[go: up one dir, main page]

JP7594930B2 - Method for separating As and Sb - Google Patents

Method for separating As and Sb Download PDF

Info

Publication number
JP7594930B2
JP7594930B2 JP2021022307A JP2021022307A JP7594930B2 JP 7594930 B2 JP7594930 B2 JP 7594930B2 JP 2021022307 A JP2021022307 A JP 2021022307A JP 2021022307 A JP2021022307 A JP 2021022307A JP 7594930 B2 JP7594930 B2 JP 7594930B2
Authority
JP
Japan
Prior art keywords
solution
concentration
treatment solution
reduction
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021022307A
Other languages
Japanese (ja)
Other versions
JP2022124583A (en
Inventor
和也 荒川
晃平 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2021022307A priority Critical patent/JP7594930B2/en
Publication of JP2022124583A publication Critical patent/JP2022124583A/en
Application granted granted Critical
Publication of JP7594930B2 publication Critical patent/JP7594930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、AsとSbとの分離方法に関し、特に、金属製錬で生じる溶液に対するAsとSbとの分離方法に関する。 The present invention relates to a method for separating As and Sb, and in particular, to a method for separating As and Sb from a solution produced during metal smelting.

特許文献1には、アンチモンを含有するヒ酸水溶液に二酸化硫黄ガスを吹き込み、ヒ素とアンチモンを還元して、亜ヒ酸(As)と三酸化二アンチモン(Sb)を含有する析出物を得る工程(A)、及び前記析出物を70~100℃の温度を有する温水中に添加し、該析出物中の亜ヒ酸を溶解して、亜ヒ酸水溶液とアンチモンを含有する未溶解残渣を得る工程(B)を含むことを特徴とするヒ酸水溶液中のヒ素とアンチモンの分離方法が記載されている。 Patent Document 1 describes a method for separating arsenic and antimony in an aqueous arsenic acid solution, which comprises the steps of: (A) blowing sulfur dioxide gas into an aqueous arsenic acid solution containing antimony to reduce the arsenic and antimony and obtain a precipitate containing arsenous acid (As 2 O 3 ) and diantimony trioxide (Sb 2 O 3 ); and (B) adding the precipitate to warm water having a temperature of 70 to 100° C. to dissolve the arsenous acid in the precipitate and obtain an aqueous arsenous acid solution and an undissolved residue containing antimony.

特許文献2には、ビスマスを含有する酸性溶液を中和処理してビスマス塩を沈澱させ、該沈澱の溶解液を還元してビスマスを共存金属から分離回収する方法であって、中和処理を常温で二段階に行い、第一中和処理においてビスマス含有溶液のpHを60分以上かけて0.5~1.5に調整して該pH域で沈澱する共存金属を沈澱化し、該沈澱を濾別した後に、第二中和処理において濾液のpHを2~3に調整してビスマスを含む沈澱を生成させ、このビスマス含有沈澱を回収して塩酸に溶解し、該溶解液を鉄還元して析出した金属ビスマスを回収することを特徴とするビスマスの回収方法が記載されている。 Patent Document 2 describes a method for recovering bismuth by neutralizing an acidic solution containing bismuth to precipitate bismuth salts, reducing the solution of the precipitates, and separating and recovering bismuth from coexisting metals, in which the neutralization is carried out in two stages at room temperature, and in the first neutralization step, the pH of the bismuth-containing solution is adjusted to 0.5 to 1.5 over 60 minutes or more to precipitate the coexisting metals that precipitate in that pH range, and after filtering out the precipitate, in the second neutralization step, the pH of the filtrate is adjusted to 2 to 3 to generate a precipitate containing bismuth, and this bismuth-containing precipitate is recovered and dissolved in hydrochloric acid, and the solution is reduced with iron to recover the precipitated metallic bismuth.

特開2009-167442号公報JP 2009-167442 A 特開2013-155432号公報JP 2013-155432 A

特許文献1に記載の内容だと、析出物中にAsとSbとが混在するため、AsとSbとを分離する工程が別途必要になる。特許文献2に記載の内容は、そもそもビスマスの回収方法が主旨である。 In the case of the method described in Patent Document 1, As and Sb are mixed in the precipitate, so a separate process is required to separate As and Sb. The content of Patent Document 2 is primarily a method for recovering bismuth.

本発明の目的は、AsとSbとのうちSbを選択的に析出させてAsとSbとを分離することにある。 The object of the present invention is to separate As and Sb by selectively precipitating Sb from As.

本発明の第1の態様は、
Cu、As、Sbを含有し、溶解したSbの濃度が1.0g/L以上であり、濃度比Cu/Asが0.10以上、且つ、濃度比Cu/Sbが0.10以上である溶液からSbを析出させるSb析出工程を有し、
Sb析出工程は、Sb還元工程と中和工程をこの順で有し、
中和工程開始時のORP(3.3M KCl-Ag/AgCl)は70~210mVである、AsとSbとの分離方法である。
The first aspect of the present invention is a method for producing a cellular membrane comprising the steps of:
The method includes a step of precipitating Sb from a solution containing Cu, As, and Sb, the solution having a concentration of dissolved Sb of 1.0 g/L or more, a concentration ratio of Cu/As of 0.10 or more, and a concentration ratio of Cu/Sb of 0.10 or more,
The Sb precipitation step includes an Sb reduction step and a neutralization step in this order,
The ORP (3.3M KCl-Ag/AgCl) at the start of the neutralization process is 70 to 210 mV. This is a method for separating As and Sb.

本発明の第2の態様は、第1の態様において、
前記溶液は、Sb還元工程開始時の溶液である。
A second aspect of the present invention is a method for producing a composition comprising the steps of:
This solution is the solution at the start of the Sb reduction process.

本発明の第3の態様は、第2の態様において、
Sb還元工程前にCu源添加工程を含む。
A third aspect of the present invention is the method according to the second aspect,
A Cu source addition step is included before the Sb reduction step.

本発明の第4の態様は、第1~第3のいずれかの態様において、
中和工程開始時のpHは0.9~3.0である。
A fourth aspect of the present invention is a method for producing a composition according to any one of the first to third aspects,
The pH at the start of the neutralization step is 0.9 to 3.0.

