[go: up one dir, main page]

JP7594890B2 - Non-aqueous electrolyte secondary battery with excellent capacity retention after reflow soldering - Google Patents

Non-aqueous electrolyte secondary battery with excellent capacity retention after reflow soldering Download PDF

Info

Publication number
JP7594890B2
JP7594890B2 JP2020192696A JP2020192696A JP7594890B2 JP 7594890 B2 JP7594890 B2 JP 7594890B2 JP 2020192696 A JP2020192696 A JP 2020192696A JP 2020192696 A JP2020192696 A JP 2020192696A JP 7594890 B2 JP7594890 B2 JP 7594890B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
capacity
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020192696A
Other languages
Japanese (ja)
Other versions
JP2021150279A (en
Inventor
研 三浦
学史 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to TW110103386A priority Critical patent/TW202135367A/en
Priority to KR1020210032563A priority patent/KR20210116315A/en
Priority to CN202110271060.7A priority patent/CN113394391A/en
Publication of JP2021150279A publication Critical patent/JP2021150279A/en
Application granted granted Critical
Publication of JP7594890B2 publication Critical patent/JP7594890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リフローハンダ付け後の容量維持率に優れた非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery having an excellent capacity retention rate after reflow soldering .

表面に炭素被覆されたケイ素酸化物(SiO)を用いた小型非水電解質二次電池に関し、優れた初期容量とサイクル特性を得られることが、以下の特許文献1に記載されている。
また、小型非水電解質二次電池では、近年、回路基板搭載時のハンダ付けの効率を上げるためリフローハンダ付け対応が求められている。
従来、リチウムマンガン酸化物の正極活物質とリチウムアルミニウム合金の負極活物質の組み合わせによる小型非水電解質二次電池において、リフローハンダ付け可能な構成が提供されている。
Japanese Patent Application Laid-Open No. 2003-233699 discloses that a small non-aqueous electrolyte secondary battery using silicon oxide (SiO x ) with a carbon-coated surface can provide excellent initial capacity and cycle characteristics.
Furthermore, in recent years, small non-aqueous electrolyte secondary batteries have been required to be compatible with reflow soldering in order to increase the efficiency of soldering when mounting the batteries on circuit boards.
Conventionally, a small non-aqueous electrolyte secondary battery that combines a lithium manganese oxide positive electrode active material with a lithium aluminum alloy negative electrode active material has been provided with a structure that allows reflow soldering.

特開2013-101770号公報JP 2013-101770 A

ところで、上述の活物質の組み合わせの替わりに、前記ケイ素酸化物を負極に用いた二次電池をリフロー対応可能とするためには、耐熱性の高い部材を用いることに加え、電極や電解液の予期せぬ反応を抑制し、充放電を安定化することが必要になると考えられる。
特に、リフローハンダ付け時の加熱によりセル容量が低下することが考えられるが、組立後の容量とリフロー後容量の比である容量維持率が大きいことが望ましい。
Incidentally, in order to make a secondary battery using the silicon oxide as the negative electrode, instead of the combination of active materials described above, compatible with reflow soldering, it is considered necessary to use a material with high heat resistance, as well as to suppress unexpected reactions of the electrodes and electrolyte, and to stabilize charging and discharging.
In particular, it is considered that the cell capacity will decrease due to the heat applied during reflow soldering, but it is desirable to have a large capacity retention rate, which is the ratio of the capacity after assembly to the capacity after reflow.

本発明は、上述の問題に鑑み、サイクル特性及び長期保存性に優れ、リフロー実装対応可能な小型のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a small nonaqueous electrolyte secondary battery that is excellent in cycle characteristics and long-term storage stability, and that is compatible with reflow mounting and has an excellent capacity retention rate after reflow soldering .

「1」前記課題を解決するため、本発明の一形態に係るリフローハンダ付け後の容量維持率に優れた非水電解質二次電池は、正極と、負極と、支持塩及び溶媒を含む電解液と、セパレータが、正極缶と負極缶によって構成された収容容器に収容されてなる非水電解質二次電池であって、前記正極が活物質としてのスピネル型リチウムマンガン酸化物を含有し、前記負極が活物質としての炭素被覆SiOを含有し、前記電解液として、グライム系溶媒にエチレンカーボネート(EC)とビニレンカーボネート(VC)を含有する混合溶媒を含み、前記セパレータにガラス繊維が含まれてなり、負極容量と正極容量の比である(負極容量/正極容量)の値が、1.7~2.4の範囲であることを特徴とする。 "1" In order to solve the above-mentioned problems, a nonaqueous electrolyte secondary battery having an excellent capacity retention rate after reflow soldering according to one embodiment of the present invention is a nonaqueous electrolyte secondary battery in which a positive electrode, a negative electrode, an electrolyte solution containing a supporting salt and a solvent, and a separator are contained in a container formed of a positive electrode can and a negative electrode can, the positive electrode contains a spinel-type lithium manganese oxide as an active material, the negative electrode contains carbon-coated SiO x as an active material, the electrolyte solution contains a mixed solvent containing ethylene carbonate (EC) and vinylene carbonate (VC) in a glyme-based solvent, the separator contains glass fiber, and the value of the ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity/positive electrode capacity) is in the range of 1.7 to 2.4.

本形態では、スピネル型リチウムマンガン酸化物を含有する正極活物質と炭素被覆SiOxを含有する負極活物質の組み合わせに、エチレンカーボネートとビニレンカーボネートを含有する混合溶媒からなる電解液を組み合わせ、(負極容量/正極容量)の値を1.7~2.4の範囲とする。この構成により、リフローハンダ付け対応可能であり、リフローハンダ付けに伴う加熱後の容量維持率に優れるとともに、サイクル特性と長期保存性に優れた小型の非水電解質二次電池を提供できる。 In this embodiment, a combination of a positive electrode active material containing a spinel-type lithium manganese oxide and a negative electrode active material containing carbon-coated SiOx is combined with an electrolyte solution consisting of a mixed solvent containing ethylene carbonate and vinylene carbonate, and the value of (negative electrode capacity/positive electrode capacity) is set to a range of 1.7 to 2.4. This configuration makes it possible to provide a small nonaqueous electrolyte secondary battery that is compatible with reflow soldering, has excellent capacity retention after heating associated with reflow soldering, and has excellent cycle characteristics and long-term storage properties.

「2」前記一形態のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池では、前記(負極容量/正極容量)の値が、1.9~2.4の範囲であることが好ましい。
「3」前記一形態のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池では、前記(負極容量/正極容量)の値が、1.94~2.39の範囲であることが好ましい。
"2" In the nonaqueous electrolyte secondary battery having an excellent capacity retention rate after reflow soldering according to one embodiment of the present invention, the value of (negative electrode capacity/positive electrode capacity) is preferably in the range of 1.9 to 2.4.
"3" In the nonaqueous electrolyte secondary battery having an excellent capacity retention rate after reflow soldering according to one embodiment of the present invention, the value of (negative electrode capacity/positive electrode capacity) is preferably in the range of 1.94 to 2.39.

本形態では(負極容量/正極容量)の値を1.9~2.4の範囲とすることにより、優れた初期容量を得ることができ、優れた容量維持率を得ることができる。 In this embodiment, by setting the value of (negative electrode capacity/positive electrode capacity) in the range of 1.9 to 2.4, it is possible to obtain an excellent initial capacity and an excellent capacity retention rate.

「3」前記一形態のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池では、前記正極缶が有底円筒状であり、前記負極缶が前記正極缶の開口部内側にガスケットを介在し固定され、前記正極缶の開口部を前記負極缶側にかしめたかしめ部を設けることで前記収容容器が密封され、前記収容容器に正極と負極とセパレータと前記電解液が収容されたことを特徴とする。 "3" In the nonaqueous electrolyte secondary battery having an excellent capacity retention rate after reflow soldering according to one embodiment of the present invention, the positive electrode can is cylindrical with a bottom, the negative electrode can is fixed to the inside of an opening of the positive electrode can with a gasket interposed therebetween, the storage container is sealed by providing a crimping portion that crimps the opening of the positive electrode can to the negative electrode can side, and the positive electrode, the negative electrode, a separator, and the electrolyte are stored in the storage container.

本形態では、ガスケットを介し負極缶と正極缶にかしめ部を設けた密閉構造のボタン型の非水電解質二次電池を提供できる。また、この非水電解質二次電池はリフローハンダ付け後の容量低下が少なく、容量維持率に優れるとともに、優れた初期容量を有するボタン型の二次電池を提供できる。 In this embodiment, a button-type nonaqueous electrolyte secondary battery with a sealed structure can be provided in which the negative electrode can and the positive electrode can are crimped via a gasket. In addition, this nonaqueous electrolyte secondary battery can provide a button-type secondary battery that has little capacity loss after reflow soldering, excellent capacity retention rate, and excellent initial capacity.

