JP7590025B2 - Apparatus and method for measuring flow characteristic parameters of porous media - Google Patents
Apparatus and method for measuring flow characteristic parameters of porous media Download PDFInfo
- Publication number
- JP7590025B2 JP7590025B2 JP2023217063A JP2023217063A JP7590025B2 JP 7590025 B2 JP7590025 B2 JP 7590025B2 JP 2023217063 A JP2023217063 A JP 2023217063A JP 2023217063 A JP2023217063 A JP 2023217063A JP 7590025 B2 JP7590025 B2 JP 7590025B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- tank
- porous medium
- equation
- container tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 23
- 230000035699 permeability Effects 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000009530 blood pressure measurement Methods 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 63
- 238000010586 diagram Methods 0.000 description 12
- 238000001914 filtration Methods 0.000 description 4
- 230000000241 respiratory effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 201000006306 Cor pulmonale Diseases 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/082—Investigating permeability by forcing a fluid through a sample
- G01N15/0826—Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/0806—Details, e.g. sample holders, mounting samples for testing
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Fluid Mechanics (AREA)
- Measuring Volume Flow (AREA)
Description
本発明は、多孔質媒体の流量特性パラメータの測定に関し、具体的に、多孔質媒体の流量特性パラメータの測定装置および方法に関する。 The present invention relates to the measurement of flow characteristic parameters of a porous medium, and more specifically, to an apparatus and method for measuring flow characteristic parameters of a porous medium.
多孔質媒体(例えば、バグフィルタ、活性炭、マイクロポーラスフィルタ等)は、多数の微小孔を有し、空気の濾過や吸入ウイルス粒子の低減等の目的で一般的に使用されている。疫病が流行した現代では、人々は健康に気を配るようになり、病気の蔓延を防いだり、アレルゲンの侵入に対抗したりするために、呼吸用ろ過マスクを着用する人の割合が急激に増加している。濾過コアは呼吸用マスクの核心部品で、本質的に多孔質媒体であり、有害物質をろ過する役割を果たすことができるが、マスクの多孔質媒体を通過する呼吸気体の流れは圧力損失を生じ、もし通気性の設計に問題があれば、長時間の着用は心肺疾患を患う人々に深刻な影響を与えるので、多孔質媒体の流動特性を正確に把握することは非常に重要である。多孔質体内を流れる気体の圧力損失と流量の関係は、流量が少ないとき、Darcy-Forchheimer法則で表され、流量が多くなるとき、Forchheimer法則で表される。透過係数と慣性係数はそれぞれ内部流動過程における2つの法則の重要なパラメータであり、特定の流量測定方法によって求める必要がある。既存の測定装置および方法は、CN212228680U、CN106932327Aなど、多孔質媒体の透過係数を測定するものがほとんどであり、慣性係数の測定が伴っておらず、さらに、透過係数測定方法は定常測定に基づいており、所要時間が長く、ガス消費量が大きい。 Porous media (e.g., bag filters, activated carbon, microporous filters, etc.) have a large number of micropores and are commonly used for purposes such as air filtration and reducing inhaled viral particles. In today's epidemic-prone world, people are becoming more and more concerned about their health, and the proportion of people wearing respiratory filtration masks has increased sharply to prevent the spread of disease and combat the invasion of allergens. The filtration core is the core component of a respiratory mask, which is essentially a porous medium and can play a role in filtering harmful substances. However, the flow of respiratory gas passing through the porous medium of the mask will cause pressure loss, and if there is a problem with the breathability design, wearing it for a long time will have a serious impact on people with cardiopulmonary diseases, so it is very important to accurately grasp the flow characteristics of the porous medium. The relationship between the pressure loss and flow rate of gas flowing through a porous body is expressed by the Darcy-Forchheimer law when the flow rate is low, and by the Forchheimer law when the flow rate is high. The permeability coefficient and the inertia coefficient are important parameters of the two laws in the internal flow process, and need to be determined by a specific flow measurement method. Most of the existing measurement devices and methods, such as CN212228680U and CN106932327A, measure the permeability coefficient of porous media, but do not measure the inertia coefficient. Moreover, the permeability coefficient measurement method is based on steady measurement, which requires a long time and consumes a large amount of gas.
本発明の目的は、多孔質媒体の透過係数および慣性係数を同時かつ迅速に測定することができる装置および方法を提供することである。 The object of the present invention is to provide an apparatus and method capable of simultaneously and quickly measuring the permeability coefficient and inertia coefficient of a porous medium.
技術的解決策:多孔質媒体の流量特性パラメータの測定装置は、多孔質媒体固定装置、小容器タンクおよび大容器タンクから構成され、多孔質媒体固定装置は両端を貫通する密閉収容空洞を備え、密閉収容空洞内に多孔質媒体が収容され、密閉収容空洞の両端は、それぞれ開閉弁を介して小容器タンクおよび大容器タンクに接続され、小容器タンクに圧力を測定するための第1圧力センサが取り付けられ、大容器タンクに圧力を測定するための第2圧力センサが取り付けられ、2つの容器タンク間に圧力差が発生し、小容器タンク内のガスが大容器タンクに向かって流れるように、小容器タンクおよび大容器タンクのそれぞれに異なるガス源および/または異なる真空発生器が接続されている。 Technical solution: The measurement device for the flow characteristic parameters of a porous medium is composed of a porous medium fixing device, a small container tank and a large container tank, the porous medium fixing device has a sealed storage cavity penetrating both ends, the porous medium is stored in the sealed storage cavity, both ends of the sealed storage cavity are connected to the small container tank and the large container tank respectively via an on-off valve, a first pressure sensor for measuring pressure is attached to the small container tank, a second pressure sensor for measuring pressure is attached to the large container tank, and a different gas source and/or a different vacuum generator is connected to each of the small container tank and the large container tank so that a pressure difference is generated between the two container tanks and the gas in the small container tank flows toward the large container tank.
さらに、大容器タンク容積は小容器タンク容積の10~15倍である。 In addition, the capacity of the large container tank is 10 to 15 times that of the small container tank.
さらに、多孔質媒体固定装置は中空ゴムおよび2つのエンドキャップを有しており、中空ゴムの内部空洞は2つのエンドキャップに予め設けられた孔とともに密閉収容空洞を形成し、多孔質媒体は中空ゴムに包囲され、2つのエンドキャップは中空ゴム圧力を加えて密閉を達成する。 Furthermore, the porous media fixing device has a hollow rubber and two end caps, and the internal cavity of the hollow rubber forms a sealed containment cavity together with holes pre-drilled in the two end caps, the porous media is surrounded by the hollow rubber, and the two end caps apply hollow rubber pressure to achieve sealing.
多孔質媒体の流量特性パラメータの測定方法は、上記の多孔質媒体の流量特性パラメータの測定装置を使用する。
前記方法は、以下の複数のステップ(1)~(4)を含む。
The method for measuring the flow characteristic parameters of a porous medium uses the above-mentioned measuring device for the flow characteristic parameters of a porous medium.
The method includes the following steps (1) to (4).
(1)小容器タンクおよび大容器タンクを連通した後でガスが流れなくなったとき、2つの容器タンク内部圧力の平衡点を[数1]に基づいて計算する。
[数1]
ここで、P’は2つの容器タンク平衡時の圧力を示し、P1は小容器タンクの初期圧力を示し、V1は小容器タンクの容積を示し、P2は大容器タンクの初期圧力を示し、V2は大容器タンクの容積を示す。
(1) When gas stops flowing after the small container tank and the large container tank are connected, the equilibrium point of the internal pressures of the two container tanks is calculated based on [Equation 1].