本発明の第5の態様は、第1~第4のいずれかの態様において、
中和工程終了時のORPは130~350mVである。
A fifth aspect of the present invention is a method for producing a composition comprising the steps of:
The ORP at the end of the neutralization step is 130 to 350 mV.

本発明の第6の態様は、第1~第5のいずれかの態様において、
Sb還元工程開始時のpHは0.5~2.0である。
A sixth aspect of the present invention is a method for producing a composition comprising the steps of:
The pH at the start of the Sb reduction step is 0.5 to 2.0.

本発明の第7の態様は、第1~第6のいずれかの態様において、
Sb還元工程開始時のORPは100~700mVである。
A seventh aspect of the present invention is a method for producing a composition according to any one of the first to sixth aspects,
The ORP at the start of the Sb reduction step is 100 to 700 mV.

本発明によれば、AsとSbとのうちSbを選択的に析出させてAsとSbとを分離できる。 According to the present invention, As and Sb can be separated by selectively precipitating Sb out of As and Sb.

本実施形態は、AsとSbとの分離方法に関する。本明細書における「~」は所定の数値以上かつ所定の数値以下を指す。本実施形態における「As」「Sb」等の元素記号は、金属単体又はイオンを指す。以降、濃度比はwt比を意味し、%はwt%を意味する。 This embodiment relates to a method for separating As and Sb. In this specification, "~" indicates a value equal to or greater than a specified value and equal to or less than a specified value. In this embodiment, element symbols such as "As" and "Sb" indicate metal elements or ions. Hereinafter, concentration ratio means wt ratio, and % means wt%.

本実施形態での処理対象となる溶液は、例えば、金属製錬(特に亜鉛製錬)で生じる溶液である。「AsとSbとを分離する」とは、具体的には溶液中からSbを析出させる一方でAsは溶液中に残存させることを意味する。 The solution to be treated in this embodiment is, for example, a solution produced during metal smelting (particularly zinc smelting). "Separating As and Sb" specifically means precipitating Sb from the solution while leaving As in the solution.

本実施形態では、溶液中からSbを析出させるSb析出工程を行う。Sb析出工程は、溶液中においてSbを還元する還元工程と、還元工程後の溶液を中和することにより還元後のSbを析出させる中和工程とをこの順で有する。以降、還元工程開始前の溶液を処理前溶液とも言い、還元工程開始後ないし中和工程終了前の溶液を処理中溶液とも言い、中和工程終了後の溶液を処理後溶液とも言う。 In this embodiment, an Sb precipitation process is performed to precipitate Sb from the solution. The Sb precipitation process includes, in this order, a reduction process to reduce Sb in the solution, and a neutralization process to neutralize the solution after the reduction process to precipitate reduced Sb. Hereinafter, the solution before the start of the reduction process is also referred to as the pre-treatment solution, the solution after the start of the reduction process or before the end of the neutralization process is also referred to as the in-treatment solution, and the solution after the end of the neutralization process is also referred to as the post-treatment solution.

[態様1]
本態様では、処理前溶液中にCuを予め存在させる場合を例示する。
[Aspect 1]
In this embodiment, a case where Cu is previously present in the pre-treatment solution is exemplified.

本態様における処理前溶液は、以下の特徴を有するのがよい。
・Cu、As、Sbを含有する。
・溶解したSbの濃度が1.0g/L以上である。
・濃度比Cu/Asが0.10以上、且つ、濃度比Cu/Sbが0.10以上である。
The pre-treatment solution in this embodiment should have the following characteristics:
-Contains Cu, As, and Sb.
- The concentration of dissolved Sb is 1.0 g/L or more.
The concentration ratio Cu/As is 0.10 or more, and the concentration ratio Cu/Sb is 0.10 or more.

処理前溶液中におけるCu、As、Sbは、好適にはいずれもイオン化(錯イオン含む)して溶液中に溶解している。 The Cu, As, and Sb in the pre-treatment solution are preferably all ionized (including complex ions) and dissolved in the solution.

処理前溶液中に溶解したSbの濃度が1.0g/L以上であり、特許文献2に記載のビスマスの回収を前提とした溶液と本実施形態の処理前溶液とは異なる。 The concentration of Sb dissolved in the pre-treatment solution is 1.0 g/L or more, and the pre-treatment solution of this embodiment is different from the solution described in Patent Document 2, which is intended for the recovery of bismuth.

処理前溶液中に溶解したSbの濃度の下限は1.5g/L、2.0g/Lであってもよい。該濃度の上限は20g/L、15g/L、10g/Lであってもよい。 The lower limit of the concentration of Sb dissolved in the pre-treatment solution may be 1.5 g/L or 2.0 g/L. The upper limit of the concentration may be 20 g/L, 15 g/L, or 10 g/L.

処理前溶液中に溶解したAsの濃度には限定は無いが、該濃度の下限は1g/L、10g/L、20g/Lであってもよい。該濃度の上限は200g/L、100g/Lであってもよい。 There is no limit to the concentration of As dissolved in the pre-treatment solution, but the lower limit of the concentration may be 1 g/L, 10 g/L, or 20 g/L. The upper limit of the concentration may be 200 g/L or 100 g/L.

処理前溶液中に溶解したCuの濃度には限定は無いが、該濃度の下限は10g/L、20g/L、25g/Lであってもよい。該濃度の上限は150g/L、100g/L、80g/Lであってもよい。 There is no limit to the concentration of Cu dissolved in the pre-treatment solution, but the lower limit of the concentration may be 10 g/L, 20 g/L, or 25 g/L. The upper limit of the concentration may be 150 g/L, 100 g/L, or 80 g/L.

但し、処理前溶液中の濃度比Cu/Asが0.10以上、且つ、濃度比Cu/Sbが0.10以上とする。 However, the concentration ratio Cu/As in the pre-treatment solution must be 0.10 or more, and the concentration ratio Cu/Sb must be 0.10 or more.

処理前溶液中の濃度比Cu/Asの下限は1、3、5であってもよい。濃度比Cu/Asの上限は50、30であってもよい。 The lower limit of the Cu/As concentration ratio in the pre-treatment solution may be 1, 3, or 5. The upper limit of the Cu/As concentration ratio may be 50 or 30.