本形態によれば、リフローハンダ付け対応可能であるとともに、サイクル特性と長期保存性に優れた小型のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池を提供できる。 According to the present embodiment, it is possible to provide a small-sized nonaqueous electrolyte secondary battery that is compatible with reflow soldering, has excellent cycle characteristics and long-term storage stability, and exhibits an excellent capacity retention rate after reflow soldering .

第1実施形態に係る非水電解質二次電池を示す断面図である。1 is a cross-sectional view showing a nonaqueous electrolyte secondary battery according to a first embodiment. 実施例で作製した複数の非水電解質二次電池に対しリフローハンダ付けに相当する熱処理を加えた場合の容量維持率に関し、正負極容量バランスとの関係を示すグラフ。1 is a graph showing the relationship between the positive and negative electrode capacity balance and the capacity retention rate when a heat treatment equivalent to reflow soldering is applied to a plurality of nonaqueous electrolyte secondary batteries produced in the examples. 実施例で作製した複数の非水電解質二次電池に対しリフローハンダ付けに相当する熱処理を加えた後、60℃・90%RHの高温高湿環境に晒し、20日間放置後の容量に関し、正負極容量バランスとの関係を示すグラフ。FIG. 1 is a graph showing the relationship between the positive and negative electrode capacity balance and the capacity after subjecting a plurality of nonaqueous electrolyte secondary batteries produced in the examples to a heat treatment equivalent to reflow soldering, exposing them to a high temperature and high humidity environment of 60° C. and 90% RH, and leaving them for 20 days.

以下、本発明の実施形態である非水電解質二次電池の例を挙げ、その構成について図1を参照しながら詳述する。なお、本発明で説明する非水電解質二次電池とは、正極または負極として用いる活物質とセパレータが収容容器内に収容されてなる二次電池である。また、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更し表示している。 Below, an example of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention is given, and its configuration is described in detail with reference to FIG. 1. The nonaqueous electrolyte secondary battery described in the present invention is a secondary battery in which an active material used as a positive electrode or a negative electrode and a separator are housed in a container. In addition, in the drawings used in the following description, the scale of each component is appropriately changed to make each component recognizable.

[非水電解質二次電池の第1実施形態]
図1に示す本実施形態の非水電解質二次電池1は、いわゆるコイン(ボタン)型の電池である。この非水電解質二次電池1は、有底円筒状の金属製の正極缶12と、正極缶12の開口部を塞ぐ有蓋円筒状の蓋状の金属製の負極缶22と、正極缶12の内周面に沿って設けられたガスケット40を備えている。
この非水電解質二次電池1は、負極缶22の外側にガスケット40を介し正極缶12を配置し、正極缶12の開口部内周縁を内側にかしめ加工して構成された薄型(偏平型)の収容容器2を備えている。収容容器2内には、正極缶12と負極缶22とに囲まれた収容空間が形成され、この収容空間に正極10と負極20とがセパレータ30を介し対向配置され、更に電解液50が充填されている。
正極缶12の材質として、従来公知のものが用いられ、例えば、SUS316LやSUS329JL等のステンレス鋼が挙げられる。
負極缶22の材質は、正極缶12の材質と同様、従来公知のステンレス鋼が挙げられ、例えば、SUS316LやSUS329JL、あるいは、SUS304-BA等が挙げられる。また、負極缶には、ステンレス鋼に銅やニッケル等を圧着してなるクラッド材を用いることもできる。収容容器2の外径は、一例として4~12mm程度とされる。
[First embodiment of non-aqueous electrolyte secondary battery]
1 is a so-called coin (button) type battery. The nonaqueous electrolyte secondary battery 1 includes a cylindrical metal positive electrode can 12 with a bottom, a cylindrical metal negative electrode can 22 with a lid that closes the opening of the positive electrode can 12, and a gasket 40 provided along the inner circumferential surface of the positive electrode can 12.
This nonaqueous electrolyte secondary battery 1 is provided with a thin (flat) storage container 2 configured by placing a positive electrode can 12 on the outside of a negative electrode can 22 with a gasket 40 between them, and crimping the inner periphery of the opening of the positive electrode can 12 inward. Within the storage container 2, a storage space surrounded by the positive electrode can 12 and the negative electrode can 22 is formed, and in this storage space, a positive electrode 10 and a negative electrode 20 are disposed facing each other with a separator 30 between them, and the storage space is further filled with an electrolyte 50.
The material of the positive electrode can 12 is a conventionally known material, for example, stainless steel such as SUS316L or SUS329JL.
The material of the negative electrode can 22 is, like the material of the positive electrode can 12, a conventionally known stainless steel, such as SUS316L, SUS329JL, or SUS304-BA. The negative electrode can may also be made of a clad material made by crimping copper, nickel, or the like onto stainless steel. The outer diameter of the storage container 2 is, for example, about 4 to 12 mm.

(正極)
本形態において正極10は、正極集電体14を介し正極缶12の内面(図1では収容容器2の底壁上面)に電気的に接続され、負極20は、負極集電体24を介し負極缶22の内面(図1では収容容器2の天井壁下面)に電気的に接続されている。なお、正極集電体14と負極集電体24はこれらを略し、正極10を直接正極缶12に接続して正極缶12に集電体の機能を持たせても良いし、負極20を直接負極缶22に接続して負極缶22に集電体の機能を持たせても良い。
ガスケット40は、収容容器2の内部においてセパレータ30の外周縁と接続され、ガスケット40がセパレータ30を保持している。正極10、負極20及びセパレータ30には、収容容器2内に充填された電解液50が含浸されている。
(Positive electrode)
In this embodiment, the positive electrode 10 is electrically connected to the inner surface of the positive electrode can 12 (the upper surface of the bottom wall of the storage container 2 in FIG. 1 ) via the positive electrode current collector 14, and the negative electrode 20 is electrically connected to the inner surface of the negative electrode can 22 (the lower surface of the ceiling wall of the storage container 2 in FIG. 1 ) via the negative electrode current collector 24. Note that the positive electrode current collector 14 and the negative electrode current collector 24 may be omitted, and the positive electrode 10 may be directly connected to the positive electrode can 12 so that the positive electrode can 12 has the function of a current collector, or the negative electrode 20 may be directly connected to the negative electrode can 22 so that the negative electrode can 22 has the function of a current collector.
The gasket 40 is connected to the outer periphery of the separator 30 inside the storage container 2, and the gasket 40 holds the separator 30. The positive electrode 10, the negative electrode 20, and the separator 30 are impregnated with an electrolyte solution 50 filled in the storage container 2.

正極10において、正極活物質の種類は特に限定されないが、例えば、正極活物質としてスピネル型リチウムマンガン酸化物を含有するものを用いることが好ましい。
正極10中の正極活物質の含有量は、非水電解質二次電池1に要求される放電容量等を勘案し決定され、50~95質量%の範囲とすることができる。正極活物質の含有量が上記好ましい範囲の下限値以上であれば、充分な放電容量が得られやすく、好ましい上限値以下であれば、正極10を成形しやすい。
In the positive electrode 10, the type of positive electrode active material is not particularly limited, but it is preferable to use, for example, a positive electrode active material containing a spinel-type lithium manganese oxide.
The content of the positive electrode active material in the positive electrode 10 is determined taking into consideration the discharge capacity required for the nonaqueous electrolyte secondary battery 1 and can be in the range of 50 to 95 mass %. When the content of the positive electrode active material is equal to or more than the lower limit of the above preferred range, a sufficient discharge capacity is easily obtained, and when it is equal to or less than the preferred upper limit, the positive electrode 10 is easily formed.