[Equation 1]
Here, P' denotes the pressure at equilibrium between the two reservoir tanks, P1 denotes the initial pressure of the small reservoir tank, V1 denotes the volume of the small reservoir tank, P2 denotes the initial pressure of the large reservoir tank, and V2 denotes the volume of the large reservoir tank.
(2)2つの容器タンクが設定圧力に達し、小容器タンクの初期圧力が大容器タンクの初期圧力よりも高くなるように、小容器タンクに接続されたガス源を使用してガスを供給し、大容器タンクに接続されたガス源または真空発生器を使用してガス供給/ガス吸引を行い、
小容器タンク内のガスが大容器タンクに向かって流れるように、開閉弁を操作し、第1圧力センサの圧力測定値がPa、第2圧力センサの測定値がPbであり、
温度の影響が無視される条件下で、ガス状態方程式および2つの容器タンクの圧力変化曲線に従って、小容器タンクから流出するガス質量流量G1および大容器タンクに流入するガス質量流量G2を[数2]及び[数3]に基づいてそれぞれ求める。
[数2]
[数3]
ここで、G1は小容器タンクから流出するガス質量流量を示し、T1は小容器タンク内部温度を示し、G2は大容器タンクに流入するガス質量流量を示し、T2は大容器タンクの内部温度を示す。
(2) supplying gas using a gas source connected to the small container tank, and supplying/suctioning gas using a gas source or a vacuum generator connected to the large container tank, so that the two container tanks reach a set pressure and the initial pressure of the small container tank is higher than the initial pressure of the large container tank;
The on-off valve is operated so that the gas in the small tank flows toward the large tank, the pressure measurement value of the first pressure sensor is P a , the measurement value of the second pressure sensor is P b ,
Under the condition that the effect of temperature is ignored, the gas mass flow rate G1 flowing out of the small container tank and the gas mass flow rate G2 flowing into the large container tank are calculated based on [Equation 2] and [Equation 3], respectively, according to the gas state equation and the pressure change curves of the two container tanks.
[Equation 2]
[Equation 3]
Here, G1 denotes the mass flow rate of gas flowing out of the small container tank, T1 denotes the internal temperature of the small container tank, G2 denotes the mass flow rate of gas flowing into the large container tank, and T2 denotes the internal temperature of the large container tank.
(3)多孔質媒体両端の圧力差が0~2kPaであるとき、透過係数Kを計算する。
圧力平衡点に基づいて圧力差0~2kPaの範囲内の各点の圧力差を計算する。透過係数Kの計算式は、
[数4]
である。ここで、Kは透過係数を示し、μは空気粘度を示し、Lは密閉収容空洞の両端間距離を示し、Rはガス定数を示し、φは多孔質媒体の気孔率を示し、Aは多孔質媒体の表面積を示し、PNは圧力差0~2kPaの範囲内の各圧力差点を示す。
(3) Calculate the permeability coefficient K when the pressure difference across the porous medium is 0 to 2 kPa.
Based on the pressure equilibrium point, calculate the pressure difference at each point within the pressure difference range of 0 to 2 kPa. The calculation formula for the permeability coefficient K is:
[Equation 4]
where K is the permeability coefficient, μ is the viscosity of air, L is the distance between both ends of the sealed containment cavity , R is the gas constant, φ is the porosity of the porous medium, A is the surface area of the porous medium, and P N are each pressure difference point within the pressure difference range of 0 to 2 kPa.
(4)多孔質媒体両端の圧力差が10~300kPaであるとき、慣性係数βを計算する。
圧力差範囲10kPa<Pa-Pb<300kPaの場合、まず複数の同じ圧力差の時点に対応するG1とG2の比率処理を行って得られた比率の圧力差変化曲線を、
[数5]
とする。ここで、ΔPは多孔質媒体両端の圧力差であり、a、b、zは比率曲線フィッティング係数である。
次に、f(ΔP)を平滑化処理して曲線f’(ΔP)を得て、曲線f’(ΔP)をG1(ΔP)/G2(ΔP)の新しい比率曲線とする。
最後に、G2(ΔP)f’(ΔP)を、圧力差10~300kPaの範囲内で慣性係数βを計算する質量流量G3として使用し、[数6]に基づいて慣性係数βを計算する。
[数6]
(4) Calculate the inertia coefficient β when the pressure difference across the porous medium is between 10 and 300 kPa.
In the case of a pressure difference range of 10 kPa<P a -P b <300 kPa, first, a pressure difference change curve of the ratio obtained by performing a ratio process of G 1 and G 2 corresponding to a plurality of times of the same pressure difference is obtained as follows:
[Equation 5]
where ΔP is the pressure difference across the porous medium, and a, b, and z are the ratio curve fitting coefficients.
Next, f(ΔP) is smoothed to obtain a curve f'(ΔP), and the curve f'(ΔP) is set as a new ratio curve of G 1 (ΔP)/G 2 (ΔP).
Finally, G 2 (ΔP)f′(ΔP) is used as the mass flow rate G 3 for calculating the inertia coefficient β within the pressure difference range of 10 to 300 kPa, and the inertia coefficient β is calculated based on [Equation 6].
[Equation 6]
さらに、
[数7]
を満たす場合、多孔質媒体両端の圧力差が0~2kPaであると見なす。
moreover,
[Equation 7]
If the above condition is satisfied, the pressure difference across the porous medium is considered to be 0 to 2 kPa.
別の観点において、多孔質媒体の流量特性パラメータの測定方法は、上記の多孔質媒体の流量特性パラメータの測定装置を使用する。
前記方法は、以下の複数のステップ(1)~(4)を含む。
In another aspect, a method for measuring a flow characteristic parameter of a porous medium uses the above-mentioned device for measuring a flow characteristic parameter of a porous medium.
The method includes the following steps (1) to (4).
(1)小容器タンクおよび大容器タンクを連通した後でガスが流れなくなったとき、2つの容器タンク内部圧力の平衡点を[数1]に基づいて計算する。
[数1]
ここで、P’は2つの容器タンク平衡時の圧力を示し、P1は小容器タンクの初期圧力を示し、V1は小容器タンクの容積を示し、P2は大容器タンクの初期圧力を示し、V2は大容器タンクの容積を示す。
(1) When gas stops flowing after the small container tank and the large container tank are connected, the equilibrium point of the internal pressures of the two container tanks is calculated based on [Equation 1].
[Equation 1]
Here, P' denotes the pressure at equilibrium between the two reservoir tanks, P1 denotes the initial pressure of the small reservoir tank, V1 denotes the volume of the small reservoir tank, P2 denotes the initial pressure of the large reservoir tank, and V2 denotes the volume of the large reservoir tank.
