[go: up one dir, main page]

JP7578982B2 - Method for purifying iron(II) chloride - Google Patents

Method for purifying iron(II) chloride Download PDF

Info

Publication number
JP7578982B2
JP7578982B2 JP2021087215A JP2021087215A JP7578982B2 JP 7578982 B2 JP7578982 B2 JP 7578982B2 JP 2021087215 A JP2021087215 A JP 2021087215A JP 2021087215 A JP2021087215 A JP 2021087215A JP 7578982 B2 JP7578982 B2 JP 7578982B2
Authority
JP
Japan
Prior art keywords
chloride
iron
cooling
crystals
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021087215A
Other languages
Japanese (ja)
Other versions
JP2022180228A (en
Inventor
凌之介 尾脇
和 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Original Assignee
Astec Irie Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd filed Critical Astec Irie Co Ltd
Priority to JP2021087215A priority Critical patent/JP7578982B2/en
Publication of JP2022180228A publication Critical patent/JP2022180228A/en
Application granted granted Critical
Publication of JP7578982B2 publication Critical patent/JP7578982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、塩化鉄(II)の高純度化方法に関する。 The present invention relates to a method for highly purifying iron(II) chloride.

プリント配線板やIC、LSI用のリードフレームなどは、塩化鉄(III)を含むエッチング液で部分的に腐食処理することにより製造されている。
エッチング処理によって、エッチング液に含まれる塩化鉄(III)が還元されて塩化鉄(II)になり、塩化鉄(III)の濃度が低下してエッチング効率が悪くなるので、定期的にエッチング液の交換が行われている。
Printed wiring boards, ICs, lead frames for LSIs, etc. are manufactured by partially etching them with an etching solution containing iron (III) chloride.
During the etching process, the iron (III) chloride contained in the etching solution is reduced to iron (II) chloride, which reduces the concentration of iron (III) chloride and reduces the etching efficiency, so the etching solution is periodically replaced.

特許文献1~2には、塩化第一鉄溶液と塩酸とを混合し、塩化第一鉄を析出させる、塩化第一鉄の精製方法が記載されている。 Patent documents 1 and 2 describe a method for purifying ferrous chloride in which a ferrous chloride solution is mixed with hydrochloric acid to precipitate ferrous chloride.

特開2010-241629号公報JP 2010-241629 A 特開昭55-23005号公報Japanese Patent Application Publication No. 55-23005

エッチング処理後の廃液であるエッチング廃液は銅成分、ニッケル成分を多量に含んでいる。そこで鉄粉を加えることでイオン化傾向の差により銅粉、ニッケル粉を液中から取り出す還元処理がなされている。還元後の塩化鉄(II)は酸化処理され、塩化鉄(III)となり、エッチング液として再びリサイクルされるが、プロセス上、余剰に塩化鉄(II)を含む溶液が生成され、廃棄されているのが現状である。 Etching waste liquid, which is the waste liquid after the etching process, contains large amounts of copper and nickel components. Therefore, a reduction process is carried out in which iron powder is added to remove the copper and nickel powder from the liquid due to the difference in ionization tendency. After reduction, iron chloride (II) is oxidized to iron chloride (III) and recycled again as an etching liquid, but due to the process, a solution containing surplus iron chloride (II) is produced and discarded.

廃棄される塩化鉄(II)を含む溶液を再利用することができれば、資源の有効利用の観点、及び廃棄物の減少による環境負荷の低減の観点から望ましい。
しかしながら、還元処理工程において銅成分、ニッケル成分が除去されても完全に除去されるわけではなく、また、鉄粉を加えても還元されない成分も種々液中には含まれる。塩化鉄(II)を含む溶液中の不純物成分としては、典型元素であるカルシウムや亜鉛、遷移元素である銅、ニッケル、マンガン、コバルト等が挙げられる。これらの不純物が含まれる結果、塩化鉄(II)の純度が低いため、様々な用途(例えば、リン酸鉄リチウムイオンバッテリーの正極材料や顔料の原料など)に再利用することが難しいという問題があった。
If it were possible to reuse a discarded solution containing iron (II) chloride, it would be desirable from the standpoint of effective utilization of resources and reduction of the environmental burden due to a reduction in waste.
However, even if the copper and nickel components are removed in the reduction process, they are not completely removed, and various liquids contain components that are not reduced even when iron powder is added. Impurity components in solutions containing iron (II) chloride include typical elements such as calcium and zinc, and transition elements such as copper, nickel, manganese, and cobalt. As a result of the inclusion of these impurities, the purity of iron (II) chloride is low, and there is a problem that it is difficult to reuse it for various applications (for example, a positive electrode material for lithium iron phosphate batteries and a raw material for pigments).

本発明の課題は、塩化鉄(II)の純度を高くすることができ、かつ回収率に優れる塩化鉄(II)の高純度化方法を提供することにある。 The object of the present invention is to provide a method for purifying iron(II) chloride that can increase the purity of iron(II) chloride and has an excellent recovery rate.