正極10は、導電助剤(以下、正極10に用いられる導電助剤を「正極導電助剤」ということがある)を含有してもよい。
正極導電助剤としては、例えば、ファーネスブラック、ケッチェンブラック、アセチレンブラック、グラファイト等の炭素質材料が挙げられる。
正極導電助剤は、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
また、正極10中の正極導電助剤の含有量は、2~20質量%が好ましく、4~15質量%がより好ましい。正極導電助剤の含有量が、上記の好ましい範囲の下限値以上であれば、充分な導電性が得られやすくなる。また、電極をペレット状に成型する場合に成型しやすくなる。一方、正極10中の正極導電助剤の含有量が、上記好ましい範囲の上限値以下であれば、正極10による充分な放電容量が得られやすくなる。
The positive electrode 10 may contain a conductive assistant (hereinafter, the conductive assistant used in the positive electrode 10 may be referred to as a "positive electrode conductive assistant").
Examples of the positive electrode conductive assistant include carbonaceous materials such as furnace black, ketjen black, acetylene black, and graphite.
The positive electrode conductive assistant may be used alone or in combination of two or more of the above.
The content of the positive electrode conductive assistant in the positive electrode 10 is preferably 2 to 20 mass %, more preferably 4 to 15 mass %. If the content of the positive electrode conductive assistant is equal to or greater than the lower limit of the above-mentioned preferred range, sufficient conductivity is easily obtained. Furthermore, the electrode is easily molded into a pellet. On the other hand, if the content of the positive electrode conductive assistant in the positive electrode 10 is equal to or less than the upper limit of the above-mentioned preferred range, sufficient discharge capacity is easily obtained by the positive electrode 10.

正極10は、バインダ(以下、正極10に用いられるバインダを「正極バインダ」ということがある)を含有しても良い。 The positive electrode 10 may contain a binder (hereinafter, the binder used in the positive electrode 10 may be referred to as the "positive electrode binder").

正極バインダとして、従来公知の物質を用いることができ、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)等を選択でき、これらを複数組み合わせて構成したバインダを用いることができる。
また、正極バインダは、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いても良い。正極10において正極バインダの含有量は、例えば、1~20質量%とすることができる。
なお、本明細書において数値範囲に関し「~」を用いて上限と下限を示す場合、特に説明しない限り上限と下限を含む範囲とする。よって、例えば、1~20質量%と記載した場合、1質量%以上20質量%以下を意味する。
正極集電体14は、従来公知のものを用いることができ、炭素を導電性フィラーとする導電性樹脂接着剤等を例示することができる。
As the positive electrode binder, a conventionally known substance can be used. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyacrylic acid (PA), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), etc. can be selected, and a binder formed by combining a plurality of these can be used.
The positive electrode binder may be one of the above-mentioned materials alone or two or more of them may be combined and used as the positive electrode binder. The content of the positive electrode binder in the positive electrode 10 may be, for example, 1 to 20 mass %.
In this specification, when a numerical range is indicated by using "to" to indicate an upper and lower limit, the range includes the upper and lower limits unless otherwise specified. Thus, for example, 1 to 20% by mass means 1% by mass or more and 20% by mass or less.
The positive electrode current collector 14 may be a conventionally known material, and an example of such a material is a conductive resin adhesive containing carbon as a conductive filler.

また、本実施形態では、正極活物質として、上記のリチウムマンガン酸化物に加え、他の正極活物質を含有していても良く、例えば、モリブデン酸化物、リチウム鉄リン酸化合物、リチウムコバルト酸化物、リチウムニッケル酸化物、バナジウム酸化物等、他の酸化物の何れか1種以上を含有していても良い。 In addition, in this embodiment, the positive electrode active material may contain other positive electrode active materials in addition to the lithium manganese oxide described above, and may contain, for example, one or more of other oxides such as molybdenum oxide, lithium iron phosphate compound, lithium cobalt oxide, lithium nickel oxide, vanadium oxide, etc.

(負極)
負極20において、負極活物質の種類は特に限定されないが、例えば、負極活物質としてシリコン酸化物を含有することが好ましい。
負極20において、負極活物質が炭素被覆SiO、例えば、SiO(0≦x<2)で表されるシリコン酸化物を炭素被覆したものからなることが好ましい。
(Negative electrode)
In the negative electrode 20, the type of the negative electrode active material is not particularly limited, but it is preferable that the negative electrode active material contains, for example, silicon oxide.
In the negative electrode 20, the negative electrode active material is preferably made of carbon-coated SiO x , for example, silicon oxide represented by SiO x (0≦x<2) coated with carbon.

また、負極20は、負極活物質として、上記のSiO(0≦x<2)に加え、他の負極活物質を含有していても良く、例えば、Si、C等、他の負極活物質を含有していても良い。
負極活物質として粒状のSiO(0≦x<2)を用いる場合、これらの粒子径(D50)は、特に限定されないが、例えば、0.1~30μmの範囲を選択することができ、より好ましくは1~10μmの範囲を選択することができる。SiOの粒子径(D50)が、上記範囲の下限値未満であると、例えば、非水電解質二次電池1を過酷な高温高湿環境下において保管・使用した場合や、リフローハンダ付け処理による反応性が高まり、電池特性が損なわれるおそれがあり、また、上限値を超えると、放電レートが低下するおそれがある。
Furthermore, the negative electrode 20 may contain, in addition to the above-mentioned SiO x (0≦x<2) as the negative electrode active material, other negative electrode active materials, such as Si, C, etc.
When granular SiO x (0≦x<2) is used as the negative electrode active material, the particle diameter (D50) thereof is not particularly limited, but may be selected from the range of, for example, 0.1 to 30 μm, and more preferably from the range of 1 to 10 μm. If the particle diameter (D50) of SiO x is less than the lower limit of the above range, for example, when the nonaqueous electrolyte secondary battery 1 is stored or used in a harsh high-temperature and high-humidity environment, or reactivity due to a reflow soldering process is increased, and the battery characteristics may be impaired, and if the particle diameter (D50) exceeds the upper limit, the discharge rate may be reduced.

負極20中の負極活物質、即ち、SiO(0≦x<2)の含有量は、非水電解質二次電池1に要求される放電容量等を勘案して決定され、50質量%以上の範囲を選択することができ、60~80質量%の範囲を選択することが好ましい。
負極20において、上記元素からなる負極活物質の含有量が、上記範囲の下限値以上であれば、充分な放電容量が得られやすく、また、上限値以下であれば、負極20を成形しやすい。
The content of the negative electrode active material in the negative electrode 20, i.e., SiO x (0≦x<2), is determined taking into consideration the discharge capacity required for the nonaqueous electrolyte secondary battery 1, and can be selected from the range of 50 mass % or more, and preferably from the range of 60 to 80 mass %.
In the negative electrode 20, when the content of the negative electrode active material composed of the above elements is equal to or more than the lower limit of the above range, a sufficient discharge capacity is easily obtained, and when it is equal to or less than the upper limit, the negative electrode 20 is easily formed.

負極20は、導電助剤(以下、負極20に用いられる導電助剤を「負極導電助剤」ということがある)を含有してもよい。負極導電助剤は、正極導電助剤と同様のものである。
負極20中の負極導電助剤の含有量は、例えば、1~45質量%とされる。
The negative electrode 20 may contain a conductive assistant (hereinafter, the conductive assistant used in the negative electrode 20 may be referred to as a "negative electrode conductive assistant"). The negative electrode conductive assistant is similar to the positive electrode conductive assistant.
The content of the negative electrode conductive assistant in the negative electrode 20 is, for example, 1 to 45 mass %.

負極20は、バインダ(以下、負極20に用いられるバインダを「負極バインダ」ということがある)を含有してもよい。
負極バインダとして、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)、ポリアミドイミド(PAI)等を選択することができる。
The negative electrode 20 may contain a binder (hereinafter, the binder used in the negative electrode 20 may be referred to as the "negative electrode binder").
As the negative electrode binder, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyacrylic acid (PA), carboxymethyl cellulose (CMC), polyimide (PI), polyamideimide (PAI), or the like can be selected.

また、負極バインダは、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。なお、負極バインダにポリアクリル酸を用いる場合には、ポリアクリル酸を、予め、pH3~10程度に調整しておくことができる。この場合、pHの調整には、例えば、水酸化リチウム等のアルカリ金属水酸化物や水酸化マグネシウム等のアルカリ土類金属水酸化物を用いることができる。
負極20中の負極バインダの含有量は、例えば1~20質量%の範囲とされる。
The negative electrode binder may be one of the above alone or a combination of two or more of them. When polyacrylic acid is used as the negative electrode binder, the polyacrylic acid may be adjusted in advance to a pH of about 3 to 10. In this case, for example, an alkali metal hydroxide such as lithium hydroxide or an alkaline earth metal hydroxide such as magnesium hydroxide can be used to adjust the pH.
The content of the negative electrode binder in the negative electrode 20 is, for example, in the range of 1 to 20 mass %.

なお、本形態において負極20の大きさ、厚さについては、正極10の大きさ、厚さと同様に形成できる。
また、図1に示す非水電解質二次電池1においては、図示を省略しているが、負極20の表面、即ち、負極20と後述のセパレータ30との間に、リチウムフォイルなどのリチウム体60を設けた構成を採用することができる。
In this embodiment, the size and thickness of the negative electrode 20 can be similar to those of the positive electrode 10 .
In addition, in the nonaqueous electrolyte secondary battery 1 shown in FIG. 1 , a configuration can be employed in which a lithium body 60 such as lithium foil is provided on the surface of the negative electrode 20, i.e., between the negative electrode 20 and a separator 30 described below, although this is not shown in the figure.