(2)2つの容器タンクが設定圧力に達し、小容器タンクの初期圧力が大容器タンクの初期圧力よりも高くなるように、小容器タンクに接続された真空発生器を使用してガス吸引し、大容器タンクに接続された真空発生器を使用してガス吸引し、
小容器タンク内のガスが大容器タンクに向かって流れるように、開閉弁を操作し、第1圧力センサの圧力測定値がPa、第2圧力センサの測定値がPbであり、
温度の影響が無視される条件下で、ガス状態方程式および2つの容器タンクの圧力変化曲線に従って、小容器タンクから流出するガス質量流量G1および大容器タンクに流入するガス質量流量G2を[数2]及び[数3]に基づいてそれぞれ求める。
[数2]
[数3]
ここで、G1は小容器タンクから流出するガス質量流量を示し、T1は小容器タンクの内部温度を示し、G2は大容器タンクに流入するガス質量流量を示し、T2は大容器タンクの内部温度を示す。
(2) Using a vacuum generator connected to the small container tank to draw gas and using a vacuum generator connected to the large container tank to draw gas so that the two container tanks reach a set pressure and the initial pressure of the small container tank is higher than the initial pressure of the large container tank;
The on-off valve is operated so that the gas in the small tank flows toward the large tank, the pressure measurement value of the first pressure sensor is P a , the measurement value of the second pressure sensor is P b ,
Under the condition that the effect of temperature is ignored, the gas mass flow rate G1 flowing out of the small container tank and the gas mass flow rate G2 flowing into the large container tank are calculated based on [Equation 2] and [Equation 3], respectively, according to the gas state equation and the pressure change curves of the two container tanks.
[Equation 2]
[Equation 3]
Here, G1 denotes the mass flow rate of gas flowing out of the small reservoir tank, T1 denotes the internal temperature of the small reservoir tank, G2 denotes the mass flow rate of gas flowing into the large reservoir tank, and T2 denotes the internal temperature of the large reservoir tank.
(3)多孔質媒体両端の圧力差が0~2kPaであるとき、透過係数Kを計算する。
圧力平衡点に基づいて圧力差0~2kPaの範囲内の各点の圧力差を計算し、透過係数Kの計算式は、
[数4]
である。ここで、Kは透過係数を示し、μは空気粘度を示し、Lは密閉収容空洞の両端間距離を示し、Rはガス定数を示し、φは多孔質媒体の気孔率を示し、Aは多孔質媒体の表面積を示し、PNは圧力差0~2kPaの範囲内の各圧力差点を示す。
(3) Calculate the permeability coefficient K when the pressure difference across the porous medium is 0 to 2 kPa.
Based on the pressure equilibrium point, the pressure difference at each point within the pressure difference range of 0 to 2 kPa is calculated, and the calculation formula for the permeability coefficient K is:
[Equation 4]
where K is the permeability coefficient, μ is the viscosity of air, L is the distance between both ends of the sealed containment cavity , R is the gas constant, φ is the porosity of the porous medium, A is the surface area of the porous medium, and P N are each pressure difference point within the pressure difference range of 0 to 2 kPa.
(4)多孔質媒体両端の圧力差が10~100kPaであるとき、慣性係数βを計算する。
圧力差範囲10kPa<Pa-Pb<100kPaの場合、まず複数の同じ圧力差の時点に対応するG1とG2の比率処理を行って得られた比率の圧力差変化曲線を、
[数5]
とする。ここで、ΔPは多孔質媒体両端の圧力差であり、a、b、zは比率曲線フィッティング係数である。
次に、f(ΔP)を平滑化処理して曲線f’(ΔP)を得て、曲線f’(ΔP)をG1(ΔP)/G2(ΔP)の新しい比率曲線とする。
最後に、G2(ΔP)f’(ΔP)を圧力差10~100kPaの範囲内で慣性係数βを計算する質量流量G3として使用し、[数6]に基づいて慣性係数βを計算する。
[数6]
(4) Calculate the inertia coefficient β when the pressure difference across the porous medium is 10 to 100 kPa.
In the case of a pressure difference range of 10 kPa<P a -P b <100 kPa, first, a pressure difference change curve of the ratio obtained by performing a ratio process on G 1 and G 2 corresponding to a plurality of times of the same pressure difference is obtained as follows:
[Equation 5]
where ΔP is the pressure difference across the porous medium, and a, b, and z are the ratio curve fitting coefficients.
Next, f(ΔP) is smoothed to obtain a curve f'(ΔP), and the curve f'(ΔP) is set as a new ratio curve of G 1 (ΔP)/G 2 (ΔP).
Finally, G 2 (ΔP)f′(ΔP) is used as the mass flow rate G 3 for calculating the inertia coefficient β within the pressure difference range of 10 to 100 kPa, and the inertia coefficient β is calculated based on [Equation 6].
[Equation 6]
さらに、
[数7]
を満たす場合、多孔質媒体両端の圧力差が0~2kPaであると見なす。
moreover,
[Equation 7]
If the above condition is satisfied, the pressure difference across the porous medium is considered to be 0 to 2 kPa.
有益な効果:先行技術と比較すると、本発明は以下の顕著な利点を有する。
(1)測定操作が簡単で便利であり、所要時間が短く、1回の実験で多孔質媒体の透過係数および慣性係数を同時に測定することができる。
(2)2つの容器タンクを使用してガス供給/ガス吸引を行うことにより、多孔質媒体の両端で異なる圧力試験条件を調整することができる。
(3)大容器タンクと小容器タンクを組み合わせて使用することにより、小容器タンクおよび大容器タンクの流出流入ガスの質量流量を処理した後、多孔質媒体を通過するガスの質量流量をより正確に求めることができる。
Beneficial Effects: Compared with the prior art, the present invention has the following significant advantages:
(1) The measurement operation is simple and convenient, the time required is short, and the permeability coefficient and inertia coefficient of a porous medium can be measured simultaneously in a single experiment.
(2) By using two reservoir tanks for gas supply/gas suction, different pressure test conditions can be adjusted at both ends of the porous media.
(3) By using a combination of a large container tank and a small container tank, the mass flow rate of gas passing through the porous medium can be determined more accurately after processing the mass flow rates of the inflow and outflow gases of the small container tank and the large container tank.
本発明の実施例の技術的解決策をより明確に説明するために、以下、本発明の実施例で使用される必要のある添付図面を簡単に説明するが、明らかに、以下で説明される添付図面は本発明の実施例に過ぎず、当業者であれば、創造的な労働をすることなく、これらの添付図面に基づいて他の添付図面を得ることができる。 In order to more clearly explain the technical solutions of the embodiments of the present invention, the following briefly describes the accompanying drawings that need to be used in the embodiments of the present invention. Obviously, the accompanying drawings described below are only the embodiments of the present invention, and those skilled in the art can obtain other accompanying drawings based on these accompanying drawings without creative labor.
1 多孔質媒体固定装置
1-1 エンドキャップ
1-2 中空ゴム
1-3 多孔質媒体
2 第1開閉弁
3 小容器タンク
4 第2開閉弁
5 第1ガス源
6 PCコンピュータ
7 第1圧力センサ
8 16ビットA/D収集ボード
9 第2圧力センサ
10 第3開閉弁
11 第2ガス源
12 大容器タンク
13 第4開閉弁
14 第1マフラー
15 第1真空発生器
16 第1減圧弁
17 第2減圧弁
18 第2真空発生器
19 第2マフラー
1 Porous media fixing device 1-1 End cap 1-2 Hollow rubber 1-3 Porous media 2 First on-off valve 3 Small container tank 4 Second on-off valve 5 First gas source 6 PC computer 7 First pressure sensor 8 16-bit A/D acquisition board 9 Second pressure sensor 10 Third on-off valve 11 Second gas source 12 Large container tank 13 Fourth on-off valve 14 First muffler 15 First vacuum generator 16 First pressure reducing valve 17 Second pressure reducing valve 18 Second vacuum generator 19 Second muffler
以下、本発明の実施例の添付図面を参照しながら、本発明の実施例における技術的解決策を明確かつ完全に説明するが、明らかに、説明される実施例はすべての実施例ではない。本発明の実施例に基づいて、当業者が創造的な労働をすることなく得られた他の実施例は、すべて本発明の保護範囲に含まれる。 The technical solutions in the embodiments of the present invention will be described below clearly and completely with reference to the accompanying drawings of the embodiments of the present invention, but obviously, the described embodiments are not all the embodiments. Based on the embodiments of the present invention, other embodiments obtained by those skilled in the art without creative labor are all included in the protection scope of the present invention.
