[go: up one dir, main page]

JP7583405B2 - Insulating wall material for building ventilation ducts - Google Patents

Insulating wall material for building ventilation ducts Download PDF

Info

Publication number
JP7583405B2
JP7583405B2 JP2020183505A JP2020183505A JP7583405B2 JP 7583405 B2 JP7583405 B2 JP 7583405B2 JP 2020183505 A JP2020183505 A JP 2020183505A JP 2020183505 A JP2020183505 A JP 2020183505A JP 7583405 B2 JP7583405 B2 JP 7583405B2
Authority
JP
Japan
Prior art keywords
heat insulating
wall material
insulating wall
stacked
inorganic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020183505A
Other languages
Japanese (ja)
Other versions
JP2022073486A (en
Inventor
伸行 八幡
元宏 中澤
友弘 江水
泰照 野上
芳宣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Sangyo Co Ltd
Original Assignee
Fujimori Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Sangyo Co Ltd filed Critical Fujimori Sangyo Co Ltd
Priority to JP2020183505A priority Critical patent/JP7583405B2/en
Publication of JP2022073486A publication Critical patent/JP2022073486A/en
Application granted granted Critical
Publication of JP7583405B2 publication Critical patent/JP7583405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Duct Arrangements (AREA)

Description

本発明は、建築物に設けられる通気ダクト用の断熱壁材に関する。 The present invention relates to insulating wall materials for ventilation ducts installed in buildings.

一般に建築物の厨房排気ダクト、空調ダクト、煙突などの通気ダクトには、耐熱や保温用の断熱材が設けられている。この種の通気ダクト用断熱材は、ガラス繊維フェルトやケイ酸カルシウムによって構成されている。 Ventilation ducts in buildings, such as kitchen exhaust ducts, air conditioning ducts, and chimneys, are generally equipped with heat-resistant and heat-retaining insulation. This type of insulation for ventilation ducts is made of glass fiber felt and calcium silicate.

特開2018-112329号公報JP 2018-112329 A 特開2020-003105号公報JP 2020-003105 A

ガラス繊維フェルト製の通気ダクト用断熱材は、所望の壁形状に成形しにくく、成形したとしても、自立してその壁形状を保持させるのは難しい。
ケイ酸カルシウム製の通気ダクト用断熱材は、比較的密度が高く重い。また、水分を吸収した後の脱水性に劣り、乾燥するのに時間がかかる。
本発明は、かかる事情に鑑み、所望の壁形状に成形しやすく、かつ自立して保形可能であり、かつ軽くて、脱水性も確保できる通気ダクト用断熱壁材を提供することを目的とする。
Fiberglass felt insulation for ventilation ducts is difficult to form into a desired wall shape, and even if it is formed, it is difficult to make it stand on its own and maintain that wall shape.
Calcium silicate ventilation duct insulation is relatively dense and heavy, and has poor dehydration properties after absorbing moisture, so it takes a long time to dry.
In view of the above circumstances, an object of the present invention is to provide an insulating wall material for ventilation ducts which can be easily formed into a desired wall shape, can stand on its own and retain its shape, is lightweight, and has good dewatering properties.

前記課題を解決するため、本発明は、建築物の通気ダクトにおける断熱壁材であって、
前記通気ダクトの流路に沿う所定の壁形状に成形された断熱成形体を備え、前記断熱成形体が、ガラス繊維の解繊体が積み重ねられて圧縮された積重圧縮体と、前記積重圧縮体内に拡散されて前記解繊体どうしを接合する無機バインダ硬化物とを含み、
前記断熱成形体における前記積重圧縮体の密度が、190kg/m~370kg/m程度であることを特徴とする。
これによって、所望の壁形状に成形しやすく、かつ自立して保形可能であり、かつ軽量で、ある程度の脱水性も確保できる通気ダクト用断熱壁材が得られる。
In order to solve the above problems, the present invention provides a heat insulating wall material for a ventilation duct of a building,
a heat insulating shaped body formed into a predetermined wall shape along a flow path of the ventilation duct, the heat insulating shaped body including a stacked compressed body in which defibrated glass fiber bodies are stacked and compressed, and a cured inorganic binder that is diffused in the stacked compressed body and bonds the defibrated bodies together,
The density of the stacked compressed body in the heat insulating molded body is about 190 kg/m 3 to 370 kg/m 3 .
This makes it possible to obtain a heat insulating wall material for ventilation ducts which can be easily formed into a desired wall shape, can stand on its own and retain its shape, is lightweight, and has a certain degree of dewatering properties.

当該通気ダクト用断熱壁材の両面を当て板で挟み、ボルトを貫通させて20Nmの締め付けトルクを付与したときの減厚度合が、60%以下であることが好ましい。これによって、断熱壁材の耐締付力ひいては自立保形性を確実に確保できる。断熱壁材の耐締付力ひいては自立保形性の確保の観点からは、前記密度が250kg/m超370kg/m程度以下であることがより好ましい。
当該通気ダクト用断熱壁材における、実質完全吸水時の重量に対する、吸水後の脱水開始から25時間経過後の重量減少割合が、温度20℃~30℃、相対湿度60%RH~80%RHにおいて、6%超であることが好ましく、8%以上であることがより好まししく、9%以上であることが一層好ましい。これによって、断熱壁材の脱水性を確保できる。断熱壁材の軽量化の観点又は脱水性確保の観点からは、前記密度が190kg/m程度以上200kg/m未満であることがより好ましく、脱水性確保の観点からは250kg/m 超370kg/m 以下であってもよい。
実質完全吸水時であるから、断熱壁材が完全に吸水した段階に限らず、ほぼ完全に吸水した段階でもよく、具体的には完全吸水状態の90%程度以上、吸水した段階であればよい。通常、当該断熱壁材を水に漬けると数分でほぼ完全に吸水した状態になり、それ以後、吸水を継続しても、吸水による重量増大はほとんど起きない。
It is preferable that the thickness reduction degree when both sides of the insulating wall material for ventilation ducts are sandwiched between backing plates and a bolt is inserted through the insulating wall material and a tightening torque of 20 Nm is applied is 60% or less. This ensures the tightening resistance and thus the self-supporting shape retention of the insulating wall material. From the viewpoint of ensuring the tightening resistance and thus the self-supporting shape retention of the insulating wall material, it is more preferable that the density is more than 250 kg/ m3 and not more than about 370 kg/ m3 .
In the insulating wall material for ventilation ducts, the weight loss ratio after 25 hours from the start of dehydration after water absorption to the weight at the time of substantially complete water absorption is preferably more than 6%, more preferably 8% or more, and even more preferably 9% or more at a temperature of 20°C to 30°C and a relative humidity of 60% RH to 80% RH. This ensures the dehydration of the insulating wall material. From the viewpoint of reducing the weight of the insulating wall material or ensuring dehydration, the density is more preferably about 190 kg/ m3 or more and less than 200 kg/ m3 , and from the viewpoint of ensuring dehydration, it may be more than 250 kg/ m3 and 370 kg/m3 or less .
The time when the heat insulating wall material is substantially completely absorbed is not limited to the time when the heat insulating wall material is completely absorbed, but may be the time when the heat insulating wall material is almost completely absorbed, specifically, the time when the heat insulating wall material is at a state where ...

前記解繊体が積み重ねられた圧縮前の積重体の密度は、100kg/m~200kg/m程度であることが好ましい。
前記積重圧縮体には、厚み方向へ延びる筋状部が面内方向に分散して多数形成されており、各筋状部においては前記解繊体が互いに絡み合っていることが好ましい。
前記厚み方向は、断熱壁材における内側面(前記流路を向く面)と外側面を結ぶ方向を言う。前記面内方向は、前記厚み方向と直交する面に沿う方向、又は前記内側面もしくは前記外側面に沿う方向を言う。好ましくは、前記積重体は、前記厚み方向へ圧縮されることによって前記積重圧縮体となる。
The density of the stack of defibrated materials before compression is preferably about 100 kg/m 3 to 200 kg/m 3 .
It is preferable that the compressed stack has a large number of streaks extending in the thickness direction and distributed in the in-plane direction, and that the defibrated bodies are intertwined with each other in each streaky portion.
The thickness direction refers to a direction connecting an inner surface (a surface facing the flow path) and an outer surface of the insulating wall material. The in-plane direction refers to a direction along a surface perpendicular to the thickness direction, or a direction along the inner surface or the outer surface. Preferably, the stack is compressed in the thickness direction to become the stacked compressed body.

前記通気ダクト用断熱壁材が、前記断熱成形体の表面を覆う表層シートを更に備え、前記表層シートが、前記表面の無機バインダ硬化物によって前記断熱成形体と直接接着されていることが好ましい。前記表面は、前記断熱成形体の外面でもよく内面ないしは流路画成面でもよい。 It is preferable that the heat insulating wall material for ventilation ducts further comprises a surface layer sheet covering the surface of the heat insulating molded body, and the surface layer sheet is directly bonded to the heat insulating molded body by the inorganic binder cured product on the surface. The surface may be the outer surface of the heat insulating molded body, or the inner surface or flow path defining surface.

本発明によれば、所望の壁形状に成形しやすく、かつ自立して保形可能であり、かつ軽量で、ある程度の脱水性も確保できる通気ダクト用断熱壁材を得ることができる。 The present invention makes it possible to obtain an insulating wall material for ventilation ducts that is easy to mold into a desired wall shape, can stand on its own and retain its shape, is lightweight, and has a certain degree of dewatering properties.

図1は、本発明の一実施形態に係る建築物用通気ダクトの断面図である。FIG. 1 is a cross-sectional view of a ventilation duct for a building according to one embodiment of the present invention. 図2は、前記建築物用通気ダクトの斜視図である。FIG. 2 is a perspective view of the building ventilation duct. 図3は、前記建築物用通気ダクトの分解斜視図である。FIG. 3 is an exploded perspective view of the air duct for a building. 図4は、前記建築物用通気ダクトの断熱壁材の拡大断面構造を解説的に示す解説図である。FIG. 4 is an explanatory diagram illustrating an enlarged cross-sectional structure of the insulating wall material of the building ventilation duct. 図5(a)~(h)は、前記断熱壁材の製造工程の説明図である。5(a) to (h) are explanatory diagrams of the manufacturing process of the heat insulating wall material.

以下、本発明の一実施形態を図面にしたがって説明する。
図1及び図2は、建築物用通気ダクト1を示す。建築物は、家屋でもよく、オフィスビルでもよく、工場でもよい。建築物用通気ダクト1は、厨房排気ダクトでもよく、空調ダクトでもよく、煙突(排煙ダクト)でもよい。
建築物用通気ダクト1は、例えば円筒形になっている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a building ventilation duct 1. The building may be a house, an office building, or a factory. The building ventilation duct 1 may be a kitchen exhaust duct, an air conditioning duct, or a chimney (smoke exhaust duct).
The building ventilation duct 1 has, for example, a cylindrical shape.

図1及び図3に示すように、建築物用通気ダクト1は、断熱壁材2と、内面部材3を備えている。断熱壁材2は、一対の断熱成形体10と、表層シート4を含む。断熱成形体10は、建築物用通気ダクト1の壁形状に合わせて成形されている。例えば、各断熱成形体10は、半割円筒形になっている。2つの断熱成形体10が合わさり、円筒形状の断熱壁材2が形成されている。
図示は省略するが、断熱成形体10どうしの接合手段としては、粘着テープや接着剤が用いられている。
As shown in Figures 1 and 3, the building ventilation duct 1 includes a heat insulating wall material 2 and an inner surface member 3. The heat insulating wall material 2 includes a pair of heat insulating molded bodies 10 and a surface sheet 4. The heat insulating molded bodies 10 are molded to match the wall shape of the building ventilation duct 1. For example, each heat insulating molded body 10 has a half-cylinder shape. Two heat insulating molded bodies 10 are joined together to form the cylindrical heat insulating wall material 2.
Although not shown in the drawings, adhesive tape or adhesive is used as a means for joining the heat insulating bodies 10 together.

図4に示すように、断熱成形体10は、積重圧縮体11と、無機バインダ硬化物12を含む。積重圧縮体11は、ガラス繊維の解繊体11aを多数、積み重ねた積重体11xを圧縮したものである。
前記ガラス繊維は、SiOを主成分として含み、その他、Al、Fe、TiO、CaO、NaO等を含み得る。ガラス繊維におけるSiOの含有量は、好ましくは50~98wt%程度 、より好ましくは60~95wt%程度、一層好ましくは70~95wt%程度である。
前記ガラス繊維の解繊体11aは、好ましくは長繊維であり、その平均長さは通常10mm以上、好ましくは20mm以上、より好ましくは30mm 以上、一層好ましくは50mm 以上である。解繊体11aの平均直径は、通常2~30μm程度 、好ましくは5~30μm程度、より好ましくは5~20μm程度、一層好ましくは5~15μm程度である。
解繊体11aが積み重ねられた圧縮前の積重体11x(図5(d))の密度は、好ましくは100kg/m~200kg/m程度である。
断熱成形体10における積重圧縮体11の密度は、190kg/m~370kg/m程度である。
As shown in Fig. 4, the heat insulating molded body 10 includes a stacked compressed body 11 and a cured inorganic binder 12. The stacked compressed body 11 is obtained by compressing a stack 11x in which a large number of defibrated glass fiber bodies 11a are stacked.
The glass fiber contains SiO 2 as a main component, and may also contain Al 2 O 3 , Fe 2 O 3 , TiO 2 , CaO, Na 2 O, etc. The SiO 2 content in the glass fiber is preferably about 50 to 98 wt %, more preferably about 60 to 95 wt %, and even more preferably about 70 to 95 wt %.
The defibrated glass fiber material 11a is preferably long fiber, and its average length is usually 10 mm or more, preferably 20 mm or more, more preferably 30 mm or more, and even more preferably 50 mm or more. The average diameter of the defibrated glass fiber material 11a is usually about 2 to 30 μm, preferably about 5 to 30 μm, more preferably about 5 to 20 μm, and even more preferably about 5 to 15 μm.
The density of the stack 11x (FIG. 5(d)) in which the defibrated bodies 11a are stacked before compression is preferably about 100 kg/m 3 to 200 kg/m 3 .
The density of the compressed laminate 11 in the heat insulating molded body 10 is about 190 kg/m 3 to 370 kg/m 3 .

無機バインダ硬化物12は、積重体11xに塗布・含浸された無機バインダ12a(図5(e))が硬化したものである。無機バインダ硬化物12を介して解繊体11aどうしが接合されている。無機バインダ硬化物12は、断熱成形体10の全域にほぼ均一に分散されている。
好ましくは、無機バインダ12aは、塗布・含浸時には液状体であり、加熱によって不可逆的に硬化する熱硬化性無機バインダである。
無機バインダ12aの主成分としては、シリカ、珪酸アルミニウムその他の粘土鉱物が挙げられる。シリカと珪酸アルミニウムの重量配合比は、例えばシリカ:珪酸アルミニウム=50:50~10:90である。
さらに硬化前の無機バインダ12aには水その他の液体も含まれている。水等の液体の配合量によって、無機バインダ12aの粘性を調整できる。珪酸アルミニウムが含水珪酸アルミニウムであってもよい。
The hardened inorganic binder 12 is formed by hardening the inorganic binder 12a ( FIG. 5( e )) that is applied to and impregnated into the stack 11x. The defibrated bodies 11a are bonded together via the hardened inorganic binder 12. The hardened inorganic binder 12 is dispersed almost uniformly over the entire area of the heat insulating molded body 10.
Preferably, the inorganic binder 12a is a thermosetting inorganic binder that is in a liquid state when applied or impregnated and is irreversibly cured by heating.
The main components of the inorganic binder 12a include silica, aluminum silicate, and other clay minerals. The weight ratio of silica to aluminum silicate is, for example, silica:aluminum silicate=50:50 to 10:90.
Furthermore, the inorganic binder 12a before hardening also contains water and other liquids. The viscosity of the inorganic binder 12a can be adjusted by the amount of liquid such as water. The aluminum silicate may be hydrated aluminum silicate.

断熱成形体10に占める解繊体11aの割合は、好ましくは80wt%~90wt%程度である。
断熱成形体10に占める無機バインダ硬化物12の割合は、好ましくは10wt%~20wt%である。
断熱成形体10において、解繊体11a及び無機バインダ硬化物12を除いた残部は、ボイド(空隙部ないしは空気層)によってほとんど占められている。断熱成形体10におけるボイド(空隙部)の体積割合は、好ましくは0.1vol%~10vol%程度であり、より好ましくは、0.5vol%~5vol%程度である。ボイドは、断熱成形体10の内部にほぼ均一に分散されている。
The proportion of the defibrated body 11a in the heat insulating molded body 10 is preferably about 80 wt % to 90 wt %.
The proportion of the cured inorganic binder 12 in the heat insulating molded body 10 is preferably 10 wt % to 20 wt %.
In the heat insulating molded body 10, the remainder excluding the defibrated body 11a and the inorganic binder cured material 12 is mostly occupied by voids (air gaps or air layers). The volume ratio of the voids (air gaps) in the heat insulating molded body 10 is preferably about 0.1 vol% to 10 vol%, and more preferably about 0.5 vol% to 5 vol%. The voids are almost uniformly dispersed inside the heat insulating molded body 10.

積重圧縮体11ひいては断熱成形体10には、多数の筋状部13が形成されている。これら筋状部13は、それぞれ断熱成形体10の厚み方向(径方向、図4の上下方向)へ延びるとともに、互いに断熱成形体10の面内方向(周方向及び軸長方向、図4の左右及び紙面直交方法)に分散して配置され、好ましくはほぼ均一間隔で配置されている。各筋状部13においては、解繊体11aが互いに絡み合っている。筋状部13の配置間隔d13は、好ましくはd13=0.1mm~10mm程度であり、より好ましくはd13=0.5mm~5mm程度である。 A large number of streak portions 13 are formed in the stacked compressed body 11 and thus in the heat insulating molded body 10. These streak portions 13 each extend in the thickness direction (radial direction, up and down direction in FIG. 4) of the heat insulating molded body 10, and are arranged dispersedly in the in-plane directions (circumferential direction and axial length direction, left and right in FIG. 4 and perpendicular to the paper surface), preferably arranged at approximately uniform intervals. In each streak portion 13, the defibrated bodies 11a are intertwined with each other. The arrangement interval d 13 of the streak portions 13 is preferably d 13 = about 0.1 mm to 10 mm, more preferably d 13 = about 0.5 mm to 5 mm.

断熱成形体10の外周面(表面)は、アルミガラスクロス等の表層シート4によって覆われている。表層シート4は、断熱成形体10の外周面に現れた無機バインダによって断熱成形体10と直接接着されて一体化されている。別途、表層シート4を接合するための接着剤は用いられていない。
断熱壁材2の両面を鋼板からなる当て板で挟み、ボルトを貫通させて20Nmの締め付けトルクを付与したときの減厚度合は、好ましくは60%以下である。
断熱壁材2における、実質完全吸水時の重量に対する、吸水後の脱水開始から25時間経過後の重量減少割合は、温度20℃~30℃、相対湿度60%RH~80%RHの環境において、好ましくは6%超、より好ましくは8%以上、一層好ましくは9%以上である。
The outer peripheral surface (surface) of the heat insulating molded body 10 is covered with a surface sheet 4 such as an aluminum glass cloth. The surface sheet 4 is directly bonded and integrated with the heat insulating molded body 10 by an inorganic binder that appears on the outer peripheral surface of the heat insulating molded body 10. No separate adhesive is used to bond the surface sheet 4.
When both sides of the insulating wall material 2 are sandwiched between backing plates made of steel plates and bolts are inserted through the material and tightened with a tightening torque of 20 Nm, the degree of thickness reduction is preferably 60% or less.
The weight loss ratio of the insulating wall material 2 after 25 hours from the start of dehydration after water absorption to the weight at the time of substantially complete water absorption is preferably more than 6%, more preferably 8% or more, and even more preferably 9% or more in an environment of a temperature of 20°C to 30°C and a relative humidity of 60% RH to 80% RH.

断熱壁材2の内周面には内面部材3が設けられている。内面部材3は、例えば円形断面の金属管によって構成されている。内面部材3の内部空間が、厨房排気エア、空調エア、煙突排ガスなどの流通対象流体の流路となっている。
前記金属管としては、亜鉛めっき鋼板のスパイラル管でもよく、ステンレススチール管でもよい。内面部材3の材質は、金属に限らず、樹脂、セラミックス、紙、木材等であってもよい。内面部材3が、表層シート4と同様のシートによって構成され、断熱成形体10の内周面(表面)に現れた無機バインダによって断熱成形体10と直接接着されて一体化されていてもよい。
An inner surface member 3 is provided on the inner peripheral surface of the heat insulating wall material 2. The inner surface member 3 is formed of, for example, a metal pipe having a circular cross section. The internal space of the inner surface member 3 serves as a flow path for the fluid to be circulated, such as kitchen exhaust air, air conditioning air, and chimney exhaust gas.
The metal pipe may be a spiral pipe of a galvanized steel sheet or a stainless steel pipe. The material of the inner surface member 3 is not limited to metal, and may be resin, ceramics, paper, wood, etc. The inner surface member 3 may be formed of a sheet similar to the surface sheet 4, and may be directly bonded to the heat insulating molded body 10 by an inorganic binder that appears on the inner peripheral surface (surface) of the heat insulating molded body 10 to be integrated with it.

前記の建築物用通気ダクト1は、次のようにして製造される。
図5(a)に示すように、材料となるガラス繊維2aを用意する。
図5(b)に示すように、ガラス繊維2aを解繊して、解繊体11aを得る。該解繊体11aを堆積させることで、積重体11xを形成する。
図5(c)に示すように、多数の針5aを有するニードルパンチ装置5によって、積重体11xにニードルパンチ(針穿)を施す。針5aには突起状の返し5cが形成されている。針5aの高速往復動によって、解繊体11aが互いに絡み合う。これによって、図5(d)に示すように、積重体11xがマット状になるとともに、積重体11xの厚み方向へ延びる多数の筋状部13が形成される。
この段階の積重体11xは、保形性が無く、重力その他の外力によって容易に変形され得る。
The building ventilation duct 1 is manufactured as follows.
As shown in FIG. 5(a), glass fibers 2a serving as a material are prepared.
5(b), the glass fibers 2a are defibrated to obtain a defibrated body 11a. The defibrated body 11a is piled up to form a stack 11x.
As shown in Fig. 5(c), the stack 11x is needle-punched by a needle punch device 5 having many needles 5a. The needles 5a have protruding barbs 5c. The high-speed reciprocating motion of the needles 5a causes the defibrated bodies 11a to intertwine with each other. As a result, as shown in Fig. 5(d), the stack 11x becomes mat-like, and many streaky portions 13 extending in the thickness direction of the stack 11x are formed.
The stack 11x at this stage has no shape retention and can be easily deformed by gravity or other external forces.

続いて、図5(e)に示すように、前記積重体11xの両面(同図において上面及び下面)に無機バインダ12aを塗布する。塗布は、好ましくはローラで行う。スプレーで塗布してもよい。
塗布に代えて、積重体11xを無機バインダ槽に漬けることで、積重体11x内に無機バインダ12aを含浸させてもよい。この場合、積重体11xの上面側の部分及び下面側の部分をそれぞれ積重体11xの厚みの半分以下だけ無機バインダ槽に漬けることが好ましい。積重体11xの厚み方向の中央部分には、無機バインダ12aの非含浸層が形成されることが好ましい。これによって、積重体11x内にボイド(空気層)を確保できる。 このため、塗布又は含浸から後記圧縮成形までの段階においては、積重体11x中の無機バインダ12aの含有率が、積重体11xの両面側部分(上面側部分及び下面側部分)では高く、積重体11xの厚み方向の中央部分では低い。また、積重体11x中のボイド(空隙部)の存在率が、積重体11xの両面側部分では低く、積重体11xの厚み方向の中央部分では高い。
5(e), an inorganic binder 12a is applied to both surfaces (upper and lower surfaces in the figure) of the stack 11x. The application is preferably performed by a roller, but may also be performed by a spray.
Instead of coating, the stack 11x may be immersed in an inorganic binder tank to impregnate the inorganic binder 12a into the stack 11x. In this case, it is preferable to immerse the upper and lower parts of the stack 11x in the inorganic binder tank by half or less of the thickness of the stack 11x. It is preferable to form a non-impregnated layer of the inorganic binder 12a in the central part of the stack 11x in the thickness direction. This ensures a void (air layer) in the stack 11x. For this reason, in the stage from coating or impregnation to the compression molding described later, the content of the inorganic binder 12a in the stack 11x is high on both side parts (upper and lower parts) of the stack 11x and low in the central part of the stack 11x in the thickness direction. In addition, the presence rate of voids (air gaps) in the stack 11x is low on both side parts of the stack 11x and high in the central part of the stack 11x in the thickness direction.

図5(f)に示すように、塗布又は含浸後の積重体11xの上面(通気ダクト1の外周
側を向く表面)には、表層シート4を貼り付けておく。表層シート4は、積重体11xの上面に現れた無機バインダ12aによって直接的に積重体11xと接着される。
5(f), a surface sheet 4 is attached to the upper surface (the surface facing the outer periphery of the ventilation duct 1) of the stack 11x after coating or impregnation. The surface sheet 4 is directly bonded to the stack 11x by the inorganic binder 12a that appears on the upper surface of the stack 11x.

図5(f)に示すように、別途、断熱成形体10の仕上がり形状(半割筒形状)に対応する型面6a,7aを有する金型6,7を用意する。金型6,7の少なくとも一方にはヒータ8が組み込まれている。図において、ヒータ8は、複数本の棒状ヒータによって構成されているが、これに限らず、プレートヒータなどであってもよい。 As shown in FIG. 5(f), molds 6 and 7 having mold surfaces 6a and 7a corresponding to the finished shape (half-cylinder shape) of the heat-insulating molded body 10 are prepared separately. A heater 8 is built into at least one of the molds 6 and 7. In the figure, the heater 8 is composed of multiple rod-shaped heaters, but is not limited to this and may be a plate heater, etc.

前記積重体11xを金型6,7間にセットする。
続いて、図5(g)に示すように、金型6,7を閉じて、積重体11xをヒータ8によって加熱しながら加圧して圧縮成形する。加圧には、エアシリンダを用いることが好ましい。
前記加熱及び圧縮成形工程における加圧力は、0.1MPa~0.7MPa程度が好ましい。加熱温度は、100℃~400℃程度が好ましい。成形時間(前記加圧力の印加及び加熱の継続時間)は、3分~30分程度が好ましい。
これによって、積重体11xが厚み方向に圧縮され、積重圧縮体11となる。好ましくは、積重圧縮体11の厚みが、圧縮前の積重体11xの厚みの2分の1~5分の4程度になるように圧縮成形される。
また、加熱によって、無機バインダ12aの流動性が増し、更に無機バインダ12aの液成分の沸騰、気化、放散が起きる。この過程で無機バインダ12aの固形成分が積重体11x内の全域に拡散されながら無機バインダ硬化物12となる。
さらに、積重体11x内のボイド(空隙部ないしは空気層)が積重体11xの圧縮によって減容されるとともに、無機バインダ12aの拡散、液成分の気化・放散に伴って、積重圧縮体11内の全域にボイドが拡散される。
図5(h)に示すように、その後、脱型する。
The stack 11x is set between the molds 6 and 7.
5(g), the dies 6 and 7 are closed, and the stack 11x is compressed and molded while being heated by a heater 8. An air cylinder is preferably used for the compression.
The pressure in the heating and compression molding step is preferably about 0.1 MPa to 0.7 MPa. The heating temperature is preferably about 100° C. to 400° C. The molding time (duration of application of the pressure and heating) is preferably about 3 minutes to 30 minutes.
As a result, the stack 11x is compressed in the thickness direction to become the compressed stack body 11. Preferably, the compressed stack body 11 is compression molded so that the thickness of the compressed stack body 11 is about one half to one fourth of the thickness of the stack 11x before compression.
In addition, the heating increases the fluidity of the inorganic binder 12a, and the liquid component of the inorganic binder 12a boils, vaporizes, and dissipates. In this process, the solid component of the inorganic binder 12a diffuses throughout the entire stack 11x and becomes the cured inorganic binder 12.
Furthermore, the voids (air gaps or air layers) in the stack 11x are reduced in volume by the compression of the stack 11x, and the voids are diffused throughout the entire compressed stack 11 as the inorganic binder 12a diffuses and the liquid components evaporate and dissipate.
As shown in FIG. 5(h), the mold is then removed.

これによって、ダクト1の少なくとも一部の壁形状(半割筒形状)を有する断熱成形体10が成形される。無機バインダ硬化物12を介して、断熱成形体10の全域の解繊体11aが万遍なく接合されることによって、断熱成形体10の自立保形性が確保される。更に、筋状部13においては解繊体11aが互いに絡み合っているために、積重圧縮体11がばらけるのを一層確実に防止でき、断熱成形体10の自立保形性を一層高めることができる。
断熱成形体10の主材としてガラス繊維を用いることによって、断熱成形体10の断熱性及び耐熱性を確保できる。
更に、バインダとして有機バインダではなく無機バインダを用いることによって、断熱成形体10の耐熱性、耐火性、断熱性を確保できる。加えて、断熱成形体10の全域にわたってボイドが均一に分散されることで、断熱性が一層高まる。
断熱成形体10の外周面(表面)には、表層シート4が一体的に積層される。表層シート4は、断熱成形体10の外周面(表面)の無機バインダ硬化物12によって直接的に断熱成形体10と接合される。無機バインダ硬化物12が表層シート4の接合手段となるから、接着剤などの別途の接合手段は不要である。
This forms the heat insulating molded body 10 having at least a part of the wall shape (semi-cylinder shape) of the duct 1. The defibrated bodies 11a throughout the entire heat insulating molded body 10 are bonded evenly via the cured inorganic binder 12, thereby ensuring the self-supporting shape retention of the heat insulating molded body 10. Furthermore, since the defibrated bodies 11a are entangled with each other in the streak-like portions 13, it is possible to more reliably prevent the stacked compressed body 11 from coming apart, and the self-supporting shape retention of the heat insulating molded body 10 can be further improved.
By using glass fiber as the main material of the heat insulating molding 10, the heat insulating properties and heat resistance of the heat insulating molding 10 can be ensured.
Furthermore, by using an inorganic binder instead of an organic binder as the binder, it is possible to ensure the heat resistance, fire resistance, and heat insulation of the heat insulating molded body 10. In addition, by uniformly dispersing voids throughout the entire heat insulating molded body 10, the heat insulation property is further improved.
A surface sheet 4 is laminated integrally on the outer peripheral surface (surface) of the heat insulating molded body 10. The surface sheet 4 is directly bonded to the heat insulating molded body 10 by the cured inorganic binder 12 on the outer peripheral surface (surface) of the heat insulating molded body 10. Since the cured inorganic binder 12 serves as a bonding means for the surface sheet 4, a separate bonding means such as an adhesive is not required.

前記半割筒形状の断熱成形体10を一対作製する。
これら一対の断熱成形体10を、別途作製した内面部材3の両側部に被せる。
また、粘着テープや接着剤などの接合手段によって一対の断熱成形体10を接合する。これによって、円筒形状の断熱壁材2が得られる。
このようにして、建築物用通気ダクト1が得られる。内面部材3は、断熱壁材2の内周面から解繊体11aが飛散するのを防止する機能を果たす。表層シート4は、断熱壁材2の外周面から解繊体11aが飛散するのを防止する機能を果たす。
本発明形態によれば、種々の建築物用通気ダクトの壁形状に応じた金型を用意することによって、断熱成形体10の形状ひいては断熱壁材2の形状を任意に設定できる。
断熱成形体10における積重圧縮体11の密度を190kg/m~370kg/m程度とすることによって、自立して保形可能であり、かつ軽量で、ある程度の脱水性をも有する通気ダクト用断熱壁材が得られる。
前記密度を190kg/m以上、好ましくは250kg/m超とし、前記減厚度合を60%以下とすることによって、通気ダクト用断熱壁材2の耐締付力ひいては自立保形性を十分に確保できる。
前記密度を370kg/m以下(250kg/m 超でもよく)、好ましくは200kg/m未満とし、前記重量減少割合を好ましくは6%超、より好ましくは8%以上、一層好ましくは9%以上とすることによって、断熱壁材2を軽量にでき、かつ通気ダクト用断熱壁材2としての脱水性を確保できる。
A pair of the semi-cylindrical heat insulating molded bodies 10 are prepared.
The pair of heat insulating molded bodies 10 are placed on both sides of the inner surface member 3 which is separately prepared.
The pair of heat insulating molded bodies 10 are joined together by a joining means such as an adhesive tape or an adhesive, thereby obtaining a cylindrical heat insulating wall material 2.
In this manner, the building ventilation duct 1 is obtained. The inner surface member 3 serves to prevent the defibrated body 11a from scattering from the inner peripheral surface of the insulating wall material 2. The surface sheet 4 serves to prevent the defibrated body 11a from scattering from the outer peripheral surface of the insulating wall material 2.
According to the present invention, by preparing a mold corresponding to the wall shape of various building ventilation ducts, the shape of the heat insulating molded body 10 and therefore the shape of the heat insulating wall material 2 can be set arbitrarily.
By setting the density of the stacked compressed body 11 in the heat insulating molded body 10 to about 190 kg/m 3 to 370 kg/m 3 , a heat insulating wall material for ventilation ducts that is self-supporting and capable of retaining its shape, is lightweight, and has a certain degree of dewatering ability can be obtained.
By setting the density to 190 kg/m3 or more , preferably more than 250 kg/ m3 , and setting the degree of thickness reduction to 60% or less, the tightening resistance and therefore the self-supporting shape retention of the insulating wall material 2 for ventilation ducts can be sufficiently ensured.
By setting the density to 370 kg/m3 or less (but may be more than 250 kg/m3 ) , preferably less than 200 kg/ m3 , and setting the weight reduction rate to preferably more than 6%, more preferably 8% or more, and even more preferably 9% or more, the insulating wall material 2 can be made lightweight and dewaterability as an insulating wall material 2 for a ventilation duct can be ensured.

本発明は、前記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
例えば、建築物用通気ダクトは、厨房排気フード、空調ダクト、煙突に限られず、換気ダクトなどであってもよい。
通気ダクトの形状は、円筒形に限らず、四角筒形その他の多角筒形でもよく、その他様々な形状でもよい。断熱壁材は、平板状でもよく、湾曲板状でもよく、その他様々な形状であってもよい。
解繊体11aは、長繊維に限られず、短繊維であってもよい。
無機バインダ12aは、熱硬化性バインダに限らず、例えば水和反応等によって硬化する水硬化性バインダなどであってもよい。無機バインダ12aは、加熱によって溶融して解繊体11aどうしを接合し、その後、冷却によって硬化されるものであってもよい。無機バインダ12aが、分散媒又は溶媒を含んでいてもよい。加熱時に分散媒又は溶媒が気化されてもよい。分散媒又は溶媒は水であってもよい。
壁形状の断熱成形体における内面(ダクト流路画成面)に表層シート4を設けてもよい。断熱成形体における内面の無機バインダによって前記表層シート4を断熱成形体と直接接着してもよい。表層シートは省略してもよい。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the building ventilation duct is not limited to a kitchen exhaust hood, an air conditioning duct, or a chimney, but may be a ventilation duct or the like.
The shape of the ventilation duct is not limited to a cylindrical shape, but may be a rectangular or other polygonal cylindrical shape, or may be any other shape. The insulating wall material may be a flat plate, a curved plate, or any other shape.
The defibrated body 11a is not limited to long fibers, and may be short fibers.
The inorganic binder 12a is not limited to a thermosetting binder, and may be, for example, a water-setting binder that hardens by a hydration reaction or the like. The inorganic binder 12a may be melted by heating to bond the defibrated bodies 11a together, and then hardened by cooling. The inorganic binder 12a may contain a dispersion medium or a solvent. The dispersion medium or solvent may be vaporized when heated. The dispersion medium or solvent may be water.
A surface layer sheet 4 may be provided on the inner surface (the surface defining the duct flow path) of the wall-shaped heat insulating molded body. The surface layer sheet 4 may be directly bonded to the heat insulating molded body by an inorganic binder on the inner surface of the heat insulating molded body. The surface layer sheet may be omitted.

実施例を説明する。本発明が以下の実施例に限定されるものではない。
実施例1では、断熱壁材の密度に応じた耐締付力を検証した。
積重圧縮体と無機バインダ硬化物を含む断熱成形体からなる断熱壁材のサンプル1~4を用意した。
断熱壁材サンプル1~4の縦横サイズは、約100mm×約100mmであり、初期(締め付け前)の厚みは19.7mm~20.7mmであった。なお、厚みは、各断熱壁材サンプル1~4の4点で測定し、その平均値を採用した(実施例2において同様)。
断熱壁材サンプルの初期(締め付け前)の密度は、198kg/m~367kg/mであった。
各断熱壁材サンプル1~4の両面を一対の鋼板からなる当て板で挟み、ボルトを一方の当て板から断熱壁材サンプル1~4及び他方の当て板へ貫通させてナットをねじ込み、20Nmの締め付けトルクを付与したときの減厚度合((初期厚み-締付時厚み/初期厚み)を測定した。
表1に示すように、測定結果は、それぞれ59%、50%、42%、30%であり、通気ダクト用断熱壁材として十分な自立保形性が確保されることが確認された。
The present invention is not limited to the following examples.
In Example 1, the clamping force resistance according to the density of the insulating wall material was verified.
Samples 1 to 4 of a heat insulating wall material were prepared, each of which was made of a heat insulating molded body containing a compressed laminate and a cured inorganic binder.
The length and width of the insulating wall material samples 1 to 4 were approximately 100 mm x approximately 100 mm, and the initial thickness (before tightening) was 19.7 mm to 20.7 mm. The thickness was measured at four points on each of the insulating wall material samples 1 to 4, and the average value was used (similar to Example 2).
The initial (pre-clamping) densities of the insulating wall material samples ranged from 198 kg/m 3 to 367 kg/m 3 .
Both sides of each of the insulating wall material samples 1 to 4 were sandwiched between a pair of backing plates made of steel plates, a bolt was passed from one backing plate through the insulating wall material samples 1 to 4 and the other backing plate, a nut was screwed in, and the degree of thickness reduction ( (initial thickness - thickness after tightening ) / initial thickness) was measured when a tightening torque of 20 Nm was applied.
As shown in Table 1, the measurement results were 59%, 50%, 42%, and 30%, respectively, confirming that sufficient self-supporting shape retention was ensured for use as an insulating wall material for ventilation ducts.

Figure 0007583405000001
Figure 0007583405000001

実施例2では、断熱壁材の密度に応じた吸水後の脱水性を検証した。
積重圧縮体と無機バインダ硬化物を含む断熱成形体からなる断熱壁材サンプル5~8を用意した。
各断熱壁材サンプル5~8の縦横サイズは、約100mm×約100mmであり、厚みは20mm~20.8mmであった。
断熱壁材サンプルの初期(吸水前)の重量は、0.041kg~0.073kgであった。
断熱壁材サンプルの密度は、205kg/m~347kg/mであった。
これら断熱壁材サンプルを、バケツ内の水に漬けて吸水させた(吸水工程)。これら断熱壁材サンプルを1時間(60分)の吸水工程によって実質完全吸水させた後、バケツから取り出して、直後の重量を測定したところ、0.220kg~0.244kgであった。
前記取り出した断熱壁材サンプルを温度20℃~30℃、相対湿度60%RH~80%RHの環境に静置して脱水させた。
表2に示すように、前記取り出し時(吸水工程終了時)から25時間経過の断熱壁材サンプルの重量は、0.197kg~0.221kgであり、重量減少割合は、9%~10%であった。
In Example 2, the dehydration after water absorption according to the density of the insulating wall material was examined.
Heat insulating wall material samples 5 to 8 were prepared, each of which was made of a heat insulating molded body containing a stacked compressed body and a cured inorganic binder.
The length and width of each of the heat insulating wall material samples 5 to 8 was about 100 mm×about 100 mm, and the thickness was 20 mm to 20.8 mm.
The initial weight (before water absorption) of the insulating wall material samples was 0.041 kg to 0.073 kg.
The densities of the insulating wall material samples ranged from 205 kg/m 3 to 347 kg/m 3 .
These insulating wall material samples were immersed in water in a bucket to absorb water (water absorption process). After these insulating wall material samples were substantially completely absorbed in the water absorption process for 1 hour (60 minutes), they were taken out of the bucket and immediately weighed, which was 0.220 kg to 0.244 kg.
The removed heat insulating wall material sample was left to stand in an environment at a temperature of 20° C. to 30° C. and a relative humidity of 60% RH to 80% RH to dehydrate.
As shown in Table 2, the weight of the insulating wall material sample 25 hours after removal (at the end of the water absorption step) was 0.197 kg to 0.221 kg, and the weight loss rate was 9% to 10%.

[比較例]
比較例として、ケイ酸カルシウムからなる断熱壁材サンプルを用意した。該ケイ酸カルシウムからなる断熱壁材サンプルの縦横サイズは99mm×99mm、厚みは26.3mm、密度は440kg/mであった。該ケイ酸カルシウムからなる断熱壁材サンプルについて、実施例2と同一条件で脱水性を検証したところ、重量減少割合は6%であった。
本発明に係る断熱壁材によれば、ケイ酸カルシウムからなる断熱壁材よりも軽量で、脱水性が優っていることが確認された。
[Comparative Example]
As a comparative example, a thermal insulation wall material sample made of calcium silicate was prepared. The length and width of the thermal insulation wall material sample made of calcium silicate was 99 mm x 99 mm, the thickness was 26.3 mm, and the density was 440 kg/ m3 . When the dehydration of the thermal insulation wall material sample made of calcium silicate was examined under the same conditions as in Example 2, the weight loss rate was 6%.
It has been confirmed that the insulating wall material according to the present invention is lighter in weight and has superior dewatering properties than insulating wall materials made of calcium silicate.

Figure 0007583405000002
Figure 0007583405000002

本発明は、例えば建築物における厨房排気ダクト、空調ダクト、煙突などの通気ダクトに適用できる。 The present invention can be applied to ventilation ducts such as kitchen exhaust ducts, air conditioning ducts, and chimneys in buildings, for example.