「電解液」
電解液50は、通常、支持塩を非水溶媒に溶解させた液体である。
本形態の非水電解質二次電池1においては、電解液50をなす非水溶媒が、テトラグライム(TEG)を主溶媒とし、ジエトキシエタン(DEE)を副溶媒とし、更にエチレンカーボネート(EC)およびビニレンカーボネート(VC)を添加剤として含有する混合溶媒を用いることができる。非水溶媒は、通常、電解液50に求められる耐熱性や粘度等を勘案して決定されるが、本形態においては、上記の各溶媒からなるものを用いる。
グライム系溶媒を構成するための主溶媒は、テトラグライム、トリグライム、ペンタグライム、ジグライムなどを利用することができる。
"Electrolyte"
The electrolyte 50 is usually a liquid in which a supporting salt is dissolved in a non-aqueous solvent.
In the nonaqueous electrolyte secondary battery 1 of this embodiment, a mixed solvent containing tetraglyme (TEG) as a main solvent, diethoxyethane (DEE) as a sub-solvent, and further containing ethylene carbonate (EC) and vinylene carbonate (VC) as additives can be used as the nonaqueous solvent constituting the electrolyte solution 50. The nonaqueous solvent is usually determined taking into consideration the heat resistance, viscosity, etc. required for the electrolyte solution 50, but in this embodiment, a solvent consisting of the above-mentioned solvents is used.
As the main solvent for constituting the glyme-based solvent, tetraglyme, triglyme, pentagrayme, diglyme, etc. can be used.

本形態では、テトラグライム(TEG)とジエトキシエタン(DEE)とエチレンカーボネート(EC)を含有する非水溶媒を用いた電解液50を採用することができる。このような構成を採用することで、支持塩をなすLiイオンに、DEE及びTEGが溶媒和する。
このとき、DEEがTEGよりもドナーナンバーが高いため、DEEが選択的にLiイオンと溶媒和する。このように、支持塩をなすLiイオンにDEE及びTEGが溶媒和し、Liイオンを保護する。これにより、例え、高温高湿環境下において非水電解質二次電池の内部に水分が侵入した場合であっても、水分とLiとが反応するのを防止できるので、放電容量が低下するのを抑制し、保存安定性が向上する効果が得られる。
In this embodiment, an electrolyte solution 50 using a non-aqueous solvent containing tetraglyme (TEG), diethoxyethane (DEE), and ethylene carbonate (EC) can be used. By adopting such a configuration, DEE and TEG are solvated in the Li ions that form the supporting salt.
At this time, since DEE has a higher donor number than TEG, DEE selectively solvates with Li ions. In this way, DEE and TEG solvate the Li ions that form the supporting salt, protecting the Li ions. As a result, even if moisture enters the inside of the nonaqueous electrolyte secondary battery under a high-temperature and high-humidity environment, it is possible to prevent moisture from reacting with Li, thereby suppressing a decrease in discharge capacity and improving storage stability.

電解液50中の非水溶媒における上記各溶媒の比率は、特に限定されないが、例えば、TEG:30質量%以上48.5質量%以下(30~48.5%)、DEE:30質量%以上48.5質量%以下(30~48.5%)、EC:0.5質量%以上10質量%以下(0.5~10%)、VC:2質量%以上13%以下(2~13%)の範囲(トータル100%)の範囲を選択できる。
非水溶媒に含まれるTEGとDEEとECの割合が上記範囲であると、上述した、DEEがLiイオンに溶媒和することでLiイオンが保護される作用が得られる。
上述の範囲であっても、VCの含有量について、2.5質量%以上10質量%(2.5~10%)の範囲が望ましく、5.0質量%以上7.5質量%(5.0~7.5%)の範囲がより好ましい。TEGとDEEの含有量の上限値については、48.25質量%以下が好ましく、48質量%以下がより好ましい。
VCの含有量が2質量%以上13%以下の範囲の場合、リフローハンダ付け時の加熱を受けたとしても正極缶12と負極缶22からなる収容容器2に生じる厚みの変化が小さく、内部抵抗の増加も少なくできる。また、VCの含有量が2.5質量%以上10.0質量%以下の範囲の場合、リフローハンダ付け時の加熱を受けたとしても収容容器2に生じる厚みの変化をより小さくでき、内部抵抗の増加もより少なくできる。これらの範囲内であっても、VCの含有量が5.0質量%以上7.5質量%以下の範囲が最も好ましい。
The ratio of each of the above solvents in the nonaqueous solvent in the electrolyte solution 50 is not particularly limited, but can be selected from the following ranges (total 100%): TEG: 30% by mass or more and 48.5% by mass or less (30 to 48.5%), DEE: 30% by mass or more and 48.5% by mass or less (30 to 48.5%), EC: 0.5% by mass or more and 10% by mass or less (0.5 to 10%), VC: 2% by mass or more and 13% by mass or less (2 to 13%).
When the ratio of TEG, DEE and EC contained in the non-aqueous solvent is within the above range, the above-mentioned effect of protecting the Li ions by DEE solvating them can be obtained.
Even within the above range, the VC content is preferably in the range of 2.5% by mass or more and 10% by mass (2.5 to 10%), and more preferably in the range of 5.0% by mass or more and 7.5% by mass (5.0 to 7.5%). The upper limits of the TEG and DEE contents are preferably 48.25% by mass or less, and more preferably 48% by mass or less.
When the VC content is in the range of 2% by mass or more and 13% by mass or less, the change in thickness occurring in the storage container 2 consisting of the positive electrode can 12 and the negative electrode can 22 is small even when it is heated during reflow soldering, and the increase in internal resistance can also be reduced. Furthermore, when the VC content is in the range of 2.5% by mass or more and 10.0% by mass or less, the change in thickness occurring in the storage container 2 can be made smaller even when it is heated during reflow soldering, and the increase in internal resistance can also be made smaller. Even within these ranges, the VC content is most preferably in the range of 5.0% by mass or more and 7.5% by mass or less.

支持塩は、非水電解質二次電池の電解液に支持塩として用いられる公知のLi化合物を用いることができ、例えば、LiCHSO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiN(CFSO、LiN(FSO等の有機酸リチウム塩;LiPF、LiBF、LiB(C、LiCl、LiBr等の無機酸リチウム塩等のリチウム塩等が挙げられる。なかでも、リチウムイオン導電性を有する化合物であるリチウム塩が好ましく、LiN(CFSO、LiN(FSO、LiBFがより好ましく、耐熱性及び水分との反応性が低く、保存特性を充分に発揮できるという観点から、LiN(CFSOが特に好ましい。
支持塩は、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
The supporting salt may be a known Li compound used as a supporting salt in the electrolyte of a non- aqueous electrolyte secondary battery, and examples of the supporting salt include organic acid lithium salts such as LiCH3SO3 , LiCF3SO3 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2, LiC(CF3SO2)3, LiN(CF3SO3)2 , and LiN ( FSO2 ) 2 ; and inorganic acid lithium salts such as LiPF6 , LiBF4 , LiB ( C6H5 ) 4 , LiCl, and LiBr. Among these, lithium salts that are compounds having lithium ion conductivity are preferred, with LiN( CF3SO2 ) 2 , LiN( FSO2 ) 2 , and LiBF4 being more preferred, and LiN( CF3SO2 ) 2 being particularly preferred from the viewpoints of heat resistance and low reactivity with moisture, and of being able to fully exhibit storage characteristics.
The supporting salt may be used alone or in combination of two or more of the above.

電解液50中の支持塩の含有量は、支持塩の種類等を勘案して決定でき、例えば、0.1~3.5mol/Lが好ましく、0.5~3mol/Lがより好ましく、1~2.5mol/Lが特に好ましい。電解液50中の支持塩濃度が高過ぎても、あるいは支持塩濃度が低過ぎても、電導度の低下が起き、電池特性に悪影響を及ぼすおそれがある。 The content of the supporting salt in the electrolyte 50 can be determined taking into consideration the type of supporting salt, and is preferably 0.1 to 3.5 mol/L, more preferably 0.5 to 3 mol/L, and particularly preferably 1 to 2.5 mol/L. If the supporting salt concentration in the electrolyte 50 is too high or too low, the electrical conductivity may decrease, which may adversely affect the battery characteristics.