<実施例1>
図1は、本願の実施例1が提供する多孔質媒体の流量特性パラメータの測定装置の構造概略図であり、該測定装置は、多孔質媒体固定装置1、小容器(小容量)タンク3、大容器(大容量)タンク12、PCコンピュータ6および16ビットA/D収集ボード8から構成される。
Example 1
FIG. 1 is a structural schematic diagram of a measurement device for flow characteristic parameters of a porous medium provided in Example 1 of the present application, which is composed of a porous medium fixing device 1, a small container (small capacity) tank 3, a large container (large capacity) tank 12, a PC computer 6 and a 16-bit A/D acquisition board 8.
図2および図3に示すように、多孔質媒体固定装置1は、中空ゴム1-2および2つのエンドキャップ1-1を有しており、中空ゴム1-2の内部空洞は、2つのエンドキャップ1-1に予め設けられた孔とともに両端を貫通する密閉収容空洞を形成している。多孔質媒体1-3は中空ゴム1-2に包囲され、2つのエンドキャップ1-1がボルトを介して接続されており、ボルトを用いて中空ゴム1-2圧力を加えて密閉を達成する。 As shown in Figures 2 and 3, the porous medium fixing device 1 has a hollow rubber 1-2 and two end caps 1-1, and the internal cavity of the hollow rubber 1-2 forms a sealed containment cavity that penetrates both ends together with holes provided in advance in the two end caps 1-1. The porous medium 1-3 is surrounded by the hollow rubber 1-2, and the two end caps 1-1 are connected via bolts, and pressure is applied to the hollow rubber 1-2 using the bolts to achieve sealing.
小容器タンク3および大容器タンク12は2つの容積が既知の容器タンクであり、大容器タンク12の容積は小容器タンク3の容積の10~15倍である。密閉収容空洞の一端が第1開閉弁2を介して小容器タンク3に接続され、他端が第4開閉弁13を介して大容器タンク12に接続されている。小容器タンク3に圧力を測定するためのレンジが大きい第1圧力センサ7が取り付けられ、大容器タンク12に圧力を測定するためのレンジが小さい第2圧力センサ9が取り付けられている。第1圧力センサ7および第2圧力センサ9はそれぞれ16ビットA/D収集ボード8を介してPCコンピュータ6に接続されている。 The small container tank 3 and the large container tank 12 are two container tanks with known volumes, and the volume of the large container tank 12 is 10 to 15 times the volume of the small container tank 3. One end of the sealed storage cavity is connected to the small container tank 3 via a first on-off valve 2, and the other end is connected to the large container tank 12 via a fourth on-off valve 13. A first pressure sensor 7 with a large range for measuring pressure is attached to the small container tank 3, and a second pressure sensor 9 with a small range for measuring pressure is attached to the large container tank 12. The first pressure sensor 7 and the second pressure sensor 9 are each connected to the PC computer 6 via a 16-bit A/D acquisition board 8.
小容器タンク3は第2開閉弁4を介して第1ガス源5に接続され、大容器タンク12は第3開閉弁10を介して第2ガス源11に接続されている。 The small container tank 3 is connected to the first gas source 5 via the second on-off valve 4, and the large container tank 12 is connected to the second gas source 11 via the third on-off valve 10.
本実施例1では、第1圧力センサ7のレンジが0~300kPaであり、第2圧力センサ9のレンジが0~100kPaである。 In this embodiment 1, the range of the first pressure sensor 7 is 0 to 300 kPa, and the range of the second pressure sensor 9 is 0 to 100 kPa.
以下、実施例1に記載の測定装置を使用して多孔質媒体の流量特性パラメータを測定する方法を説明する。この方法は、図11に示すように、以下のステップを含む。 Below, we will explain a method for measuring flow characteristic parameters of a porous medium using the measurement device described in Example 1. This method includes the following steps, as shown in Figure 11.
(1)図4中の圧力平衡点を計算する。
圧力平衡点は、ガス状態方程式に従って導出できる。小容器タンク3内のガスの初期理想状態方程式は、
[数8]
である。ここで、P1は小容器タンク3の初期圧力を示し、V1は小容器タンク3の容積を示し、m1は小容器タンク3の初期ガス質量を示し、Rはガス定数を示し、T1は小容器タンク3の初期温度を示す。
(1) Calculate the pressure equilibrium point in Figure 4.
The pressure equilibrium point can be derived according to the gas state equation. The initial ideal state equation of the gas in the small container tank 3 is
[Equation 8]
Here, P1 represents the initial pressure of the small container tank 3, V1 represents the volume of the small container tank 3, m1 represents the initial gas mass of the small container tank 3, R represents the gas constant, and T1 represents the initial temperature of the small container tank 3.
大容器タンク12内のガスの初期理想状態方程式は、
[数9]
である。ここで、P2は大容器タンク12の初期圧力を示し、V2は大容器タンク12の容積を示し、m2は大容器タンク12の初期ガス質量を示し、T2は大容器タンク12の初期温度を示す。
The initial ideal equation of state for the gas in the large vessel tank 12 is:
[Equation 9]
where P2 denotes the initial pressure of the bulk tank 12, V2 denotes the volume of the bulk tank 12, m2 denotes the initial gas mass of the bulk tank 12, and T2 denotes the initial temperature of the bulk tank 12.
2つの容器タンクの平衡時のガスの理想状態方程式は、
[数10]
である。ここで、P’は2つの容器タンク平衡時の圧力を示し、T’は2つの容器タンクの平衡時の温度を示す。そして、温度の影響が無視できる条件下では、以下の平衡圧力値P’が得られる。
[数1]
The ideal equation of state for the gas at equilibrium in the two container tanks is:
[Equation 10]
Here, P' denotes the pressure when the two container tanks are in equilibrium, and T' denotes the temperature when the two container tanks are in equilibrium. Under the condition that the effect of temperature can be ignored, the following equilibrium pressure value P' is obtained.
[Equation 1]
(2)第2開閉弁4および第3開閉弁10を開いて第1ガス源5および第2ガス源11を使用し、2つの容器タンクが設定圧力に達するように小容器タンク3および大容器タンク12にそれぞれガスを供給する。このとき、小容器タンク3の初期圧力が大容器タンク12よりも高い必要があり、且つ、大、小容器タンクの圧力が対応する圧力センサのレンジ以下である必要がある。 (2) Open the second on-off valve 4 and the third on-off valve 10 to use the first gas source 5 and the second gas source 11 to supply gas to the small container tank 3 and the large container tank 12, respectively, so that the two container tanks reach the set pressure. At this time, the initial pressure of the small container tank 3 must be higher than that of the large container tank 12, and the pressures of the large and small container tanks must be below the range of the corresponding pressure sensors.
