[go: up one dir, main page]

JP7581813B2 - Laser Gas Analyzer - Google Patents

Laser Gas Analyzer Download PDF

Info

Publication number
JP7581813B2
JP7581813B2 JP2020202576A JP2020202576A JP7581813B2 JP 7581813 B2 JP7581813 B2 JP 7581813B2 JP 2020202576 A JP2020202576 A JP 2020202576A JP 2020202576 A JP2020202576 A JP 2020202576A JP 7581813 B2 JP7581813 B2 JP 7581813B2
Authority
JP
Japan
Prior art keywords
gas
laser
light
unit
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020202576A
Other languages
Japanese (ja)
Other versions
JP2022090283A (en
Inventor
芳准 山内
和裕 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2020202576A priority Critical patent/JP7581813B2/en
Publication of JP2022090283A publication Critical patent/JP2022090283A/en
Application granted granted Critical
Publication of JP7581813B2 publication Critical patent/JP7581813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は,空間内の各種の測定対象ガスの有無や濃度を分析するレーザ式ガス分析計に関する。 The present invention relates to a laser gas analyzer that analyzes the presence and concentration of various target gases in a space.

気体状のガス分子は,それぞれ固有の光吸収波長および吸収強度を表す吸収線スペクトルを有する。また,レーザ光は,特定の波長でスペクトル線幅が狭い光である。レーザ式ガス分析計は,レーザ素子が,気体状のガス分子である測定対象ガスが吸収する光吸収波長のレーザ光を発光し,測定対象ガスにレーザ光を吸収させ,その光吸収波長におけるレーザ光の吸収量に基づいて測定対象ガスの有無を検出する。加えて,レーザ式ガス分析は,光吸収波長におけるレーザ光の吸収量が測定対象ガスの濃度に比例するため濃度を検出することもできる。 Gaseous gas molecules each have a unique optical absorption wavelength and an absorption line spectrum that indicates the absorption intensity. Laser light is light with a narrow spectral line width at a specific wavelength. In a laser gas analyzer, a laser element emits laser light of an optical absorption wavelength that is absorbed by the target gas, which is a gaseous gas molecule, and the target gas absorbs the laser light. The presence or absence of the target gas is detected based on the amount of laser light absorbed at that optical absorption wavelength. In addition, laser gas analysis can also detect the concentration of the target gas because the amount of laser light absorbed at the optical absorption wavelength is proportional to the concentration of the target gas.

なお,測定対象空間に多数存在するガスの中から特定の測定対象ガスのみ選択して分析する必要がある。そこで,測定対象空間中の測定対象ガスおよびその他のガスの光吸収波長のうち,測定対象ガスのみ吸収するがその他のガスが吸収しない光吸収波長が選択される。 It is necessary to select and analyze only a specific target gas from among the many gases present in the measurement space. Therefore, among the optical absorption wavelengths of the target gas and other gases in the measurement space, optical absorption wavelengths that are absorbed only by the target gas but not by other gases are selected.

この測定対象ガスの光吸収波長における吸収線スペクトルは,仮にガスの圧力が低いとスペクトル線幅の狭い理想的な吸収線スペクトルとなる。しかしながら,実際はガスの圧力が高く,圧力広がりが起きた吸収線スペクトルとなる。 If the gas pressure is low, the absorption line spectrum at the optical absorption wavelength of the gas being measured will be an ideal absorption line spectrum with a narrow spectral linewidth. However, in reality, the gas pressure is high, and the absorption line spectrum will be pressure broadened.

この圧力広がりは,ガス分子同士の衝突に起因するものであり,圧力広がりが生じた吸収線スペクトルは,スペクトル線幅が広がるとともに吸収強度が低くなる。換言すれば,ガスの圧力が変化したとき,測定対象ガスの吸収量の変化により,検出するレーザ光の光量も変動し,ガス濃度に誤差を生じるおそれがあった。 This pressure broadening is caused by collisions between gas molecules, and the absorption line spectrum where pressure broadening occurs has a wider spectral line width and a lower absorption intensity. In other words, when the gas pressure changes, the amount of light of the detected laser light also fluctuates due to changes in the amount of absorption of the gas being measured, which can lead to errors in the gas concentration.

このような圧力広がりを考慮してガス分析を行うレーザ式ガス分析計の従来技術が,例えば特許文献1(特開2012-233900号公報)により開示されている。この従来技術は,特許文献1の図1で示すように,対象ガスの吸収線スペクトルのスペクトル線幅にわたって掃引可能であって半導体レーザに代表される波長可変レーザ光源10と,ガスの間を通過するレーザ光線の強度を検出する光検出器12と,ロックイン増幅器24およびマイクロプロセッサ26を含む制御装置16と,を備える。 A conventional technology for a laser gas analyzer that performs gas analysis taking such pressure spread into account is disclosed, for example, in Patent Document 1 (JP Patent Publication No. 2012-233900). As shown in Figure 1 of Patent Document 1, this conventional technology comprises a tunable laser light source 10, typically a semiconductor laser, that can sweep across the spectral line width of the absorption line spectrum of the target gas, a photodetector 12 that detects the intensity of the laser beam passing through the gas, and a control device 16 that includes a lock-in amplifier 24 and a microprocessor 26.

特許文献1のレーザ式ガス分析計は,波長変調分光法により検出を行う。駆動電流によって波長を掃引し,かつ特定の周波数で変調したレーザ光を波長可変レーザ光源10が出射し,そのレーザ光を光検出器12が検出し,ロックイン増幅器24が信号を変調周波数の逓倍でロックイン検出し,このロックイン検出波形の振幅からガス濃度を算出する。ロックイン検出により信号ノイズ比が向上するために微量ガスの計測に適している。 The laser gas analyzer of Patent Document 1 performs detection using wavelength modulation spectroscopy. The wavelength is swept by the drive current and a tunable laser light source 10 emits laser light modulated at a specific frequency. The laser light is detected by the photodetector 12, and the lock-in amplifier 24 performs lock-in detection of the signal at a multiple of the modulation frequency, and the gas concentration is calculated from the amplitude of this lock-in detection waveform. Lock-in detection improves the signal-to-noise ratio, making it suitable for measuring trace gases.

測定対象空間に存在する複数ガスの組成が定まっている場合には,測定対象ガスの吸光によって得られるロックイン検出波長の振幅は波長変調振幅の関数であり,極大値が存在する。したがって,標準ガスを校正する際には,ロックイン検出波形の振幅が極大となるように波長変調振幅を調節して,信号ノイズ比を最大化することができる。そして,測定対象ガスのガス濃度とロックイン検出波形の振幅の対応関係(比例関係など)に基づき,ガス濃度を演算することができる。 When the composition of multiple gases present in the measurement space is fixed, the amplitude of the lock-in detection wavelength obtained by the absorption of the measurement gas is a function of the wavelength modulation amplitude, and there is a maximum value. Therefore, when calibrating the standard gas, the signal-to-noise ratio can be maximized by adjusting the wavelength modulation amplitude so that the amplitude of the lock-in detection waveform is maximized. Then, the gas concentration can be calculated based on the correspondence (e.g., proportionality) between the gas concentration of the measurement gas and the amplitude of the lock-in detection waveform.

ところが,実際の測定対象空間には,例えば高温の燃焼排ガスのように,分析したガス組成と異なることがあり,さらにガス濃度(あるいは分圧)も変動して圧力広がりも変化する場合には,スペクトル線幅が変動し,これら影響がロックイン検出波形の振幅に現れるため,ガス濃度測定の誤差となる。このような場合に,スペクトル線幅の変動の影響を補正しなければ,ガス濃度測定が不確定となる。 However, the actual gas composition in the measurement space may differ from that analyzed, for example in high-temperature combustion exhaust gas. Furthermore, if the gas concentration (or partial pressure) also fluctuates and the pressure spread changes, the spectral linewidth will fluctuate, and these effects will appear in the amplitude of the lock-in detection waveform, resulting in errors in the gas concentration measurement. In such cases, if the effects of the fluctuations in the spectral linewidth are not corrected, the gas concentration measurement will be uncertain.

図7は特許文献1からの引用であり,上記の現象を示すものである。縦軸の2f信号はロックイン検出波形の振幅であり,横軸は波長変調振幅である。圧力が異なると,圧力広がりの影響により関数の形が変化するため,単に2f信号からガス濃度を算出すると誤差を含む値となる。 Figure 7 is a quote from Patent Document 1 and shows the above phenomenon. The 2f signal on the vertical axis is the amplitude of the lock-in detection waveform, and the horizontal axis is the wavelength modulation amplitude. If the pressure differs, the shape of the function changes due to the influence of pressure spread, so if the gas concentration is simply calculated from the 2f signal, the value will contain an error.

特許文献1では上記の課題を解決するために,図7に示される「圧力に対する作用点」と呼ばれる,圧力の変動に対して2f信号の変動が最小となるような波長変調振幅に設定することにより,ガス濃度の圧力依存性を低減させている。 In order to solve the above problem, Patent Document 1 reduces the pressure dependency of the gas concentration by setting the wavelength modulation amplitude at a point called the "point of action for pressure" shown in Figure 7, which is a point at which the fluctuation of the 2f signal is minimized with respect to pressure fluctuations.

また,非特許文献1では,この圧力広がりの影響を受けにくい方式としてレーザ光を変調せず直接吸収によるスペクトルの面積を元にした方法(以下,直接検出法と記述する)を採用している。 In addition, Non-Patent Document 1 employs a method based on the area of the spectrum due to direct absorption without modulating the laser light (hereinafter referred to as the direct detection method) that is less susceptible to the effects of this pressure spread.

また,特許文献2では直接検出法と特許文献1で記載した波長変調を利用した方法(以下,波長変調法と記載)とを併用した方式が提案されている。 Patent document 2 proposes a method that combines the direct detection method with the method using wavelength modulation described in patent document 1 (hereinafter referred to as the wavelength modulation method).

特開2012-233900号公報JP 2012-233900 A 特開2011-117869号公報JP 2011-117869 A

田村 一人(2010),「レーザガス分析計 TDLS200 とその産業プロセスへの応用」,横河技法 Vol.53 No.2,pp113-116Tamura, Kazuto (2010), "Laser Gas Analyzer TDLS200 and its Application to Industrial Processes", Yokogawa Techniques Vol. 53 No. 2, pp. 113-116

特許文献1における「圧力に対する作用点」においては必ずしも2f信号が圧力変動に対して不変ではないため,ガス濃度の測定誤差が残留するおそれがある。また,2f信号が極大値となる動作点ではないため,信号ノイズ比が極大値と比べて劣化するおそれがある,という課題があった。 At the "point of action against pressure" in Patent Document 1, the 2f signal is not necessarily invariant to pressure fluctuations, so there is a risk of residual gas concentration measurement error. In addition, because it is not an operating point where the 2f signal has a maximum value, there is a risk that the signal-to-noise ratio will be degraded compared to the maximum value.

また,非特許文献1における直接検出法は,一般的に,波長変調法に比べ検出感度が低いため,低濃度ガスの精度の良い計測が困難である,という課題があった。 In addition, the direct detection method described in Non-Patent Document 1 generally has a lower detection sensitivity than the wavelength modulation method, making it difficult to accurately measure low concentration gases.

また,特許文献2では,直接検出法と波長変調法のそれぞれの方式で検出するためのアナログ回路を2系統設けてそれを切り替える構成となっており,回路が増大する,という課題があった。 In addition, in Patent Document 2, two analog circuits are provided for detecting using the direct detection method and the wavelength modulation method, and the two are switched between, which poses the problem of an increase in the circuitry.

そこで,本発明は上記の課題を解決するためになされたものであり,その目的は,ガス濃度の圧力依存性を最小化して測定精度を高めつつ,かつ信号ノイズ比を高めて測定の安定性をも高めたレーザ式ガス分析計を提供することにある。 The present invention has been made to solve the above problems, and its purpose is to provide a laser gas analyzer that minimizes the pressure dependence of gas concentration to improve measurement accuracy, while also improving the signal-to-noise ratio and measurement stability.

前記目的を実現するため,本発明に係るレーザ式ガス分析計は,測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域のレーザ光を出射するレーザ素子と,前記測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域で波長が繰り返し掃引され且つ変調される状態と無変調の状態とを切り替えることができる変調光生成部とを有する発光部と,前記測定対象空間を通過した前記レーザ光を受光する受光素子と,前記受光素子から出力された検出信号に対し,前記変調の状態では変調周波数の整数倍の周波数の振幅に基づいてガス分析を行う第一の測定手段と,前記無変調の状態では,前記検出信号に対し測定対象ガスが無い状態の検出信号を基準線として,その基準線と測定対象ガスがある状態での検出信号とで囲われた面積に基づいてガス分析を行う第二の測定手段とを有する受光部を備え,第一の測定手段で測定されたガス濃度に対して,所定のタイミングで第二の測定手段で測定されたガス濃度値を用いて補正処理を行うものである。
In order to achieve the above object, the laser gas analyzer of the present invention comprises a light-emitting unit having a laser element that emits laser light in a wavelength band including the optical absorption wavelengths of the absorption line spectrum of the gas to be measured, and a modulated light generating unit that can switch between a state in which the wavelength is repeatedly swept and modulated in the wavelength band including the optical absorption wavelengths of the absorption line spectrum of the gas to be measured and an unmodulated state, a light-receiving unit that receives the laser light that has passed through the space to be measured, and a light-receiving unit having a first measurement means that, in the modulated state, performs gas analysis on the detection signal output from the light-receiving element based on the amplitude of a frequency that is an integer multiple of the modulation frequency, and in the unmodulated state, performs gas analysis on the detection signal in the absence of the gas to be measured based on an area enclosed by a reference line and a detection signal in the presence of the gas to be measured, and performs correction processing on the gas concentration value measured by the first measurement means at a predetermined timing using a gas concentration value measured by the second measurement means.

本発明によれば,測定対象ガスに含まれる特定のガス濃度を,高精度,高安定に測定するレーザ式ガス分析計を提供することができる。 The present invention provides a laser gas analyzer that can measure the concentration of a specific gas contained in a gas to be measured with high accuracy and high stability.

本発明を実施するための形態に係るレーザ式ガス分析計の全体構成図FIG. 1 is an overall configuration diagram of a laser gas analyzer according to an embodiment of the present invention. 本発明を実施するためのレーザ式ガス分析計の信号処理ブロック図FIG. 1 is a block diagram of a signal processing system for a laser gas analyzer according to the present invention. 本発明を実施するためのレーザ掃引駆動電流と検出信号の概念図A conceptual diagram of a laser sweep drive current and a detection signal for implementing the present invention. レーザを変調させる方法(2f検出法)による検出信号Detection signal by laser modulation method (2f detection method) レーザを変調させない方法(直接検出法)による検出信号Detection signal using a method that does not modulate the laser (direct detection method) 本発明を実施するための信号処理のフローSignal processing flow for implementing the present invention 従来技術のガス濃度計測装置において,2f信号と変調振幅の関係およびそれらの圧力依存性を示す図FIG. 1 shows the relationship between the 2f signal and the modulation amplitude and their pressure dependence in a conventional gas concentration measurement device.

以下,本発明の実施形態を説明する。 The following describes an embodiment of the present invention.

本発明を実施するための第1の形態に係るレーザ式ガス分析計について図を参照しつつ説明する。図1は,本形態のレーザ式ガス分析計の全体構成図である。 The following describes a laser gas analyzer according to a first embodiment of the present invention with reference to the drawings. Figure 1 shows the overall configuration of the laser gas analyzer according to this embodiment.

本形態のレーザ式ガス分析計は,壁50aと壁50bとの内部を流通するガスに含まれる特定のガスの濃度を測定する。また,ガス濃度が0や所定値以下であるならばガスが無いことを検出できるものであり,ガスの有無も検出できる。 The laser gas analyzer of this embodiment measures the concentration of a specific gas contained in the gas flowing inside the walls 50a and 50b. It can also detect the absence of gas if the gas concentration is 0 or below a predetermined value, and can also detect the presence or absence of gas.

レーザ式ガス分析計は,発光部10,受光部20,通信線40を備えている。通信線40は発光部10と受光部20との間で電気信号により通信する。また,通信線に代えて無線や光通信のような通信部を採用しても良い。これら通信線,無線,光通信による通信部を採用できる。 The laser gas analyzer comprises a light emitting unit 10, a light receiving unit 20, and a communication line 40. The communication line 40 communicates between the light emitting unit 10 and the light receiving unit 20 by electrical signals. Also, a communication unit such as wireless or optical communication may be used instead of the communication line. Any of these communication units using a communication line, wireless, or optical communication may be used.

このようなレーザ式ガス分析計では,発光部10が,検出光30を出射する。そして,検出光30は壁50aと壁50bとの内部の測定対象空間に投光される。 In such a laser gas analyzer, the light emitting unit 10 emits detection light 30. The detection light 30 is then projected into the measurement target space between the walls 50a and 50b.

このとき,検出光30の光量の一部は,特定のガスによって吸収される。吸収されなかった残りの光,すなわち透過光が,受光部20に入射し,その光量が検出される。検出された光量から特定のガス濃度が求められる。 At this time, a portion of the detection light 30 is absorbed by the specific gas. The remaining light that is not absorbed, i.e., the transmitted light, enters the light receiving section 20, and the amount of light is detected. The concentration of the specific gas is calculated from the detected amount of light.

続いて各部の詳細について説明する。 Next, we'll explain each part in detail.

発光部10は,変調光生成部11と,レーザ素子12と,コリメートレンズ13と,発光部窓板14と,発光部容器15と,光軸調整フランジ52aと,を備える。 The light-emitting unit 10 includes a modulated light generating unit 11, a laser element 12, a collimating lens 13, a light-emitting unit window plate 14, a light-emitting unit container 15, and an optical axis adjustment flange 52a.

受光部20は,受光信号処理部21と,受光素子22と,集光レンズ23と,受光部窓板24と,受光部容器25と,光軸調整フランジ52bと,を備える。
まず,構造について説明する。
The light receiving section 20 includes a light receiving signal processing section 21, a light receiving element 22, a condenser lens 23, a light receiving section window plate 24, a light receiving section container 25, and an optical axis adjustment flange 52b.
First, the structure will be explained.

図1に示すように,特定のガスが存在する配管等の壁50a,50bにそれぞれ穴が開けられている。フランジ51a,51bは,溶接等によりそれらの穴に固定されている。光軸調整フランジ52a,52bは,これらフランジ51a,51bに対して機械的に移動可能に取り付けられる。発光部10,受光部20は光軸調整フランジ52a,52bにより位置調整することができる。 As shown in FIG. 1, holes are drilled in walls 50a, 50b of a pipe or the like in which a specific gas is present. Flanges 51a, 51b are fixed to the holes by welding or the like. Optical axis adjustment flanges 52a, 52b are attached to these flanges 51a, 51b so as to be mechanically movable. The positions of the light-emitting unit 10 and the light-receiving unit 20 can be adjusted by the optical axis adjustment flanges 52a, 52b.

したがって,光軸調整フランジ52aは,検出光30の出射角を調整し,また,光軸調整フランジ52bは,検出光30の入射角を調整する。光軸調整フランジ52a,52bにより,発光部10から出射される検出光30が受光部20において最大の光量で受光される。 Therefore, the optical axis adjustment flange 52a adjusts the emission angle of the detection light 30, and the optical axis adjustment flange 52b adjusts the incidence angle of the detection light 30. The optical axis adjustment flanges 52a and 52b allow the detection light 30 emitted from the light emitting unit 10 to be received by the light receiving unit 20 with the maximum light intensity.

発光部容器15および受光部容器25は,それぞれの内部に発光素子,光学部品,および,電気電子回路を内蔵し,それらを外気から隔絶して風雨,塵埃,および,汚れ等から保護する。 The light-emitting unit container 15 and the light-receiving unit container 25 each house a light-emitting element, optical components, and electrical and electronic circuits, and isolate them from the outside air to protect them from wind, rain, dust, dirt, etc.

発光部窓板14および受光部窓板24は,発光部容器15および受光部容器25の一部に穴を開けてそれを塞ぐように備えられている。発光部窓板14および受光部窓板24は,検出光30の光路内にあり,検出光30を透過させつつ,特定のガスを含むガスが発光部10や受光部20の内部に進入しないようにする。これにより,発光素子,光学部品,および,電気電子回路が直接ガスに触れないことになり,内部が保護される。機械的構造はこのようなものである。 The light-emitting section window plate 14 and the light-receiving section window plate 24 are provided to close holes drilled in parts of the light-emitting section container 15 and the light-receiving section container 25. The light-emitting section window plate 14 and the light-receiving section window plate 24 are located in the optical path of the detection light 30, and while allowing the detection light 30 to pass through, they prevent gas, including specific gases, from entering the interior of the light-emitting section 10 and the light-receiving section 20. This prevents the light-emitting element, optical components, and electrical and electronic circuits from coming into direct contact with gas, protecting the inside. The mechanical structure is as follows.

次に,発光部10および受光部20の光学的機能について説明する。測定対象ガスが吸収する特定の吸収線スペクトルの中心波長をλ1とする。 Next, we will explain the optical functions of the light-emitting unit 10 and the light-receiving unit 20. The central wavelength of a specific absorption line spectrum absorbed by the gas to be measured is λ1.

レーザ素子12は波長λ1およびその周辺の波長で発光する。 Laser element 12 emits light at wavelength λ1 and its surrounding wavelengths.

コリメートレンズ13は波長λ1およびその周辺の波長において透過率が高い材料で構成する。コリメートレンズ13により,検出光30は略平行光に変換され,拡散による損失を抑えながら受光部20まで伝送することができる。 The collimating lens 13 is made of a material that has high transmittance at wavelength λ1 and its surrounding wavelengths. The collimating lens 13 converts the detection light 30 into approximately parallel light, which can be transmitted to the light receiving unit 20 while minimizing loss due to diffusion.

受光素子22には,波長λ1およびその周辺の波長において,感度を有する受光素子を選択することができる。 For the light receiving element 22, a light receiving element having sensitivity at wavelength λ1 and wavelengths around it can be selected.

集光レンズ23は,波長λ1およびその周辺の波長において,透過率が高い材料で構成する。集光レンズ23により,検出光30は受光素子22に集光されるため,高い信号強度を得ることができる。 The focusing lens 23 is made of a material with high transmittance at wavelength λ1 and its surrounding wavelengths. The focusing lens 23 focuses the detection light 30 onto the light receiving element 22, making it possible to obtain a high signal strength.

次に,発光部10および受光部20の信号処理機能について説明する。まず,発光部10について説明する。 Next, we will explain the signal processing functions of the light-emitting unit 10 and the light-receiving unit 20. First, we will explain the light-emitting unit 10.

変調光生成部11は,信号処理・電流駆動回路である。測定対象ガスの吸光特性に応じたレーザ光を照射する必要がある。加えて,レーザ光は波長変調された変調光とする必要がある。そこで,変調光生成部11は,これらのようなレーザ光を発光するための駆動電流信号を,レーザ素子12に供給する。 The modulated light generating unit 11 is a signal processing and current driving circuit. It is necessary to irradiate laser light according to the absorption characteristics of the gas to be measured. In addition, the laser light needs to be wavelength-modulated modulated light. Therefore, the modulated light generating unit 11 supplies a driving current signal for emitting such laser light to the laser element 12.

レーザ素子12は,例えば,DFBレーザダイオード(DistributedFeedback Laser Diode),もしくはVCSEL(VerticalCavity Surface EmittingLaser),もしくはDBRレーザダイオード(Distributed Bragg Reflector Laser Diode)である。 The laser element 12 is, for example, a DFB laser diode (Distributed Feedback Laser Diode), a VCSEL (Vertical Cavity Surface Emitting Laser), or a DBR laser diode (Distributed Bragg Reflector Laser Diode).

レーザ素子12は,駆動電流と温度により,発光波長を可変制御可能である。そこで,レーザ素子12は,発光中心波長が測定対象ガスの吸収線スペクトルの中心波長となるように温度制御される。また,測定対象ガスの吸収線スペクトルの中心波長の周辺の波長を時間的に掃引されるように,駆動電流が制御される。さらに,波長変調分光法により高感度に測定できるように,駆動電流には適切な正弦波を重畳し変調する場合(以下,「2f検出法」と記述)と,ガスによる直接的な吸収現象を利用した駆動電流に正弦波を重畳せず変調しない場合(直接検出法)を所定のタイミングで切り替えることができるように制御される。 The laser element 12 can variably control the emission wavelength by the drive current and temperature. Therefore, the laser element 12 is temperature controlled so that the emission central wavelength becomes the central wavelength of the absorption line spectrum of the gas to be measured. In addition, the drive current is controlled so that the wavelengths around the central wavelength of the absorption line spectrum of the gas to be measured are swept over time. Furthermore, in order to enable highly sensitive measurements by wavelength modulation spectroscopy, the drive current is controlled so that it can be switched at a predetermined timing between a case where an appropriate sine wave is superimposed and modulated (hereinafter referred to as the "2f detection method") and a case where a sine wave is not superimposed and modulated on the drive current utilizing the direct absorption phenomenon by the gas (direct detection method).

レーザ素子12の発光点は,コリメートレンズ13の焦点付近に配置されている。レーザ素子12からの出射光は,拡散しつつコリメートレンズ13に入射して,略平行光である検出光30に変換される。なお,本形態では本発明の平行光変換部としてコリメートレンズ13を用いるものとして説明するが,コリメートレンズに限定する趣旨ではない。例えば,平行光変換部として,コリメートレンズの代わりに放物面鏡を用いることもできる。 The light emitting point of the laser element 12 is located near the focal point of the collimating lens 13. The light emitted from the laser element 12 is diffused and enters the collimating lens 13, where it is converted into detection light 30, which is approximately parallel light. Note that, although this embodiment will be described using the collimating lens 13 as the parallel light conversion unit of the present invention, this is not intended to be limited to a collimating lens. For example, a parabolic mirror can be used as the parallel light conversion unit instead of a collimating lens.

略平行光である検出光30は,発光部窓板14を透過し,壁50a,50bの内部,すなわち測定対象ガスを含むガスが存在する空間に伝播する。 The detection light 30, which is a substantially parallel light, passes through the light-emitting section window plate 14 and propagates inside the walls 50a and 50b, that is, into the space where gas, including the gas to be measured, is present.

次に,受光部20について説明する。受光部20は,受光部窓板24を透過した検出光30を受光し,測定対象ガスの吸光特性により吸収された光について分析する。検出光30は,集光レンズ23により集光されて,受光素子22に入射する。なお,本形態では集光レンズ23を用いているが,集光レンズ23に代えて,放物面鏡,ダブレットレンズや回折レンズなどを採用することもできる。
受光素子22からの受光信号は,受光信号処理部21に電気信号として送られる。受光信号処理部21では,前記電気信号を処理して,ガス濃度値を算出する。
Next, the light receiving unit 20 will be described. The light receiving unit 20 receives the detection light 30 that has passed through the light receiving unit window plate 24, and analyzes the light absorbed due to the absorption characteristics of the gas to be measured. The detection light 30 is focused by the focusing lens 23 and enters the light receiving element 22. Note that, although the focusing lens 23 is used in this embodiment, a parabolic mirror, a doublet lens, a diffractive lens, or the like may also be used instead of the focusing lens 23.
The light receiving signal from the light receiving element 22 is sent as an electric signal to the light receiving signal processing unit 21. The light receiving signal processing unit 21 processes the electric signal to calculate the gas concentration value.

受光信号処理部21は,2f検出法と直接検出法とでガス検出が可能となっている。そのため受光信号処理部21は,2f検出法によるレーザ駆動の場合は波長変調されたレーザ光の変調周波数の高調波をロックイン検出しその検出波形の振幅を算出する処理が設けられ,高感度なガス検出が可能となっている。さらに受光信号処理部21は,直接検出法によるレーザ駆動の場合はロックイン検出の処理を設けず検波波形と基準線で囲われた面積を算出する処理が設けられ,後述する圧力広がりによる影響を受けないガス検出が可能となっている。また,受光信号処理部21は,この直接検出法にて算出したガス濃度を用いて補正値を算出し,2f検出法により算出したガス濃度値を補正値により補正する処理が設けられ,応答性が良く高感度,高精度なガス検出が可能となっている。 The light receiving signal processing unit 21 is capable of gas detection by the 2f detection method and the direct detection method. Therefore, when the laser is driven by the 2f detection method, the light receiving signal processing unit 21 is provided with a process for locking in and detecting the harmonics of the modulation frequency of the wavelength-modulated laser light and calculating the amplitude of the detected waveform, enabling highly sensitive gas detection. Furthermore, when the laser is driven by the direct detection method, the light receiving signal processing unit 21 does not have a lock-in detection process, but instead has a process for calculating the area surrounded by the detection waveform and the reference line, enabling gas detection that is not affected by pressure spread, which will be described later. In addition, the light receiving signal processing unit 21 is provided with a process for calculating a correction value using the gas concentration calculated by this direct detection method and correcting the gas concentration value calculated by the 2f detection method with the correction value, enabling highly responsive, highly sensitive, and highly accurate gas detection.

次に,本発明の信号処理に関して説明する。 Next, we will explain the signal processing of the present invention.

図2は,本形態のレーザ式ガス分析計の信号処理構成図である。レーザ式ガス分析計1は,レーザ素子12,レーザ素子温度制御回路112,波長掃引・変調電流制御回路113,受光素子22,IV変換回路122,ハイパスフィルタ123,増幅回路124,を備える。また,ADC125にてアナログディジタル変換処理をした後,各種信号処理を行うデジタル処理部140を備える。このデジタル処理部は,2f検出法と直接検出法を切り替える検出切り替え部126,2f検出法の場合のロックイン検出部131,波形取得部132,振幅演算部133を備え,直接検出法の場合のローパスフィルタ(LPF)127,サンプリングデータ数を低減する間引き処理部128,波形取得部129,面積演算部130を備える。さらに,前述の振幅演算部133からの出力である振幅演算値,面積演算部130からの出力である面積演算有値を元にガス濃度の算出,補正値の算出,ガス濃度の補正を行うガス濃度演算・補正演算部134を備える。また,2f検出法と直接検出法を所定のタイミングで切り替えるために波長掃引・変調電流制御回路113,検出切り替え部126,ガス濃度演算,補正演算処理134を制御する制御部135を備える。 Figure 2 is a signal processing configuration diagram of the laser gas analyzer of this embodiment. The laser gas analyzer 1 includes a laser element 12, a laser element temperature control circuit 112, a wavelength sweep/modulation current control circuit 113, a light receiving element 22, an IV conversion circuit 122, a high-pass filter 123, and an amplifier circuit 124. It also includes a digital processing unit 140 that performs various signal processing after analog-to-digital conversion processing by the ADC 125. This digital processing unit includes a detection switching unit 126 that switches between the 2f detection method and the direct detection method, a lock-in detection unit 131 for the 2f detection method, a waveform acquisition unit 132, and an amplitude calculation unit 133, and includes a low-pass filter (LPF) 127 for the direct detection method, a thinning processing unit 128 that reduces the number of sampling data, a waveform acquisition unit 129, and an area calculation unit 130. Furthermore, a gas concentration calculation/correction calculation unit 134 is provided that calculates the gas concentration, calculates the correction value, and corrects the gas concentration based on the amplitude calculation value output from the amplitude calculation unit 133 and the area calculation value output from the area calculation unit 130. Also, a control unit 135 is provided that controls the wavelength sweep/modulation current control circuit 113, the detection switching unit 126, and the gas concentration calculation and correction calculation processing 134 in order to switch between the 2f detection method and the direct detection method at a predetermined timing.

なお,変調信号生成部11は,レーザ素子温度制御回路112,波長掃引・変調電流制御回路113を有している。また,受光信号処理部21が,IV変換回路122,ハイパスフィルタ123,増幅回路124,ADC125,デジタル処理部140,制御部135を有している。 The modulation signal generating unit 11 includes a laser element temperature control circuit 112 and a wavelength sweep and modulation current control circuit 113. The received light signal processing unit 21 includes an IV conversion circuit 122, a high-pass filter 123, an amplifier circuit 124, an ADC 125, a digital processing unit 140, and a control unit 135.

レーザ素子温度制御回路112は,レーザ素子12の発光中心波長が特定の測定対象ガスの特定の吸収線スペクトルの中心波長となるように,レーザ素子12の温度を制御,安定化する。これは,レーザ素子12の出力や波長は,温度によって変動するため,周囲温度の変化によって出力や波長が変動しないようにするためである。 The laser element temperature control circuit 112 controls and stabilizes the temperature of the laser element 12 so that the central wavelength of the emission of the laser element 12 becomes the central wavelength of a specific absorption line spectrum of a specific measurement target gas. This is to prevent the output and wavelength of the laser element 12 from fluctuating due to changes in the ambient temperature, since the output and wavelength of the laser element 12 fluctuate depending on the temperature.

波長掃引・変調電流制御回路113は,レーザ素子12の発光する波長が特定の測定対象ガスの吸収線スペクトルの中心波長の周辺の波長を時間的に掃引されるように,かつ,所定信号で変調されるようにレーザ素子の駆動電流を制御する。これらのレーザ光は制御回路113により点灯,消灯を繰り返すよう制御される。 The wavelength sweep/modulation current control circuit 113 controls the drive current of the laser element 12 so that the wavelength emitted by the laser element 12 is swept over time among wavelengths around the central wavelength of the absorption line spectrum of a specific gas to be measured, and is modulated by a specified signal. These laser lights are controlled by the control circuit 113 to be repeatedly turned on and off.

所定のレーザの点灯タイミングにおいて,レーザ光Lの波長は駆動電流の増減によって可変であるため,例えばレーザ素子12の駆動電流の大きさを変化させることにより,測定対象ガス成分の吸収線をよぎるようにレーザ光の波長が掃引される。さらに,2f検出法により測定対象ガスによる吸収を高感度で検出する場合には,駆動電流に正弦波を重畳し変調を行い,波長掃引と変調を行う。また,直接検出法により圧力広がりの影響を低減してガスによる吸収を検出する場合には駆動電流に正弦波を重畳せず波長掃引のみ行う。 At a given laser lighting timing, the wavelength of the laser light L can be varied by increasing or decreasing the drive current, so for example, by changing the magnitude of the drive current of the laser element 12, the wavelength of the laser light can be swept so as to cross the absorption lines of the gas components being measured. Furthermore, when the absorption by the gas being measured is detected with high sensitivity using the 2f detection method, a sine wave is superimposed on the drive current and modulated, and wavelength sweep and modulation are performed. Also, when the effect of pressure spread is reduced and absorption by the gas is detected using the direct detection method, only the wavelength sweep is performed without superimposing a sine wave on the drive current.

波長掃引・変調は,制御部135の指令に基づいて,駆動方法が選択される。この際,正弦波による変調周波数は,波長掃引の周波数よりも大きく設定する。後述するように,例えば前者が50kHzに対し,後者は200Hz程度などとすればよい。 The drive method for wavelength sweeping and modulation is selected based on the command from the control unit 135. In this case, the modulation frequency by the sine wave is set to be higher than the frequency of the wavelength sweeping. As described later, for example, the former can be 50 kHz and the latter can be about 200 Hz.

ガスを透過しつつ,測定対象ガス成分によって一部吸収されたレーザ光Lは,受光素子22に入射する。受光素子22は,レーザ光Lの波長に感度を有する素子であり,受光素子22には例えばフォトダイオードなど,レーザ光Lの波長や信号強度により適宜,選ぶことができる。 The laser light L, which passes through the gas and is partially absorbed by the gas components to be measured, enters the light receiving element 22. The light receiving element 22 is an element that is sensitive to the wavelength of the laser light L, and can be selected as appropriate for the light receiving element 22, such as a photodiode, depending on the wavelength and signal strength of the laser light L.

このとき,受光素子22はガスの存在する空間などから放射される光も受光することがある。また,受光素子22がフォトダイオードの場合には暗電流を生じる。これらに起因する受光信号の変動がレーザ光Lの掃引を繰り返す周期よりは十分長くなるように,掃引の繰り返し周期は短く選ばれる。例えば,暗電流の変動が数Hz~数10Hzに対して,掃引は数100Hz以上とすることが考えられる。 At this time, the light receiving element 22 may also receive light emitted from a space where gas is present. Furthermore, if the light receiving element 22 is a photodiode, a dark current is generated. The repetition period of the sweep is selected to be short so that the fluctuations in the light receiving signal caused by these are sufficiently longer than the period of the repeated sweep of the laser light L. For example, the sweep can be set to several hundred Hz or more while the fluctuations in the dark current are several Hz to several tens of Hz.

IV変換回路122は,受光素子22からの電流信号を電圧信号に変換する回路である。例えば受光素子22がフォトダイオードであれば,フォトダイオードからの電流を電圧に変換しつつ増幅するトランスインピーダンスアンプを選ぶことができる。ここでは,レーザ光Lが最も減衰されない条件,すなわち光路上にダストなどが存在しない条件において,信号が飽和しない程度に,適宜,図示しない増幅回路をIV変換回路122とハイパスフィルタ123の間に設けて増幅を行っても良い。 The IV conversion circuit 122 is a circuit that converts the current signal from the light receiving element 22 into a voltage signal. For example, if the light receiving element 22 is a photodiode, a transimpedance amplifier can be selected that amplifies the current from the photodiode while converting it into a voltage. Here, under conditions where the laser light L is least attenuated, i.e., under conditions where there is no dust or the like on the optical path, amplification can be performed by appropriately providing an amplifier circuit (not shown) between the IV conversion circuit 122 and the high-pass filter 123 to the extent that the signal is not saturated.

ハイパスフィルタ123は,IV変換回路122からの信号に含まれる直流成分を除去する。IV変換回路122からの信号には,一般に直流成分が含まれている。直流成分は,例えばガスが存在する空間から放射される光に起因する。また,例えば受光素子121がフォトダイオードであれば,フォトダイオードに発生する暗電流にも起因する。これらの直流成分は,変動するとしてもその時定数がレーザ光Lの掃引を繰り返す周期よりは十分長い(つまり低周波である)ために,ハイパスフィルタ123によって除去される。 The high-pass filter 123 removes the DC component contained in the signal from the IV conversion circuit 122. The signal from the IV conversion circuit 122 generally contains a DC component. The DC component is caused by, for example, light emitted from a space in which gas exists. If the light receiving element 121 is a photodiode, it is also caused by a dark current generated in the photodiode. Even if these DC components fluctuate, their time constant is sufficiently longer (i.e., they are low frequency) than the period in which the laser light L is repeatedly swept, so they are removed by the high-pass filter 123.

レーザ光Lの点灯・消灯の繰り返し周波数(繰り返し周期の逆数)や,レーザ光Lの波長掃引・変調信号の周波数は,ハイパスフィルタ123の通過帯域となるように,ハイパスフィルタ123のカットオフ周波数を選ぶ。その結果,レーザ光Lの点灯・消灯及びレーザ光Lの波長掃引・変調信号は変化を殆ど受けずに通過する。 The cutoff frequency of the high-pass filter 123 is selected so that the repetition frequency (the inverse of the repetition period) of the laser light L and the frequency of the wavelength sweep and modulation signal of the laser light L are within the pass band of the high-pass filter 123. As a result, the on/off of the laser light L and the wavelength sweep and modulation signal of the laser light L pass through almost unchanged.

IV変換回路122の直後にハイパスフィルタ123を設ける意義は,後述の増幅回路124で直流信号まで増幅すると,測定条件が悪い場合,例えばガスが存在する空間から放射される光が強く,暗電流が大きく,レーザ光Lの透過率が低い場合に,測定に有効となるガスによる吸収信号が相対的に小さくなり,検出感度が低下するためである。このような事態を防ぐために,IV変換回路122の直後にハイパスフィルタ123を設ける。 The reason why the high-pass filter 123 is provided immediately after the IV conversion circuit 122 is that if the signal is amplified to a DC signal by the amplifier circuit 124 described below, when the measurement conditions are poor, for example, when the light emitted from the space where the gas is present is strong, the dark current is large, and the transmittance of the laser light L is low, the absorption signal due to the gas that is effective for measurement becomes relatively small, and the detection sensitivity decreases. To prevent this situation, the high-pass filter 123 is provided immediately after the IV conversion circuit 122.

このようなハイパスフィルタ123からの信号波は,レーザ光Lの点灯・消灯信号とレーザ光Lの波長掃引・変調信号を主に含んでいる。このうちレーザ光Lの点灯時における波長掃引・変調信号波は,例えばガスが存在する空間に共存するダスト量の変動によって,レーザ光Lが散乱・減衰を受けるために変動する。この散乱・減衰は,レーザ光Lの波長掃引・変調範囲においては波長依存性がなく,ハイパスフィルタ123を通過する。 Such a signal wave from the high-pass filter 123 mainly includes a signal for turning on and off the laser light L and a wavelength sweep and modulation signal for the laser light L. Of these, the wavelength sweep and modulation signal wave when the laser light L is turned on fluctuates because the laser light L is scattered and attenuated due to, for example, fluctuations in the amount of dust coexisting in a space where gas is present. This scattering and attenuation is not wavelength-dependent within the wavelength sweep and modulation range of the laser light L, and passes through the high-pass filter 123.

増幅回路124は,ハイパスフィルタ123からの信号を飽和させることなく適当な増幅率で増幅する。
ADC125は増幅回路124からのアナログ信号をデジタル信号に変換(AD変換)する素子である。ADC125は2f検出法における変調成分が十分検出可能なように,適切なサンプリング速度の素子を選定する。例えば,レーザの変調成分が50kHzの場合,2f検出法ではその2倍の100kHzの周波数成分を検出する。そのため,これらの周波数成分が十分検出可能なように,例えば,1MHz以上のサンプリング速度を持つAD変換素子を選定する。
デジタル処理部140はデジタル信号を処理し,2f検出法もしくは直接検出法によるガス濃度の検出,演算,補正処理を行う。各検出法は,後述する所定のタイミングにより,レーザ駆動と連動して検出切り替え部126により選択される。
The amplifier circuit 124 amplifies the signal from the high-pass filter 123 at an appropriate amplification rate without saturating the signal.
The ADC 125 is an element that converts the analog signal from the amplifier circuit 124 into a digital signal (AD conversion). An element with an appropriate sampling speed is selected for the ADC 125 so that the modulation components in the 2f detection method can be sufficiently detected. For example, if the laser modulation components are 50 kHz, the 2f detection method detects frequency components of 100 kHz, which is twice as high. Therefore, an AD conversion element with a sampling speed of, for example, 1 MHz or higher is selected so that these frequency components can be sufficiently detected.
The digital processing unit 140 processes the digital signal, and detects, calculates, and corrects the gas concentration by the 2f detection method or the direct detection method. Each detection method is selected by the detection switching unit 126 in conjunction with the laser drive at a predetermined timing described later.

2f検出法を行うロックイン検出部131は,受光素子22からの受光信号に含まれる変調周波数成分の信号を検出する処理部である。ロックイン検出に用いる周波数は,波長掃引・変調電流制御回路113における変調周波数を基準として2倍の周波数で行う。レーザ光Lが,測定対象ガス成分の吸収線の波長を含むように掃引されているとき,ロックイン検出回路131の出力は,図4で示したように横軸を時間,縦軸を信号強度とした場合には測定対象ガス成分の吸収線に基づき極大値と極小値をもつ波形となる。この極大値と極小値の差分Dがガス濃度と相関があるため,あらかじめ各濃度に設定した標準ガスにより校正を行っておくことで,この差分Dを検出してガス濃度を測定することが出来る。 The lock-in detection unit 131 that performs the 2f detection method is a processing unit that detects the signal of the modulation frequency component contained in the light receiving signal from the light receiving element 22. The frequency used for lock-in detection is twice the modulation frequency in the wavelength sweep/modulation current control circuit 113 as a reference. When the laser light L is swept to include the wavelength of the absorption line of the gas component to be measured, the output of the lock-in detection circuit 131 becomes a waveform with maximum and minimum values based on the absorption line of the gas component to be measured, as shown in Figure 4, where the horizontal axis is time and the vertical axis is signal intensity. Since the difference D between the maximum and minimum values is correlated with the gas concentration, the difference D can be detected to measure the gas concentration by performing calibration using standard gases set in advance for each concentration.

このようなロックイン検出を用いることにより,ロックイン検出に用いる周波数以外の周波数領域にあるノイズを大幅に低減でき,微小な測定対象ガスによる吸収の信号だけを検出することができる。 By using this type of lock-in detection, noise in frequency ranges other than the frequency used for lock-in detection can be significantly reduced, making it possible to detect only minute signals due to absorption by the gas being measured.

直接検出法では受光素子22からの受光信号に対してガスによる直接的な吸収現象を利用する処理部である。直接検出法では,受光信号は図5で示したように測定対象ガス成分の吸収線の波長に対応した位置に極値を持つ波形となる。濃度ゼロ状態の信号を基準線とした場合の基準線と吸収波形で囲われた面積Sがガス濃度と相関がある。そのため,2f検出法の場合と同様に,あらかじめ各濃度に設定した標準ガスにより校正を行っておくことで,この面積Sを検出してガス濃度を測定することができる。 In the direct detection method, the processing unit utilizes the direct absorption phenomenon by gas for the light receiving signal from the light receiving element 22. In the direct detection method, the light receiving signal has a waveform with an extreme value at a position corresponding to the wavelength of the absorption line of the gas component to be measured, as shown in Figure 5. When the signal in a zero concentration state is used as the reference line, the area S enclosed by the absorption waveform correlates with the gas concentration. Therefore, as with the 2f detection method, by performing calibration using standard gases set in advance for each concentration, this area S can be detected to measure the gas concentration.

この両者の検出法を比較すると,2f検出法では微小な測定ガスによる吸収の信号を高感度で検出できるため低濃度ガスを精度よく測定できる一方で,測定対象ガス雰囲気の圧力が変化した場合,前述した圧力広がりの影響で図4で示した極値間の幅Wおよび振幅の差分Dが変化してしまう。例えば,圧力が増加した場合は吸収スペクトル線幅が広がるとともに特定波長における吸収強度が低くなり,極値間の幅Wが大きく,差分Dが小さくなることで測定誤差が生じてしまう。
直接検出法では同様に圧力広がりにより吸収信号の幅は広がってしまうものの基本的に圧力変化に対しても面積は線形に変化するために補正しやすく,圧力変動下でも安定した測定が可能となる。また,2f検出法では圧力広がりの他に,共存ガス成分によってもスペクトル幅が広がり吸収波形の振幅に影響を受けるが,直接検出法による面積は基本的には影響を受けず,安定した測定が可能となる。
Comparing these two detection methods, the 2f detection method can detect minute absorption signals from the measured gas with high sensitivity, allowing accurate measurement of low concentration gases, but when the pressure of the measurement target gas atmosphere changes, the width W between extreme values and the difference D in amplitude shown in Figure 4 change due to the influence of the pressure spread described above. For example, when the pressure increases, the absorption spectrum line width broadens and the absorption intensity at a specific wavelength decreases, causing the width W between extreme values to increase and the difference D to decrease, resulting in measurement errors.
In the direct detection method, the absorption signal width also broadens due to pressure broadening, but the area basically changes linearly with respect to pressure changes, making it easy to correct, and stable measurements are possible even under pressure fluctuations. In addition, in the 2f detection method, in addition to pressure broadening, the spectrum width is also broadened by coexisting gas components, which affects the amplitude of the absorption waveform, but the area in the direct detection method is basically unaffected, making stable measurements possible.

一方で,直接検出法はガス濃度に対する吸収感度が低く,2f検出法に比べ1/100程度の吸収感度となるため,ノイズに対して十分な吸収信号を得られず,低濃度のガスを精度よく測定することが困難といった特徴を有する。 On the other hand, the direct detection method has low absorption sensitivity to gas concentration, about 1/100 of that of the 2f detection method, meaning that it is difficult to obtain a sufficient absorption signal against noise and to accurately measure low concentration gases.

また,直接検出法では変調信号を重畳していないため2f検出法ほど高速なサンプリングを必要としない。例えば,掃引周期が5ms程度の場合は,サンプリング周期が100kHz程度,おおよそ,一つの掃引当たり500点程度のデータ点で十分となる。そこで,2f検出法のために選定した高速なサンプリング周期であるADC125からの出力にローパスフィルタ127によるデジタルフィルタ処理を施し,間引き処理によりデータ点を減らすことでAD変換による量子化ノイズの影響を低減するオーバーサンプリング手法を適用し,ノイズ低減,分解能を向上させることで吸収感度が低い直接検出法における測定精度を向上させることも可能である。
また,この直接検出法の処理を適用した際は,波形取得129,面積演算130,ガス濃度演算・補正演算134のいずれかの処理の後などに,図示していない繰り返しデータによる平均化処理を適宜行うことでノイズを低減し,測定精度を向上させる処理を行ってもよい。なお,その場合,2f検出法に比べ直接検出法では測定データを得るまでに時間を要することになる。
In addition, since the direct detection method does not superimpose a modulated signal, it does not require sampling as fast as the 2f detection method. For example, when the sweep period is about 5 ms, a sampling period of about 100 kHz and about 500 data points per sweep are sufficient. Therefore, it is possible to improve the measurement accuracy in the direct detection method, which has low absorption sensitivity, by applying digital filtering by a low-pass filter 127 to the output from the ADC 125, which has a high sampling period selected for the 2f detection method, and reducing the number of data points by thinning out the data, thereby applying an oversampling method that reduces the effect of quantization noise due to AD conversion, thereby reducing noise and improving resolution.
Furthermore, when the processing of this direct detection method is applied, a process for reducing noise and improving measurement accuracy may be performed by appropriately performing an averaging process using repeated data (not shown) after any of the processes of waveform acquisition 129, area calculation 130, and gas concentration calculation/correction calculation 134. In this case, it will take longer to obtain measurement data with the direct detection method than with the 2f detection method.

次に,本発明による信号処理フローに関して図6を用いて説明する。 Next, the signal processing flow according to the present invention will be explained using Figure 6.

信号処理では測定モードと補正値算出モードの2つのモードの切り替えがあり,通常のガス濃度測定である測定モードが選択された場合はレーザ駆動電流に正弦波を重畳させ変調させ,2f検出法でガス濃度を検出する。一方,補正値を演算する補正値演算モードが選択された場合はレーザ駆動電流に変調信号を重畳せず,直接検出法でガス濃度を検出する。測定モードと補正値算出モードの切り替えは,例えば図3に示すように,適宜設定した所定のタイミングで行う。一般的に,圧力などが変動する頻度が少ないため,ガス濃度測定1秒周期に対して,補正値算出は1分周期で行うなど,使用環境に応じて適宜,設定して実施すればよい。 In signal processing, there are two modes to switch between: measurement mode and correction value calculation mode. When the measurement mode, which is the normal gas concentration measurement, is selected, a sine wave is superimposed on the laser drive current, modulated, and the gas concentration is detected using the 2f detection method. On the other hand, when the correction value calculation mode, which calculates the correction value, is selected, the modulation signal is not superimposed on the laser drive current, and the gas concentration is detected using the direct detection method. The measurement mode and correction value calculation mode are switched at a predetermined timing that is appropriately set, for example as shown in Figure 3. Generally, since pressure and other factors do not fluctuate frequently, it is sufficient to set and execute the correction value calculation at an appropriate interval according to the usage environment, for example, for a gas concentration measurement at a 1-second interval, the correction value calculation is performed at a 1-minute interval.

補正値演算モードの場合は前述した直接検出法により基準線と吸収信号とで囲われた面積を算出し,あらかじめ取得した標準ガスと吸収面積の関係からガス濃度を演算し,この直接検出法によるガス濃度演算値を2f検出法により算出したガス濃度演算値で割ることで補正値αを得る。 In the correction value calculation mode, the area enclosed by the reference line and the absorption signal is calculated using the direct detection method described above, and the gas concentration is calculated from the relationship between the standard gas and the absorption area obtained in advance. The gas concentration calculation value obtained using the direct detection method is divided by the gas concentration calculation value calculated using the 2f detection method to obtain the correction value α.

α = 直接検出法によるガス濃度算出値/2f検出法によるガス濃度算出値・・・(数1)
この際の,2f検出法によるガス濃度演算は,図6では直前の測定モードにおけるガス濃度演算値を用いて補正値を算出する処理フローとなっているが,直接検出法によりガス濃度を算出した後は補正値算出を行わず,直後の測定モードにおいてガス濃度補正を行う直前に,補正値演算モードで算出したガス濃度演算値を用いて補正値を算出する処理を設けても良い。
α=Gas concentration calculated by direct detection method/Gas concentration calculated by 2f detection method (Equation 1)
In this case, the gas concentration calculation by the 2f detection method is shown in the processing flow in FIG. 6 as a process of calculating a correction value using the gas concentration calculation value in the immediately preceding measurement mode. However, after the gas concentration is calculated by the direct detection method, no correction value calculation may be performed, and instead, a process may be provided in which a correction value is calculated using the gas concentration calculation value calculated in the correction value calculation mode immediately before gas concentration correction is performed in the immediately following measurement mode.

測定モードの場合は,2f検出法を用いて,ロックイン検出を行った後に極大値と極小値の差分Dを算出し,あらかじめ取得した標準ガスにおける差分Dとの関係からガス濃度を演算する。その後,以下の式によりガス濃度算出値に補正値を掛けることで補正後のガス濃度演算値を得る。 In the measurement mode, the 2f detection method is used to calculate the difference D between the maximum and minimum values after lock-in detection, and the gas concentration is calculated based on the relationship with the difference D in the previously acquired standard gas. After that, the calculated gas concentration value is multiplied by the correction value using the following formula to obtain the corrected calculated gas concentration value.

補正後のガス濃度演算値 = α×補正前の2f検出法によるガス濃度演算値・・・(数2)
以上の処理を行うことで,高感度で比較的短い時間で測定データを得ることが出来る2f検出法のガス濃度演算結果に直接検出法から求めた補正値を用いて補正処理を行うことで,圧力広がりの影響を低減して測定の安定性を高めたガス濃度を早い応答性で得ることが出来る。
Corrected gas concentration calculation value = α × uncorrected gas concentration calculation value using the 2f detection method (Equation 2)
By carrying out the above processing, the correction value obtained from the direct detection method is used to correct the gas concentration calculation results of the 2f detection method, which is highly sensitive and can obtain measurement data in a relatively short time. This reduces the effects of pressure spread, making it possible to obtain gas concentrations with improved measurement stability and quick response.

また,本実施例では増幅処理までの回路を共通化し,それ以降の直接検出法,2f検出法によるロックイン検出をデジタル回路で行うことで部品点数を削減することが出来るため,小型化,低コスト化を図ることができる。さらに,直接検出法ではオーバーサンプリング手法を用いることでノイズ低減,高分解能化を図ることが出来,直接検出法による検出精度の向上,それによる補正値精度の向上を行うことで,ガス濃度測定精度を高めることができる。 In addition, in this embodiment, the circuitry up to the amplification process is standardized, and the subsequent direct detection method and lock-in detection using the 2f detection method are performed using digital circuits, reducing the number of parts, thereby enabling miniaturization and cost reduction. Furthermore, in the direct detection method, an oversampling technique is used to reduce noise and achieve high resolution, improving the detection accuracy using the direct detection method and thereby improving the accuracy of the correction value, thereby improving the accuracy of gas concentration measurement.

これにより,応答性が良く測定精度が高い,小型,低コストなレーザ式ガス分析計を提供することが出来る。 This makes it possible to provide a small, low-cost laser gas analyzer that has good responsiveness and high measurement accuracy.

本発明のレーザ式ガス分析計は,ボイラ,ゴミ焼却等の燃焼排ガス測定用,燃焼制御用として最適である。その他,鉄鋼用ガス分析[高炉,転炉,熱処理炉,焼結(ペレット設備),コークス炉],青果貯蔵および熟成,生化学(微生物)[発酵],大気汚染[焼却炉,排煙脱硫・脱硝],自動車・船等の内燃機関の排ガス(除テスタ),防災[爆発性ガス検知,有毒ガス検知,新建築材燃焼ガス分析],植物育成用,化学用分析[石油精製プラント,石油化学プラント,ガス発生プラント],環境用[着地濃度,トンネル内濃度,駐車場,ビル管理],理化学各種実験用などの分析計としても有用である。 The laser gas analyzer of the present invention is ideal for measuring combustion exhaust gas from boilers, waste incineration, etc., and for combustion control. It is also useful as an analyzer for steel gas analysis [blast furnaces, converters, heat treatment furnaces, sintering (pellet equipment), coke ovens], fruit and vegetable storage and aging, biochemistry (microorganisms) [fermentation], air pollution [incinerators, flue gas desulfurization and denitrification], exhaust gas from internal combustion engines of automobiles and ships (removal testers), disaster prevention [explosive gas detection, toxic gas detection, new building material combustion gas analysis], plant growth, chemical analysis [oil refining plants, petrochemical plants, gas generating plants], environmental [landing concentration, concentration inside tunnels, parking lots, building management], various physical and chemical experiments, etc.

10:発光部
11:変調光生成部
12:レーザ素子
13:コリメートレンズ
14:発光部窓板
15:発光部容器
20:受光部
21:受光信号処理部
22:受光素子
23:集光レンズ
24:受光部窓板
25:受光部容器
30:検出光
40:通信線
50a,50b:壁
51a,51b:フランジ
52a,52b:光軸調整フランジ
111:レーザ素子
112:レーザ素子温度制御回路
113:波長掃引・変調電流制御回路
121:受光素子
122:IV変換回路
123:ハイパスフィルタ
124:増幅回路
125:AD変換器(ADC)
126:検出切り替え部
127:ローパスフィルタ(LPF)
128:間引き処理部
129:波形取得部
130:面積演算部
131:ロックイン検出部
132:波形取得部
133:振幅演算部
134:ガス濃度演算,補正演算部
135:制御部

10: Light emitting unit 11: Modulated light generating unit 12: Laser element 13: Collimating lens 14: Light emitting unit window plate 15: Light emitting unit container 20: Light receiving unit 21: Light receiving signal processing unit 22: Light receiving element 23: Condenser lens 24: Light receiving unit window plate 25: Light receiving unit container 30: Detection light 40: Communication line 50a, 50b: Wall 51a, 51b: Flange 52a, 52b: Optical axis adjustment flange 111: Laser element 112: Laser element temperature control circuit 113: Wavelength sweep/modulation current control circuit 121: Light receiving element 122: IV conversion circuit 123: High pass filter 124: Amplification circuit 125: AD converter (ADC)
126: Detection switching unit 127: Low pass filter (LPF)
128: Thinning processing unit 129: Waveform acquisition unit 130: Area calculation unit 131: Lock-in detection unit 132: Waveform acquisition unit 133: Amplitude calculation unit 134: Gas concentration calculation, correction calculation unit 135: Control unit