「(負極容量/正極容量)の値」
本形態の非水電解質二次電池1では、「(負極容量/正極容量)=正負極容量バランス」の値が、1.7~2.4の範囲であることが好ましい。
(負極容量/正極容量)の値が1.7未満であると、換言すると正極容量がより多い場合、組立後の容量は十分得られるものの、リフロー加熱後の容量維持率が小さくなり、リフロー加熱後に十分なセル容量が得られない。
一方、(負極容量/正極容量)の値が2.4を超える値であると、換言すると負極容量がより多い場合、容量維持率は十分高い値となるが、相対的に正極量が少なくなり、組立後、リフロー後、ともに十分なセル容量が得られなくなる。
このため、(負極容量/正極容量)の値が、1.7~2.4の範囲であることが好ましい。(負極容量/正極容量)の値が、1.7~2.4の範囲であるならば、リフロー加熱後の容量維持率が大きく、初期容量も大きい非水電解質二次電池1を提供できる。
また、上述の(負極容量/正極容量)の値が、1.9~2.4の範囲であることがより好ましい。この範囲であるならば、組立後の十分に高い容量を得ることができるとともに、リフロー加熱後の容量維持率がより大きくなり、リフロー加熱後により高いセル容量を得ることができる。
上述の範囲内であっても、初期容量を確実に確保し、リフロー加熱後の容量維持率を高い範囲とするためには、1.94~2.39の範囲とすることが最も好ましい。
"(Negative electrode capacity/positive electrode capacity) value"
In the nonaqueous electrolyte secondary battery 1 of this embodiment, it is preferable that the value of "(negative electrode capacity/positive electrode capacity)=positive/negative electrode capacity balance" is in the range of 1.7 to 2.4.
If the value of (negative electrode capacity/positive electrode capacity) is less than 1.7, in other words, if the positive electrode capacity is larger, a sufficient capacity can be obtained after assembly, but the capacity retention rate after reflow heating becomes small, and a sufficient cell capacity cannot be obtained after reflow heating.
On the other hand, when the value of (negative electrode capacity/positive electrode capacity) exceeds 2.4, in other words when the negative electrode capacity is larger, the capacity retention rate is sufficiently high, but the amount of the positive electrode becomes relatively small, and sufficient cell capacity cannot be obtained both after assembly and after reflow.
For this reason, it is preferable that the value of (negative electrode capacity/positive electrode capacity) is in the range of 1.7 to 2.4. If the value of (negative electrode capacity/positive electrode capacity) is in the range of 1.7 to 2.4, a nonaqueous electrolyte secondary battery 1 having a large capacity retention rate after reflow heating and a large initial capacity can be provided.
It is more preferable that the above-mentioned (negative electrode capacity/positive electrode capacity) value is in the range of 1.9 to 2.4. If it is in this range, a sufficiently high capacity can be obtained after assembly, and the capacity retention rate after reflow heating can be increased, resulting in a higher cell capacity after reflow heating.
Even within the above range, in order to reliably secure the initial capacity and to keep the capacity retention rate after reflow heating in a high range, it is most preferable to set the range of 1.94 to 2.39.

ここで示す負極容量とは、負極における活物質の容量密度と活物質使用量の積を計算して求められる容量を意味する。正極容量とは、正極における活物質の容量密度と活物質使用量の積を計算して求められる容量を意味する。活物質の容量密度として、マンガン酸リチウムは137mAh/g、一酸化ケイ素1775mAh/gを採用した。
前記活物質の容量密度は、正極または負極と金属Liとを対向させた電気化学セルを作成して実際に充放電を行い、得られたセル容量からそれぞれの容量密度を見積もった値である。理論容量として、マンガン酸リチウムは148mAh/g、一酸化ケイ素は2007mAh/gの値が知られているが、本願では先に記載の値を採用した。
The negative electrode capacity shown here means the capacity obtained by multiplying the capacity density of the active material in the negative electrode by the amount of the active material used. The positive electrode capacity means the capacity obtained by multiplying the capacity density of the active material in the positive electrode by the amount of the active material used. As the capacity density of the active material, lithium manganate was used at 137 mAh/g, and silicon monoxide was used at 1775 mAh/g.
The capacity density of the active material is a value estimated from the cell capacity obtained by actually charging and discharging an electrochemical cell in which a positive electrode or a negative electrode faces metallic Li. The theoretical capacity is known to be 148 mAh/g for lithium manganate and 2007 mAh/g for silicon monoxide, but the above-mentioned values are used in this application.

(負極容量/正極容量):容量バランスの計算例を以下に示す。
正極合剤比は、リチウムマンガン酸化物:グラファイト:ポリアクリル酸=95:4:1(質量比)として、正極合剤を16.4mg(マンガン酸リチウムを15.6mg)使用しているため、正極容量は2.14mAhとなる。
負極合剤比は、一酸化ケイ素:グラファイト:ポリアクリル酸=75:20:5(質量比)として、負極合剤を3.1mg(一酸化ケイ素を2.3mg)使用しているため、負極容量は4.08mAhとなる。
Li量は一酸化ケイ素量に合わせて調整(Li原子数:SiO分子数の比がおよそ4:1となるように設計)する。
以上説明の条件における容量バランス:(負極容量/正極容量)の計算例と設計Li量計算例を以下の表1、表2に記載する。
(Negative electrode capacity/positive electrode capacity): A calculation example of the capacity balance is shown below.
The positive electrode mixture ratio was lithium manganese oxide: graphite: polyacrylic acid = 95:4:1 (mass ratio), and 16.4 mg of the positive electrode mixture (15.6 mg of lithium manganate) was used, resulting in a positive electrode capacity of 2.14 mAh.
The negative electrode mixture ratio was silicon monoxide:graphite:polyacrylic acid=75:20:5 (mass ratio), and 3.1 mg of the negative electrode mixture (2.3 mg of silicon monoxide) was used, resulting in a negative electrode capacity of 4.08 mAh.
The amount of Li is adjusted according to the amount of silicon monoxide (designed so that the ratio of the number of Li atoms: the number of SiO molecules is approximately 4:1).
A calculation example of the capacity balance (negative electrode capacity/positive electrode capacity) under the above-described conditions and a calculation example of the designed Li amount are shown in Tables 1 and 2 below.

Figure 0007594890000001
Figure 0007594890000001

Figure 0007594890000002
Figure 0007594890000002

(セパレータ)
セパレータ30は、正極10と負極20との間に介在され、大きなイオン透過度を有し、かつ、機械的強度を有する絶縁膜が用いられる。
セパレータ30としては、従来から非水電解質二次電池のセパレータに用いられるものを何ら制限無く適用でき、例えば、アルカリガラス、ホウ珪酸ガラス、石英ガラス、鉛ガラス等のガラス、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタレート(PET)、ポリアミドイミド(PAI)、ポリアミド、ポリイミド(PI)等の樹脂からなる不織布等が挙げられる。中でも、ガラス製不織布が好ましく、ホウ珪酸ガラス製不織布がより好ましい。ガラス製不織布は、機械強度に優れるとともに、大きなイオン透過度を有するため、内部抵抗を低減して放電容量の向上を図ることができる。
セパレータ30の厚さは、非水電解質二次電池1の大きさや、セパレータ30の材質等を勘案して決定され、例えば5~300μmとすることができる。
(Separator)
The separator 30 is interposed between the positive electrode 10 and the negative electrode 20, and is made of an insulating film having high ion permeability and mechanical strength.
As the separator 30, any separator conventionally used for non-aqueous electrolyte secondary batteries can be used without any restrictions, and examples thereof include glass such as alkali glass, borosilicate glass, quartz glass, and lead glass, and nonwoven fabrics made of resins such as polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyethylene terephthalate (PET), polyamide-imide (PAI), polyamide, and polyimide (PI). Among these, glass nonwoven fabrics are preferred, and borosilicate glass nonwoven fabrics are more preferred. Glass nonwoven fabrics have excellent mechanical strength and large ion permeability, so that they can reduce internal resistance and improve discharge capacity.
The thickness of the separator 30 is determined taking into consideration the size of the nonaqueous electrolyte secondary battery 1, the material of the separator 30, and the like, and can be, for example, 5 to 300 μm.