処理前溶液中の濃度比Cu/Sbの下限は0.3、0.5であってもよい。濃度比Cu/Sbの上限は5、3、2であってもよい。 The lower limit of the concentration ratio Cu/Sb in the pre-treatment solution may be 0.3 or 0.5. The upper limit of the concentration ratio Cu/Sb may be 5, 3, or 2.

処理前溶液中の濃度比As/Sbの下限は0.1、1、5であってもよい。濃度比As/Sbの上限は50、30、20であってもよい。 The lower limit of the concentration ratio As/Sb in the pre-treatment solution may be 0.1, 1, or 5. The upper limit of the concentration ratio As/Sb may be 50, 30, or 20.

処理前溶液中の濃度比Cu/(Sb+As)の下限は0.1であってもよい。濃度比Cu/(Sb+As)の上限は5であってもよい。 The lower limit of the concentration ratio Cu/(Sb+As) in the pre-treatment solution may be 0.1. The upper limit of the concentration ratio Cu/(Sb+As) may be 5.

処理前溶液中のAs、Sbに関する上記濃度設定は、金属製錬(特に亜鉛製錬)で生じる溶液中のAs、Sbの濃度の値を包含する設定である。その一方、金属製錬(特に亜鉛製錬)で生じる溶液中において、処理前溶液中のCuに関する上記濃度設定を満たさない場合、処理前溶液に対して別途Cu源を添加してもよい(Cu源添加工程)。別途添加する際のCu源としては水溶性のものが好ましく例えば硫酸銅(CuSO)(水和物も使用可)が挙げられる。この場合、処理前溶液中にて2価の銅イオンが存在することになる。 The above-mentioned concentration settings for As and Sb in the pre-treatment solution include the concentration values of As and Sb in the solution produced in metal smelting (particularly zinc smelting). On the other hand, if the above-mentioned concentration setting for Cu in the pre-treatment solution is not satisfied in the solution produced in metal smelting (particularly zinc smelting), a Cu source may be added separately to the pre-treatment solution (Cu source addition step). The Cu source added separately is preferably water-soluble, for example, copper sulfate (CuSO 4 ) (hydrates can also be used). In this case, divalent copper ions will be present in the pre-treatment solution.

処理前溶液の組成の一例は以下のとおりである。
As:0.2~100g/L
Sb:0.05~10g/L
Cu:0.1~100g/L
上記以外の重金属(Cd,Co,Ni,Pb,Znなど):1g/L以下
An example of the composition of the pre-treatment solution is as follows:
As: 0.2-100g/L
Sb: 0.05-10g/L
Cu: 0.1-100g/L
Heavy metals other than those mentioned above (Cd, Co, Ni, Pb, Zn, etc.): 1g/L or less

処理前溶液のpHの下限は0.5であってもよく、1.0を超えてもよい。処理前溶液のpHの上限は3.0、2.0であってもよい。この数値範囲が示すように、処理前溶液は酸性である。また、本明細書におけるpHの値は、変化が収まった状態(例えば10分間での変化が0.1以内)での値である。処理前溶液のpHは、Sb還元工程開始時のpHと言い換えてもよい。 The lower limit of the pH of the pre-treatment solution may be 0.5 or may exceed 1.0. The upper limit of the pH of the pre-treatment solution may be 3.0 or 2.0. As these numerical ranges indicate, the pre-treatment solution is acidic. In addition, the pH value in this specification is the value in a state where the change has settled (for example, the change in 10 minutes is within 0.1). The pH of the pre-treatment solution may be rephrased as the pH at the start of the Sb reduction process.

本明細書でのORP(3.3M KCl-Ag/AgCl)は、本発明では標準電極に対して+199mV(vs.SHE、25℃)でいわゆる酸化還元電位(vsAg/AgCl)である。以降、ORPは同様の定義とする。また、本明細書におけるORPの値は、変化が収まった状態(例えば10分間での変化が10mV以内)での値である。処理前溶液のORPは、Sb還元工程開始時のORPと言い換えてもよい。 In this specification, ORP (3.3M KCl-Ag/AgCl) is +199 mV (vs. SHE, 25°C) against a standard electrode, which is the so-called oxidation-reduction potential (vs. Ag/AgCl). Hereinafter, ORP will have the same definition. In addition, the ORP value in this specification is the value in a state where the change has settled (for example, the change in 10 minutes is within 10 mV). The ORP of the pre-treatment solution may be rephrased as the ORP at the start of the Sb reduction process.

処理前溶液のORPの下限は100mV、150mV、200mVであってもよい。処理前溶液のORPの上限は700mV、600mVであってもよい。 The lower limit of the ORP of the pre-treatment solution may be 100 mV, 150 mV, or 200 mV. The upper limit of the ORP of the pre-treatment solution may be 700 mV or 600 mV.

処理前溶液に対してSbの還元工程を行う。具体的には、処理前溶液に対して還元剤を添加する。還元剤には限定は無いが、例えば二酸化硫黄(SO)(ガスの吹き込みも利用可)、亜硫酸ナトリウム(NaHSO)の少なくともいずれかが挙げられる。 The untreated solution is subjected to a reduction step of Sb. Specifically, a reducing agent is added to the untreated solution. The reducing agent is not limited, but may be at least one of sulfur dioxide (SO 2 ) (gas injection may also be used) and sodium sulfite (NaHSO 3 ).

Sbの還元工程中の処理中溶液の温度は40~95℃であってもよい。Sbの還元工程の反応時間は30~150分であってもよい。 The temperature of the solution during the Sb reduction step may be 40 to 95°C. The reaction time of the Sb reduction step may be 30 to 150 minutes.

Sbの還元工程後の処理中溶液のpHの下限は0.9、1.0、1.0超え、1.5、2.0であってもよい。Sbの還元工程後の処理中溶液のpHの上限は3.0、2.5であってもよい。Sbの還元工程後の処理中溶液のpHは、中和工程開始時のpHと言い換えてもよい。 The lower limit of the pH of the solution in process after the Sb reduction step may be 0.9, 1.0, more than 1.0, 1.5, or 2.0. The upper limit of the pH of the solution in process after the Sb reduction step may be 3.0 or 2.5. The pH of the solution in process after the Sb reduction step may be rephrased as the pH at the start of the neutralization step.

Sbの還元工程後の処理中溶液のORPは70~210mVとする。これにより、中和工程後にSbを十分に析出できる。つまり、処理前溶液中に溶解しているSbの濃度に対する、中和工程後の処理後溶液中に溶解しているSbの濃度(析出したSbの分離後)の百分率を100から引いた数値(脱Sb率)を向上できる。 The ORP of the solution being treated after the Sb reduction process is set to 70-210 mV. This allows sufficient Sb to precipitate after the neutralization process. In other words, it is possible to improve the value (Sb removal rate) obtained by subtracting the percentage of the concentration of Sb dissolved in the treated solution after the neutralization process (after separation of precipitated Sb) from 100 relative to the concentration of Sb dissolved in the pre-treatment solution.

Sbの還元工程後の処理中溶液のORPの下限は100mV、110mV、130mVであってもよい。Sbの還元工程後の処理中溶液のORPの上限は190mV、170mVであってもよい。Sbの還元工程後の処理中溶液のORPは、中和工程開始時のORPと言い換えてもよい。 The lower limit of the ORP of the solution being treated after the Sb reduction process may be 100 mV, 110 mV, or 130 mV. The upper limit of the ORP of the solution being treated after the Sb reduction process may be 190 mV or 170 mV. The ORP of the solution being treated after the Sb reduction process may be rephrased as the ORP at the start of the neutralization process.

なお、Sbの還元工程後の処理中溶液中の濃度比Cu/As、Cu/Sb、As/Sb、Cu/(Sb+As)に関しては、本発明でのSbの還元工程ではAsもSbもほとんど析出しないうえ、処理中溶液に対しては固液分離工程を行っていないので、処理前溶液と同様の濃度比の規定を適用できる。 Regarding the concentration ratios Cu/As, Cu/Sb, As/Sb, and Cu/(Sb+As) in the solution being treated after the Sb reduction process, the same concentration ratios as in the solution before treatment can be applied because As and Sb are hardly precipitated in the Sb reduction process of the present invention and no solid-liquid separation process is performed on the solution being treated.

Sbの還元工程前の処理前溶液中に溶解しているAs、Sb、Cuの濃度、及び、該処理前溶液中に溶解している各元素の濃度比Cu/As、Cu/Sb、As/Sb、Cu/(Sb+As)からの、Sbの還元工程後の処理中溶液中に溶解している各元素の該濃度及び濃度比への減少率(特にAsの濃度の減少率)は2%以下、1%以下であってもよい。 The concentration of As, Sb, and Cu dissolved in the pre-treatment solution before the Sb reduction step, and the reduction rate from the concentration ratios of each element dissolved in the pre-treatment solution, Cu/As, Cu/Sb, As/Sb, and Cu/(Sb+As), to the concentration and concentration ratio of each element dissolved in the treatment solution after the Sb reduction step (particularly the reduction rate of the As concentration) may be 2% or less, 1% or less.

Sbの還元工程後の処理中溶液に対して還元後のSbを析出させる中和工程を行う。還元工程後の処理中溶液のpHを増加できれば添加物に限定は無いが、例えばアルカリ(一例としては炭酸カルシウム(CaCO)及び水酸化ナトリウム(NaOH)の少なくともいずれか)を添加してもよい。石膏(CaSO)も該添加物として挙げられる。 The solution in process after the Sb reduction step is subjected to a neutralization step to precipitate reduced Sb. There is no limitation on the additives as long as they can increase the pH of the solution in process after the reduction step, and for example, an alkali (one example being at least one of calcium carbonate (CaCO 3 ) and sodium hydroxide (NaOH)) may be added. Gypsum (CaSO 4 ) is also an example of such an additive.

中和工程中の処理中溶液の温度は40~95℃であってもよい。中和工程の反応時間は30~150分であってもよい。 The temperature of the solution during the neutralization step may be 40 to 95°C. The reaction time of the neutralization step may be 30 to 150 minutes.

中和工程後の処理後溶液のpHは、還元工程後且つ中和工程前の処理中溶液のpHよりも増加していればよい。そのうえで、中和工程後の処理後溶液のpHの下限は2.5、3.0が好ましい。中和工程後の処理後溶液のpHの上限は4.0が好ましい。 The pH of the post-treatment solution after the neutralization step should be higher than the pH of the treatment solution after the reduction step and before the neutralization step. In addition, the lower limit of the pH of the post-treatment solution after the neutralization step is preferably 2.5 or 3.0. The upper limit of the pH of the post-treatment solution after the neutralization step is preferably 4.0.

中和工程後の処理後溶液のORPの下限は50mV、80mV、100mV、130mVであってもよい。中和工程後の処理後溶液のORPの上限は350mV、300mV、280mVであってもよい。 The lower limit of the ORP of the treated solution after the neutralization step may be 50 mV, 80 mV, 100 mV, or 130 mV. The upper limit of the ORP of the treated solution after the neutralization step may be 350 mV, 300 mV, or 280 mV.

中和工程後の処理後溶液の上記pH及びORPのいずれかの数値範囲ならば、Sbを十分に析出でき且つAsは処理後溶液中に十分に残存可能となる。つまり、処理前溶液中に溶解しているAsの濃度に対する、中和工程後の処理後溶液中に溶解しているAsの濃度(析出したAsの分離後)の百分率を100から引いた数値(脱As率)は低く抑えつつ、脱Sb率を向上できる。 If the pH and ORP of the treated solution after the neutralization step are in any of the above numerical ranges, Sb can be sufficiently precipitated and As can be sufficiently left in the treated solution. In other words, the value obtained by subtracting the percentage of the As concentration (after separation of precipitated As) dissolved in the treated solution after the neutralization step relative to the As concentration dissolved in the pre-treatment solution from 100 (As removal rate) can be kept low, while the Sb removal rate can be improved.

処理後溶液に対して固液分離を行った後の固液分離後溶液中の脱As率は33%以下、25%以下が好ましい。固液分離後溶液中の脱Sb率は75%以上、80%以上が好ましい。但し、脱As率と脱Sb率との両方が適度に良好であるのが好ましい。そのため、(100-脱As率)×脱Sb率の値の下限が6600、7000、7500、8000であってもよい。 After the post-treatment solution is subjected to solid-liquid separation, the As depletion rate in the solution after solid-liquid separation is 33% or less, preferably 25% or less. The Sb depletion rate in the solution after solid-liquid separation is 75% or more, preferably 80% or more. However, it is preferable that both the As depletion rate and the Sb depletion rate are adequately good. Therefore, the lower limit of the value of (100 - As depletion rate) x Sb depletion rate may be 6600, 7000, 7500, or 8000.

処理後溶液に対して固液分離を行った後の固液分離後溶液中の脱Cu率は25%以下、15%以下であってもよい。また、処理後溶液に対して固液分離を行った後の固液分離後溶液中の脱(As、Sb、Cu以外の重金属)率も25%以下、15%以下であってもよい。 The de-Cu rate in the solution after solid-liquid separation performed on the treated solution may be 25% or less, or 15% or less. In addition, the de-Cu rate (heavy metals other than As, Sb, and Cu) in the solution after solid-liquid separation performed on the treated solution may be 25% or less, or 15% or less.

処理後溶液に対して固液分離を行った後の固液分離後溶液中の濃度比Cu/Asには限定は無いが、下限が0.2、0.6、1.0、1.4であってもよく、上限が2.0、1.6であってもよい。 There is no limitation on the concentration ratio Cu/As in the solution after solid-liquid separation of the treated solution, but the lower limit may be 0.2, 0.6, 1.0, or 1.4, and the upper limit may be 2.0 or 1.6.

処理後溶液に対して固液分離を行った後の固液分離後溶液中の濃度比Cu/Sbには限定は無いが、下限が10、60であってもよく、上限が20000、2000、600、200、100、70であってもよい。 There is no limitation on the concentration ratio Cu/Sb in the solution after solid-liquid separation of the treated solution, but the lower limit may be 10 or 60, and the upper limit may be 20,000, 2,000, 600, 200, 100, or 70.

処理後溶液に対して固液分離を行った後の固液分離後溶液中の濃度比As/Sbには限定は無いが、下限が40であってもよく、上限が25000、800、600であってもよい。 There is no limitation on the concentration ratio As/Sb in the solution after solid-liquid separation of the treated solution, but the lower limit may be 40 and the upper limit may be 25,000, 800, or 600.

還元工程及び中和工程において撹拌を行ってもよく、例えばスターラー又は傾斜パドル等を使用してもよい。 Stirring may be performed during the reduction and neutralization steps, for example using a stirrer or tilted paddle.

本態様では還元工程終了後に中和工程を開始しているが、本発明はそれに限定されない。例えば、還元工程終了直前に中和工程を開始してもよい。その場合、上記処理中溶液のpH及びORPの規定は中和工程開始時のpH及びORPの値に対して適用可能である。 In this embodiment, the neutralization step is started after the reduction step is completed, but the present invention is not limited thereto. For example, the neutralization step may be started immediately before the reduction step is completed. In that case, the above-mentioned specifications for the pH and ORP of the solution being treated are applicable to the pH and ORP values at the start of the neutralization step.

本態様に記載のAsとSbとの分離方法は、Sb及びAsの分離回収方法にも適用可能である。例えば、中和工程後に処理後溶液に対して固液分離工程を行い、固体(残渣)からSbを回収できる。つまり本発明は、Sb回収方法(Sb製造方法)としても成り立つ。なお、固液分離後溶液に残存したAsは、亜鉛製錬において使用される亜ヒ酸として活用してもよい。 The method for separating As and Sb described in this embodiment can also be applied to a method for separating and recovering Sb and As. For example, a solid-liquid separation process can be performed on the treated solution after the neutralization process, and Sb can be recovered from the solid (residue). In other words, the present invention can also be used as a method for recovering Sb (a method for producing Sb). In addition, the As remaining in the solution after solid-liquid separation can be used as arsenous acid used in zinc smelting.

本明細書における固液分離工程は公知の手法を用いてよく、例えばろ過、遠心分離等を使用すればよい。 The solid-liquid separation step in this specification may be carried out using a known method, such as filtration or centrifugation.

[態様2]
還元工程後且つ中和工程前の処理中溶液に対して上記Cu源を添加し、上記態様1での処理前溶液中のCuに関する上記濃度設定を満たすようにCuの濃度を設定してもよい。後掲の実施例5が態様2に該当する。
[Aspect 2]
The Cu source may be added to the in-process solution after the reduction step and before the neutralization step, and the Cu concentration may be set so as to satisfy the above-mentioned concentration setting for Cu in the pre-processing solution in the above-mentioned embodiment 1. Example 5 described later corresponds to embodiment 2.

本態様においては、処理前溶液においてCuを含有しない又は含有してもCuに関する上記濃度設定を満たさない。その代わり、還元工程後且つ中和工程前の処理中溶液において、処理前溶液でのCuに関する上記濃度設定を満たせばよい。それ以外の規定は、上記態様1と同様とすればよい。 In this embodiment, the pre-treatment solution does not contain Cu, or if it does contain Cu, it does not satisfy the above-mentioned concentration setting for Cu. Instead, the pre-treatment solution after the reduction step and before the neutralization step only needs to satisfy the above-mentioned concentration setting for Cu in the pre-treatment solution. Other regulations may be the same as those in embodiment 1 above.

本明細書においては態様1及び態様2を含む表現として以下の表現を用いている。
「Cu、As、Sbを含有し、溶解したSbの濃度が1.0g/L以上であり、濃度比Cu/Asが0.10以上、且つ、濃度比Cu/Sbが0.10以上である溶液からSbを析出させるSb析出工程を有し、
Sb析出工程は、Sb還元工程と中和工程をこの順で有し、
Sb還元工程終了時のORP(3.3M KCl-Ag/AgCl)は70~210mVである、AsとSbとの分離方法。」
上記表現は、Sb析出工程の対象となる溶液の規定を満たすのが、Sb還元工程前である場合も含むし、Sb還元工程後且つ中和工程前である場合も含む。
In this specification, the following expressions are used to include both aspect 1 and aspect 2.
"The method includes a step of precipitating Sb from a solution containing Cu, As, and Sb, the concentration of dissolved Sb being 1.0 g/L or more, the concentration ratio Cu/As being 0.10 or more, and the concentration ratio Cu/Sb being 0.10 or more,
The Sb precipitation step includes an Sb reduction step and a neutralization step in this order,
The ORP (3.3M KCl-Ag/AgCl) at the end of the Sb reduction step is 70-210 mV.
The above expression includes the case where the solution that is the target of the Sb deposition step satisfies the requirement before the Sb reduction step, and also includes the case where the solution satisfies the requirement after the Sb reduction step and before the neutralization step.