Claims (6)

測定対象空間に存在する測定対象ガスのガス濃度を測定するレーザ式ガス分析計であって,
前記測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域のレーザ光を出射するレーザ素子と,
前記測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域において,所定の第1周期で波長が掃引され且つ変調される状態と,前記第1周期よりも長い第2周期で波長が掃引され無変調の状態と,を切り替えることができる変調光生成部と,
前記測定対象空間を通過した前記レーザ光を受光する受光素子と,
前記変調の状態で前記受光素子から出力された検出信号に対し,変調周波数の整数倍の周波数の振幅に基づいてガス濃度を測定する第一の測定部と,
前記無変調の状態で前記受光素子から出力された検出信号に対し,前記測定対象ガスが無い状態の検出信号を基準信号として,その基準信号と前記測定対象ガスがある状態での検出信号とで囲われた面積に基づいてガス濃度を測定する第二の測定部と,
前記第二の測定部で測定されたガス濃度値を用いて補正値を演算し,前記第一の測定部で測定されたガス濃度に対して前記補正値を用いて補正処理を行い,前記測定対象ガスの濃度または有無を分析するガス濃度演算・補正演算部と,
を有するレーザ式ガス分析計。
A laser gas analyzer that measures the gas concentration of a measurement target gas present in a measurement target space,
a laser element that emits laser light having a wavelength band including an optical absorption wavelength of the absorption line spectrum of the measurement target gas;
a modulated light generating unit capable of switching between a state in which the wavelength is swept and modulated in a predetermined first period in a wavelength band including the optical absorption wavelength of the absorption line spectrum of the measurement target gas, and a state in which the wavelength is swept and unmodulated in a second period longer than the first period;
a light receiving element that receives the laser light that has passed through the measurement target space;
a first measuring unit that measures a gas concentration based on an amplitude of a frequency that is an integer multiple of a modulation frequency for a detection signal output from the light receiving element in the modulated state;
a second measurement unit which measures a gas concentration based on an area enclosed by a detection signal in the presence of the target gas and a detection signal in the presence of the target gas, the detection signal being used as a reference signal for the detection signal output from the light receiving element in the unmodulated state;
a gas concentration calculation/correction calculation unit that calculates a correction value using the gas concentration value measured by the second measurement unit, performs a correction process on the gas concentration value measured by the first measurement unit using the correction value, and analyzes the concentration or presence or absence of the measurement target gas;
A laser gas analyzer having a
前記ガス濃度演算・補正演算部は,
前記第二の測定部で測定されたガス濃度値を前記第一の測定部で測定されたガス濃度値で除算することで補正値を算出し,前記第一の測定部で測定された濃度値に前記算出した補正値を乗算することで濃度値を算出する,
請求項1に記載のレーザ式ガス分析計。
The gas concentration calculation and correction calculation unit includes:
Calculating a correction value by dividing the gas concentration value measured by the second measurement unit by the gas concentration value measured by the first measurement unit, and calculating a concentration value by multiplying the concentration value measured by the first measurement unit by the calculated correction value.
2. The laser gas analyzer according to claim 1.
前記受光素子から出力された検出信号の処理を行う受光信号処理部を更に備え,
前記受光信号処理部は,
前記検出信号をアナログ値からデジタル値に変換するAD変換部と,
前記デジタル値の出力先を前記第一の測定部と前記第二の測定部とで切り替える検出切替部を有する,
請求項1または2に記載のレーザ式ガス分析
A light receiving signal processing unit that processes a detection signal output from the light receiving element,
The light receiving signal processing unit includes:
an AD conversion unit for converting the detection signal from an analog value to a digital value;
a detection switching unit that switches an output destination of the digital value between the first measurement unit and the second measurement unit;
3. The laser gas analyzer according to claim 1 or 2.
前記受光信号処理部は,
前記デジタル値にデジタルフィルタ処理を行った後にデータを間引く処理を行い,減量したデジタル値を出力する第一の検出データ処理部を有する,
請求項3に記載のレーザ式ガス分析
The light receiving signal processing unit includes:
a first detection data processing unit that performs digital filtering on the digital value and then performs data thinning processing to output a reduced digital value;
4. The laser gas analyzer according to claim 3.
所定の繰り返し回数の前記レーザ光の掃引により取得した前記デジタル値を平均化する第二の検出データ処理部を有する,
請求項3に記載のレーザ式ガス分析計。
a second detection data processing unit that averages the digital values acquired by sweeping the laser light a predetermined number of times;
4. The laser gas analyzer according to claim 3 .
前記減量したデジタル値を平均化する第二の検出データ処理部を有する,
請求項に記載のレーザ式ガス分析計。
a second detection data processing unit that averages the reduced digital values ;
5. The laser gas analyzer according to claim 4 .
JP2020202576A 2020-12-07 2020-12-07 Laser Gas Analyzer Active JP7581813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020202576A JP7581813B2 (en) 2020-12-07 2020-12-07 Laser Gas Analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020202576A JP7581813B2 (en) 2020-12-07 2020-12-07 Laser Gas Analyzer

Publications (2)

Publication Number Publication Date
JP2022090283A JP2022090283A (en) 2022-06-17
JP7581813B2 true JP7581813B2 (en) 2024-11-13

Family

ID=81992070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020202576A Active JP7581813B2 (en) 2020-12-07 2020-12-07 Laser Gas Analyzer

Country Status (1)

Country Link
JP (1) JP7581813B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192246A (en) 2008-02-12 2009-08-27 Fuji Electric Systems Co Ltd Gas concentration measuring device and gas concentration measuring method
JP2011117869A (en) 2009-12-04 2011-06-16 Shimadzu Corp Gas analysis device
JP2013164315A (en) 2012-02-10 2013-08-22 Shimadzu Corp Laser gas analysis device
CN104713841A (en) 2015-02-09 2015-06-17 中国石油大学(华东) Self-calibration analyzer design method and device
CN204594869U (en) 2015-02-09 2015-08-26 中国石油大学(华东) A kind of self calibration analyzer
WO2019117730A1 (en) 2017-12-15 2019-06-20 Neo Monitors As Hydrogen gas sensor and method for measurement of hydrogen under ambient and elevated pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192246A (en) 2008-02-12 2009-08-27 Fuji Electric Systems Co Ltd Gas concentration measuring device and gas concentration measuring method
JP2011117869A (en) 2009-12-04 2011-06-16 Shimadzu Corp Gas analysis device
JP2013164315A (en) 2012-02-10 2013-08-22 Shimadzu Corp Laser gas analysis device
CN104713841A (en) 2015-02-09 2015-06-17 中国石油大学(华东) Self-calibration analyzer design method and device
CN204594869U (en) 2015-02-09 2015-08-26 中国石油大学(华东) A kind of self calibration analyzer
WO2019117730A1 (en) 2017-12-15 2019-06-20 Neo Monitors As Hydrogen gas sensor and method for measurement of hydrogen under ambient and elevated pressure

Also Published As

Publication number Publication date
JP2022090283A (en) 2022-06-17

Similar Documents

Publication Publication Date Title
US9310295B2 (en) Laser-type gas analyzer
JP6624505B2 (en) Laser gas analyzer
JP6044760B2 (en) Laser gas analyzer
JP5176535B2 (en) Laser gas analyzer
JP6128361B2 (en) Multi-component laser gas analyzer
CN104949929A (en) Method and system for correcting incident light fluctuations in absorption spectroscopy
JP2001074653A (en) Gas concentration measuring apparatus and combustion furnace
EP3244195B1 (en) Gas analysis system and boiler
JP2014102152A (en) Laser type gas analyzer
JP5163360B2 (en) Laser gas analyzer and gas concentration measuring method
JP5234381B1 (en) Laser oxygen analyzer
JP7395846B2 (en) Laser gas analyzer
JP6668841B2 (en) Laser gas analyzer
JP7581813B2 (en) Laser Gas Analyzer
JP7334502B2 (en) laser gas analyzer
JP7543762B2 (en) Laser Gas Analyzer
JP7215632B1 (en) laser gas analyzer
JP2023132453A (en) Laser type gas analyzer
JP2023159724A (en) Laser type gas analysis meter
EP3591773B1 (en) Sweeping signal generating device
US20230288328A1 (en) Laser gas analyzer
JP2023157238A (en) Laser gas analyzer
JP2024176082A (en) Laser gas analyzer and laser gas analysis method
JP2021139868A (en) Laser gas analyzer
JP2013113647A (en) Laser gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241014

R150 Certificate of patent or registration of utility model

Ref document number: 7581813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150