1 建築物用通気ダクト
2 断熱壁材
2a ガラス繊維
4 表層シート
10 断熱成形体
11 積重圧縮体
11a 解繊体
11x 積重体
12 無機バインダ硬化物
12a 無機バインダ
13 筋状部
Reference Signs List 1: Building ventilation duct 2: Insulating wall material 2a: Glass fiber 4: Surface sheet 10: Insulating molded body 11: Stacked compressed body 11a: Defibrated body 11x: Stacked body 12: Inorganic binder hardened body 12a: Inorganic binder 13: Stripe-like portion

Claims (2)

建築物の通気ダクトにおける通気ダクト用断熱壁材であって、
前記通気ダクトの流路に沿う所定の壁形状に成形された断熱成形体を備え、前記断熱成形体が、ガラス繊維の解繊体が積み重ねられて圧縮された積重圧縮体と、前記積重圧縮体内に拡散されて前記解繊体どうしを接合する無機バインダ硬化物とを含み、
前記断熱成形体における前記積重圧縮体の密度が、250kg/m超370kg/m以下であり、
当該通気ダクト用断熱壁材の両面を当て板で挟み、ボルトを貫通させて20Nmの締め付けトルクを付与したときの減厚度合が、50%以下であることを特徴とする通気ダクト用断熱壁材。
A heat insulating wall material for ventilation ducts in a ventilation duct of a building,
a heat insulating shaped body formed into a predetermined wall shape along a flow path of the ventilation duct, the heat insulating shaped body including a stacked compressed body in which defibrated glass fiber bodies are stacked and compressed, and a cured inorganic binder that is diffused in the stacked compressed body and bonds the defibrated bodies together,
The density of the stacked compressed body in the heat insulating molded body is more than 250 kg/ m3 and 370 kg/ m3 or less,
The insulating wall material for ventilation ducts is characterized in that when both sides of the insulating wall material for ventilation ducts are sandwiched between backing plates, a bolt is inserted through the insulating wall material and a tightening torque of 20 Nm is applied, the degree of thickness reduction is 50% or less.
建築物の通気ダクトにおける通気ダクト用断熱壁材であって、
前記通気ダクトの流路に沿う所定の壁形状に成形された断熱成形体を備え、前記断熱成形体が、ガラス繊維の解繊体が積み重ねられて圧縮された積重圧縮体と、前記積重圧縮体内に拡散されて前記解繊体どうしを接合する無機バインダ硬化物とを含み、
前記断熱成形体における前記積重圧縮体の密度が、250kg/m超370kg/m以下であり、
当該通気ダクト用断熱壁材における、実質完全吸水時の重量に対する、吸水後の脱水開始から25時間経過後の重量減少割合が、温度20℃~30℃、相対湿度60%RH~80%RHにおいて、9%以上であることを特徴とする通気ダクト用断熱壁材。
A heat insulating wall material for ventilation ducts in a ventilation duct of a building,
a heat insulating shaped body formed into a predetermined wall shape along a flow path of the ventilation duct, the heat insulating shaped body including a stacked compressed body in which defibrated glass fiber bodies are stacked and compressed, and a cured inorganic binder that is diffused in the stacked compressed body and bonds the defibrated bodies together,
The density of the stacked compressed body in the heat insulating molded body is more than 250 kg/ m3 and 370 kg/ m3 or less,
The insulating wall material for ventilation ducts is characterized in that the weight loss ratio after 25 hours from the start of dehydration after water absorption, relative to the weight when the insulating wall material for ventilation ducts has substantially completely absorbed water, is 9% or more at a temperature of 20°C to 30°C and a relative humidity of 60% RH to 80% RH.
JP2020183505A 2020-11-02 2020-11-02 Insulating wall material for building ventilation ducts Active JP7583405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020183505A JP7583405B2 (en) 2020-11-02 2020-11-02 Insulating wall material for building ventilation ducts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020183505A JP7583405B2 (en) 2020-11-02 2020-11-02 Insulating wall material for building ventilation ducts

Publications (2)

Publication Number Publication Date
JP2022073486A JP2022073486A (en) 2022-05-17
JP7583405B2 true JP7583405B2 (en) 2024-11-14

Family

ID=81605264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020183505A Active JP7583405B2 (en) 2020-11-02 2020-11-02 Insulating wall material for building ventilation ducts

Country Status (1)

Country Link
JP (1) JP7583405B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005033U (en) 1994-06-07 1994-12-06 旭ファイバーグラス株式会社 Thermal insulation cover of atypical duct for air conditioning and atypical duct for air conditioning with thermal cover

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005033U (en) 1994-06-07 1994-12-06 旭ファイバーグラス株式会社 Thermal insulation cover of atypical duct for air conditioning and atypical duct for air conditioning with thermal cover

Also Published As

Publication number Publication date
JP2022073486A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6804776B2 (en) Manufacturing method of heat insulating wall material for ventilation duct of building
US8753732B2 (en) Flexible insulating product
US9612064B2 (en) Thermally conductive composite element based on expanded graphite and production method
US10914071B2 (en) Aerogel containing construction board
JPH10510888A (en) Fiber web / airgel composites containing bicomponent fibers, methods for their preparation and their use
KR101539950B1 (en) Silica aerogels and fiberglass laminated heat insulating material and Method for producing the same
JP2934048B2 (en) Foamed phenolic resin composite molding
EA018719B1 (en) Pipe section and methods for its production
JP7583405B2 (en) Insulating wall material for building ventilation ducts
EP2180229A1 (en) Pipe insulating assembly
JP2008196552A (en) Carbon fiber heat insulating material and its manufacturing method
US20120138878A1 (en) Composite materials
US2393947A (en) Hard surfacing of mineral fiber
JP2013067949A (en) Inorganic plate
JPH10115396A (en) Manufacturing method of core material for vacuum insulation structure
KR101903363B1 (en) Manufacturing method of eco-friendly bti heat insulating materials
JPH0648848A (en) Incombustible composite material structure and its production
KR101536564B1 (en) Aramid fiber, fiberglass and Silica aerogels and laminated pipe type heat insulating material with iproved impact resistance and Method for producing the same
US4459333A (en) Laminated pipe insulation product and method of producing same
JP4872216B2 (en) Honeycomb structure and manufacturing method thereof
RU2087443C1 (en) Heat-insulating mass
JPH0437214B2 (en)
JPH0338107B2 (en)
JPS5881157A (en) Manufacture of multilayer tubular structure
JPS58203038A (en) Heat-insulating structure material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241024

R150 Certificate of patent or registration of utility model

Ref document number: 7583405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150