次に実施例を示し、本発明について具体的に説明する。本発明は、以下の実施例に限定されるものではない。なお、以下に記載のない内容は、本実施形態で述べた内容と同様とする。 The present invention will now be described in detail with reference to examples. The present invention is not limited to the following examples. Any content not described below is the same as that described in this embodiment.

<実施例1>
亜鉛製錬で生じた残渣を硫酸にて溶解し、処理前溶液Xを得た。処理前溶液Xの詳細は以下の通りである。実施例1以外の各例に関しては、後掲の表1に以下の内容を記載する。
・液量:400mL
・As濃度:20g/L
・Sb濃度:2.0g/L
・Cu濃度:33g/L
・上記以外の重金属(Cd,Co,Ni,Pb,Znなど):1g/L以下
・pH:0.69
・ORP(3.3M KCl-Ag/AgCl、以降記載を省略):430mV
・濃度比Cu/As:1.6
・濃度比Cu/Sb:17
・濃度比As/Sb:10
本例では、処理前溶液XにおいてCuの濃度に関する規定(濃度比Cu/Asが0.10以上、且つ、濃度比Cu/Sbが0.10以上)が既に満たされていたため、Cu源の添加は行わなかった。
Example 1
Residues produced during zinc smelting were dissolved in sulfuric acid to obtain pre-treatment solution X. Details of pre-treatment solution X are as follows. For each example other than Example 1, the following details are shown in Table 1 below.
Volume: 400mL
・As concentration: 20g/L
・Sb concentration: 2.0g/L
・Cu concentration: 33g/L
Heavy metals other than those mentioned above (Cd, Co, Ni, Pb, Zn, etc.): 1g/L or less pH: 0.69
ORP (3.3M KCl-Ag/AgCl, omitted below): 430 mV
・Concentration ratio Cu/As: 1.6
・Concentration ratio Cu/Sb: 17
・Concentration ratio As/Sb: 10
In this example, since the pre-treatment solution X already satisfied the regulation regarding the Cu concentration (the concentration ratio Cu/As being 0.10 or more and the concentration ratio Cu/Sb being 0.10 or more), no Cu source was added.

本例の処理前溶液Xに対して還元工程を行った。具体的には、液温の設定値を60℃とし、還元剤としてNaHSOを処理前溶液Xに所定量添加した。そして、3枚傾斜パドル(バッフル無し)にて120分間撹拌を行った。そして、還元工程後且つ中和工程前の処理中溶液を得た。処理中溶液の詳細は以下の通りである。実施例1以外の各例に関しては、後掲の表1に以下の内容を記載する。
・pH:1.6
・ORP:137mV
A reduction process was carried out on the untreated solution X of this example. Specifically, the liquid temperature was set to 60°C, and a predetermined amount of NaHSO 3 was added as a reducing agent to the untreated solution X. Then, the solution was stirred for 120 minutes with a three-blade inclined paddle (without a baffle). Then, an in-process solution was obtained after the reduction process and before the neutralization process. Details of the in-process solution are as follows. For each example other than Example 1, the following details are listed in Table 1 below.
pH: 1.6
・ORP: 137mV

なお、処理中溶液中の濃度比Cu/As、Cu/Sb、As/Sb、Cu/(Sb+As)に関しては、本発明でのSbの還元工程ではAsもSbもほとんど析出しないうえ、処理中溶液に対しては固液分離工程を行っていないので、処理前溶液Xと同じ値であった。 Regarding the concentration ratios Cu/As, Cu/Sb, As/Sb, and Cu/(Sb+As) in the solution during treatment, since As and Sb are hardly precipitated in the Sb reduction process in the present invention and since no solid-liquid separation process is performed on the solution during treatment, the values were the same as those of solution X before treatment.

本例の処理中溶液に対して中和工程を行った。具体的には、液温を60℃とし、中和剤としてCaCOを処理中溶液に所定量添加した。そして、3枚傾斜パドル(バッフル無し)にて120分間撹拌を行った。そして、中和工程後の処理後溶液を得た。処理後溶液の詳細は以下の通りである。実施例1以外の各例に関しては、後掲の表1に以下の内容を記載する。
・pH:3.7
・ORP:146mV
The neutralization process was carried out on the in-process solution of this example. Specifically, the liquid temperature was set to 60°C, and a predetermined amount of CaCO3 was added as a neutralizing agent to the in-process solution. Then, the solution was stirred for 120 minutes with a three-blade inclined paddle (without baffles). Then, a post-processed solution was obtained after the neutralization process. Details of the post-processed solution are as follows. For each example other than Example 1, the following contents are listed in Table 1 below.
pH: 3.7
・ORP: 146mV

処理後溶液に対してろ紙を用いて固液分離工程を行った。固液分離後溶液の詳細は以下の通りである。実施例1以外の各例に関しては、後掲の表2に以下の内容を記載する。
・脱As率:21%
・脱Sb率:99%
・脱Cu率:5%
・濃度比Cu/As:1.9
・濃度比Cu/Sb:1412
・濃度比As/Sb:726
The treated solution was subjected to a solid-liquid separation step using filter paper. Details of the solution after solid-liquid separation are as follows. For each example other than Example 1, the following details are shown in Table 2 below.
・As free rate: 21%
Sb removal rate: 99%
Cu removal rate: 5%
・Concentration ratio Cu/As: 1.9
・Concentration ratio Cu/Sb: 1412
・Concentration ratio As/Sb: 726

<実施例2~4>
上記表1に記載のように実施例1から各設定を変更したうえで、各例を行った。固液分離後溶液の詳細は上記表2に記載した。
<Examples 2 to 4>
Each example was carried out after changing each setting from Example 1 as shown in Table 1. Details of the solution after solid-liquid separation are shown in Table 2.