(ガスケット)
ガスケット40は、例えば、熱変形温度230℃以上の樹脂からなることが好ましい。ガスケット40に用いる樹脂材料の熱変形温度が230℃以上であれば、リフローハンダ処理や非水電解質二次電池1の使用中の加熱によってガスケットが著しく変形し、電解液50が漏出するのを防止できる。
ガスケット40は、図1に示すように、正極缶12の内周面に沿って円環状に形成され、その環状溝41の内部に負極缶22の外周端部22aが配置されている。
ガスケット40は、正極缶12の開口部内周側に隙間無く挿入される外径を有するリング状の外縁部40Aを有する。ガスケット40は、負極缶22の内周縁に隙間無く挿入される外径を有するリング状の内縁部40Bを有する。また、ガスケット40は、これら外縁部40Aおよび内縁部40Bの下端部どうしを接続した底壁部40Cを有する。
従って、ガスケット40の外周縁上面側には負極缶22の外周端部22aを挿入可能な環状溝41が形成されている。
図1に示す正極缶12の開口部12aの周縁部12bを内側、即ち負極缶22側にかしめることで負極缶22とともにガスケット40を挟み込むことができ、収容空間を密封した構造の収容容器2が構成されている。
(gasket)
The gasket 40 is preferably made of, for example, a resin having a heat deformation temperature of 230° C. or higher. If the resin material used for the gasket 40 has a heat deformation temperature of 230° C. or higher, the gasket can be prevented from being significantly deformed by reflow soldering or heating during use of the nonaqueous electrolyte secondary battery 1, and leakage of the electrolyte 50 can be prevented.
As shown in FIG. 1, the gasket 40 is formed in an annular shape along the inner peripheral surface of the positive electrode can 12, and the outer peripheral end 22a of the negative electrode can 22 is disposed inside the annular groove 41 thereof.
Gasket 40 has a ring-shaped outer edge portion 40A having an outer diameter that allows it to be inserted without gaps into the inner periphery of the opening of positive electrode can 12. Gasket 40 has a ring-shaped inner edge portion 40B having an outer diameter that allows it to be inserted without gaps into the inner periphery of negative electrode can 22. Gasket 40 also has a bottom wall portion 40C that connects the lower ends of outer edge portion 40A and inner edge portion 40B.
Therefore, an annular groove 41 is formed on the upper surface side of the outer periphery of the gasket 40, into which the outer periphery end 22a of the negative electrode can 22 can be inserted.
By crimping the peripheral portion 12b of the opening 12a of the positive electrode can 12 shown in FIG. 1 inward, i.e., toward the negative electrode can 22, the gasket 40 can be sandwiched together with the negative electrode can 22, thereby forming a storage container 2 having a structure in which the storage space is sealed.

以上のようなガスケット40の材質としては、例えば、ポリフェニレンサルファイド(PPS)、ポリエチレンテレフタレート(PET)、ポリアミド、液晶ポリマー(LCP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリエーテルニトリル樹脂(PEN)、ポリエーテルケトン樹脂(PEK)、ポリアリレート樹脂、ポリブチレンテレフタレート樹脂(PBT)、ポリシクロヘキサンジメチレンテレフタレート樹脂、ポリエーテルスルホン樹脂(PES)、ポリアミノビスマレイミド樹脂、ポリエーテルイミド樹脂、フッ素樹脂等が挙げられる。また、これらの材料にガラス繊維、マイカウイスカー、セラミック微粉末等を、30質量%以下の添加量で添加したものを好適に用いることができる。このような材質を用いることで、加熱によってガスケットが著しく変形し、電解液50が漏出するのを防止できる。 Examples of materials for the gasket 40 include polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polyamide, liquid crystal polymer (LCP), tetrafluoroethylene-perfluoroalkylvinylether copolymer resin (PFA), polyetheretherketone resin (PEEK), polyethernitrile resin (PEN), polyetherketone resin (PEK), polyarylate resin, polybutylene terephthalate resin (PBT), polycyclohexanedimethylene terephthalate resin, polyethersulfone resin (PES), polyaminobismaleimide resin, polyetherimide resin, and fluororesin. In addition, glass fiber, mica whisker, ceramic fine powder, etc., added in an amount of 30 mass% or less to these materials can be suitably used. By using such materials, it is possible to prevent the gasket from deforming significantly due to heating and the electrolyte 50 from leaking.

以上説明した本形態の非水電解質二次電池1によれば、非水溶媒が、テトラグライム(TEG)とジエトキシエタン(DEE)を主体として含み、エチレンカーボネート(EC)と上述のビニレンカーボネート(VC)をいずれも適量範囲含む電解液50を備えているので、リフローハンダ付けに耐え得る耐熱性を有し、リフローハンダ付けに伴う加熱を受けたとしても、溶媒が気化するおそれが少なく、収容容器2の内圧が上昇するおそれが少なく、収容容器2に変形を生じ難い構成を提供できる。
また、溶媒としてテトラグライムとジエトキシエタンを主体として含むグライム系の溶媒であるならば、これら溶媒の沸点が高いことに起因して電解液の耐熱性を高めることができる。
According to the nonaqueous electrolyte secondary battery 1 of this embodiment described above, the nonaqueous solvent is provided with electrolyte solution 50 which contains mainly tetraglyme (TEG) and diethoxyethane (DEE) and contains appropriate amounts of both ethylene carbonate (EC) and the above-mentioned vinylene carbonate (VC). Therefore, the battery has heat resistance sufficient to withstand reflow soldering, and even if it is subjected to the heat associated with reflow soldering, there is little risk of the solvent evaporating and there is little risk of the internal pressure of storage container 2 increasing, making it possible to provide a configuration in which storage container 2 is less likely to deform.
Furthermore, if the solvent is a glyme-based solvent containing tetraglyme and diethoxyethane as main components, the heat resistance of the electrolyte can be increased due to the high boiling points of these solvents.

また、本形態の非水電解質二次電池1によれば、上述の正極と負極および電解液の組み合わせに加え、(負極容量/正極容量)の値を1.7~2.4の範囲としているので、組立後の高い容量を確保した上でリフロー加熱後の容量維持率を大きくでき、リフロー加熱後に十分なセル容量を得ることができる。よって、本形態によれば、リフローハンダ付け対応した高容量の非水電解質二次電池を提供できる。 In addition, according to the nonaqueous electrolyte secondary battery 1 of this embodiment, in addition to the combination of the positive electrode, negative electrode, and electrolyte described above, the value of (negative electrode capacity/positive electrode capacity) is set to a range of 1.7 to 2.4, so that a high capacity after assembly can be ensured and the capacity retention rate after reflow heating can be increased, and sufficient cell capacity can be obtained after reflow heating. Therefore, according to this embodiment, a high-capacity nonaqueous electrolyte secondary battery compatible with reflow soldering can be provided.

図1に示す構成の非水電解質二次電池を試作し、後述する評価試験を行った。
正極10として、市販のリチウムマンガン酸化物(Li1.14Co0.06Mn1.80)に、導電助剤としてグラファイトを、結着剤としてポリアクリル酸を、リチウムマンガン酸化物:グラファイト:ポリアクリル酸=95:4:1(質量比)の割合で混合して正極合剤とした。この正極合剤16.4mgを、2ton/cmの加圧力で加圧し、直径2.8mmの円盤形ペレットに加圧成形した。
A nonaqueous electrolyte secondary battery having the configuration shown in FIG. 1 was fabricated and subjected to the evaluation test described below.
A positive electrode mixture was prepared by mixing commercially available lithium manganese oxide ( Li1.14Co0.06Mn1.80O4 ), graphite as a conductive additive, and polyacrylic acid as a binder in a ratio of lithium manganese oxide:graphite:polyacrylic acid = 95:4:1 (mass ratio) to prepare a positive electrode mixture for the positive electrode 10. 16.4 mg of this positive electrode mixture was pressed with a pressure of 2 ton/ cm2 and pressure molded into a disk-shaped pellet with a diameter of 2.8 mm.

得られたペレット(正極)を、ステンレス鋼(SUS316L:t=0.20mm)製の正極缶の内面に、炭素を含む導電性樹脂接着剤を用いて接着し、これらを一体化して正極ユニットを得た。その後、この正極ユニットを、大気中で120℃×11時間の条件で減圧加熱乾燥した。次に、正極ユニットにおける正極缶の開口部の内側面にシール剤を塗布した。 The obtained pellet (positive electrode) was adhered to the inner surface of a positive electrode can made of stainless steel (SUS316L: t = 0.20 mm) using a carbon-containing conductive resin adhesive, and these were integrated to obtain a positive electrode unit. This positive electrode unit was then dried by heating under reduced pressure at 120°C for 11 hours in the atmosphere. Next, a sealant was applied to the inner surface of the opening of the positive electrode can in the positive electrode unit.