2つのガス源のガス供給を停止させ、多孔質媒体固定装置1の両端の第1開閉弁2および第4開閉弁13を開き、小容器タンク3内のガスが大容器タンク12に流れる。このとき、第1圧力センサ7と第2圧力センサ9を用いて、それぞれ16ビットA/D収集ボード8を介して小容器タンク3および大容器タンク12の圧力変化状況をPCコンピュータ6に記録する。第1圧力センサ7の検出圧力がPa、第2圧力センサ12の検出圧力がPbである。圧力変化曲線が図8に示される。 The gas supply from the two gas sources is stopped, the first on-off valve 2 and the fourth on-off valve 13 on both ends of the porous media fixing device 1 are opened, and the gas in the small container tank 3 flows into the large container tank 12. At this time, the first pressure sensor 7 and the second pressure sensor 9 are used to record the pressure changes in the small container tank 3 and the large container tank 12 in the PC computer 6 via the 16-bit A/D collection board 8. The detected pressure of the first pressure sensor 7 is Pa , and the detected pressure of the second pressure sensor 12 is Pb . The pressure change curve is shown in Figure 8.
温度の影響を無視できる条件下において、ガス状態方程式および2つの容器タンクの圧力変化曲線に従って、小容器タンク3から流出するガス質量流量および大容器タンク12に流入するガス質量流量をそれぞれ求める。その結果が図9に示される。
小容器タンク3から流出するガスの質量流量は、
[数2]
である。ここで、G1は小容器タンク3から流出するガス質量流量を示し、T1は小容器タンク3の内部温度を示す。
大容器タンク12に流入するガスの質量流量は、
[数3]
である。ここで、G2は大容器タンク12に流入するガス質量流量を示し、T2は大容器タンク12の内部温度を示す。
Under the condition that the effect of temperature can be ignored, the gas mass flow rate flowing out from the small container tank 3 and the gas mass flow rate flowing into the large container tank 12 are calculated according to the gas state equation and the pressure change curves of the two container tanks. The results are shown in FIG.
The mass flow rate of the gas flowing out of the small container tank 3 is
[Equation 2]
Here, G1 represents the mass flow rate of gas flowing out of the small container tank 3, and T1 represents the internal temperature of the small container tank 3.
The mass flow rate of gas entering the large reservoir tank 12 is
[Equation 3]
where G2 represents the gas mass flow rate entering the bulk tank 12 and T2 represents the internal temperature of the bulk tank 12.
(3)図10に示す小圧力差ΔPa(0~2kPa)の領域範囲内で、多孔質媒体ガスの質量流量から透過係数Kを計算する。
第1圧力センサ7の精度が低く(レンジが大きく、精度が低い)、G1が正確でないので、多孔質媒体を通過するガスのガス質量流量としてG2を透過係数Kの計算に使用する。
[数7]
を満たす場合、多孔質媒体1-3の両端の圧力差が小圧力差0~2kPaの範囲内であると見なす。
圧力平衡点に基づいて小圧力差範囲内の各点の圧力差を計算する。透過係数Kの計算式は、
[数4]
である。ここで、Kは透過係数を示し、μは空気粘度を示し、Rはガス定数を示し、Lは密閉収容空洞の両端間距離を示し、φは多孔質媒体の気孔率を示し、Aは多孔質媒体の表面積を示し、PNは圧力差0~2kPaの範囲内の各圧力差点を示す。
(3) Calculate the permeability coefficient K from the mass flow rate of the porous medium gas within the range of the small pressure difference ΔPa (0 to 2 kPa) shown in FIG.
Since the accuracy of the first pressure sensor 7 is low (high range, low precision) and G1 is not accurate, G2 is used to calculate the permeability coefficient K as the gas mass flow rate of the gas passing through the porous medium.
[Equation 7]
If the above condition is satisfied, the pressure difference across the porous medium 1-3 is considered to be within the small pressure difference range of 0 to 2 kPa.
Calculate the pressure difference at each point within the small pressure difference range based on the pressure equilibrium point. The formula for calculating the permeability coefficient K is:
[Equation 4]
where K is the permeability coefficient, μ is the viscosity of air, R is the gas constant, L is the distance between both ends of the sealed containment cavity , φ is the porosity of the porous medium, A is the surface area of the porous medium, and P N are each pressure difference point within the pressure difference range of 0 to 2 kPa.
(4)図10に示すΔPb(10~300kPa)の大圧力差範囲内で、多孔質媒体を通過するガスの質量流量から慣性係数βを計算する。
大容器タンク12の体積が大きいため、ガスが流れるとき、温度変化が小さく、圧力変化が小さい。圧力変化が小さいと、第2圧力センサ9によって測定された圧力曲線が滑らかであるが、該圧力曲線変化範囲が小さく、計算されたG2が正確でない。一方、小容器タンク3の体積が小さいため、温度および圧力変化が大きい。圧力変化が大きいと、第1圧力センサ7によって測定された圧力曲線が荒くなり、温度変化が大きいため、G2に対してG1がより不正確である。したがって、大圧力差範囲10kPa<Pa-Pb<300kPaの場合、まず複数の同じ圧力差の時点に対応するG1とG2の比率処理を行う。得られた比率の圧力差変化曲線は、
[数5]
である。ここで、ΔPは多孔質媒体両端の圧力差であり、a、b、zは比率曲線フィッティング係数である。
次に、f(ΔP)を平滑化処理して曲線f’(ΔP)を得て、曲線f’(ΔP)をG1(ΔP)/G2(ΔP)の比率曲線とする。
最後に、G2(ΔP)f’(ΔP)を、大圧力差範囲で慣性係数βを計算するための質量流量G3として使用し、[数6]に基づいて慣性係数βを計算する。
[数6]
(4) Calculate the inertia coefficient β from the mass flow rate of gas passing through the porous medium within the large pressure difference range ΔPb (10 to 300 kPa) shown in Figure 10.
Since the volume of the large container tank 12 is large, when gas flows, the temperature change is small and the pressure change is small. When the pressure change is small, the pressure curve measured by the second pressure sensor 9 is smooth, but the pressure curve change range is small, and the calculated G2 is not accurate. Meanwhile, since the volume of the small container tank 3 is small, the temperature and pressure changes are large. When the pressure change is large, the pressure curve measured by the first pressure sensor 7 becomes rough, and the temperature change is large, so G1 is more inaccurate compared to G2 . Therefore , in the case of a large pressure difference range of 10 kPa< Pa - Pb <300 kPa, first perform a ratio process of G1 and G2 corresponding to multiple points of the same pressure difference. The obtained ratio pressure difference change curve is:
[Equation 5]
where ΔP is the pressure difference across the porous medium and a, b, and z are the rate curve fitting coefficients.
Next, f(ΔP) is smoothed to obtain a curve f'(ΔP), and the curve f'(ΔP) is set as the ratio curve of G 1 (ΔP)/G 2 (ΔP).
Finally, G 2 (ΔP)f′(ΔP) is used as the mass flow rate G 3 for calculating the inertia coefficient β in the large pressure difference range, and the inertia coefficient β is calculated based on [Equation 6].
[Equation 6]
<実施例2>
図5は、本願の実施例2が提供する多孔質媒体の流量特性パラメータの測定装置の構造概略図であり、実施例1に基づいて、第3開閉弁10と第2ガス源11間に第1真空発生器15および第1減圧弁16が追加され、第1真空発生器15に第1マフラー14が接続されている。第1真空発生器15は、大容器タンク12内で負圧を発生させるために使用される。
本実施例2では、第1圧力センサ7のレンジは0~300kPaであり、第2圧力センサ9のレンジは-100~0kPaである。図6は実施例2の2つの容器タンクの圧力変化曲線を示す。
Example 2
5 is a structural schematic diagram of a measurement device for flow characteristic parameters of a porous medium provided in Example 2 of the present application, which is based on Example 1, and a first vacuum generator 15 and a first pressure reducing valve 16 are added between the third on-off valve 10 and the second gas source 11, and a first muffler 14 is connected to the first vacuum generator 15. The first vacuum generator 15 is used to generate negative pressure in the large container tank 12.