上記課題は下記手段により達成することができる。
(1)
塩化鉄(II)を含む溶液と塩酸と混合し、混合液を得る工程(A)と、
前記混合液を冷却し、塩化鉄(II)4水和物の結晶を得る工程(B)とを含み、
前記混合液中のFeCl に対するHClのモル比であるHCl/FeCl が1.0以上であり、
前記工程(B)の冷却を冷却速度0.01℃/分~1℃/分で行い、
前記工程(A)の前に、前記工程(A)で用いられる塩化鉄(II)を含む溶液を55℃以上95℃以下に加温する工程を含む、
塩化鉄(II)の高純度化方法。
(2)
前記混合液中のFeCl に対するHClのモル比であるHCl/FeCl が1.0以上3.0以下である、(1)に記載の塩化鉄(II)の高純度化方法。
(3)
前記工程(B)の冷却を冷却速度0.01℃/分~0.1℃/分で行う、(1)又は(2)に記載の塩化鉄(II)の高純度化方法。
(4)
前記工程(A)で用いられる前記塩化鉄(II)を含む溶液が、エッチング廃液に由来する溶液である、(1)~(3)のいずれか1つに記載の塩化鉄(II)の高純度化方法。
(5)
前記工程(B)の後に、固液分離工程を含む、(1)~(4)のいずれか1つに記載の塩化鉄(II)の高純度化方法。
(6)
前記工程(A)で用いられる塩化鉄(II)を含む溶液は、塩化鉄(II)を30質量%以上49質量%未満含有する、(1)~(5)のいずれか1つに記載の塩化鉄(II)の高純度化方法。
(7)
前記工程(B)の冷却を行う前の前記混合液の温度が50℃以上である、(1)~(6)のいずれか1つに記載の塩化鉄(II)の高純度化方法。
本発明は、上記(1)~(7)に係るものであるが、本明細書には参考のためその他の事項についても記載した。
〔1〕
塩化鉄(II)を含む溶液と塩酸と混合し、混合液を得る工程(A)と、
前記混合液を冷却し、塩化鉄(II)4水和物の結晶を得る工程(B)とを含み、
前記混合液中のFeClに対するHClのモル比であるHCl/FeClが1.0以上であり、
前記工程(B)の冷却を冷却速度0.01℃/分~1℃/分で行う、
塩化鉄(II)の高純度化方法。
〔2〕
前記混合液中のFeClに対するHClのモル比であるHCl/FeClが1.0以上3.0以下である、〔1〕に記載の塩化鉄(II)の高純度化方法。
〔3〕
前記工程(B)の冷却を冷却速度0.01℃/分~0.1℃/分で行う、〔1〕又は〔2〕に記載の塩化鉄(II)の高純度化方法。
〔4〕
前記工程(A)で用いられる前記塩化鉄(II)を含む溶液が、エッチング廃液に由来する溶液である、〔1〕~〔3〕のいずれか1つに記載の塩化鉄(II)の高純度化方法。
〔5〕
前記工程(B)の後に、固液分離工程を含む、〔1〕~〔4〕のいずれか1つに記載の塩化鉄(II)の高純度化方法。
〔6〕
前記工程(A)の前に、前記工程(A)で用いられる塩化鉄(II)を含む溶液を55℃以上95℃以下に加温する工程を含む、〔1〕~〔5〕のいずれか1つに記載の塩化鉄(II)の高純度化方法。
〔7〕
前記工程(A)で用いられる塩化鉄(II)を含む溶液は、塩化鉄(II)を30質量%以上49質量%未満含有する、〔1〕~〔6〕のいずれか1つに記載の塩化鉄(II)の高純度化方法。
〔8〕
前記工程(B)の冷却を行う前の前記混合液の温度が50℃以上である、〔1〕~〔7〕のいずれか1つに記載の塩化鉄(II)の高純度化方法。
The above object can be achieved by the following means.
(1)
A step (A) of mixing a solution containing iron (II) chloride with hydrochloric acid to obtain a mixed solution;
and (B) cooling the mixture to obtain crystals of iron(II) chloride tetrahydrate,
The molar ratio of HCl to FeCl 2 in the mixed solution is 1.0 or more ;
The cooling in the step (B) is carried out at a cooling rate of 0.01° C./min to 1° C./min;
The method includes, prior to the step (A), a step of heating a solution containing iron (II) chloride used in the step (A) to a temperature of 55° C. or higher and 95° C. or lower.
A method for purifying iron(II) chloride.
(2)
The method for highly purifying iron (II) chloride according to (1), wherein the molar ratio of HCl to FeCl2 in the mixed solution, HCl/FeCl2 , is 1.0 or more and 3.0 or less.
(3)
The method for highly purifying iron(II) chloride according to (1) or (2), wherein the cooling in the step (B) is carried out at a cooling rate of 0.01° C./min to 0.1° C./min.
(4)
The method for increasing the purity of iron(II) chloride according to any one of (1) to (3), wherein the solution containing iron(II) chloride used in the step (A) is a solution derived from an etching waste liquid.
(5)
The method for increasing the purification rate of iron(II) chloride according to any one of (1) to (4), further comprising a solid-liquid separation step after the step (B).
(6)
The method for increasing the purity of iron(II) chloride according to any one of (1) to (5), wherein the solution containing iron(II) chloride used in the step (A) contains 30% by mass or more and less than 49% by mass of iron(II) chloride.
(7)
The method for highly purifying iron(II) chloride according to any one of (1) to (6), wherein the temperature of the mixture before the cooling in the step (B) is 50° C. or higher.
The present invention relates to the above items (1) to (7), but other items are also described in this specification for reference.
[1]
A step (A) of mixing a solution containing iron (II) chloride with hydrochloric acid to obtain a mixed solution;
and (B) cooling the mixture to obtain crystals of iron(II) chloride tetrahydrate,
The molar ratio of HCl to FeCl 2 in the mixed solution is 1.0 or more ;
The cooling in step (B) is carried out at a cooling rate of 0.01° C./min to 1° C./min.
A method for purifying iron(II) chloride.
[2]
The method for purifying iron (II) chloride according to [1], wherein the molar ratio of HCl to FeCl 2 in the mixed solution, HCl/FeCl 2, is 1.0 or more and 3.0 or less.
[3]
The method for highly purifying iron(II) chloride according to [1] or [2], wherein the cooling in the step (B) is carried out at a cooling rate of 0.01° C./min to 0.1° C./min.
[4]
The method for increasing the purity of iron(II) chloride according to any one of [1] to [3], wherein the solution containing iron(II) chloride used in the step (A) is a solution derived from an etching waste liquid.
[5]
The method for increasing the purification rate of iron(II) chloride according to any one of [1] to [4], further comprising a solid-liquid separation step after the step (B).
[6]
The method for increasing the purity of iron(II) chloride according to any one of [1] to [5], further comprising a step of heating a solution containing iron(II) chloride used in the step (A) to a temperature of 55° C. or higher and 95° C. or lower prior to the step (A).
[7]
The method for increasing the purity of iron(II) chloride according to any one of [1] to [6], wherein the solution containing iron(II) chloride used in the step (A) contains 30% by mass or more and less than 49% by mass of iron(II) chloride.
[8]
The method for increasing the purification rate of iron(II) chloride according to any one of [1] to [7], wherein the temperature of the mixture before the cooling in the step (B) is 50° C. or higher.