<実施例5>
本例では、製錬残渣ではなく、試薬により処理前溶液Yを作製した。
Example 5
In this example, the pre-treatment solution Y was prepared using a reagent instead of a smelting residue.

具体的には、50℃に加熱した150mLの純水に0.72gのSbを添加し、硫酸を添加し、pH1以下にした。そして、処理前溶液Y中に溶解するAsの濃度が40g/L程度になるように60%ヒ酸液を添加した。 Specifically, 0.72 g of Sb 2 O 3 was added to 150 mL of pure water heated to 50° C., and sulfuric acid was added to adjust the pH to 1 or less. Then, a 60% arsenic acid solution was added so that the concentration of As dissolved in the pre-treatment solution Y was about 40 g/L.

その後、更にHを添加し、ORPを530mV程度へとし、1時間程度撹拌した。撹拌には恒温槽付きマグネチックスターラーを用いた。 Thereafter, H 2 O 2 was further added, the ORP was adjusted to about 530 mV, and stirring was performed for about 1 hour. A magnetic stirrer with a thermostatic bath was used for stirring.

撹拌後に得られた溶液を150mL測り取り、純水で2倍に希釈し、希釈液を60℃に加熱し処理前溶液Yとした。(この溶液は、比較例1に係る処理前溶液でもある) After stirring, 150 mL of the solution obtained was measured and diluted 2-fold with pure water, and the diluted solution was heated to 60°C to obtain pre-treatment solution Y. (This solution is also the pre-treatment solution for Comparative Example 1.)

実施例5では、処理前溶液Yに対し、CuSO(フレーク)を添加し、溶解させ、所定のCu濃度の処理前溶液を作製した。 In Example 5, CuSO 4 (flakes) was added to and dissolved in pre-treatment solution Y to prepare a pre-treatment solution having a predetermined Cu concentration.

上記表1に記載のように実施例1から各設定を変更したうえで、各例を行った。固液分離後溶液の詳細は上記表2に記載した。 Each example was carried out after changing the settings from Example 1 as described in Table 1 above. Details of the solution after solid-liquid separation are described in Table 2 above.

<実施例6>
実施例6では処理前溶液Yを用いた。処理前溶液Yから始めて、Sbの還元工程後且つ中和工程前の処理中溶液へと変化させ、CuSO(フレーク)を添加し、溶解させ、所定のCu濃度の処理中溶液を作製した。他、上記表1に記載のように実施例1から各設定を変更したうえで、各例を行った。固液分離後溶液の詳細は上記表2に記載した。
Example 6
In Example 6, pre-treatment solution Y was used. Starting from pre-treatment solution Y, the solution was changed to an in-treatment solution after the Sb reduction step and before the neutralization step, and CuSO 4 (flakes) was added and dissolved to prepare an in-treatment solution with a predetermined Cu concentration. In addition, each setting was changed from Example 1 as described in Table 1 above, and each example was performed. Details of the solution after solid-liquid separation are described in Table 2 above.

<比較例1>
比較例1では処理前溶液Yを用いた。他、上記表1に記載のように実施例1から各設定を変更したうえで、各例を行った。固液分離後溶液の詳細は上記表2に記載した。処理中溶液の銅濃度は、0g/Lとしている。
<Comparative Example 1>
In Comparative Example 1, pre-treatment solution Y was used. Other than that, each setting was changed from Example 1 as shown in Table 1 above, and each example was carried out. Details of the solution after solid-liquid separation are shown in Table 2 above. The copper concentration of the solution during treatment was 0 g/L.

<比較例2,3>
上記表1に記載のように実施例1から各設定を変更したうえで、各例を行った。固液分離後溶液の詳細は上記表2に記載した。実施例1と同様の処理前溶液を用いた。
<Comparative Examples 2 and 3>
Each example was carried out after changing each setting from Example 1 as shown in Table 1. Details of the solution after solid-liquid separation are shown in Table 2. The same pre-treatment solution as in Example 1 was used.

<比較例4>
比較例4では処理前溶液Yを用いた。処理前溶液Yから始めて、Sbの還元工程後且つ中和工程前の処理中溶液へと変化させ、CuSO(フレーク)を添加し、溶解させ、所定のCu濃度の処理中溶液を作製した。上記表1に記載のように実施例1から各設定を変更したうえで、各例を行った。固液分離後溶液の詳細は上記表2に記載した。
<Comparative Example 4>
In Comparative Example 4, pre-treatment solution Y was used. Starting from pre-treatment solution Y, the solution was changed to an in-treatment solution after the Sb reduction step and before the neutralization step, and CuSO 4 (flakes) was added and dissolved to prepare an in-treatment solution with a predetermined Cu concentration. Each example was carried out after changing each setting from Example 1 as shown in Table 1 above. Details of the solution after solid-liquid separation are shown in Table 2 above.

<まとめ>
各実施例では、低い脱As率を示しつつも高い脱Sb率を達成できた。特に、中和工程後の処理後溶液のORPが80~350mVの範囲内にある実施例1~3、5では、低い脱As率と高い脱Sb率をバランスよく発揮できた。
<Summary>
In each Example, a high Sb desorption rate was achieved while a low As desorption rate was shown. In particular, in Examples 1 to 3 and 5 in which the ORP of the treated solution after the neutralization step was within the range of 80 to 350 mV, a low As desorption rate and a high Sb desorption rate were achieved in a well-balanced manner.

Claims (7)

Cu、As、Sbを含有し、溶解したSbの濃度が1.0g/L以上であり、濃度比Cu/Asが0.10以上、且つ、濃度比Cu/Sbが0.10以上である溶液からSbを析出させるSb析出工程を有し、
Sb析出工程は、Sb還元工程と中和工程をこの順で有し、
中和工程開始時のORP(3.3M KCl-Ag/AgCl)は70~210mVである、AsとSbとの分離方法。
The method includes a step of precipitating Sb from a solution containing Cu, As, and Sb, the solution having a concentration of dissolved Sb of 1.0 g/L or more, a concentration ratio of Cu/As of 0.10 or more, and a concentration ratio of Cu/Sb of 0.10 or more,
The Sb precipitation step includes an Sb reduction step and a neutralization step in this order,
A method for separating As and Sb, in which the ORP (3.3M KCl-Ag/AgCl) at the start of the neutralization process is 70 to 210 mV.
前記溶液は、Sb還元工程開始時の溶液である、請求項1に記載のAsとSbとの分離方法。 The method for separating As and Sb according to claim 1, wherein the solution is the solution at the start of the Sb reduction process. Sb還元工程前にCu源添加工程を含む、請求項2に記載のAsとSbとの分離方法。 The method for separating As and Sb according to claim 2, which includes a Cu source addition step before the Sb reduction step. 中和工程開始時のpHは0.9~3.0である、請求項1~3のいずれか一つに記載のAsとSbとの分離方法。 A method for separating As and Sb according to any one of claims 1 to 3, in which the pH at the start of the neutralization step is 0.9 to 3.0. 中和工程終了時のORPは130~350mVである、請求項1~4のいずれか一つに記載のAsとSbとの分離方法。 A method for separating As and Sb according to any one of claims 1 to 4, in which the ORP at the end of the neutralization step is 130 to 350 mV. Sb還元工程開始時のpHは0.5~2.0である、請求項1~5のいずれか一つに記載のAsとSbとの分離方法。 A method for separating As and Sb according to any one of claims 1 to 5, in which the pH at the start of the Sb reduction step is 0.5 to 2.0. Sb還元工程開始時のORPは100~700mVである、請求項1~6のいずれか一つに記載のAsとSbとの分離方法。
The method for separating As and Sb according to any one of claims 1 to 6, wherein the ORP at the start of the Sb reduction step is 100 to 700 mV.
JP2021022307A 2021-02-16 2021-02-16 Method for separating As and Sb Active JP7594930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021022307A JP7594930B2 (en) 2021-02-16 2021-02-16 Method for separating As and Sb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021022307A JP7594930B2 (en) 2021-02-16 2021-02-16 Method for separating As and Sb

Publications (2)

Publication Number Publication Date
JP2022124583A JP2022124583A (en) 2022-08-26
JP7594930B2 true JP7594930B2 (en) 2024-12-05

Family

ID=82942120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021022307A Active JP7594930B2 (en) 2021-02-16 2021-02-16 Method for separating As and Sb

Country Status (1)

Country Link
JP (1) JP7594930B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059035A (en) 2008-09-08 2010-03-18 Sumitomo Metal Mining Co Ltd Method for producing aqueous arsenous acid solution of high purity from copper removal slime
JP2012167334A (en) 2011-02-15 2012-09-06 Jx Nippon Mining & Metals Corp METHOD OF RECOVERING Ir FROM PLATINUM GROUP-CONTAINING SOLUTION
WO2015113141A1 (en) 2014-01-31 2015-08-06 Goldcorp Inc. Process for separation of at least one metal sulfide compristng arsenic and/or antimony from a mixed sulfide concentrate
CN109957660A (en) 2017-12-26 2019-07-02 株洲冶炼集团股份有限公司 A kind of process for isolating antimony arsenic from antimony arsenic smoke dust
CN110578059A (en) 2019-10-18 2019-12-17 江西铜业股份有限公司 Method for separating antimony and tellurium from copper anode slime by controlling potential leaching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059035A (en) 2008-09-08 2010-03-18 Sumitomo Metal Mining Co Ltd Method for producing aqueous arsenous acid solution of high purity from copper removal slime
JP2012167334A (en) 2011-02-15 2012-09-06 Jx Nippon Mining & Metals Corp METHOD OF RECOVERING Ir FROM PLATINUM GROUP-CONTAINING SOLUTION
WO2015113141A1 (en) 2014-01-31 2015-08-06 Goldcorp Inc. Process for separation of at least one metal sulfide compristng arsenic and/or antimony from a mixed sulfide concentrate
CN109957660A (en) 2017-12-26 2019-07-02 株洲冶炼集团股份有限公司 A kind of process for isolating antimony arsenic from antimony arsenic smoke dust
CN110578059A (en) 2019-10-18 2019-12-17 江西铜业股份有限公司 Method for separating antimony and tellurium from copper anode slime by controlling potential leaching

Also Published As

Publication number Publication date
JP2022124583A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
US9751783B2 (en) Method for a treatment for wastewater containing aluminum, magnesium, and manganese
US8110162B2 (en) Method of processing copper arsenic compound
KR102556133B1 (en) Wastewater Treatment Method
JP7016463B2 (en) How to collect tellurium
AU2008200360A1 (en) Method for manufacturing scorodite
JP6139990B2 (en) Arsenic solution treatment method
JP6364716B2 (en) Heavy metal removal method
US5431713A (en) Method for the reclamation of metallic compounds from zinc and lead containing dust
KR102543786B1 (en) Wastewater Treatment Method
JP4025841B2 (en) Treatment of wastewater containing arsenic and other heavy metals
WO2013187367A1 (en) Neutralization method
JP7057738B2 (en) Manufacturing method of copper sulfide powder and copper sulfide powder
JP7594930B2 (en) Method for separating As and Sb
JP3627641B2 (en) Method for separating and removing zinc from nickel sulfate solution
JP2000202461A (en) Treatment method for wastewater containing heavy metal complex
CA2518250C (en) Method for removing thallium from a zinc-containing solution
JP4614093B2 (en) Arsenic wastewater treatment method
WO2016136087A1 (en) Wet smelting method for nickel oxide ore
CN114058847A (en) Iron removal method for chlorine leachate of nickel concentrate
JP3294181B2 (en) Method for producing calcium arsenate
JP2005144374A (en) Method for removing chlorine ion in nonferrous metal sulfate solution
JP2003137545A (en) Method for manufacturing waste acid gypsum
JP2580610B2 (en) Treatment method for water containing iron cyanide complex
JP2002233882A (en) Method for recovering heavy metal from heavy metal- containing aqueous solution
JP2009126759A (en) Method of preparing high-purity solution containing nickel sulfate and cobalt sulfate, and method of producing high-purity nickel with use of the same solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241125

R150 Certificate of patent or registration of utility model

Ref document number: 7594930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150