In the second embodiment, the range of the first pressure sensor 7 is 0 to 300 kPa, and the range of the second pressure sensor 9 is -100 to 0 kPa. Figure 6 shows the pressure change curves of the two container tanks of the second embodiment.
測定するとき、実施例1のステップ(2)では、小容器タンク3の内部に正圧を発生させ、大容器タンク12の内部に負圧を発生させた後、実施例1における以降のステップの操作を行い、以降のステップは実施例1と同様である。 When measuring, in step (2) of Example 1, a positive pressure is generated inside the small container tank 3 and a negative pressure is generated inside the large container tank 12, and then the subsequent steps in Example 1 are performed, and the subsequent steps are the same as those in Example 1.
<実施例3>
図7は、本願の実施例3が提供する多孔質媒体の流量特性パラメータの測定装置の構造概略図であり、実施例2に基づいて、第2開閉弁4と第1ガス源5間に第2減圧弁17および第2真空発生器18が追加され、第2真空発生器18に第2マフラー19が接続されている。第2真空発生器18は小容器タンク3に負圧を発生させるために使用される。
Example 3
7 is a structural schematic diagram of a measurement device for flow characteristic parameters of a porous medium provided in Example 3 of the present application, which is based on Example 2, in which a second pressure reducing valve 17 and a second vacuum generator 18 are added between the second on-off valve 4 and the first gas source 5, and a second muffler 19 is connected to the second vacuum generator 18. The second vacuum generator 18 is used to generate negative pressure in the small container tank 3.
本実施例3では、第1圧力センサ7はレンジが-100~0kPaの圧力センサであり、第2圧力センサ9のレンジは-100~-50kPaである。図8は実施例3の2つの容器タンクの圧力変化曲線である。 In this embodiment 3, the first pressure sensor 7 is a pressure sensor with a range of -100 to 0 kPa, and the second pressure sensor 9 has a range of -100 to -50 kPa. Figure 8 shows the pressure change curves of the two container tanks in embodiment 3.
測定するとき、実施例1のステップ(2)では、2つの容器タンクの両端の真空発生器に負圧を発生させた後、実施例1の以降のステップの操作を行う。また、本実施例3で決定された大圧力差領域範囲は実施例と異なり、本実施例3では、慣性係数βを計算するとき、大圧力差範囲が10kPa<Pa-Pb<100kPaであると決定される。本実施例3の他のステップは実施例1と同様である。 When making the measurement, in step (2) of Example 1, negative pressure is generated in the vacuum generators at both ends of the two container tanks, and then the subsequent steps of Example 1 are performed. Also, the large pressure difference region range determined in this Example 3 is different from that of the Examples, and in this Example 3, when calculating the inertia coefficient β, the large pressure difference range is determined to be 10 kPa < Pa-Pb < 100 kPa. The other steps of this Example 3 are the same as those of Example 1.
以上、本発明の具体的な実施形態を説明したが、本発明の保護範囲はこれに限定されなく、本発明が開示する技術的範囲内で、当業者が容易に想到した変更や置換方式は、すべて本発明の保護範囲内に含まれる。したがって、本発明の保護範囲は特許請求の範囲に従うものとする。 Although specific embodiments of the present invention have been described above, the scope of protection of the present invention is not limited thereto, and all modifications and replacement methods that are easily conceived by a person skilled in the art within the technical scope disclosed by the present invention are included within the scope of protection of the present invention. Therefore, the scope of protection of the present invention shall be governed by the claims.
Claims (7)
多孔質媒体固定装置(1)は両端を貫通する密閉収容空洞を備え、密閉収容空洞内に多孔質媒体(1-3)が収容され、密閉収容空洞の両端は、それぞれ開閉弁を介して小容器タンク(3)および大容器タンク(12)に接続され、
小容器タンク(3)に圧力を測定するための第1圧力センサ(7)が取り付けられ、大容器タンク(12)に圧力を測定するための第2圧力センサ(9)が取り付けられ、
2つの容器タンク間に圧力差が発生し、小容器タンク(3)内のガスが大容器タンク(12)に向かって流れるように、小容器タンク(3)および大容器タンク(12)のそれぞれに異なるガス源および/または異なる真空発生器が接続されている、ことを特徴とする多孔質媒体の流量特性パラメータの測定装置。 The porous medium fixing device (1), the small container tank (3) and the large container tank (12) are included.
The porous medium fixing device (1) has a sealed storage cavity penetrating both ends, a porous medium (1-3) is stored in the sealed storage cavity, and both ends of the sealed storage cavity are connected to a small container tank (3) and a large container tank (12) via an on-off valve, respectively;
A first pressure sensor (7) for measuring pressure is attached to the small container tank (3), and a second pressure sensor (9) for measuring pressure is attached to the large container tank (12);
1. An apparatus for measuring flow characteristic parameters of a porous medium, characterized in that a different gas source and/or a different vacuum generator is connected to each of the small reservoir tank (3) and the large reservoir tank (12) so that a pressure difference is generated between the two reservoir tanks and gas in the small reservoir tank (3) flows toward the large reservoir tank (12).