本発明によれば、塩化鉄(II)の純度を高くすることができ、かつ回収率に優れる塩化鉄(II)の高純度化方法を提供することにある。 The present invention provides a method for purifying iron(II) chloride that can increase the purity of iron(II) chloride and has an excellent recovery rate.

本発明の塩化鉄(II)の高純度化方法は、
塩化鉄(II)を含む溶液と塩酸と混合し、混合液を得る工程(A)と、
前記混合液を冷却し、塩化鉄(II)4水和物の結晶を得る工程(B)とを含み、
前記混合液中のFeClに対するHClのモル比であるHCl/FeClが1.0以上であり、
前記工程(B)の冷却を冷却速度0.01℃/分~1℃/分で行う、
塩化鉄(II)の高純度化方法である。
The method for highly purifying iron(II) chloride of the present invention comprises the steps of:
A step (A) of mixing a solution containing iron (II) chloride with hydrochloric acid to obtain a mixed solution;
and (B) cooling the mixture to obtain crystals of iron(II) chloride tetrahydrate,
The molar ratio of HCl to FeCl 2 in the mixed solution is 1.0 or more ;
The cooling in step (B) is carried out at a cooling rate of 0.01° C./min to 1° C./min.
This is a method for highly purifying iron(II) chloride.

[工程(A)]
工程(A)は、塩化鉄(II)を含む溶液と塩酸と混合し、混合液を得る工程である。
工程(A)で用いられる塩化鉄(II)を含む溶液は、塩化鉄(II)を含む水溶液であることが好ましく、エッチング廃液に由来する溶液であることがより好ましい。エッチング廃液に由来する溶液とは、エッチング廃液又はエッチング廃液に対して何らかの処理(例えば酸化処理や還元処理)を行った後の溶液である。エッチング廃液に由来する溶液は通常は鉄以外の金属などの不純物を含有しており、本発明の方法を適用した際に本発明の効果が顕著に現れる。
工程(A)で用いられる塩化鉄(II)を含む溶液は、鉄以外の金属を含むものであることが好ましく、カルシウム、亜鉛、マンガン、コバルト、銅、ニッケルの少なくとも1種を含むものであることがより好ましく、カルシウム及びマンガンの少なくとも1種を含むことが更に好ましい。
工程(A)で用いられる塩化鉄(II)を含む溶液は、例えば、塩化鉄(II)を10~50質量%、カルシウムを100~3000ppm、マンガンを100~3000ppm含むものであってもよい。「ppm」は「parts per million」の略であり、質量基準(「質量ppm」)である。
[Step (A)]
Step (A) is a step of mixing a solution containing iron (II) chloride with hydrochloric acid to obtain a mixed solution.
The solution containing iron(II) chloride used in step (A) is preferably an aqueous solution containing iron(II) chloride, and more preferably a solution derived from etching waste liquid. The solution derived from etching waste liquid is a solution obtained by subjecting etching waste liquid or etching waste liquid to some treatment (e.g., oxidation treatment or reduction treatment). The solution derived from etching waste liquid usually contains impurities such as metals other than iron, and the effect of the present invention is remarkable when the method of the present invention is applied.
The solution containing iron(II) chloride used in step (A) preferably contains a metal other than iron, more preferably contains at least one of calcium, zinc, manganese, cobalt, copper, and nickel, and even more preferably contains at least one of calcium and manganese.
The solution containing iron(II) chloride used in step (A) may contain, for example, 10 to 50 mass% iron(II) chloride, 100 to 3000 ppm calcium, and 100 to 3000 ppm manganese. "ppm" is an abbreviation for "parts per million" and is based on mass ("ppm by mass").

工程(A)で用いられる塩化鉄(II)を含む溶液は、塩化鉄(II)を30質量%以上49質量%未満含有することが好ましく、30質量%以上45質量%以下含有することがより好ましく、30質量%以上40質量%以下含有することが更に好ましく、30質量%以上40質量%未満含有することが特に好ましい。 The solution containing iron(II) chloride used in step (A) preferably contains 30% by mass or more and less than 49% by mass of iron(II) chloride, more preferably 30% by mass or more and less than 45% by mass, even more preferably 30% by mass or more and less than 40% by mass, and particularly preferably 30% by mass or more and less than 40% by mass.

工程(A)で用いられる塩化鉄(II)を含む溶液の塩化鉄(II)の含有率が30質量%以上であると、工程(B)で得られる結晶について、下記式で定義される回収率が高くなり好ましい。
回収率(%)=100×[得られた結晶の質量(g)/{用いた塩化鉄(II)水溶液の質量(g)+用いた塩酸の質量(g)}]
When the iron(II) chloride content of the solution containing iron(II) chloride used in step (A) is 30 mass% or more, the recovery rate of the crystals obtained in step (B) is high as defined by the following formula, which is preferable.
Recovery rate (%) = 100 x [mass of crystals obtained (g) / {mass of aqueous iron(II) chloride solution used (g) + mass of hydrochloric acid used (g)}]

工程(A)で用いられる塩化鉄(II)を含む溶液の塩化鉄(II)の含有率が49質量%未満であると、工程(B)で得られる結晶の塩化鉄(II)の純度が高くなり好ましい。 If the iron(II) chloride content of the solution containing iron(II) chloride used in step (A) is less than 49% by mass, the purity of the iron(II) chloride crystals obtained in step (B) will be high, which is preferable.

工程(A)で、塩化鉄(II)を含む溶液と塩酸と混合して得られた混合液の温度(工程(B)の冷却を行う前の混合液の温度)は特に限定されないが、50℃以上であることが好ましく、60℃以上であることがより好ましい。混合液の温度が上記範囲になるように、塩化鉄(II)を含む溶液をあらかじめ加温させておくことが好ましい。これは、工程(B)で得られる結晶の純度を高くするためには、工程(B)で混合液を徐冷して、結晶をゆっくり析出させることが重要であるためである。また、工程(B)の冷却を行う前の混合液の温度は例えば75℃未満とすることができる。
加温手段は特に限定されず、公知の加温手段を用いることができる。
例えば、塩化鉄(II)を含む溶液を55℃以上95℃以下に加温することが好ましく、75℃以上95℃以下に加温することがより好ましく、80℃以上90℃以下に加温することが更に好ましい。
The temperature of the mixture obtained by mixing the solution containing iron (II) chloride and hydrochloric acid in step (A) (the temperature of the mixture before cooling in step (B)) is not particularly limited, but is preferably 50° C. or higher, more preferably 60° C. or higher. It is preferable to preheat the solution containing iron (II) chloride so that the temperature of the mixture is within the above range. This is because, in order to increase the purity of the crystals obtained in step (B), it is important to slowly cool the mixture in step (B) to slowly precipitate the crystals. In addition, the temperature of the mixture before cooling in step (B) can be, for example, less than 75° C.
The heating means is not particularly limited, and any known heating means can be used.
For example, the solution containing iron(II) chloride is preferably heated to 55°C or higher and 95°C or lower, more preferably 75°C or higher and 95°C or lower, and even more preferably 80°C or higher and 90°C or lower.

工程(A)で用いられる塩酸の濃度は、30質量%以上であることが好ましい。 The concentration of hydrochloric acid used in step (A) is preferably 30% by mass or more.

工程(A)で得られる混合液中のFeClに対するHClのモル比(HCl/FeCl)は1.0以上であり、1.0以上3.0以下であることが好ましい。 The molar ratio of HCl to FeCl 2 (HCl/FeCl 2 ) in the mixed liquid obtained in step (A) is 1.0 or more, and preferably 1.0 or more and 3.0 or less.

[工程(B)]
工程(B)は、工程(A)で得られた混合液を冷却し、塩化鉄(II)4水和物の結晶を得る工程である。
[Step (B)]
Step (B) is a step of cooling the mixed liquid obtained in step (A) to obtain crystals of iron(II) chloride tetrahydrate.

工程(B)を行うことで、通常は、塩化鉄(II)4水和物の結晶と残液とのスラリーが得られる。塩化鉄(II)を結晶化させることで、不純物を残液側に追い出すことができ、塩化鉄(II)の純度を高くすることができる。 By carrying out step (B), a slurry of iron(II) chloride tetrahydrate crystals and residual liquid is usually obtained. By crystallizing iron(II) chloride, impurities can be expelled to the residual liquid, and the purity of iron(II) chloride can be increased.

工程(B)の冷却は、混合液の温度が5℃~30℃になるまで行うことが好ましく、10℃~20℃になるまで行うことがより好ましい。冷却は公知の手段を用いて行うことができる。 The cooling in step (B) is preferably carried out until the temperature of the mixture reaches 5°C to 30°C, and more preferably 10°C to 20°C. Cooling can be carried out using known means.

工程(B)の冷却を冷却速度0.01℃/分~1℃/分で行うことが好ましく、冷却速度0.01℃/分~0.1℃/分で行うことがより好ましい。
工程(B)の冷却速度を上記範囲にすることで、得られる結晶中に不純物として存在する遷移元素(例えば、マンガン、コバルト、ニッケル等)の量を低減させることができ、塩化鉄(II)の純度を高くすることができるため好ましい。
The cooling in step (B) is preferably carried out at a cooling rate of 0.01° C./min to 1° C./min, and more preferably at a cooling rate of 0.01° C./min to 0.1° C./min.
By setting the cooling rate in step (B) within the above range, the amount of transition elements (e.g., manganese, cobalt, nickel, etc.) present as impurities in the obtained crystals can be reduced, and the purity of iron(II) chloride can be increased, which is preferable.

[その他の工程]
本発明の塩化鉄(II)の高純度化方法は、前述の工程(A)と工程(B)に加え、更にその他の工程を含むことができる。
その他の工程は特に限定されないが、本発明の塩化鉄(II)の高純度化方法は、工程(B)の後に固液分離工程を含むことが好ましい。
固液分離工程は、工程(B)を経て得られた結晶と残液を分離する工程である。固液分離は公知の手段(例えば、遠心分離機や濾過機)を用いて行うことができる。
[Other steps]
The method for highly purifying iron (II) chloride of the present invention can further include other steps in addition to the above-mentioned steps (A) and (B).
The other steps are not particularly limited, but the method for highly purifying iron(II) chloride of the present invention preferably includes a solid-liquid separation step after step (B).
The solid-liquid separation step is a step of separating the crystals obtained through step (B) from the residual liquid. The solid-liquid separation can be carried out by using a known means (e.g., a centrifuge or a filter).

また、本発明の塩化鉄(II)の高純度化方法は、工程(A)の前に、工程(A)で用いられる塩化鉄(II)を含む溶液を加温する工程を含むことができる。
工程(A)で、塩化鉄(II)を含む溶液と塩酸と混合して得られた混合液の温度(工程(B)の冷却を行う前の混合液の温度)が50℃以上になるように、塩化鉄(II)を含む溶液を加温することが好ましく、60℃以上になるように、塩化鉄(II)を含む溶液を加温することがより好ましい。また、工程(B)の冷却を行う前の混合液の温度を例えば75℃未満になるように加温することができる。
例えば、塩化鉄(II)を含む溶液を75℃以上95℃以下に加温することが好ましく、80℃以上90℃以下に加温することがより好ましい。
Furthermore, the method for highly purifying iron (II) chloride of the present invention may include, prior to step (A), a step of heating the solution containing iron (II) chloride to be used in step (A).
In step (A), the solution containing iron(II) chloride is preferably heated so that the temperature of the mixed solution obtained by mixing the solution containing iron(II) chloride with hydrochloric acid (the temperature of the mixed solution before cooling in step (B)) becomes 50° C. or higher, and more preferably the solution containing iron(II) chloride is heated so that the temperature becomes 60° C. or higher. In addition, the mixed solution before cooling in step (B) can be heated, for example, to less than 75° C.
For example, the solution containing iron(II) chloride is preferably heated to 75° C. or higher and 95° C. or lower, and more preferably to 80° C. or higher and 90° C. or lower.

以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples.

実施例及び比較例で使用した塩化鉄(II)水溶液A~Fは、下記表1に示す成分を表1に示す含有量で含む塩化鉄(II)水溶液である。 The iron(II) chloride aqueous solutions A to F used in the examples and comparative examples are iron(II) chloride aqueous solutions containing the components shown in Table 1 below in the amounts shown in Table 1.

Figure 0007578982000001
Figure 0007578982000001

(実施例1)
80℃に加温された塩化鉄(II)水溶液A100gと35質量%塩酸50gをビーカーに入れ、60℃の混合液とした(HCl/FeClモル比1.50)。混合液をプログラム冷却装置(水槽中の温度をプログラム制御できる装置)に入れ、0.05℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。カルシウム及びマンガンの除去率が高いと、相対的に塩化鉄(II)の純度が高くなるため、高純度化の効果が優れる。
Example 1
100g of aqueous iron (II) chloride solution A heated to 80°C and 50g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 60°C (HCl/FeCl 2 molar ratio 1.50). The mixed solution was placed in a program cooling device (a device capable of programmatically controlling the temperature in a water bath) and cooled at a rate of 0.05°C/min until it reached 20°C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). The content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate are shown in Table 3. When the removal rate of calcium and manganese is high, the purity of iron (II) chloride is relatively high, and therefore the effect of high purification is excellent.

回収率(%)=100×[得られた結晶の質量(g)/{用いた塩化鉄(II)水溶液の質量(g)+用いた塩酸の質量(g)}] Recovery rate (%) = 100 x [mass of crystals obtained (g) / {mass of iron(II) chloride solution used (g) + mass of hydrochloric acid used (g)}]

除去率(%)=100×[(用いた塩化鉄(II)水溶液中の不純物量(ppm)-結晶溶解後の不純物量(ppm)(※))/用いた塩化鉄(II)水溶液中の不純物量(ppm)]
※用いた塩化鉄(II)水溶液のFe濃度になるよう結晶を溶解、希釈させた際の不純物量
Removal rate (%) = 100 x [(amount of impurities (ppm) in the iron (II) chloride aqueous solution used) - amount of impurities (ppm) after dissolving the crystals (*)) / amount of impurities (ppm) in the iron (II) chloride aqueous solution used]
* The amount of impurities when the crystals were dissolved and diluted to match the Fe concentration of the iron (II) chloride solution used

(実施例2)
80℃に加温された塩化鉄(II)水溶液A100gと35質量%塩酸99gをビーカーに入れ、52℃の混合液とした(HCl/FeClモル比3.00)。混合液をプログラム冷却装置に入れ、0.01℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
Example 2
100 g of aqueous iron (II) chloride solution A heated to 80° C. and 99 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 52° C. (HCl/FeCl 2 molar ratio 3.00). The mixed solution was placed in a program cooling device and cooled at a rate of 0.01° C./min until it reached 20° C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(実施例3)
55℃に加温された塩化鉄(II)水溶液B100gと35質量%塩酸38gをビーカーに入れ、62℃の混合液とした(HCl/FeClモル比1.50)。混合液をプログラム冷却装置に入れ、0.05℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
Example 3
100 g of aqueous iron (II) chloride solution B heated to 55° C. and 38 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 62° C. (HCl/FeCl 2 molar ratio 1.50). The mixed solution was placed in a program cooling device and cooled at a rate of 0.05° C./min until it reached 20° C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(実施例4)
80℃に加温された塩化鉄(II)水溶液B100gと35質量%塩酸74gをビーカーに入れ、51℃の混合液とした(HCl/FeClモル比3.00)。混合液をプログラム冷却装置に入れ、0.01℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
Example 4
100 g of aqueous iron (II) chloride solution B heated to 80° C. and 74 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 51° C. (HCl/FeCl 2 molar ratio 3.00). The mixed solution was placed in a program cooling device and cooled at a rate of 0.01° C./min until it reached 20° C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(実施例5)
95℃に加温された塩化鉄(II)水溶液C100gと35%塩酸110gをビーカーに入れ、54℃の混合液とした(HCl/FeClモル比3.00)。混合液をプログラム冷却装置に入れ、0.1℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
Example 5
100 g of aqueous iron (II) chloride solution C heated to 95°C and 110 g of 35% hydrochloric acid were placed in a beaker to obtain a mixed solution at 54°C (HCl/FeCl 2 molar ratio 3.00). The mixed solution was placed in a programmable cooling device and cooled at a rate of 0.1°C/min until it reached 20°C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). The content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate are shown in Table 3.

(実施例6)
90℃に加温された塩化鉄(II)水溶液C100gと35質量%塩酸37gをビーカーに入れ、70℃の混合液とした(HCl/FeClモル比1.00)。混合液をプログラム冷却装置に入れ、0.01℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
Example 6
100 g of aqueous iron (II) chloride solution C heated to 90 ° C and 37 g of 35 mass% hydrochloric acid were placed in a beaker to obtain a mixed solution at 70 ° C (HCl / FeCl 2 molar ratio 1.00). The mixed solution was placed in a program cooling device and cooled at a rate of 0.01 ° C / min until it reached 20 ° C. After cooling, the obtained slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). The content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate are shown in Table 3.

(実施例7)
80℃に加温された塩化鉄(II)水溶液A100gと35質量%塩酸50gをビーカーに入れ、62℃の混合液とした(HCl/FeClモル比1.50)。混合液をプログラム冷却装置に入れ、1℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
(Example 7)
100 g of aqueous iron (II) chloride solution A heated to 80° C. and 50 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 62° C. (HCl/FeCl 2 molar ratio 1.50). The mixed solution was placed in a program cooling device and cooled at a rate of 1° C./min until it reached 20° C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(実施例8)
80℃に加温された塩化鉄(II)水溶液F100gと35質量%塩酸50gをビーカーに入れ、60℃の混合液とした(HCl/FeClモル比1.50)。混合液をプログラム冷却装置(水槽中の温度をプログラム制御できる装置)に入れ、0.05℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
(Example 8)
100 g of aqueous iron (II) chloride solution F heated to 80 ° C. and 50 g of 35 mass% hydrochloric acid were placed in a beaker to obtain a mixed solution at 60 ° C. (HCl / FeCl 2 molar ratio 1.50). The mixed solution was placed in a program cooling device (a device that can programmatically control the temperature in a water tank) and cooled at a rate of 0.05 ° C. / min until it reached 20 ° C. After cooling, the obtained slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(比較例1)
80℃に加温された塩化鉄(II)水溶液A100gと35質量%塩酸50gをビーカーに入れ、62℃の混合液とした(HCl/FeClモル比1.50)。混合液を恒温槽に入れ、3℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
(Comparative Example 1)
100 g of aqueous iron (II) chloride solution A heated to 80° C. and 50 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 62° C. (HCl/FeCl 2 molar ratio 1.50). The mixed solution was placed in a thermostatic bath and cooled at a rate of 3° C./min until it reached 20° C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(比較例2)
80℃に加温された塩化鉄(II)水溶液A100gと35質量%塩酸20gをビーカーに入れ、71℃の混合液とした(HCl/FeClモル比0.20)。混合液をプログラム冷却装置に入れ、0.05℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
(Comparative Example 2)
100 g of aqueous iron (II) chloride solution A heated to 80° C. and 20 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 71° C. (HCl/FeCl 2 molar ratio 0.20). The mixed solution was placed in a program cooling device and cooled at a rate of 0.05° C./min until it reached 20° C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(比較例3)
90℃に加温された塩化鉄(II)水溶液D100gと35質量%塩酸50gをビーカーに入れ、69℃の混合液とした(HCl/FeClモル比0.21)。混合液を恒温槽に入れ、3℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
(Comparative Example 3)
100 g of aqueous iron (II) chloride solution D heated to 90 ° C. and 50 g of 35 mass% hydrochloric acid were placed in a beaker to obtain a mixed solution at 69 ° C. (HCl / FeCl 2 molar ratio 0.21). The mixed solution was placed in a thermostatic bath and cooled at a rate of 3 ° C. / min until it reached 20 ° C. After cooling, the obtained slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(比較例4)
50℃に加温された塩化鉄(II)水溶液E100gと35質量%塩酸15gをビーカーに入れ、45℃の混合液とした(HCl/FeClモル比0.90)。混合液を恒温槽に入れ、3℃/分の速度で20℃に達するまで冷却を行った。しかしながら結晶は得られなかった。
(Comparative Example 4)
100 g of aqueous iron (II) chloride solution E heated to 50° C. and 15 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 45° C. (HCl/FeCl 2 molar ratio: 0.90). The mixed solution was placed in a thermostatic bath and cooled at a rate of 3° C./min until it reached 20° C. However, no crystals were obtained.

(比較例5)
50℃に加温された塩化鉄(II)水溶液E100gと35質量%塩酸65gをビーカーに入れ、40℃の混合液とした(HCl/FeClモル比4.00)。混合液を恒温槽に入れ、3℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
(Comparative Example 5)
100g of aqueous iron(II) chloride solution E heated to 50°C and 65g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 40°C (HCl/FeCl 2 molar ratio 4.00). The mixed solution was placed in a thermostatic bath and cooled at a rate of 3°C/min until it reached 20°C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron(II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

(比較例6)
80℃に加温された塩化鉄(II)水溶液A100gと35質量%塩酸50gをビーカーに入れ、62℃の混合液とした(HCl/FeClモル比1.50)。混合液をプログラム冷却装置に入れ、0.005℃/分の速度で20℃に達するまで冷却を行った。冷却後、得られたスラリーを遠心分離機にかけて結晶(塩化鉄(II)4水和物の結晶)を回収した。得られた結晶中の各成分の含有率、カルシウム及びマンガンの除去率、並びに回収率を表3に示す。
(Comparative Example 6)
100 g of aqueous iron (II) chloride solution A heated to 80° C. and 50 g of 35% by mass hydrochloric acid were placed in a beaker to obtain a mixed solution at 62° C. (HCl/FeCl 2 molar ratio 1.50). The mixed solution was placed in a program cooling device and cooled at a rate of 0.005° C./min until it reached 20° C. After cooling, the resulting slurry was centrifuged to recover crystals (crystals of iron (II) chloride tetrahydrate). Table 3 shows the content of each component in the obtained crystals, the removal rate of calcium and manganese, and the recovery rate.

実施例1~8、比較例1~6のHCl/FeClモル比と冷却速度を下記表2にまとめた。 The HCl/FeCl 2 molar ratios and cooling rates for Examples 1 to 8 and Comparative Examples 1 to 6 are summarized in Table 2 below.

Figure 0007578982000002
Figure 0007578982000002

Figure 0007578982000003
Figure 0007578982000003

実施例1~8は、回収率が高く、かつカルシウムとマンガンの除去率が高いため、塩化鉄(II)の高純度化の効果が高かった。比較例1は結晶中のマンガンの除去率が低く、塩化鉄(II)の純度が低かった。比較例2は結晶中のカルシウムの除去率が低く、塩化鉄(II)の純度が低かった。比較例3は結晶中のカルシウムとマンガンの除去率が低く、塩化鉄(II)の純度が低かった。比較例5は結晶中のカルシウムとマンガンの除去率が高いが、これは使用した塩化鉄(II)水溶液中のカルシウムとマンガンの含有率が低かったためである。比較例5の回収率は低く、残液量も多くなるため実用に適したものではなかった。また、比較例6は冷却速度を実施例よりも遅くしたものであるが、回収率や、カルシウムとマンガンの除去率については実施例の結果以上の効果が得られないものであり、冷却に時間がかかってしまうため非効率的であった。

In Examples 1 to 8, the recovery rate was high, and the removal rates of calcium and manganese were high, so the effect of purifying iron chloride (II) was high. In Comparative Example 1, the removal rate of manganese in the crystals was low, and the purity of iron chloride (II) was low. In Comparative Example 2, the removal rate of calcium in the crystals was low, and the purity of iron chloride (II) was low. In Comparative Example 3, the removal rate of calcium and manganese in the crystals was low, and the purity of iron chloride (II) was low. In Comparative Example 5, the removal rate of calcium and manganese in the crystals was high, but this was because the contents of calcium and manganese in the aqueous iron chloride (II) solution used were low. In Comparative Example 5, the recovery rate was low and the amount of residual liquid was large, so it was not suitable for practical use. In Comparative Example 6, the cooling rate was slower than in the Examples, but the recovery rate and the removal rate of calcium and manganese were not more effective than those in the Examples, and it was inefficient because it took a long time to cool.

Claims (7)

塩化鉄(II)を含む溶液と塩酸と混合し、混合液を得る工程(A)と、
前記混合液を冷却し、塩化鉄(II)4水和物の結晶を得る工程(B)とを含み、
前記混合液中のFeClに対するHClのモル比であるHCl/FeClが1.0以上であり、
前記工程(B)の冷却を冷却速度0.01℃/分~1℃/分で行い、
前記工程(A)の前に、前記工程(A)で用いられる塩化鉄(II)を含む溶液を55℃以上95℃以下に加温する工程を含む、
塩化鉄(II)の高純度化方法。
A step (A) of mixing a solution containing iron (II) chloride with hydrochloric acid to obtain a mixed solution;
and (B) cooling the mixture to obtain crystals of iron(II) chloride tetrahydrate,
The molar ratio of HCl to FeCl 2 in the mixed solution is 1.0 or more ;
The cooling in the step (B) is carried out at a cooling rate of 0.01° C./min to 1° C./min;
The method includes, prior to the step (A), a step of heating a solution containing iron (II) chloride used in the step (A) to a temperature of 55° C. or higher and 95° C. or lower.
A method for purifying iron(II) chloride.
前記混合液中のFeClに対するHClのモル比であるHCl/FeClが1.0以上3.0以下である、請求項1に記載の塩化鉄(II)の高純度化方法。 2. The method for purifying iron (II) chloride according to claim 1, wherein the molar ratio of HCl to FeCl 2 in the mixed solution, HCl/FeCl 2, is 1.0 or more and 3.0 or less. 前記工程(B)の冷却を冷却速度0.01℃/分~0.1℃/分で行う、請求項1又は2に記載の塩化鉄(II)の高純度化方法。 The method for purifying iron(II) chloride according to claim 1 or 2, wherein the cooling in step (B) is carried out at a cooling rate of 0.01°C/min to 0.1°C/min. 前記工程(A)で用いられる前記塩化鉄(II)を含む溶液が、エッチング廃液に由来する溶液である、請求項1~3のいずれか1項に記載の塩化鉄(II)の高純度化方法。 The method for purifying iron(II) chloride according to any one of claims 1 to 3, wherein the solution containing iron(II) chloride used in step (A) is a solution derived from etching waste liquid. 前記工程(B)の後に、固液分離工程を含む、請求項1~4のいずれか1項に記載の塩化鉄(II)の高純度化方法。 The method for purifying iron(II) chloride according to any one of claims 1 to 4, further comprising a solid-liquid separation step after step (B). 前記工程(A)で用いられる塩化鉄(II)を含む溶液は、塩化鉄(II)を30質量%以上49質量%未満含有する、請求項1~のいずれか1項に記載の塩化鉄(II)の高純度化方法。 The method for increasing the purity of iron (II) chloride according to any one of claims 1 to 5 , wherein the solution containing iron (II) chloride used in the step (A) contains 30% by mass or more and less than 49% by mass of iron (II) chloride. 前記工程(B)の冷却を行う前の前記混合液の温度が50℃以上である、請求項1~のいずれか1項に記載の塩化鉄(II)の高純度化方法。 The method for highly purifying iron(II) chloride according to any one of claims 1 to 6 , wherein the temperature of the mixture before the cooling in the step (B) is 50°C or higher.
JP2021087215A 2021-05-24 2021-05-24 Method for purifying iron(II) chloride Active JP7578982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021087215A JP7578982B2 (en) 2021-05-24 2021-05-24 Method for purifying iron(II) chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021087215A JP7578982B2 (en) 2021-05-24 2021-05-24 Method for purifying iron(II) chloride

Publications (2)

Publication Number Publication Date
JP2022180228A JP2022180228A (en) 2022-12-06
JP7578982B2 true JP7578982B2 (en) 2024-11-07

Family

ID=84327224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021087215A Active JP7578982B2 (en) 2021-05-24 2021-05-24 Method for purifying iron(II) chloride

Country Status (1)

Country Link
JP (1) JP7578982B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241629A (en) 2009-04-03 2010-10-28 Jfe Chemical Corp Method for refining ferrous chloride
JP2017515786A (en) 2014-04-30 2017-06-15 ジボ シェンタイ コンポジット マテリアル テクノロジー カンパニー・リミテッドZibo Shengtai Composite Material Technology Co.,Ltd. Method for preparing nanometer titanium dioxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241629A (en) 2009-04-03 2010-10-28 Jfe Chemical Corp Method for refining ferrous chloride
JP2017515786A (en) 2014-04-30 2017-06-15 ジボ シェンタイ コンポジット マテリアル テクノロジー カンパニー・リミテッドZibo Shengtai Composite Material Technology Co.,Ltd. Method for preparing nanometer titanium dioxide

Also Published As

Publication number Publication date
JP2022180228A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2014115686A1 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN108138258B (en) Method for removing arsenic from arsenic-containing materials
TWI383958B (en) Wastewater treatment methods
EP2152633B1 (en) Method for the treatment and reuse of a stripper solution
WO2018072499A1 (en) Method for recovering basic copper chloride from copper-containing waste liquid in sulfuric acid system
CN105714123A (en) Method for preparing ammonium rhenate from rhenium-rich slag
JP4674168B2 (en) Wastewater treatment method
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JP7016463B2 (en) How to collect tellurium
JP5103541B2 (en) Niobium separation and purification method and production method
CN107400904A (en) The preparation method of copper electrolyte removing impurities agent and the method for copper electrolyte removing impurities
JP7578982B2 (en) Method for purifying iron(II) chloride
JP5790525B2 (en) Impurity removal method
JP2011161386A (en) Method for treating thioarsenite
TWI486312B (en) Process for recovering copper from copper-containing waste liquid
JP7531909B2 (en) Method for purifying iron(II) chloride
JP4351912B2 (en) Method for purifying niobium compound and / or tantalum compound
JP7594288B2 (en) Method for purifying iron(III) chloride
JP3634747B2 (en) Separation and purification method of tantalum and niobium
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JPS59222292A (en) Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate
CN107434262A (en) A kind of method that sulphion or organic methylthio group are remained in removal manganese sulfate solution
JP6457039B2 (en) Silver recovery method
JP2008050229A (en) Method for producing copper sulfate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241018

R150 Certificate of patent or registration of utility model

Ref document number: 7578982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150