次に、負極として、表面全体に炭素(C)が形成されたSiO粉末を準備し、これを負極活物質とした。そして、この負極活物質に、導電剤としてグラファイトを、結着剤としてポリアクリル酸を、それぞれ75:20:5(質量比)の割合で混合して負極合剤とした。この負極合剤3.1mgを、2ton/cm加圧力で加圧成形し、直径2.8mmの円盤形ペレットに加圧成形した。 Next, SiO powder with carbon (C) formed on the entire surface was prepared as a negative electrode, and this was used as a negative electrode active material. Then, graphite as a conductive agent and polyacrylic acid as a binder were mixed with this negative electrode active material in a ratio of 75:20:5 (mass ratio) to prepare a negative electrode mixture. 3.1 mg of this negative electrode mixture was pressed with a pressure of 2 ton/ cm2 and pressed into a disk-shaped pellet with a diameter of 2.8 mm.

得られたペレット(負極)を、ステンレス鋼(SUS316L:t=0.20mm)製の負極缶の内面に、炭素を導電性フィラーとする導電性樹脂接着剤を用いて接着し、これらを一体化して負極ユニットを得た。その後、この負極ユニットを、大気中で160℃×11時間の条件で減圧加熱乾燥した。
このペレット状の負極の上に、さらに、直径2.8mm、厚さ0.44mmに打ち抜いたリチウムフォイルを圧着し、リチウム-負極積層電極とした。
The pellets (negative electrode) were bonded to the inner surface of a stainless steel (SUS316L: t = 0.20 mm) negative electrode can using a conductive resin adhesive containing carbon as a conductive filler, and integrated to obtain a negative electrode unit. This negative electrode unit was then dried under reduced pressure and heating at 160 °C for 11 hours in the atmosphere.
A lithium foil punched to a diameter of 2.8 mm and a thickness of 0.44 mm was further attached by pressure onto this pellet-shaped negative electrode to form a lithium-negative electrode laminate.

上述したように、本実施例においては、実施形態の構造に示す正極集電体及び負極集電体を設けることなく、正極缶に正極集電体の機能を持たせるとともに、負極缶に負極集電体の機能を持たせて、非水電解質二次電池を作製した。 As described above, in this example, a nonaqueous electrolyte secondary battery was fabricated by giving the positive electrode can the function of a positive electrode current collector and the negative electrode can the function of a negative electrode current collector without providing the positive electrode current collector and the negative electrode current collector shown in the structure of the embodiment.

次に、ガラス繊維からなる不織布を乾燥させた後、直径3.6mmの円盤型に打ち抜いてセパレータとした。そして、このセパレータを、負極上に圧着されたリチウムフォイル上に載置し、負極缶の開口部に、PEEK樹脂(ポリエーテルエーテルケトン樹脂)製のガスケットを配置した。 Next, the nonwoven fabric made of glass fibers was dried and then punched into a disk shape with a diameter of 3.6 mm to form a separator. This separator was then placed on the lithium foil that was pressed onto the negative electrode, and a gasket made of PEEK resin (polyether ether ketone resin) was placed on the opening of the negative electrode can.

(電解液の作製)
テトラグライム(TEG)、ジエトキシエタン(DEE)、エチレンカーボネート(EC)、および、ビニレンカーボネート(VC)の各溶媒を混合して非水溶媒とし、得られた非水溶媒に支持塩としてLiTFSI(1M)を溶解させて電解液を得た。この際の、各溶媒の混合比率は、体積比で、TEG:DEE:EC:VC=44.8:42.7:5.0:7.5とした。
上述の如く用意した正極缶及び負極缶に、上記手順で調整した各例の電解液を、電池1個あたりの合計で7μL充填した。
(Preparation of Electrolyte)
The solvents tetraglyme (TEG), diethoxyethane (DEE), ethylene carbonate (EC), and vinylene carbonate (VC) were mixed to obtain a non-aqueous solvent, and LiTFSI (1M) was dissolved in the obtained non-aqueous solvent as a supporting salt to obtain an electrolyte. The mixing ratio of the solvents was TEG:DEE:EC:VC=44.8:42.7:5.0:7.5 by volume.
The positive electrode can and the negative electrode can prepared as described above were filled with the electrolyte of each example prepared by the above procedure in a total amount of 7 μL per battery.

次に、セパレータが正極に当接するように、負極ユニットを正極ユニットにかしめた。そして、正極缶の開口部を嵌合することで正極缶と負極缶とを密封した後、25℃で7日間静置して試料とした。
なお、試料を作製する場合、正極における正極活物質量と負極における負極活物質量をそれぞれ上述の「(負極容量)/(正極容量)」の計算例と同様に調節し、(負極容量/正極容量)の値の異なる試料1~試料9の非水電解質二次電池を得た。これら試料の非水電解質二次電池は、いずれも外径4.8mm、高さ2.1mmのコイン型二次電池である。
試料1~試料9の非水電解質二次電池は、後述する表3に示すように(負極容量/正極容量)の値がそれぞれ異なる二次電池である。
Next, the negative electrode unit was crimped to the positive electrode unit so that the separator was in contact with the positive electrode. The opening of the positive electrode can was fitted to seal the positive electrode can and the negative electrode can, and the can was left to stand at 25° C. for 7 days to obtain a sample.
When preparing the samples, the amount of the positive electrode active material in the positive electrode and the amount of the negative electrode active material in the negative electrode were adjusted in the same manner as in the above-mentioned calculation example of "(negative electrode capacity)/(positive electrode capacity)," and nonaqueous electrolyte secondary batteries of Samples 1 to 9 having different values of (negative electrode capacity/positive electrode capacity) were obtained. All of these sample nonaqueous electrolyte secondary batteries were coin-type secondary batteries with an outer diameter of 4.8 mm and a height of 2.1 mm.
The nonaqueous electrolyte secondary batteries of Samples 1 to 9 are secondary batteries having different values of (negative electrode capacity/positive electrode capacity) as shown in Table 3 below.

「評価試験」
(初期容量:mAh)
非水電解質二次電池の各試料を作成後、リフローハンダ付けの温度に加熱する前に容量を計測した。この場合に計測した容量を初期容量とする。
(容量維持率)
非水電解質二次電池の各試料を260℃で10秒間加熱し、加熱後の容量を計測し、初期容量との比較により容量維持率(%)を求めた。260℃で10秒間加熱する加熱処理はリフローハンダ付けに伴う加熱条件に相当する。
"Evaluation Test"
(Initial capacity: mAh)
After each sample of the nonaqueous electrolyte secondary battery was prepared, the capacity was measured before heating to the reflow soldering temperature. The capacity measured in this case was defined as the initial capacity.
(Capacity retention rate)
Each sample of the nonaqueous electrolyte secondary battery was heated at 260° C. for 10 seconds, and the capacity after heating was measured and compared with the initial capacity to obtain the capacity retention rate (%). The heat treatment of heating at 260° C. for 10 seconds corresponds to the heating conditions associated with reflow soldering.

(高温高湿環境保存後容量)
非水電解質二次電池の各試料を260℃で10秒間加熱し、恒温恒湿試験機を用いて、60℃・90%RHの高温高湿環境に曝しながら20日間放置後の容量を計測した。この場合に計測した容量を高温高湿保存後容量とする。
(Capacity after storage in high temperature and high humidity environment)
Each sample of the non-aqueous electrolyte secondary battery was heated at 260° C. for 10 seconds, and then exposed to a high-temperature and high-humidity environment of 60° C. and 90% RH using a thermo-hygrostat, and the capacity was measured after leaving the battery for 20 days. The capacity measured in this case is the capacity after storage at high temperature and high humidity.

(結果)
試料1~試料9の非水電解質二次電池について、「(負極容量/正極容量)=(正負極容量バランス)」の値と初期容量の値とリフロー後容量維持率の値と高温高湿保存後容量の値を表3に示す。また、図2に容量維持率と初期容量に関し正負極容量バランスによる関係を示し、図3に高温高湿保存後容量に関し正負極容量バランスとの関係を、それぞれグラフとして示す。
(result)
For the nonaqueous electrolyte secondary batteries of Samples 1 to 9, the value of "(negative electrode capacity/positive electrode capacity)=(positive and negative electrode capacity balance)", the initial capacity, the capacity retention rate after reflow, and the capacity after high-temperature, high-humidity storage are shown in Table 3. In addition, Fig. 2 shows the relationship between the capacity retention rate and the initial capacity due to the positive and negative electrode capacity balance, and Fig. 3 shows the relationship between the capacity after high-temperature, high-humidity storage and the positive and negative electrode capacity balance, both as graphs.

Figure 0007594890000003
Figure 0007594890000003

表3と図2に示す測定結果からみて、初期容量が高く、リフロー後容量維持率が70%を超える良好な(負極容量/正極容量)の範囲を選択すると、1.72~2.39の範囲であることがわかる。このため、初期容量が高く、リフロー後の容量維持率も高い範囲とするには(負極容量/正極容量)の値として1.7~2.4の範囲を選択することが望ましいと分かった。
また、初期容量が1.97を超えて高く、リフロー後の容量維持率が80%を超える、より良好な範囲となるのは(負極容量/正極容量)の値が1.9~2.4の範囲であると分かった。
さらにまた、表3に示す高温高湿保存後容量と正負極容量バランスの関係を図3に示すように参照すると、長期保存後に相当する高温高湿保存後容量が高いことからも、良好な範囲として(負極容量/正極容量)の値が1.7以上であり、より良好な範囲として(負極容量/正極容量)の値が1.9~2.4の範囲であることが言える。
2, it can be seen that a good range of (negative electrode capacity/positive electrode capacity) in which the initial capacity is high and the capacity retention rate after reflow exceeds 70% is selected to be in the range of 1.72 to 2.39. Therefore, it was found that in order to achieve a range in which the initial capacity is high and the capacity retention rate after reflow is also high, it is desirable to select a range of 1.7 to 2.4 as the value of (negative electrode capacity/positive electrode capacity).
It was also found that a more favorable range in which the initial capacity is high, exceeding 1.97, and the capacity retention rate after reflow exceeds 80% is when the value of (negative electrode capacity/positive electrode capacity) is in the range of 1.9 to 2.4.
Furthermore, when the relationship between the capacity after high temperature and high humidity storage and the positive and negative electrode capacity balance shown in Table 3 is referred to as shown in FIG. 3, since the capacity after high temperature and high humidity storage corresponding to long-term storage is high, it can be said that the value of (negative electrode capacity/positive electrode capacity) is 1.7 or more as a good range, and the value of (negative electrode capacity/positive electrode capacity) is in the range of 1.9 to 2.4 as a more good range.

1…非水電解質二次電池、2…収容容器、10…正極、12…正極缶、12a…開口部、12b…周縁部、13…正極、14…正極集電体、20…負極、22…負極缶、22a…外周端部、24…負極集電体、30…セパレータ、40…ガスケット、41…環状溝、50…電解液。 1...non-aqueous electrolyte secondary battery, 2...container, 10...positive electrode, 12...positive electrode can, 12a...opening, 12b...periphery, 13...positive electrode, 14...positive electrode current collector, 20...negative electrode, 22...negative electrode can, 22a...outer periphery, 24...negative electrode current collector, 30...separator, 40...gasket, 41...annular groove, 50...electrolyte.

Claims (4)

正極と、負極と、支持塩及び溶媒を含む電解液と、セパレータが、正極缶と負極缶によって構成された収容容器に収容されてなる非水電解質二次電池であって、
前記正極が活物質としてのスピネル型リチウムマンガン酸化物を含有し、前記負極が活物質としての炭素被覆SiOを含有し、前記電解液として、グライム系溶媒にエチレンカーボネート(EC)とビニレンカーボネート(VC)を含有する混合溶媒を含み、前記セパレータにガラス繊維が含まれてなり、
負極容量と正極容量の比である(負極容量/正極容量)の値が、1.7~2.4の範囲であることを特徴とするリフローハンダ付け後の容量維持率に優れた非水電解質二次電池。
A nonaqueous electrolyte secondary battery in which a positive electrode, a negative electrode, an electrolyte solution containing a supporting salt and a solvent, and a separator are contained in a container formed of a positive electrode can and a negative electrode can,
The positive electrode contains a spinel-type lithium manganese oxide as an active material, the negative electrode contains carbon-coated SiO x as an active material, the electrolyte contains a mixed solvent containing ethylene carbonate (EC) and vinylene carbonate (VC) in a glyme-based solvent, and the separator contains glass fiber;
A non-aqueous electrolyte secondary battery having excellent capacity retention after reflow soldering , characterized in that the ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity/positive electrode capacity) is in the range of 1.7 to 2.4.
前記(負極容量/正極容量)の値が、1.9~2.4の範囲であることを特徴とする請求項1に記載のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode capacity/positive electrode capacity ratio is in the range of 1.9 to 2.4. 前記(負極容量/正極容量)の値が、1.94~2.39の範囲であることを特徴とする請求項1に記載のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池。2. The nonaqueous electrolyte secondary battery having an excellent capacity retention rate after reflow soldering according to claim 1, wherein the value of (negative electrode capacity/positive electrode capacity) is in the range of 1.94 to 2.39. 前記正極缶が有底円筒状であり、
前記負極缶が前記正極缶の開口部内側にガスケットを介在し固定され、
前記正極缶の開口部を前記負極缶側にかしめたかしめ部を設けることで前記収容容器が密封され、前記収容容器に正極と負極とセパレータと前記電解液が収容されたことを特徴とする請求項1請求項3のいずれか一項に記載のリフローハンダ付け後の容量維持率に優れた非水電解質二次電池。
The positive electrode can is cylindrical with a bottom,
The negative electrode can is fixed to the inside of the opening of the positive electrode can with a gasket interposed therebetween,
4. The nonaqueous electrolyte secondary battery having excellent capacity retention rate after reflow soldering according to claim 1, wherein the container is sealed by providing a crimping portion that crimps an opening of the positive electrode can to the negative electrode can, and the positive electrode, the negative electrode, the separator, and the electrolyte are contained in the container.
JP2020192696A 2020-03-13 2020-11-19 Non-aqueous electrolyte secondary battery with excellent capacity retention after reflow soldering Active JP7594890B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW110103386A TW202135367A (en) 2020-03-13 2021-01-29 Nonaqueous electrolyte secondary battery
KR1020210032563A KR20210116315A (en) 2020-03-13 2021-03-12 Nonaqueous electrolyte secondary battery
CN202110271060.7A CN113394391A (en) 2020-03-13 2021-03-12 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043762 2020-03-13
JP2020043762 2020-03-13

Publications (2)

Publication Number Publication Date
JP2021150279A JP2021150279A (en) 2021-09-27
JP7594890B2 true JP7594890B2 (en) 2024-12-05

Family

ID=77849295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020192696A Active JP7594890B2 (en) 2020-03-13 2020-11-19 Non-aqueous electrolyte secondary battery with excellent capacity retention after reflow soldering

Country Status (3)

Country Link
JP (1) JP7594890B2 (en)
KR (1) KR20210116315A (en)
TW (1) TW202135367A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221096A (en) * 2021-12-10 2022-03-22 湖北亿纬动力有限公司 A battery cover assembly
WO2024136549A1 (en) * 2022-12-22 2024-06-27 주식회사 엘지에너지솔루션 Cylindrical lithium secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159103A (en) 2014-01-21 2015-09-03 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
JP2017224430A (en) 2016-06-14 2017-12-21 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
JP2019160619A (en) 2018-03-14 2019-09-19 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827103B2 (en) 2011-11-07 2015-12-02 セイコーインスツル株式会社 Small non-aqueous electrolyte secondary battery and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159103A (en) 2014-01-21 2015-09-03 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
JP2017224430A (en) 2016-06-14 2017-12-21 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
JP2019160619A (en) 2018-03-14 2019-09-19 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
TW202135367A (en) 2021-09-16
KR20210116315A (en) 2021-09-27
JP2021150279A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
CN105977403B (en) Nonaqueous electrolyte secondary battery
WO2016143543A1 (en) Nonaqueous electrolyte secondary battery
KR20240024162A (en) Nonaqueous electrolyte secondary battery
CN111226332A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, nonaqueous electrolyte secondary battery, and method for producing same
JP2015159102A (en) Nonaqueous electrolyte secondary battery
JP7594890B2 (en) Non-aqueous electrolyte secondary battery with excellent capacity retention after reflow soldering
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP4761725B2 (en) Method for producing non-aqueous electrolyte battery
JP2014179203A (en) Electrochemical cell
JP2016170957A (en) Nonaqueous electrolyte secondary battery
CN104009250B (en) Nonaqueous electrolytic secondary battery
JP7592445B2 (en) Non-aqueous electrolyte secondary battery
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
JP4201256B2 (en) Nonaqueous electrolyte secondary battery
JP7634075B2 (en) Non-aqueous electrolyte secondary battery
CN113394391A (en) Nonaqueous electrolyte secondary battery
KR102630459B1 (en) Nonaqueous electrolyte secondary battery
JP2004079356A (en) Non-aqueous electrolyte battery
JP2023131278A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2023038432A (en) All-solid-state battery
JP2023037971A (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241125

R150 Certificate of patent or registration of utility model

Ref document number: 7594890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150