(1)小容器タンク(3)と大容器タンク(12)が連通した後でガスが流れなくなったとき、2つの容器タンク内部の圧力平衡点を[数1]に基づいて計算するステップと、
[数1]
(P’:2つの容器タンク平衡時の圧力、P1:小容器タンク(3)の初期圧力、V1:小容器タンク(3)の容積、P2:大容器タンク(12)の初期圧力、V2:大容器タンク(12)の容積)
(2)2つの容器タンクが設定圧力に達し、小容器タンク(3)の初期圧力が大容器タンク(12)の初期圧力よりも高くなるように、小容器タンク(3)に接続されたガス源を使用してガスを供給し、大容器タンク(12)に接続されたガス源または真空発生器を使用してガス供給/ガス吸引を行い、
小容器タンク(3)内のガスが大容器タンク(12)に向かって流れるように、前記開閉弁を操作し、第1圧力センサ(7)の圧力測定値がPa、第2圧力センサ(9)の測定値がPbであり、
温度の影響が無視される条件下で、ガス状態方程式および2つの容器タンクの圧力変化曲線に従って、小容器タンク(3)から流出するガス質量流量G1および大容器タンク(12)に流入するガス質量流量G2を[数2]及び[数3]に基づいてそれぞれ求めるステップと、
[数2]
(G1:小容器タンク(3)から流出するガス質量流量、T1:小容器タンク(3)の内部温度)
[数3]
(G2:大容器タンク(12)に流入するガス質量流量、T2:大容器タンク(12)の内部温度)
(3)多孔質媒体(1-3)の両端の圧力差が0~2kPaであるとき、透過係数Kを計算するステップであって、
圧力平衡点に基づいて圧力差0~2kPaの範囲内の各点の圧力差を計算し、透過係数Kの計算式が、
[数4]
であるステップと、
(K:透過係数、μ:空気粘度、R:ガス定数、L:密閉収容空洞の両端間距離、φ:多孔質媒体(1-3)の気孔率、A:多孔質媒体(1-3)の表面積、PN:圧力差0~2kPaの範囲内の各圧力差点)
(4)多孔質媒体(1-3)の両端の圧力差が10~300kPaであるとき、慣性係数βを計算するステップであって、
圧力差範囲10kPa<Pa-Pb<300kPaの場合、まず複数の同じ圧力差の時点に対応するG1とG2の比率処理を行って得られた比率の圧力差変化曲線を
[数5]
とし、(ΔP:多孔質媒体の両端の圧力差、a,b,z:比率曲線フィッティング係数)
次に、f(ΔP)を平滑化処理して曲線f’(ΔP)を得て、曲線f’(ΔP)をG1(ΔP)/G2(ΔP)の新しい比率曲線とし、
最後に、G2(ΔP)f’(ΔP)を、圧力差10~300kPaの範囲内で慣性係数βを計算するための質量流量G3として使用し、[数6]に基づいて慣性係数βを計算するステップと、
[数6]
を含む、ことを特徴とする多孔質媒体の流量特性パラメータの測定方法。 A method for measuring a flow characteristic parameter of a porous medium, using the measurement device for measuring a flow characteristic parameter of a porous medium according to any one of claims 1 to 3,
(1) calculating a pressure equilibrium point between the small tank (3) and the large tank (12) based on [Equation 1] when gas stops flowing after the small tank (3) and the large tank (12) are connected to each other;
[Equation 1]
(P': pressure when the two container tanks are in equilibrium, P1 : initial pressure of the small container tank (3), V1 : volume of the small container tank (3), P2 : initial pressure of the large container tank (12), V2 : volume of the large container tank (12))
(2) supplying gas using a gas source connected to the small container tank (3) and supplying/suctioning gas using a gas source or vacuum generator connected to the large container tank (12) so that the two container tanks reach a set pressure and the initial pressure of the small container tank (3) is higher than the initial pressure of the large container tank (12);
The on-off valve is operated so that the gas in the small tank (3) flows toward the large tank (12), and the pressure measurement value of the first pressure sensor (7) is Pa and the measurement value of the second pressure sensor (9) is Pb ;
A step of calculating the gas mass flow rate G1 flowing out of the small container tank (3) and the gas mass flow rate G2 flowing into the large container tank (12) based on [Equation 2] and [Equation 3], respectively, according to the gas state equation and the pressure change curves of the two container tanks under the condition that the effect of temperature is ignored;
[Equation 2]
(G 1 : mass flow rate of gas flowing out of the small container tank (3), T 1 : internal temperature of the small container tank (3))
[Equation 3]
( G2 : mass flow rate of gas flowing into the large reservoir tank (12), T2 : internal temperature of the large reservoir tank (12))
(3) calculating the permeability coefficient K when the pressure difference across the porous medium (1-3) is 0-2 kPa,
Based on the pressure equilibrium point, the pressure difference at each point within the pressure difference range of 0 to 2 kPa is calculated, and the calculation formula for the permeability coefficient K is:
[Equation 4]
and
(K: permeability coefficient, μ: air viscosity, R: gas constant, L: distance between both ends of the sealed containment cavity , φ: porosity of the porous medium (1-3), A: surface area of the porous medium (1-3), P N : each pressure difference point within the pressure difference range of 0 to 2 kPa).
(4) calculating the inertia coefficient β when the pressure difference across the porous medium (1-3) is 10 to 300 kPa,
In the case of the pressure difference range 10 kPa<Pa-Pb<300 kPa, first, the pressure difference change curve of the ratio obtained by performing the ratio processing of G1 and G2 corresponding to the time points of the same pressure difference is expressed as [Equation 5].
(ΔP: pressure difference between both ends of the porous medium, a, b, z: ratio curve fitting coefficients)
Next, f(ΔP) is smoothed to obtain a curve f′(ΔP), and the curve f′(ΔP) is set as a new ratio curve of G 1 (ΔP)/G 2 (ΔP),
Finally, a step of calculating the inertia coefficient β based on [Equation 6] by using G 2 (ΔP)f′(ΔP) as the mass flow rate G 3 for calculating the inertia coefficient β within the pressure difference range of 10 to 300 kPa;
[Equation 6]
A method for measuring a flow characteristic parameter of a porous medium, comprising:
を満たす場合、多孔質媒体(1-3)の両端の圧力差が0~2kPaの範囲内であると見なす、ことを特徴とする請求項4に記載の多孔質媒体の流量特性パラメータの測定方法。 [Equation 7]
The method for measuring flow characteristic parameters of a porous medium according to claim 4, characterized in that, when the above-mentioned condition is satisfied, the pressure difference between both ends of the porous medium (1-3) is considered to be within the range of 0 to 2 kPa.
(1)小容器タンク(3)および大容器タンク(12)を連通した後でガスが流れなくなったとき、2つの容器タンク内部圧力の平衡点を[数1]に基づいて計算するステップと、
[数1]
(P’:2つの容器タンク平衡時の圧力、P1:小容器タンク(3)の初期圧力、V1:小容器タンク(3)の容積、P2:大容器タンク(12)の初期圧力、V2:大容器タンク(12)の容積)
(2)2つの容器タンクが設定圧力に達し、小容器タンク(3)の初期圧力が大容器タンク(12)の初期圧力よりも高くなるように、小容器タンク(3)に接続された真空発生器を使用してガス吸引し、大容器タンク(12)に接続された真空発生器を使用してガス吸引し、
小容器タンク(3)内のガスが大容器タンク(12)に向かって流れるように、前記開閉弁を操作し、第1圧力センサ(7)の圧力測定値がPa、第2圧力センサ(9)の測定値がPbであり、
温度の影響が無視される条件下で、ガス状態方程式および2つの容器タンクの圧力変化曲線に従って、小容器タンク(3)から流出するガス質量流量G1および大容器タンク(12)に流入するガス質量流量G2を[数2]及び[数3]に基づいてそれぞれ求めるステップと、
[数2]
(G1:小容器タンク(3)から流出するガス質量流量、T1:小容器タンク(3)の内部温度)
[数3]
(G2:大容器タンク(12)に流入するガス質量流量、T2:大容器タンク(12)の内部温度)
(3)多孔質媒体(1-3)の両端の圧力差が0~2kPaであるとき、透過係数Kを計算するステップであって、
圧力平衡点に基づいて圧力差0~2kPaの範囲内の各点の圧力差を計算し、透過係数Kの計算式が、
[数4]
であるステップと、
(K:透過係数、μ:空気粘度、R:ガス定数、L:密閉収容空洞の両端間距離、φ:多孔質媒体(1-3)の気孔率、A:多孔質媒体(1-3)の表面積、PN:圧力差0~2kPaの範囲内の各圧力差点)
(4)多孔質媒体(1-3)の両端の圧力差が10~100kPaであるとき、慣性係数βを計算するステップであって、
圧力差範囲10kPa<Pa-Pb<100kPaの場合、まず複数の同じ圧力差の時点に対応するG1とG2の比率処理を行って得られた比率の圧力差変化曲線を、
[数5]
とし、(ΔP:多孔質媒体両端の圧力差、a,b,z:比率曲線フィッティング係数)
次に、f(ΔP)を平滑化処理して曲線f’(ΔP)を得て、曲線f’(ΔP)をG1(ΔP)/G2(ΔP)の新しい比率曲線とし、
最後に、G2(ΔP)f’(ΔP)を、圧力差10~100kPaの範囲内で慣性係数βを計算するための質量流量G3として使用し、[数6]に基づいて慣性係数βを計算するステップと、
[数6]
を含む、ことを特徴とする多孔質媒体の流量特性パラメータの測定方法。 A method for measuring a flow characteristic parameter of a porous medium, using the measurement device for measuring a flow characteristic parameter of a porous medium according to any one of claims 1 to 3,
(1) calculating an equilibrium point of the internal pressures of the two container tanks based on [Equation 1] when gas stops flowing after the small container tank (3) and the large container tank (12) are connected;
[Equation 1]
(P': pressure when the two container tanks are in equilibrium, P1 : initial pressure of the small container tank (3), V1 : volume of the small container tank (3), P2 : initial pressure of the large container tank (12), V2 : volume of the large container tank (12))
