
5 走行用バッテリ
6 車載充電器
8 車載カメラ(第1検出部)
9 測距センサ(第1検出部)
10 非接触受電ユニット
11 受電コイル
12 受電制御部(第2検出部)
13 通信部
21 運転操作部
22 支援開始スイッチ
31 走行制御部
32 駐車支援制御部
100 地上設備
101 送電コイル
102 送電制御部
103 通信部
104 インバータ
REFERENCE SIGNS LIST 1 Electric vehicle 2 Drive wheel 3 Traction motor 4 Inverter 5 Traction battery 6 On-board charger 8 On-board camera (first detection unit)
9 Distance measuring sensor (first detection unit)
REFERENCE SIGNS LIST 10 Non-contact power receiving unit 11 Power receiving coil 12 Power receiving control unit (second detection unit)
REFERENCE SIGNS LIST 13 Communication unit 21 Driving operation unit 22 Assistance start switch 31 Travel control unit 32 Parking assistance control unit 100 Ground equipment 101 Power transmission coil 102 Power transmission control unit 103 Communication unit 104 Inverter

Claims (5)

走行用の電力を蓄積する走行用バッテリと、地上設備の送電コイルから非接触で受電可能な受電コイルとを有し、前記受電コイルが受けた電力で前記走行用バッテリを充電する電動車両に搭載される電動車両の駐車支援装置であって、
前記電動車両と前記送電コイルとが水平方向に離れている状態で前記送電コイルまでの距離を検出可能な第1検出部と、
前記送電コイルの位置合せ用の励磁を前記受電コイルを介して検出する第2検出部と、
電動車両の走行の制御が可能な駐車支援制御部と、
を備え、
前記駐車支援制御部は、前記受電コイルの位置を前記送電コイルに合わせる駐車支援の際に、前記第1検出部の検出に基づき、前記送電コイルまでの距離が第1距離閾値以下となったら、前記電動車両の制限速度を、第1制限速度から当該第1制限速度よりも低速な第2制限速度に切り替える速度制御を行い、前記受電コイルの電圧が所定値より大きい場合に、前記第2検出部の検出に基づく前記電動車両の速度制御を行い、
前記駐車支援制御部は、前記第2検出部の検出に基づく速度制御において、まず、前記電動車両の制限速度を前記第2制限速度から当該第2制限速度よりも低い第3制限速度に切り替え、前記受電コイルの電圧が前記所定値よりも大きい第1閾値以上となったら、前記電動車両の制限速度を、第3制限速度から当該第3制限速度よりも低速な第4制限速度に切り替えることを特徴とする電動車両の駐車支援装置。
A parking assistance device for an electric vehicle is mounted on an electric vehicle, the parking assistance device having a battery for storing electric power for driving, and a power receiving coil capable of receiving electric power in a non-contact manner from a power transmitting coil of a ground facility, the parking assistance device charging the battery for driving with electric power received by the power receiving coil,
a first detection unit capable of detecting a distance to the power transmission coil in a state in which the electric vehicle and the power transmission coil are separated in a horizontal direction;
a second detection unit that detects an excitation for alignment of the power transmitting coil via the power receiving coil;
A parking assistance control unit capable of controlling driving of an electric vehicle;
Equipped with
the parking assist control unit, when performing parking assistance to align a position of the power receiving coil with the power transmitting coil, performs speed control to switch a speed limit of the electric vehicle from a first speed limit to a second speed limit that is slower than the first speed limit when a distance to the power transmitting coil becomes equal to or shorter than a first distance threshold based on detection by the first detection unit, and performs speed control of the electric vehicle based on detection by the second detection unit when a voltage of the power receiving coil is greater than a predetermined value;
a parking assistance control unit, in speed control based on detection by the second detection unit, first switches the speed limit of the electric vehicle from the second speed limit to a third speed limit lower than the second speed limit, and when the voltage of the power receiving coil becomes equal to or higher than a first threshold value higher than the predetermined value, switches the speed limit of the electric vehicle from the third speed limit to a fourth speed limit slower than the third speed limit .
前記速度制御には制限速度を切り替える制御が含まれ、
前記第1検出部の検出に基づき切り替えられる制限速度は、前記第2検出部の検出に基づき切り替えられる制限速度よりも速度値が大きいことを特徴とする請求項1記載の電動車両の駐車支援装置。
The speed control includes a control for switching a speed limit,
2. The parking assistance device for an electric vehicle according to claim 1, wherein the speed limit changed based on the detection of the first detection unit is greater in speed value than the speed limit changed based on the detection of the second detection unit.
前記送電コイルまでの距離が前記第1距離閾値以下となったときの前記電動車両の位置から、水平方向において前記電動車両が前記送電コイルに到達する位置までの距離は、前記電動車両を前記第1制限速度から前記第2制限速度へ減速するのに要する制動距離以上であり、前記受電コイルの電圧が前記所定値より大きくなったときの前記電動車両の位置から、水平方向において前記電動車両が前記送電コイルに到達する位置までの距離は、前記電動車両を前記第2制限速度から前記第3制限速度へ減速するのに要する制動距離以上であることを特徴とする請求項1又は請求項2記載の電動車両の駐車支援装置。 3. The parking assistance device for an electric vehicle according to claim 1 or 2, wherein a distance from a position of the electric vehicle when the distance to the power transmitting coil becomes equal to or less than the first distance threshold to a position where the electric vehicle reaches the power transmitting coil in the horizontal direction is equal to or greater than a braking distance required to decelerate the electric vehicle from the first speed limit to the second speed limit, and a distance from a position of the electric vehicle when the voltage of the power receiving coil becomes greater than the predetermined value to a position where the electric vehicle reaches the power transmitting coil in the horizontal direction is equal to or greater than the braking distance required to decelerate the electric vehicle from the second speed limit to the third speed limit. 記第1制限速度と前記第2制限速度との差は、前記第2制限速度と前記第3制限速度との差よりも大きいことを特徴とする請求項1から請求項3のいずれか一項に記載の電動車両の駐車支援装置。 4. The parking assistance device for an electric vehicle according to claim 1 , wherein a difference between the first speed limit and the second speed limit is greater than a difference between the second speed limit and the third speed limit. 前記第1距離閾値を決定するパラメータには、前記受電コイルの取り付け位置に生じる
可能性がある最大のズレ量が含まれることを特徴とする請求項1から請求項4のいずれか
一項に記載の電動車両の駐車支援装置。
5. The parking assistance device for an electric vehicle according to claim 1, wherein a parameter for determining the first distance threshold includes a maximum amount of deviation that may occur in an attachment position of the power receiving coil.
JP2020173298A 2020-10-14 2020-10-14 Parking assistance device for electric vehicles Active JP7598218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020173298A JP7598218B2 (en) 2020-10-14 2020-10-14 Parking assistance device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173298A JP7598218B2 (en) 2020-10-14 2020-10-14 Parking assistance device for electric vehicles

Publications (2)

Publication Number Publication Date
JP2022064583A JP2022064583A (en) 2022-04-26
JP7598218B2 true JP7598218B2 (en) 2024-12-11

Family

ID=81385901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173298A Active JP7598218B2 (en) 2020-10-14 2020-10-14 Parking assistance device for electric vehicles

Country Status (1)

Country Link
JP (1) JP7598218B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249047A (en) 2001-02-21 2002-09-03 Kyosan Electric Mfg Co Ltd Device and method for automatically controlling train using speed-distance table
JP2007290642A (en) 2006-04-27 2007-11-08 Kyosan Electric Mfg Co Ltd Ats device
JP2011188679A (en) 2010-03-10 2011-09-22 Toyota Motor Corp Vehicle parking assistance device and vehicle equipped with the same
WO2011132271A1 (en) 2010-04-21 2011-10-27 トヨタ自動車株式会社 Vehicle parking assistance device and electric vehicle equipped with same
JP2016007961A (en) 2014-06-25 2016-01-18 トヨタ自動車株式会社 Parking assist system
JP2017093129A (en) 2015-11-09 2017-05-25 株式会社デンソー Non-contact power transmission device
JP2018039293A (en) 2016-09-05 2018-03-15 日産自動車株式会社 Parking support method and parking support apparatus
JP2019038296A (en) 2017-08-22 2019-03-14 アイシン精機株式会社 Parking support device and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249047A (en) 2001-02-21 2002-09-03 Kyosan Electric Mfg Co Ltd Device and method for automatically controlling train using speed-distance table
JP2007290642A (en) 2006-04-27 2007-11-08 Kyosan Electric Mfg Co Ltd Ats device
JP2011188679A (en) 2010-03-10 2011-09-22 Toyota Motor Corp Vehicle parking assistance device and vehicle equipped with the same
WO2011132271A1 (en) 2010-04-21 2011-10-27 トヨタ自動車株式会社 Vehicle parking assistance device and electric vehicle equipped with same
JP2016007961A (en) 2014-06-25 2016-01-18 トヨタ自動車株式会社 Parking assist system
JP2017093129A (en) 2015-11-09 2017-05-25 株式会社デンソー Non-contact power transmission device
JP2018039293A (en) 2016-09-05 2018-03-15 日産自動車株式会社 Parking support method and parking support apparatus
JP2019038296A (en) 2017-08-22 2019-03-14 アイシン精機株式会社 Parking support device and program

Also Published As

Publication number Publication date
JP2022064583A (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US9944185B2 (en) Vehicle control device
US20210163026A1 (en) Vehicle control system and vehicle control method
US20200180661A1 (en) Vehicle and apparatus and method for controlling the same
US20160207536A1 (en) Autonomous driving device
US20200039584A1 (en) Autonomous driving system
WO2011132272A1 (en) Vehicle parking assistance device and electric vehicle equipped with same
US20160264003A1 (en) Moving Body Drive Control Device
US11072334B2 (en) Vehicle control system
JP6319192B2 (en) Vehicle speed limiter
WO2011132271A1 (en) Vehicle parking assistance device and electric vehicle equipped with same
WO2019097900A1 (en) Control device
US10994615B2 (en) Movable body rescue system and movable body rescue method
JP2012116428A (en) Vehicle stopping controller
CN112874514B (en) Driving assistance device
JP2019158646A (en) Vehicle control device, vehicle control method, and program
US8688344B2 (en) Method for recuperating kinetic energy of a motor vehicle in a optimum way in terms of energy
JP2010246355A (en) Controller of vehicle
JP2019059474A (en) Hybrid vehicle control device
CN109649379B (en) Automatic parking control method and device
JP7598218B2 (en) Parking assistance device for electric vehicles
JP2010215081A (en) Drive support device
JP2020059346A (en) Vehicle pedal controller
US11396303B2 (en) Vehicle control system and vehicle control method
WO2021093529A1 (en) Method for positioning vehicle pad and base pad relative to each other
JP2023071521A (en) Drive force controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241129

R150 Certificate of patent or registration of utility model

Ref document number: 7598218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150