(2) Using a vacuum generator connected to the small container tank (3) to draw gas and using a vacuum generator connected to the large container tank (12) to draw gas so that the two container tanks reach a set pressure and the initial pressure of the small container tank (3) is higher than the initial pressure of the large container tank (12);
The on-off valve is operated so that the gas in the small tank (3) flows toward the large tank (12), and the pressure measurement value of the first pressure sensor (7) is Pa and the measurement value of the second pressure sensor (9) is Pb ;
A step of calculating the gas mass flow rate G1 flowing out of the small container tank (3) and the gas mass flow rate G2 flowing into the large container tank (12) based on [Equation 2] and [Equation 3], respectively, according to the gas state equation and the pressure change curves of the two container tanks under the condition that the effect of temperature is ignored;
[Equation 2]
(G 1 : mass flow rate of gas flowing out of the small container tank (3), T 1 : internal temperature of the small container tank (3))
[Equation 3]
( G2 : mass flow rate of gas flowing into the large reservoir tank (12), T2 : internal temperature of the large reservoir tank (12))
(3) calculating the permeability coefficient K when the pressure difference across the porous medium (1-3) is 0-2 kPa,
Based on the pressure equilibrium point, the pressure difference at each point within the pressure difference range of 0 to 2 kPa is calculated, and the calculation formula for the permeability coefficient K is:
[Equation 4]
and
(K: permeability coefficient, μ: air viscosity, R: gas constant, L: distance between both ends of the sealed containment cavity , φ: porosity of the porous medium (1-3), A: surface area of the porous medium (1-3), P N : each pressure difference point within the pressure difference range of 0 to 2 kPa).
(4) calculating the inertia coefficient β when the pressure difference across the porous medium (1-3) is 10 to 100 kPa,
In the case of a pressure difference range of 10 kPa<Pa-Pb<100 kPa, first, a pressure difference change curve of the ratio obtained by performing a ratio process of G1 and G2 corresponding to a plurality of times of the same pressure difference is obtained.
[Equation 5]
(ΔP: pressure difference between both ends of the porous medium, a, b, z: ratio curve fitting coefficients)
Next, f(ΔP) is smoothed to obtain a curve f′(ΔP), and the curve f′(ΔP) is set as a new ratio curve of G 1 (ΔP)/G 2 (ΔP),
Finally, a step of calculating the inertia coefficient β based on [Equation 6] by using G 2 (ΔP)f′(ΔP) as the mass flow rate G 3 for calculating the inertia coefficient β within the pressure difference range of 10 to 100 kPa;
[Equation 6]
A method for measuring a flow characteristic parameter of a porous medium, comprising:
を満たす場合、多孔質媒体(1-3)の両端の圧力差が0~2kPaの範囲内であると見なす、ことを特徴とする請求項6に記載の多孔質媒体の流量特性パラメータの測定方法。 [Equation 7]
The method for measuring flow characteristic parameters of a porous medium according to claim 6, characterized in that, when the above-mentioned condition is satisfied, the pressure difference between both ends of the porous medium (1-3) is considered to be within the range of 0 to 2 kPa.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310257044.1 | 2023-03-16 | ||
CN202310257044.1A CN116202937A (en) | 2023-03-16 | 2023-03-16 | A device and method for measuring flow characteristic parameters of porous media |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2024132864A JP2024132864A (en) | 2024-10-01 |
JP7590025B2 true JP7590025B2 (en) | 2024-11-26 |
Family
ID=86517274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023217063A Active JP7590025B2 (en) | 2023-03-16 | 2023-12-22 | Apparatus and method for measuring flow characteristic parameters of porous media |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7590025B2 (en) |
CN (1) | CN116202937A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010117012A1 (en) | 2009-04-07 | 2010-10-14 | Shimada Toshihiro | Permeability evaluation device and evaluation method |
JP2022053269A (en) | 2020-09-24 | 2022-04-05 | 株式会社住化分析センター | Gas permeability measuring device |
-
2023
- 2023-03-16 CN CN202310257044.1A patent/CN116202937A/en active Pending
- 2023-12-22 JP JP2023217063A patent/JP7590025B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010117012A1 (en) | 2009-04-07 | 2010-10-14 | Shimada Toshihiro | Permeability evaluation device and evaluation method |
JP2022053269A (en) | 2020-09-24 | 2022-04-05 | 株式会社住化分析センター | Gas permeability measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP2024132864A (en) | 2024-10-01 |
CN116202937A (en) | 2023-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5786528A (en) | Water intrusion test for filters | |
JP4384418B2 (en) | Method and apparatus for detecting leakage in a fluid system of a blood processing apparatus | |
CN108896250A (en) | Air-tightness detection device and air-tightness detection method | |
CN103025409B (en) | For testing the apparatus and method of hollow fiber membrane filter | |
US11874199B2 (en) | Device and process for determining the size of a leak hole in a sample | |
WO2016090899A1 (en) | Vital capacity testing method and device | |
CN102564892B (en) | Method for measuring pressure drop reduction value of draw resistance standard rod and method for detecting reasonability of design of suction pipeline of draw resistance tester by using value | |
WO2000009988A2 (en) | Rapid method to experimentally measure the gas permeability of micro-perforated films | |
CN106769667B (en) | Nanoscale gas flow rule experiment system and method | |
CN105004480B (en) | A kind of quick dynamic vacuum calibration method of vacuum meter | |
CN110721352B (en) | Thoracic drainage monitoring device | |
JP7590025B2 (en) | Apparatus and method for measuring flow characteristic parameters of porous media | |
CN101625234B (en) | System and method for measuring true volume of gathered-state substances with gaps | |
CN206515189U (en) | Nanoscale gas flowing law experimental system | |
CN109490139B (en) | Device and method for testing true density of material based on physical adsorption instrument | |
US3115767A (en) | Apparatus for testing the fluid flow characteristics of pervious objects | |
CN207662563U (en) | A kind of watertightness test device | |
JPH0354434A (en) | Method and apparatus for measuring unknown parameter of gas to be inspected | |
JP2000039347A (en) | Flowrate inspection device | |
CN108827850A (en) | Measure rock core specific surface and porosity and the relational approach of rock cross-sectional area and instrument | |
CN111638158A (en) | Compact sandstone gas-water phase permeability testing device and method based on capacitance method | |
KR101356764B1 (en) | Apparatus and method for measuring inner volume of tested sturcture using fluid | |
CN215297026U (en) | Device for measuring smoke resistance standard rod for cigarettes by positive pressure method and device for measuring ventilation rate standard part for cigarettes | |
CN213749512U (en) | Measuring device of special ventilation rate standard rod of tobacco | |
CN203824875U (en) | Simple and easy soil ventilation speed tester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7590025 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |