[go: up one dir, main page]

JP7578118B2 - Fe-based electroplated high strength steel sheet and manufacturing method thereof - Google Patents

Fe-based electroplated high strength steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP7578118B2
JP7578118B2 JP2022084829A JP2022084829A JP7578118B2 JP 7578118 B2 JP7578118 B2 JP 7578118B2 JP 2022084829 A JP2022084829 A JP 2022084829A JP 2022084829 A JP2022084829 A JP 2022084829A JP 7578118 B2 JP7578118 B2 JP 7578118B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolled steel
containing cold
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022084829A
Other languages
Japanese (ja)
Other versions
JP2022180344A (en
Inventor
叡 奥村
麻衣 宮田
友輔 奥村
俊佑 山本
洋一 牧水
正貴 木庭
克弥 星野
亮太 星見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022180344A publication Critical patent/JP2022180344A/en
Application granted granted Critical
Publication of JP7578118B2 publication Critical patent/JP7578118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、優れた化成処理性及び塗装後耐食性を有するとともに、耐遅れ破壊特性に優れるFe系電気めっき高強度鋼板及びその製造方法に関するものである。 The present invention relates to an Fe-based electroplated high-strength steel sheet that has excellent chemical conversion treatability and corrosion resistance after painting, as well as excellent delayed fracture resistance, and a method for manufacturing the same.

近年、地球環境を保護する観点から、自動車の燃費改善が強く求められている。また、衝突時における乗員の安全を確保する観点から、自動車の安全性向上も強く要求されている。それらの要求に応えるためには、自動車車体の軽量化と高強度化を同時に達成することが重要であり、自動車部材の素材となる冷延鋼板においては、高強度化及び薄肉化が積極的に進められている。また、自動車部材の多くは鋼板を成形加工して製造されることから、高い強度に加えて、良好な成形性も求められる。 In recent years, there has been a strong demand for improved fuel efficiency in automobiles from the standpoint of protecting the global environment. In addition, there has been a strong demand for improved automobile safety from the standpoint of ensuring the safety of passengers in the event of a collision. In order to meet these demands, it is important to simultaneously achieve a reduction in the weight and strength of automobile bodies, and there has been active progress in increasing the strength and thinning of cold-rolled steel sheets, which are the raw material for automobile parts. Furthermore, since many automobile parts are manufactured by forming steel sheets, good formability is also required in addition to high strength.

ここで、冷延鋼板の成形性を損うことなく高強度化を図ることができる方法の1つとして、Si添加による固溶強化が挙げられる。ただし、冷延鋼板に、多量のSi、特に0.5質量%以上のSiを添加した場合には、スラブ加熱時や、熱間圧延後あるいは冷間圧延後の焼鈍時に、鋼板表面にSiOやSi-Mn系複合酸化物等のSi含有酸化物が形成されることが知られている。形成されたSi含有酸化物は、化成処理性を著しく低下させるため、化成処理性に劣るだけでなく、電着塗装後の塩温水試験においては、通常の鋼板に比べて塗膜剥離を起こし易く、塗装後耐食性にも劣るという問題があった。 Here, one method for increasing the strength of cold-rolled steel sheets without impairing their formability is solid solution strengthening by adding Si. However, it is known that when a large amount of Si, particularly 0.5 mass% or more of Si, is added to cold-rolled steel sheets, Si-containing oxides such as SiO 2 and Si-Mn composite oxides are formed on the steel sheet surface during slab heating or annealing after hot rolling or cold rolling. The formed Si-containing oxides significantly reduce the chemical conversion treatability, and therefore not only are the chemical conversion treatability poor, but in salt water tests after electrocoating, the coating film is more likely to peel off than in normal steel sheets, and the corrosion resistance after coating is also poor.

また、冷延鋼板の高強度化に関しては、強度の増加に伴って遅れ破壊が生じやすくなることも知られており、特に、引張り強度が980MPa以上の高強度鋼では、この遅れ破壊の傾向が顕著である。
なお、遅れ破壊とは、高強度鋼材が静的な負荷応力(引張り強さ以下の負荷応力)を受けた状態で、ある時間が経過したとき、外見上はほとんど塑性変形を伴うことなく、突然脆性的な破壊が生じる現象である。この遅れ破壊は、鋼板の場合、プレス加工により所定の形状に成形したときの残留引張り応力と、応力集中部における鋼の水素脆性により生じるものであることが知られている。
It is also known that increasing the strength of cold-rolled steel sheets increases the likelihood of delayed fracture. This tendency is particularly pronounced in high-strength steels with a tensile strength of 980 MPa or more.
Delayed fracture is a phenomenon in which high-strength steel undergoes sudden brittle fracture after a certain period of time under a static load stress (load stress below the tensile strength) without any apparent plastic deformation. In the case of steel plates, it is known that delayed fracture occurs due to the residual tensile stress when pressed into a specified shape and hydrogen embrittlement of the steel at the stress concentration area.

さらに、冷延鋼板は、上述した強度や成形性に加えて、化成処理皮膜の形成状態(化成処理性)の改善も望まれている。
例えば特許文献1には、0.5~2.0質量%のSiを含有する高強度冷延鋼板を焼鈍した後に、酸洗を行い付着量1~5g/mの範囲でZn-Fe合金を電気めっきすることで化成処理性を改善する技術が開示されており、特許文献2には、鋼板を酸化雰囲気で焼鈍し酸洗した後、Fe又はNiを1~50mg/mめっきすることで化成処理性を改善する技術が開示されている。
また、特許文献3には、焼鈍後の鋼板にFe-Ni合金めっきをすることで化成処理性を改善する技術が開示されており、特許文献4には、焼鈍後の鋼板に0.02~1.5g/mのFe被覆層を形成することで化成処理性を改善する技術が開示されている。
Furthermore, in addition to the above-mentioned strength and formability, improvements in the formation state of a chemical conversion coating (chemical conversion treatability) are also desired for cold-rolled steel sheets.
For example, Patent Document 1 discloses a technique for improving chemical conversion treatability by annealing a high-strength cold-rolled steel sheet containing 0.5 to 2.0 mass% Si, pickling the sheet, and then electroplating the sheet with a Zn-Fe alloy in a coating amount of 1 to 5 g/ m2 . Patent Document 2 discloses a technique for improving chemical conversion treatability by annealing a steel sheet in an oxidizing atmosphere, pickling the sheet, and then plating the steel sheet with Fe or Ni in a coating amount of 1 to 50 mg/ m2 .
Furthermore, Patent Document 3 discloses a technique for improving chemical conversion treatability by plating an annealed steel sheet with an Fe-Ni alloy, and Patent Document 4 discloses a technique for improving chemical conversion treatability by forming an Fe coating layer of 0.02 to 1.5 g/ m2 on an annealed steel sheet.

特開2015-89946号公報JP 2015-89946 A 特開2008-190030号公報JP 2008-190030 A 特開昭61-113787号公報Japanese Unexamined Patent Publication No. 113787/1987 特開平5-320952号公報Japanese Patent Application Publication No. 5-320952

しかしながら、特許文献1~4の化成処理性を改善する技術については、いずれも後半に電気めっきを施すことから、電気めっき中に鋼板に水素が侵入し、引張強度が980MPaを超える高強度鋼板においては、上述した遅れ破壊が生じやすくなるという問題があった。 However, the technologies for improving chemical conversion treatability described in Patent Documents 1 to 4 all involve electroplating in the latter stage, which causes hydrogen to penetrate into the steel sheet during electroplating, and in high-strength steel sheets with tensile strengths exceeding 980 MPa, the aforementioned delayed fracture is more likely to occur.

本発明は、かかる事情に鑑み、優れた化成処理性及び塗装後耐食性を有するとともに、耐遅れ破壊特性に優れるFe系電気めっき高強度鋼板及びその製造方法を提供する。 In view of the above circumstances, the present invention provides an Fe-based electroplated high-strength steel sheet that has excellent chemical conversion treatability and corrosion resistance after painting, as well as excellent delayed fracture resistance, and a method for manufacturing the same.

本発明者らは、上記の課題を解決すべく検討を行った結果、電気めっきを施す際に鋼板へ侵入する水素を抑えるためには、鋼板の焼鈍前に電気めっきを施すことが有効であることを知見した。通常鋼板の焼鈍は700~900℃程度の高温域で実施されるため、電気めっきで鋼板に侵入した拡散性水素は炉内に放出され、鋼中拡散性水素の含有量を低減できる。
なお、焼鈍時に鋼板に含有されるSiがFeめっき層中に拡散して表面に濃化することもあるが、焼鈍炉内の露点を制御することによって、Feめっき層の結晶粒サイズを調整し、化成処理性も同時に満足できることを見出し、本発明を完成させるに至った。
As a result of investigations aimed at solving the above problems, the inventors have found that in order to suppress hydrogen penetration into a steel sheet when electroplating is performed, it is effective to perform electroplating before annealing the steel sheet. Since steel sheets are usually annealed at a high temperature range of about 700 to 900°C, the diffusible hydrogen that penetrates into the steel sheet during electroplating is released into the furnace, and the content of diffusible hydrogen in the steel can be reduced.
In addition, during annealing, Si contained in the steel sheet may diffuse into the Fe plating layer and become concentrated on the surface. However, it has been found that by controlling the dew point in the annealing furnace, the crystal grain size of the Fe plating layer can be adjusted and chemical conversion treatability can be satisfied at the same time, which has led to the completion of the present invention.

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
1.Siを0.5~3.0質量%含む、Si含有冷延鋼板と、
該Si含有冷延鋼板の少なくとも片面に形成された、片面あたりの付着量が1.0~20.0g/mである、Fe系電気めっき層と、を備え、
鋼中拡散性水素の含有量が、0.25質量ppm以下であることを特徴とする、Fe系電気めっき高強度鋼板。
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
1. A Si-containing cold-rolled steel sheet containing 0.5 to 3.0 mass% Si;
and an Fe-based electroplating layer formed on at least one side of the Si-containing cold-rolled steel sheet, the Fe-based electroplating layer having a coating weight of 1.0 to 20.0 g/ m2 per side;
An Fe-based electroplated high-strength steel sheet, characterized in that the content of diffusible hydrogen in the steel is 0.25 mass ppm or less.

2前記Si含有冷延鋼板が、980MPa以上の引張強度を有することを特徴とする、前記1に記載のFe系電気めっき高強度鋼板。 2. The Fe-based electroplated high-strength steel sheet described in 1, characterized in that the Si-containing cold-rolled steel sheet has a tensile strength of 980 MPa or more.

3.前記Fe系電気めっき層と前記Si含有冷延鋼板との界面における、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合が50%超であることを特徴とする、前記1又は2に記載のFe系電気めっき高強度鋼板。 3. The Fe-based electroplated high-strength steel sheet according to 1 or 2, characterized in that the proportion of the crystal orientations of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet that are integrated at the interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet is more than 50%.

4.前記Si含有冷延鋼板は、質量%で、
Si:0.5~3.0%、
C:0.8%以下、
Mn:1.5~3.5%、
P:0.1%以下、
S:0.03%以下、及び、
Al:0.1%以下
を含有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする、前記1~3のいずれか1項に記載のFe系電気めっき高強度鋼板。
4. The Si-containing cold-rolled steel sheet has, in mass%,
Si: 0.5-3.0%,
C: 0.8% or less,
Mn: 1.5-3.5%,
P: 0.1% or less,
S: 0.03% or less, and
4. The Fe-based electroplated high-strength steel sheet according to any one of the above items 1 to 3, characterized in that it has a composition containing Al: 0.1% or less, with the balance being Fe and unavoidable impurities.

5.前記Si含有冷延鋼板の組成は、さらに、質量%で、
B:0.005%以下、
Ti:0.2%以下、
N:0.010%以下、
Cr:1.0%以下、
Cu:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Nb:0.20%以下、
V:0.5%以下、
Sb:0.200%以下、
Ta:0.1%以下、
W:0.5%以下、
Zr:0.1%以下、
Sn:0.20%以下、
Ca:0.005%以下、
Mg:0.005%以下、及び、
REM:0.005%以下
からなる群より選択される少なくとも一種を含有することを特徴とする、前記4に記載のFe系電気めっき高強度鋼板。
5. The composition of the Si-containing cold-rolled steel sheet further comprises, in mass%,
B: 0.005% or less,
Ti: 0.2% or less,
N: 0.010% or less,
Cr: 1.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
Mo: 1.0% or less,
Nb: 0.20% or less,
V: 0.5% or less,
Sb: 0.200% or less,
Ta: 0.1% or less,
W: 0.5% or less,
Zr: 0.1% or less,
Sn: 0.20% or less,
Ca: 0.005% or less,
Mg: 0.005% or less; and
5. The Fe-based electroplated high-strength steel sheet according to 4 above, characterized in that it contains at least one selected from the group consisting of REM: 0.005% or less.

6.前記Fe系電気めっき層は、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、V及びCoからなる群から選択される一種以上の元素を、合計で10質量%以下を含有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする、前記1~5のいずれか1項に記載のFe系電気めっき高強度鋼板。 6. The Fe-based electroplated high-strength steel sheet according to any one of claims 1 to 5, characterized in that the Fe-based electroplated layer contains one or more elements selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co in a total amount of 10 mass% or less, with the remainder consisting of Fe and unavoidable impurities.

7.Siを0.5~3.0質量%含む、Si含有冷延鋼板に、Fe系電気めっきを施して、片面あたりの付着量が1.0~20.0g/mのFe系電気めっき層が少なくとも片面に形成された、焼鈍前Fe系電気めっき鋼板を得る工程と、
前記焼鈍前Fe系電気めっき鋼板を、露点-30℃以下、水素濃度8体積%以下の雰囲気下で焼鈍して、Fe系電気めっき鋼板を得る工程と、
を含むことを特徴とする、Fe系電気めっき鋼板の製造方法。
7. A process of subjecting a Si-containing cold-rolled steel sheet containing 0.5 to 3.0 mass% Si to Fe-based electroplating to obtain a pre-annealed Fe-based electroplated steel sheet having an Fe-based electroplating layer formed on at least one side with a coating weight of 1.0 to 20.0 g/ m2 per side;
annealing the pre-annealed Fe-based electroplated steel sheet in an atmosphere having a dew point of −30° C. or less and a hydrogen concentration of 8 vol.% or less to obtain a Fe-based electroplated steel sheet;
A method for producing an Fe-based electroplated steel sheet, comprising:

8.前記焼鈍時の雰囲気は、露点が-40℃以下、水素濃度が5体積%以下であることを特徴とする、前記7に記載のFe系電気めっき鋼板の製造方法。 8. The method for producing an Fe-based electroplated steel sheet described in 7 above, characterized in that the atmosphere during the annealing has a dew point of -40°C or less and a hydrogen concentration of 5% by volume or less.

本発明によれば、優れた化成処理性及び塗装後耐食性を有するとともに、耐遅れ破壊特性に優れるFe系電気めっき高強度鋼板及びその製造方法を提供できる。 The present invention provides an Fe-based electroplated high-strength steel sheet that has excellent chemical conversion treatability and corrosion resistance after painting, as well as excellent delayed fracture resistance, and a method for manufacturing the same.

(a)は、Fe系めっき層とSi含有冷延鋼板との界面において、Si含有冷延鋼板に接するFe系電気めっき層の結晶粒界の数を測定するための、観察用サンプルの概要を示した斜視図であり、(b)は、(a)のA-A断面図である。FIG. 1A is a perspective view showing an outline of an observation sample for measuring the number of crystal grain boundaries of an Fe-based electroplating layer in contact with a Si-containing cold-rolled steel sheet at the interface between the Fe-based plating layer and the Si-containing cold-rolled steel sheet, and FIG. 1B is a cross-sectional view taken along the line A-A of FIG. 1A. (a)は、SIM像のFe系電気めっき層とSi含有冷延鋼板との界面に、走査型電子顕微鏡を用いて境界線Bを描画した画像であり、(b)は、二値化処理後の画像において、境界線Bを中心とする幅40ピクセルの判定領域のL及びLによって囲まれる領域)境界線Bに沿うように描画した画像であり、(c)は、(b)の四角で囲った箇所を拡大した図である。1A is an image in which a boundary line B is drawn using a scanning electron microscope at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet in a SIM image, (b) is an image in which a boundary line B is drawn along the boundary line B (a region surrounded by L1 and L2 in a judgment region having a width of 40 pixels and centered on the boundary line B) in the image after binarization processing, and (c) is an enlarged view of the area surrounded by the square in (b). 実施例における複合サイクル腐食試験の工程を示した図である。FIG. 2 is a diagram showing the steps of a combined cycle corrosion test in an embodiment. 実施例で用いた遅れ破壊評価用試験片を模式的に示した図である。FIG. 2 is a schematic diagram showing a test piece for evaluating delayed fracture used in the examples.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、特に断らない限り単に「%」で示す。 The following describes an embodiment of the present invention. Note that the present invention is not limited to the following embodiment. Note that in the following description, the unit of the content of each element in the steel composition and the content of each element in the plating layer composition is "mass %", and is simply indicated as "%" unless otherwise specified.

<Fe系電気めっき高強度鋼板>
本発明のFe系電気めっき高強度鋼板は、Siを0.5~3.0質量%含む、Si含有冷延鋼板と、該Si含有冷延鋼板の少なくとも片面に形成された、片面あたりの付着量が1.0~20.0g/mである、Fe系電気めっき層と、を備える。
<Fe-based electroplated high-strength steel sheet>
The Fe-based electroplated high-strength steel sheet of the present invention comprises a Si-containing cold-rolled steel sheet containing 0.5 to 3.0 mass % Si, and an Fe-based electroplated layer formed on at least one surface of the Si-containing cold-rolled steel sheet, the layer having a coating weight of 1.0 to 20.0 g/ m2 per surface.

(Si含有冷延鋼板)
本発明のFe系電気めっき高強度鋼板は、Siを0.5~3.0質量%含む、Si含有冷延鋼板を備える。以下、前記Si含有冷延鋼板の鋼成分について説明する。
(Si-containing cold rolled steel sheet)
The Fe-based electroplated high-strength steel sheet of the present invention comprises a Si-containing cold-rolled steel sheet containing 0.5 to 3.0 mass % of Si. Hereinafter, the steel components of the Si-containing cold-rolled steel sheet will be described.

Si:0.5~3.0%
前記Si含有冷延鋼板は、Siを0.5~3.0%含む。Siは、加工性を大きく損なうことなく鋼の強度を高める効果(固溶強化能)が大きいため、鋼の高強度化を達成するのに有効な元素である。そのため、Siを高強度達成手段として添加する場合には、0.5%以上の添加が必要である。Si含有量が0.5%未満では、化成処理性や耐抵抗溶接割れ特性への影響は少ない。一方、Siは化成処理性や塗装後耐食性及び耐抵抗溶接割れ特性に悪影響を及ぼす元素でもあるため、Siの含有量は3.0%以下である。Siの含有量が3.0%を超えると、熱間圧延性や冷間圧延性が大きく低下し、生産性に悪影響を及ぼしたり、鋼板自体の延性の低下を招くことがある。同様の観点から、Si含有量は0.7~2.5%の範囲であることが好ましい。
Si: 0.5-3.0%
The Si-containing cold rolled steel sheet contains 0.5 to 3.0% Si. Since Si has a large effect of increasing the strength of steel (solid solution strengthening ability) without significantly impairing workability, the high strength of steel can be obtained by the above-mentioned method. Therefore, when adding Si as a means for achieving high strength, it is necessary to add 0.5% or more. If the Si content is less than 0.5%, It has little effect on chemical conversion treatability and resistance weld crack resistance. On the other hand, Si is also an element that has a negative effect on chemical conversion treatability, corrosion resistance after painting, and resistance weld crack resistance, so the Si content is 3.0%. If the Si content exceeds 3.0%, the hot rolling property and cold rolling property are significantly deteriorated, which may adversely affect productivity and may lead to a deterioration in the ductility of the steel sheet itself. From the same viewpoint, the Si content is preferably in the range of 0.7 to 2.5%.

また、前記Si含有冷延鋼板は、Siを上記範囲で含有することを必須の要件とするが、その他の成分については、通常の冷延鋼板が有する組成範囲であれば許容することができ、特に制限されるものではない。
ただし、本発明の冷延鋼板を、自動車車体等に用いられる引張強さTSが590MPa以上の高強度冷延鋼板に適用する場合には、以下の成分組成を有するものであるのが好ましい。
The Si-containing cold-rolled steel sheet must contain Si in the above range, but other components are permissible as long as they are within the composition ranges of ordinary cold-rolled steel sheets, and are not particularly limited.
However, when the cold rolled steel sheet of the present invention is applied to a high strength cold rolled steel sheet having a tensile strength TS of 590 MPa or more for use in automobile bodies or the like, it is preferable that the cold rolled steel sheet has the following composition.

C:0.05~0.3%
Cは、鋼組織としてマルテンサイトなどを形成させることで加工性を向上しやすくする。そのため、0.05%以上含有することが好ましい。しかし、Cを過剰に添加すると溶接性が低下するため、含有量を0.3%以下とすることが好ましい。そのため、前記Si含有冷延鋼板は、Cを0.5%以上0.3%以下含むことが好ましい。
C: 0.05-0.3%
C forms martensite or the like as a steel structure, which makes it easier to improve workability. Therefore, it is preferable to include 0.05% or more of C. However, adding excessive C reduces weldability, so The Si content is preferably 0.3% or less. Therefore, the Si-containing cold-rolled steel sheet preferably contains C in an amount of 0.5% or more and 0.3% or less.

Mn:1.5~3.5%
Mnは、鋼を固溶強化して高強度化するとともに、焼入性を高め、残留オーステナイトやベイナイト、マルテンサイトの生成を促進する作用を有する元素である。このような効果は、1.5%以上の添加で発現する。一方、Mnの含有量が3.5%以下であれば、コストの上昇を招かずに上記効果が得られる。そのため、前記Si含有冷延鋼板は、Mnを1.5~3.5%の範囲で含むことが好ましい。
Mn: 1.5-3.5%
Mn is an element that strengthens steel by solid solution strengthening, improves hardenability, and promotes the formation of retained austenite, bainite, and martensite. On the other hand, if the Mn content is 3.5% or less, the above effect can be obtained without increasing the cost. It is preferable that the content be in the range of .5 to 3.5%.

P:0.1%以下(0%を含まない)
Pは、溶接性を低下させるとともに、粒界に偏析して延性、曲げ性や靭性を劣化させる。 さらに多量に添加すると、フェライト変態を促進することで結晶粒径も大きくしてしまう。そのため、前記Si含有冷延鋼板は、Pを0.1%以下含むことが好ましい。
P: 0.1% or less (excluding 0%)
P reduces weldability and segregates at grain boundaries to deteriorate ductility, bendability, and toughness. If added in large amounts, it also promotes ferrite transformation and increases the grain size. Therefore, the Si-containing cold-rolled steel sheet preferably contains P in an amount of 0.1% or less.

S:0.03%以下(0%を含まない)
Sは、溶接性を低下させるとともに、熱間での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させる。さらに、Sは、強度にほとんど寄与しないばかりか、不純物元素として粗大な硫化物を形成することにより、延性、曲げ性、伸びフランジ性を低下させる。これらの問題はSの含有量が0.030%を超えると顕著となり、Sの含有量は極力低減することが望ましい。そのため、前記Si含有冷延鋼板中のSの含有量は0.03%以下であることが好ましい。
S: 0.03% or less (excluding 0%)
S reduces weldability and significantly reduces hot ductility, thereby inducing hot cracking and significantly deteriorating surface properties. Furthermore, S not only contributes very little to strength, but also forms coarse sulfides as an impurity element, thereby reducing ductility, bendability, and stretch flangeability. These problems become significant when the S content exceeds 0.030%, so it is desirable to reduce the S content as much as possible. Therefore, the S content in the Si-containing cold-rolled steel sheet is preferably 0.03% or less.

Al:0.01~0.1%
Alは、製鋼工程で脱酸剤として添加される元素であり、伸びフランジ性を低下させる非金属介在物をスラグとして分離するのに有効な元素であることから、0.01%以上含有させることが好ましい。一方、Alの含有量が0.1%以下であれば、原料コストの上昇を招かず、上記効果を得ることができる。そのため、前記Si含有冷延鋼板は、Alを0.01%以上0.1%以下含むことが好ましい。
Al: 0.01~0.1%
Al is an element added as a deoxidizer in the steelmaking process, and is an effective element for separating nonmetallic inclusions that reduce stretch flangeability as slag. Therefore, the content should be 0.01% or more. On the other hand, if the content of Al is 0.1% or less, the above-mentioned effects can be obtained without increasing the raw material cost. It is preferable that the content is 0.1% or more.

Nb:0.005~0.05%
Nbは、炭化物や窒化物を形成し、焼鈍時の加熱段階でフェライトの成長を抑制して組織を微細化させ、成形性、特に伸びフランジ性を向上させる。このような効果は、0.005%以上の添加で発現する。一方、0.05%以下であれば、コストの上昇を招かずに上記効果が得られる。そのため、前記Si含有冷延鋼板は、Nbを0.005~0.05%含むことが好ましい。
Nb: 0.005-0.05%
Nb forms carbides and nitrides, suppresses the growth of ferrite during the heating stage of annealing, refines the structure, and improves formability, particularly stretch flangeability. % or more. On the other hand, if the Nb content is 0.05% or less, the above effect can be obtained without increasing the cost. Therefore, the Si-containing cold rolled steel sheet contains Nb in an amount of 0.005 to 0. It is preferable that the content is 0.5%.

Ti:0.005~0.05%
Tiは、Nbと同様、炭化物や窒化物を形成し、焼鈍時の加熱段階でフェライトの成長を抑制して組織を微細化させ、成形性、特に伸びフランジ性を向上させる。このような効果は、0.005%以上の添加で発現する。一方、0.05%以下であれば、コストの上昇を招かずに上記効果が得られる。そのため、前記Si含有冷延鋼板は、Tiを0.005~0.05%含むことが好ましい。
Ti: 0.005-0.05%
Ti, like Nb, forms carbides and nitrides, suppresses the growth of ferrite during the heating stage of annealing, refines the structure, and improves formability, especially stretch flangeability. The effect is expressed by adding 0.005% or more of Ti. On the other hand, if the content is 0.05% or less, the above effect can be obtained without increasing the cost. It is preferable that the content be 0.005 to 0.05%.

Cu:0.05~0.5%
Cuは0.05%以上含有されることで、残留γ相形成促進効果が得られやすい。一方、0.5%超えではコストアップを招く。そのため、前記Si含有冷延鋼板は、Cuを添加する場合、0.05~0.5%含むことが好ましい。
Cu: 0.05-0.5%
The Cu content of 0.05% or more is effective in promoting the formation of the residual γ phase. On the other hand, if it exceeds 0.5%, the cost increases. Therefore, the Si-containing cold-rolled steel sheet does not contain Cu. If added, it is preferable that the content be 0.05 to 0.5%.

Ni:0.05~0.5%
Niは0.05%以上含有されることで、残留γ相形成促進効果が得られやすい。一方、0.5%超えではコストアップを招く。そのため、前記Si含有冷延鋼板は、Niを添加する場合、0.05~0.5%含むことが好ましい。
Ni: 0.05-0.5%
When Ni is contained in an amount of 0.05% or more, the effect of promoting the formation of the residual γ phase is easily obtained. On the other hand, if the Ni content exceeds 0.5%, the cost increases. Therefore, the Si-containing cold-rolled steel sheet is not added with Ni. If added, it is preferable that the content be 0.05 to 0.5%.

Sb:0.001~0.2%
Sbは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。Sbは、窒化や酸化を抑制することで鋼板表面においてマルテンサイトの生成量が減少するのを防止し、疲労特性や表面品質が改善する。このような効果は、0.001%以上で得られる。一方、0.2%を超えると靭性が劣化する。そのため、前記Si含有冷延鋼板は、Sbを添加する場合、0.001~0.2%含むことが好ましい。
Sb: 0.001-0.2%
Sb can be contained from the viewpoint of suppressing nitridation and oxidation of the steel sheet surface, or decarburization in a region of several tens of microns on the steel sheet surface caused by oxidation. Sb suppresses nitridation and oxidation, thereby forming martensite on the steel sheet surface. This prevents the amount of Ti generated from decreasing, improving fatigue properties and surface quality. Such effects can be obtained at 0.001% or more. On the other hand, if it exceeds 0.2%, toughness deteriorates. When Sb is added to the Si-containing cold rolled steel sheet, it is preferable that the Sb content is 0.001 to 0.2%.

前記Si含有冷延鋼板は、上記成分以外の残部が、Fe及び不可避的不純物である。ただし、本発明の作用効果を害しない範囲であれば、その他の成分の添加を拒むものではない。
例えば、Moは、鋼の焼入性を向上し、ベイナイトやマルテンサイトの生成を促進する元素であるため、0.005~0.3%の範囲でさらに添加することができる。また、Ca及びREMは、硫化物系介在物の形態を制御し、鋼板の伸びフランジ性を向上させる元素であるので、Ca:0.001~0.1%、REM:0.001~0.1%のうちから選ばれる1種又は2種をさらに添加することができる。
The Si-containing cold rolled steel sheet contains Fe and unavoidable impurities as the balance other than the above-mentioned components, but other components may be added within a range that does not impair the effects of the present invention.
For example, Mo is an element that improves the hardenability of steel and promotes the formation of bainite and martensite, and therefore may be further added in the range of 0.005 to 0.3%. Ca and REM are elements that control the morphology of sulfide-based inclusions and improve the stretch flangeability of steel sheets, and therefore one or two selected from Ca: 0.001 to 0.1% and REM: 0.001 to 0.1% may be further added.

(Fe系電気めっき層)
本発明のFe系電気めっき高強度鋼板は、前記Si含有冷延鋼板の少なくとも片面に形成された、片面あたりの付着量が1.0~20.0g/mである、Fe系電気めっき層を備える。
(Fe-based electroplating layer)
The Fe-based electroplated high-strength steel sheet of the present invention comprises an Fe-based electroplated layer formed on at least one side of the Si-containing cold-rolled steel sheet, the layer having a coating weight of 1.0 to 20.0 g/ m2 per side.

前記Fe系電気めっき層を形成することによって、焼鈍時のSiやMnの外部酸化を遅延させ、Si含有冷延鋼板であっても、良好な化成処理性を有する冷延鋼板を得ることができる。
本発明では、1.0g/m以上の付着量を有するFe系電気めっき層を形成させる。化成処理性を向上させる効果を生じさせるためには、Fe系電気めっき層の片面あたりの付着量を1.0g/m以上とすることが必要である。同様の観点から、前記Fe系電気めっき層の付着量は、好ましくは3.0g/m以上、より好ましくは5.0g/m以上とする。前記Fe系電気めっき層の片面あたりの付着量の上限は、特に限定されないが、コストの観点から、Fe系電気めっき層の片面あたりの付着量を20g/m以下とする。
また、本発明のFe系電気めっき高強度鋼板では、前記Si含有冷延鋼板の表裏両面にFe系電気めっき層を形成することが好ましい。さらに、前記Fe系電気めっき層の付着量を3.0g/m以上とすることで化成処理性が特に良好となる。
By forming the Fe-based electroplating layer, the external oxidation of Si and Mn during annealing can be delayed, and even if the cold-rolled steel sheet contains Si, it is possible to obtain a cold-rolled steel sheet having good chemical conversion treatability.
In the present invention, an Fe-based electroplating layer having a coating weight of 1.0 g/ m2 or more is formed. In order to produce the effect of improving chemical conversion treatability, it is necessary that the coating weight of the Fe-based electroplating layer per side is 1.0 g/ m2 or more. From the same viewpoint, the coating weight of the Fe-based electroplating layer is preferably 3.0 g/m2 or more , more preferably 5.0 g/m2 or more . There is no particular limit to the upper limit of the coating weight of the Fe-based electroplating layer per side, but from the viewpoint of cost, the coating weight of the Fe-based electroplating layer per side is set to 20 g/ m2 or less.
In the Fe-based electroplated high strength steel sheet of the present invention, it is preferable to form an Fe-based electroplated layer on both sides of the Si-containing cold rolled steel sheet. Furthermore, by setting the adhesion weight of the Fe-based electroplated layer to 3.0 g/ m2 or more, chemical conversion treatability is particularly good.

なお、前記Fe系電気めっき層の付着量は、以下の通り測定する。焼鈍後のSi含有冷延鋼板から10×15mmサイズのサンプルを採取して樹脂に埋め込んだものを、断面埋め込みサンプルとする。断面埋め込みサンプルの任意の3か所を走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて加速電圧15kV、Fe系電気めっき層の厚みに応じて倍率2000~10000倍で観察し、3視野の厚みの平均値に鉄の比重を乗じることによって、Fe系電気めっき層の片面あたりの付着量に換算する。 The adhesion weight of the Fe-based electroplating layer is measured as follows. A 10 x 15 mm sample is taken from the annealed Si-containing cold-rolled steel sheet and embedded in resin to obtain a cross-section embedded sample. Three arbitrary locations of the cross-section embedded sample are observed using a scanning electron microscope (SEM) at an acceleration voltage of 15 kV and a magnification of 2000 to 10000 times depending on the thickness of the Fe-based electroplating layer, and the average thickness of the three fields of view is multiplied by the specific gravity of iron to convert it into the adhesion weight of the Fe-based electroplating layer per side.

ここで、前記Fe系電気めっき層の種類については、特に限定はされず、要求される性能に応じて適宜選択できる。例えば、前記Fe系電気めっき層として、純Feの他、Fe-B合金、Fe-C合金、Fe-P合金、Fe-N合金、Fe-O合金、Fe-Ni合金、Fe-Mn合金、Fe-Mo合金、Fe-W合金等の合金めっき層を適宜使用できる。
また、前記Fe系電気めっき層の成分組成についても、特に限定はされない。例えば、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、V及びCoからなる群から選ばれる1又は2以上の元素を、合計で10質量%以下含み、残部はFe及び不可避的不純物からなる成分組成とすることが好ましい。前記Fe以外の元素の量を合計で10質量%以下とすることで、電解効率の低下を防ぎ、低コストでFe系電気めっき層を形成することができる。
The type of the Fe-based electroplating layer is not particularly limited and can be appropriately selected depending on the required performance. For example, as the Fe-based electroplating layer, in addition to pure Fe, alloy plating layers such as Fe-B alloy, Fe-C alloy, Fe-P alloy, Fe-N alloy, Fe-O alloy, Fe-Ni alloy, Fe-Mn alloy, Fe-Mo alloy, and Fe-W alloy can be appropriately used.
The composition of the Fe-based electroplating layer is not particularly limited. For example, it is preferable that the composition contains one or more elements selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co in a total amount of 10 mass% or less, with the remainder being Fe and unavoidable impurities. By making the amount of elements other than Fe 10 mass% or less in total, it is possible to prevent a decrease in electrolysis efficiency and form the Fe-based electroplating layer at low cost.

なお、本発明に係るSi含有冷延鋼板は、表面にFe系電気めっき以外のめっき層を形成しないことが好ましい。前記Si含有冷延鋼板が表面にFe系電気めっき以外のめっき層を有さないことで、防錆用途としての亜鉛めっき鋼板が過剰に必要とされない部品、あるいは腐食環境がマイルドで過剰な防錆が必要とされない環境下で用いられる部品を、低コストで提供できるためである。 The Si-containing cold-rolled steel sheet according to the present invention preferably does not have a plating layer other than Fe-based electroplating formed on the surface. This is because the Si-containing cold-rolled steel sheet does not have a plating layer other than Fe-based electroplating on the surface, making it possible to provide at low cost parts that do not require excessive zinc-plated steel sheet for rust prevention purposes, or parts that are used in environments where the corrosive environment is mild and excessive rust prevention is not required.

(鋼中拡散性水素)
そして、本発明のFe系電気めっき高強度鋼板は、鋼中拡散性水素の含有量が、0.25質量ppm以下であることを特徴とする。
前記鋼中拡散性水素の含有量を0.25質量ppm以下とすることで、耐遅れ破壊特性を向上させることができる。
(Diffusible hydrogen in steel)
The Fe-based electroplated high-strength steel sheet of the present invention is characterized in that the content of diffusible hydrogen in the steel is 0.25 mass ppm or less.
By setting the content of diffusible hydrogen in the steel to 0.25 mass ppm or less, the delayed fracture resistance can be improved.

前記鋼中拡散性水素の含有量が0.25質量ppmを超える場合、曲げ性の劣化や耐遅れ破壊特性の劣化を招く。前記鋼中拡散性水素の含有量が0.25質量ppm以下であれば、耐遅れ破壊特性を大幅に改善することができ、また、前記鋼中拡散性水素の含有量は、0.10質量ppm以下であることが好ましい。0.10質量ppm以下であれば、耐遅れ破壊特性に加え、曲げ性等の機械特性も大きく改善することができる。 If the content of diffusible hydrogen in the steel exceeds 0.25 ppm by mass, this leads to deterioration in bendability and delayed fracture resistance. If the content of diffusible hydrogen in the steel is 0.25 ppm by mass or less, delayed fracture resistance can be significantly improved, and it is preferable that the content of diffusible hydrogen in the steel is 0.10 ppm by mass or less. If it is 0.10 ppm by mass or less, in addition to delayed fracture resistance, mechanical properties such as bendability can also be significantly improved.

前記遅れ破壊は、引張強度が980MPa以上の高強度鋼板でより顕著になることから、前記鋼中拡散性水素の含有量を0.25質量ppm以下とするのは、980MPa以上の高強度鋼板に適用することが好ましい。
ただし、鋼中水素は、引張強度が590MPa以上で重要視される曲げ性等の機械特性にも影響することから、本発明の技術は、引張強度が590MPa以上の高強度鋼板に適用することもできる。
The delayed fracture is more pronounced in high-strength steel plates having a tensile strength of 980 MPa or more, and therefore the content of diffusible hydrogen in steel of 0.25 mass ppm or less is preferably applied to high-strength steel plates having a tensile strength of 980 MPa or more.
However, since hydrogen in steel also affects mechanical properties such as bendability, which are important when the tensile strength is 590 MPa or more, the technology of the present invention can also be applied to high-strength steel plate with a tensile strength of 590 MPa or more.

ここで、前記鋼中拡散性水素の含有量を0.25質量ppm以下とする方法としては、特に限定はされない。例えば、前記Fe系電気めっきを形成後に後述する焼鈍処理を行うことによって、前記鋼中拡散性水素の含有量を0.25質量ppm以下に抑えることができる。 Here, the method for reducing the content of diffusible hydrogen in the steel to 0.25 mass ppm or less is not particularly limited. For example, the content of diffusible hydrogen in the steel can be reduced to 0.25 mass ppm or less by performing an annealing treatment described below after forming the Fe-based electroplating.

前記Fe系電気めっきを形成後に焼鈍処理を行うことによって、電気めっき中に侵入した水素が高温環境下で焼鈍炉に放出され、耐遅れ破壊特性を劣化させずに化成処理性を改善することが可能である。
前記電気めっきを施す際、鋼板側はカソードとなり、主に、以下の反応によって、めっき浴中のFeイオンが還元され、鋼板表面に金属Feとして電析する。
Fe2++2e-→Fe
同時に、めっき浴は酸性であることから、ある一定の割合で、以下の反応のように、水素の発生反応も生じている。
2H+2e→2H→H
鋼板上で生じた水素は、一定の割合で鋼板中に拡散性水素として浸入し、残りは水素ガスとなる。侵入した水素は、鋼中に残存し、曲げ性等の機械的特性の劣化に繋がるとともに、特に、980MPa以上の高強度鋼板で重要視される耐遅れ破壊特性を劣化させる要因となる。
By performing an annealing treatment after the formation of the Fe-based electroplating, hydrogen that has entered the electroplating is released into the annealing furnace in a high-temperature environment, making it possible to improve chemical conversion treatability without deteriorating delayed fracture resistance.
When the electroplating is performed, the steel sheet side serves as the cathode, and Fe ions in the plating bath are reduced and electrodeposited as metallic Fe on the steel sheet surface mainly through the following reaction.
Fe 2+ +2e - →Fe
At the same time, since the plating bath is acidic, a hydrogen generating reaction occurs at a certain rate, as shown in the following reaction:
2H + +2e - →2H→H 2
A certain proportion of hydrogen generated on the steel sheet penetrates into the steel sheet as diffusible hydrogen, and the remainder becomes hydrogen gas. The penetrated hydrogen remains in the steel and leads to deterioration of mechanical properties such as bendability, and is a factor in deteriorating delayed fracture resistance, which is particularly important for high-strength steel sheets of 980 MPa or more.

なお、前記鋼中拡散性水素の含有量を測定するための方法としては、例えば、ガスクロマトグラフィー等を使用し、昇温分析することで測定することができる。一般的に、温度250℃以下で放出される水素が拡散性水素と呼ばれる。 The amount of diffusible hydrogen in the steel can be measured, for example, by temperature rise analysis using gas chromatography. Generally, hydrogen that is released at temperatures of 250°C or less is called diffusible hydrogen.

なお、Fe系電気めっき層を形成後に焼鈍を施すことは、鋼板の脱水素に有効であり、耐遅れ破壊特性を劣化させない反面、Fe系電気めっき層があっても、最表層にSiやMnの外部酸化が生じ、十分な化成処理性が得られないおそれがある。
そのため、本発明では、前記Fe系電気めっき層と前記Si含有冷延鋼板との界面における、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合を50%超とすることが好ましい。前記Si含有冷延鋼板のSiやMnは、Fe電気めっき層の結晶粒界を拡散し、表面に酸化物を形成する。そのため、この結晶粒の一体化が十分に進行せず、電気めっき後のFeめっき層の超微細組織が残存すると、SiやMnの拡散が促進され、十分な化成処理性が得られないことがある。そのため、本発明では、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合を50%超とすることで、Fe系電気めっき層を設けることによる、焼鈍時のSiやMnの外部酸化抑制効果が顕著になり、より優れた化成処理性を実現できる。なお前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合の上限は、特に限定されず、100%であってもよい。
Note that annealing after the formation of an Fe-based electroplated layer is effective for dehydrogenating the steel sheet and does not deteriorate the delayed fracture resistance. However, even if an Fe-based electroplated layer is present, external oxidation of Si and Mn occurs in the outermost layer, and sufficient chemical conversion treatability may not be obtained.
Therefore, in the present invention, it is preferable that the ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet is more than 50%. Si and Mn of the Si-containing cold-rolled steel sheet diffuse through the grain boundaries of the Fe electroplating layer to form oxides on the surface. Therefore, if the integration of the crystal grains does not progress sufficiently and an ultrafine structure of the Fe plating layer remains after electroplating, the diffusion of Si and Mn is promoted, and sufficient chemical conversion treatability may not be obtained. Therefore, in the present invention, by making the ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet integrated more than 50%, the effect of suppressing external oxidation of Si and Mn during annealing by providing the Fe-based electroplating layer becomes significant, and more excellent chemical conversion treatability can be realized. The upper limit of the ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet integrated is not particularly limited and may be 100%.

ここで、前記Fe系電気めっき層と前記Si含有冷延鋼板との界面における、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合は、以下のように測定できる。
まず、Fe系電気めっき高強度鋼板から、10×10mmサイズのサンプルを採取する。該サンプルの任意の3箇所を集束イオンビーム(Focused Ion Beam;FIB)装置にて加工し、図1に示すようなT断面(鋼板の圧延直角方向に対して平行かつ鋼板表面に垂直な断面)方向に対して45°の角度をつけた、圧延直角方向30μm幅、T断面方向に対して45°方向の長さが50μmの45°断面を3箇所に形成して、観察用サンプルとする。次いで、走査イオン顕微鏡(Scanning Ion Microscope;SIM)を用いて該観察用サンプルの45°断面の中央部を倍率5000倍で観察し、幅1024×高さ943ピクセル、8ビットのSIM像を撮影する。3箇所に作成した45°断面毎に撮像したSIM像から、以下の式(1)に基づいて、Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合を求め、3箇所の平均値を求める。なお、小数点以下は切り上げとする。
式(1):Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合=(Fe系電気めっき層とSi含有冷延鋼板との界面のうち、Fe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している箇所の長さ)÷(観察視野での界面の長さ)×100(%)
Here, the ratio of the crystal orientations of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet that are integrated at the interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet can be measured as follows.
First, a sample of 10×10 mm size is taken from the Fe-based electroplated high-strength steel sheet. Three arbitrary locations of the sample are processed with a focused ion beam (FIB) device to form three 45° cross sections with a width of 30 μm in the direction perpendicular to the rolling and a length of 50 μm in the 45° direction relative to the T cross section direction, which are angled at 45° with respect to the T cross section direction (a cross section parallel to the rolling perpendicular direction of the steel sheet and perpendicular to the steel sheet surface) as shown in FIG. 1, to prepare a sample for observation. Next, the center of the 45° cross section of the observation sample is observed at a magnification of 5000 times using a scanning ion microscope (SIM), and a SIM image of 1024 pixels wide x 943 pixels high and 8 bits is taken. From the SIM images taken at each of the 45° cross sections created at three locations, the ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet that are integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet is calculated based on the following formula (1), and the average value of the three locations is calculated. Note that the value is rounded up to the nearest whole number.
Formula (1): Percentage of integrated crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet = (length of a portion of the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet where the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet are integrated) ÷ (length of the interface in the observation field) × 100 (%)

前記Fe系電気めっき層と前記Si含有冷延鋼板との界面における、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化しているか否かは、画像処理で判断する。
図2を用いて、結晶方位が一体化している割合の評価方法を説明する。まず、図2(a)に示すように、前述したSIM像のFe系電気めっき層とSi含有冷延鋼板との界面に、走査型電子顕微鏡(Scanning Electron Microscope)を用いて境界線Bを描画する。次いで、前境界線を描画した像とは別に、SIM像を画像処理した像を作成する。具体的には、まず撮像した幅1024×高さ943ピクセル、8ビットのSIM像に対し、ソーベルフィルタにより結晶粒界を強調する。続いて、結晶粒界を強調した画像にガウスフィルタ(半径(R):10ピクセル)により平滑化処理を行なう。次いで、平滑化処理後の画像に二値化処理(閾値:17)を行う。引き続き、界面を描画した像の境界線Bを、二値化処理した像に転写する。その後、図2(b)に示すように、二値化処理後の画像において、境界線Bを中心とする幅40ピクセルの判定領域(図2(b)のL及びLによって囲まれる領域)を二値化処理した像上の境界線Bに沿うように描画する。境界線Bの長さのうち、該判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面(二値化処理した像上の白黒の境界)が存在しない長さの合計を、結晶方位が一体化している箇所の長さとみなす。ここで、境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在しない長さの合計は、以下の通り求める。まず、境界線Bの法線二本によって、白黒いずれか一色のみが含まれるよう判定領域を略矩形に区分できる箇所を判定領域全域について探す。次いで、該箇所における境界線と二本の法線との交点同士の最大距離を、判定領域全域について合計して、境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在しない長さの合計とする。なお、観察視野での界面の長さから結晶方位が一体化していない箇所の長さを引くことによって、結晶方位が一体化している箇所の長さを求めてもよい。説明のために、図2(c)に、図2(b)の四角で囲った箇所の拡大図を示す。まず、図2(c)に示すように境界線Bの法線二本(図2(c)においては、l及びl、並びにl及びl)によって、白黒の二色が含まれるよう判定領域を略矩形に区分できる箇所を判定領域全域について探す。次いで、該箇所における境界線と二本の法線との交点同士の最大距離を、判定領域全域について合計して、境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在する長さの合計とする。該長さ、すなわち、結晶方位が一体化していない箇所の長さを、観察視野での界面の長さから引くことにより、結晶方位が一体化している箇所の長さを求めることができる。
Whether or not the crystal orientations of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet at the interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet are integrated is determined by image processing.
A method for evaluating the rate at which the crystal orientations are integrated will be described with reference to FIG. 2. First, as shown in FIG. 2(a), a boundary line B is drawn at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet in the SIM image described above using a scanning electron microscope. Next, an image is created by image processing the SIM image, separate from the image in which the boundary line is drawn. Specifically, first, the grain boundaries are emphasized by a Sobel filter for the captured SIM image of width 1024×height 943 pixels and 8 bits. Next, the image in which the grain boundaries are emphasized is smoothed by a Gaussian filter (radius (R): 10 pixels). Next, the image after the smoothing process is subjected to binarization (threshold: 17). Subsequently, the boundary line B of the image in which the interface is drawn is transferred to the binarized image. Thereafter, as shown in FIG. 2(b), in the image after the binarization process, a judgment region (region surrounded by L1 and L2 in FIG. 2(b)) with a width of 40 pixels and centered on the boundary line B is drawn along the boundary line B on the binarized image. The total length of the boundary line B where the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet (black and white boundary on the binarized image) does not exist within the judgment region is regarded as the length of the portion where the crystal orientation is integrated. Here, the total length of the boundary line where the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet does not exist within the judgment region is calculated as follows. First, a portion where the judgment region can be divided into an approximately rectangular shape by two normal lines of the boundary line B so that only one color, black or white, is included is found in the entire judgment region. Next, the maximum distance between the intersection points of the boundary line and the two normal lines at that portion is summed up for the entire judgment region to determine the total length of the boundary line where the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet does not exist within the judgment region. The length of the portion where the crystal orientations are integrated may be obtained by subtracting the length of the portion where the crystal orientations are not integrated from the length of the interface in the observation field. For the purpose of explanation, FIG. 2(c) shows an enlarged view of the portion surrounded by a square in FIG. 2(b). First, as shown in FIG. 2(c), a portion where the judgment region can be divided into a substantially rectangular shape by two normal lines (in FIG. 2(c), l1 and l2 , and l3 and l4 ) of the boundary line B is searched for in the entire judgment region so that the two colors, black and white, are included. Next, the maximum distances between the intersections of the boundary line and the two normal lines in the portion are summed up over the entire judgment region to obtain the total length of the boundary line where the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet exists in the judgment region. The length, i.e., the length of the portion where the crystal orientations are not integrated, is subtracted from the length of the interface in the observation field to obtain the length of the portion where the crystal orientations are integrated.

<Fe系電気めっき高強度鋼板の製造方法>
次に、Fe系電気めっき高強度鋼板の製造方法について説明する。
本発明のFe系電気めっき鋼板の製造方法は、Siを0.5~3.0質量%含む、Si含有冷延鋼板に、Fe系電気めっきを施して、片面あたりの付着量が1.0~20.0g/mのFe系電気めっき層が少なくとも片面に形成された、焼鈍前Fe系電気めっき鋼板を得る工程と、
前記焼鈍前Fe系電気めっき鋼板を、露点-30℃以下、水素濃度8体積%以下の雰囲気下で焼鈍して、Fe系電気めっき鋼板を得る工程と、を含む。
<Method for producing Fe-based electroplated high-strength steel sheet>
Next, a method for producing an Fe-based electroplated high-strength steel sheet will be described.
The method for producing an Fe-based electroplated steel sheet of the present invention includes the steps of: applying an Fe-based electroplating to a Si-containing cold-rolled steel sheet containing 0.5 to 3.0 mass% Si; and obtaining a pre-annealed Fe-based electroplated steel sheet having an Fe-based electroplating layer formed on at least one side thereof with a coating weight of 1.0 to 20.0 g/ m2 per side;
and annealing the pre-annealed Fe-based electroplated steel sheet in an atmosphere having a dew point of −30° C. or less and a hydrogen concentration of 8 volume % or less to obtain a Fe-based electroplated steel sheet.

(Si含有冷延鋼板の製造)
前記焼鈍前Fe系電気めっき鋼板を得る工程では、まず、Siを0.5~3.0質量%含む、Si含有冷延鋼板を製造する。該Si含有冷延鋼板の製造は、通常の冷延鋼板の製造方法に従うことができる。一例としては、高強度焼鈍前冷延鋼板を、上述した成分組成を有する鋼スラブに熱間圧延を施して熱延板とし、次いで該熱延板に酸洗を施した後、熱延板に冷間圧延を施すことで、Si含有冷延鋼板を製造できる。
(Production of Si-containing cold-rolled steel sheet)
In the step of obtaining the pre-annealed Fe-based electroplated steel sheet, first, a Si-containing cold-rolled steel sheet containing 0.5 to 3.0 mass % of Si is produced. The Si-containing cold-rolled steel sheet can be produced according to a normal method for producing a cold-rolled steel sheet. As an example, the high-strength pre-annealed cold-rolled steel sheet can be produced by hot-rolling a steel slab having the above-mentioned composition to obtain a hot-rolled sheet, pickling the hot-rolled sheet, and then cold-rolling the hot-rolled sheet, thereby producing a Si-containing cold-rolled steel sheet.

(Fe系電気めっき処理)
前記Fe系電気めっき鋼板を得る工程では、得られたSi含有冷延鋼板の表面にFe系電気めっき処理を施して、Fe系電気めっき鋼板を製造する。前記Fe系電気めっきの方法は特に限定されない。
(Fe-based electroplating treatment)
In the step of obtaining the Fe-based electroplated steel sheet, the surface of the obtained Si-containing cold-rolled steel sheet is subjected to an Fe-based electroplating treatment to produce the Fe-based electroplated steel sheet. The method of the Fe-based electroplating is not particularly limited.

例えば、Fe系電気めっき浴として、硫酸浴、塩酸浴あるいは両者の混合浴等を用いることができる。
通電開始前の前記Fe系電気めっき浴中のFeイオン含有量については、Fe2+として1.0mol/L以上とすることが好ましい。Fe系電気めっき浴中のFeイオン含有量が、Fe2+として1.0mol/L以上であれば、十分なFe付着量を得ることができる。
また、前記Fe系電気めっき浴中には、Feイオン、並びに、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、V及びCo等の合金化元素の他、添加剤あるいは不純物として硫酸ナトリウム、硫酸カリウム等の伝導度補助剤を含有することができる。なお、上述した金属元素は、金属イオンとして含有すればよく、非金属元素はホウ酸、リン酸、硝酸、有機酸等の一部として含有することができる。また、硫酸鉄めっき液中には、硫酸ナトリウム、硫酸カリウム等の伝導度補助剤や、キレート剤、pH緩衝剤が含まれていてもよい。
前記Fe系電気めっき浴のその他の条件についても特に限定しない。浴温は、定温保持性を考えると、30℃以上であることが好ましい。前記Fe系電気めっき浴のpHも特に規定しないが、Fe系電気めっき浴の電気伝導度を考慮すると、3.0以下であることが好ましい。電流密度についても特に限定しないが、通常10~150A/dm程度である。めっき時の通板速度は5mpm以上、150mpm以下であればよい。通板速度が5mpm未満では生産性に劣り、一方で通板速度が150mpm以上では、めっき付着量を安定的に制御することが困難であるためである。
For example, as the Fe-based electroplating bath, a sulfuric acid bath, a hydrochloric acid bath, or a mixture of the two can be used.
The Fe ion content in the Fe-based electroplating bath before the start of energization is preferably 1.0 mol/L or more in terms of Fe 2+ . If the Fe ion content in the Fe-based electroplating bath is 1.0 mol/L or more in terms of Fe 2+ , a sufficient Fe deposition amount can be obtained.
The Fe-based electroplating bath may contain Fe ions, as well as alloying elements such as B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co, and may also contain conductivity enhancers such as sodium sulfate and potassium sulfate as additives or impurities. The above-mentioned metal elements may be contained as metal ions, and nonmetallic elements may be contained as parts of boric acid, phosphoric acid, nitric acid, organic acids, etc. The iron sulfate plating solution may also contain conductivity enhancers such as sodium sulfate and potassium sulfate, chelating agents, and pH buffers.
Other conditions of the Fe-based electroplating bath are not particularly limited. The bath temperature is preferably 30° C. or higher in consideration of the ability to maintain a constant temperature. The pH of the Fe-based electroplating bath is not particularly specified, but is preferably 3.0 or lower in consideration of the electrical conductivity of the Fe-based electroplating bath. The current density is not particularly limited, but is usually about 10 to 150 A/dm2. The sheet passing speed during plating may be 5 mpm or more and 150 mpm or less. This is because a sheet passing speed of less than 5 mpm results in poor productivity, while a sheet passing speed of 150 mpm or more makes it difficult to stably control the plating adhesion weight.

なお、前記Fe系電気めっきを施す前の処理として、Si含有冷延鋼板の表面を清浄化するための脱脂処理及び水洗、さらには、Si含有冷延鋼板の表面を活性化するための酸洗処理及び水洗を施すこともできる。これらの前処理に続いてFe系電気めっき処理が実施される。
前記脱脂処理及び前記水洗の方法は特に限定されず、通常の方法を用いることができる。前記酸洗処理については、硫酸、塩酸、硝酸及びこれらの混合物等各種の酸を使用できる。これらの中でも、硫酸、塩酸又はこれらの混合物を用いることが好ましい。また、前記酸洗処理に用いる酸の濃度は特に規定しないが、酸化皮膜の除去能力、及び過酸洗による肌荒れ(表面欠陥)防止等を考慮すると、1~20質量%程度であることが好ましい。また、酸洗処理液には、消泡剤、酸洗促進剤、酸洗抑制剤等を含有してもよい。
As a treatment before the Fe-based electroplating, a degreasing treatment and water washing for cleaning the surface of the Si-containing cold-rolled steel sheet, and further, an acid pickling treatment and water washing for activating the surface of the Si-containing cold-rolled steel sheet may be performed. Following these pretreatments, the Fe-based electroplating treatment is performed.
The methods of the degreasing treatment and the water washing are not particularly limited, and ordinary methods can be used. For the pickling treatment, various acids such as sulfuric acid, hydrochloric acid, nitric acid, and mixtures thereof can be used. Among these, it is preferable to use sulfuric acid, hydrochloric acid, or mixtures thereof. In addition, the concentration of the acid used in the pickling treatment is not particularly specified, but in consideration of the ability to remove the oxide film and the prevention of roughness (surface defects) due to excessive pickling, it is preferable that the concentration is about 1 to 20 mass %. In addition, the pickling treatment solution may contain an antifoaming agent, a pickling promoter, a pickling inhibitor, etc.

(焼鈍)
そして、本発明のFe系電気めっき鋼板の製造方法では、前記焼鈍前Fe系電気めっき鋼板を、露点-30℃以下、水素濃度8体積%以下の雰囲気下で焼鈍を実施する。
焼鈍により、圧延工程によって生じた焼鈍前Fe系電気めっき鋼板の歪を除去し、組織を再結晶させ、鋼板強度を高めることができる。また、焼鈍により、前記鋼中の拡散性水素の含有量を低減させることができる。
(Annealing)
In the method for producing a ferrous electroplated steel sheet of the present invention, the ferrous electroplated steel sheet before annealing is annealed in an atmosphere having a dew point of -30°C or less and a hydrogen concentration of 8% by volume or less.
Annealing can remove distortion of the Fe-based electroplated steel sheet before annealing that occurs during the rolling process, recrystallize the structure, and increase the strength of the steel sheet. In addition, annealing can reduce the content of diffusible hydrogen in the steel.

本発明のFe系電気めっき鋼板の製造方法においては、前記焼鈍における焼鈍雰囲気の露点は、加湿設備等の追加設備が不要な条件となる-30℃以下の低露点とする。
本発明者らは独自の検討によって、Fe系電気めっき層とSi含有冷延鋼板との界面における、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合と、Fe系電気めっき層形成後の焼鈍工程における焼鈍雰囲気の露点との間に相関関係があることを見出した。すなわち、Fe系電気めっき層形成後の焼鈍前Fe系電気めっき鋼板に焼鈍を施す際に、焼鈍雰囲気の露点が低いほど、焼鈍後に得られる前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合が高くなり、逆に、焼鈍雰囲気の露点が高いほど前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合が低くなることを究明した。
このように、前記Fe系電気めっき層と前記Si含有冷延鋼板との結晶方位が一体化している割合と、露点との間に相関関係が見いだせる理由は明らかではないが、次のように推測することができる。一定以上の高露点で制御した場合、焼鈍時に鋼板からFe系電気めっき層へ拡散する元素がFe系電気めっき層の内部で酸化物として形成し、この酸化物がFeめっき粒の結晶成長を阻害し、細粒化させる。一方で、前記Fe系電気めっき層を形成後に低露点の雰囲気下にて焼鈍を施した場合、上記のような酸化物は形成されにくく、Fe系電気めっき層の結晶粒径が粗大化する。そのため、低露点で焼鈍を施した際にはFe系電気めっき層の結晶方位がSi含有冷延鋼板との結晶方位と高い割合で一体化すると考えることができる。前記焼鈍における焼鈍雰囲気の露点を-30℃以下とした場合、前記Fe系電気めっき層と前記Si含有冷延鋼板との界面において、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合が高まる。その結果、SiやMnの拡散パスが減少し、焼鈍時のSiやMnの外部酸化を効率的に抑制することが可能になる。また、前記焼鈍雰囲気の露点が-40℃以下であれば、結晶方位の一体化を促進できるため、より好ましい。前記焼鈍雰囲気の露点の下限は特に定めないが、-80℃未満は工業的に実現が困難であるため、-80℃以上とすることが好ましい。焼鈍雰囲気の露点はより好ましくは-55℃以上である。
In the method for producing an Fe-based electroplated steel sheet of the present invention, the dew point of the annealing atmosphere in the annealing is set to a low dew point of −30° C. or less, which is a condition that does not require additional equipment such as a humidification equipment.
The present inventors have found through their own investigations that there is a correlation between the degree of integration of the crystal orientations of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet at the interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet and the dew point of the annealing atmosphere in the annealing step after the formation of the Fe-based electroplated layer. That is, when annealing the pre-annealed Fe-based electroplated steel sheet after the formation of the Fe-based electroplated layer, the lower the dew point of the annealing atmosphere, the higher the degree of integration of the crystal orientations of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet obtained after annealing, and conversely, the higher the dew point of the annealing atmosphere, the lower the degree of integration of the crystal orientations of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet.
The reason why a correlation is found between the rate at which the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet are integrated and the dew point is not clear, but it can be speculated as follows. When the dew point is controlled to a certain level or higher, elements that diffuse from the steel sheet to the Fe-based electroplating layer during annealing form oxides inside the Fe-based electroplating layer, and these oxides inhibit the crystal growth of the Fe-plated grains, resulting in fine grains. On the other hand, when the Fe-based electroplating layer is annealed in an atmosphere with a low dew point after formation, the oxides are unlikely to be formed, and the crystal grain size of the Fe-based electroplating layer becomes coarse. Therefore, it can be considered that when annealing is performed at a low dew point, the crystal orientation of the Fe-based electroplating layer is integrated with the crystal orientation of the Si-containing cold-rolled steel sheet at a high rate. When the dew point of the annealing atmosphere in the annealing is set to −30° C. or less, the proportion of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet that are integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet increases. As a result, the diffusion paths of Si and Mn are reduced, and external oxidation of Si and Mn during annealing can be efficiently suppressed. In addition, it is more preferable that the dew point of the annealing atmosphere is −40° C. or less, since integration of the crystal orientations can be promoted. Although the lower limit of the dew point of the annealing atmosphere is not particularly set, it is preferable that the dew point is −80° C. or more, since a dew point of less than −80° C. is difficult to achieve industrially. The dew point of the annealing atmosphere is more preferably −55° C. or more.

前記焼鈍時の雰囲気は、水素濃度が8.0体積%以下であることを要する。水素は、焼鈍中の焼鈍前Fe系電気めっき鋼板表面のFeの酸化を抑制し、鋼板表面を活性化する役割を果たすことができるものの、濃度が高すぎると、鋼板中に浸入し、耐遅れ破壊特性を劣化させることがある。そのため、鋼中に侵入する水素を抑制する観点から、前記焼鈍時の雰囲気の水素濃度は、8.0体積%以下であることを要し、5.0体積%以下とすることが好ましい。また、前記焼鈍時の雰囲気の水素濃度は、1.0体積%以上であれば、鋼板表面のFeが酸化することにより、鋼板の酸化を抑制することができる。そのため、前記焼鈍時の水素濃度は、1.0体積%以上であることが好ましく、2.0体積%以上であることがより好ましい。なお、焼鈍雰囲気の水素以外の残部は、窒素とすることが好ましい。 The hydrogen concentration in the atmosphere during the annealing must be 8.0% by volume or less. Hydrogen can suppress the oxidation of Fe on the surface of the Fe-based electroplated steel sheet before annealing during annealing and can play a role in activating the steel sheet surface, but if the concentration is too high, it may penetrate into the steel sheet and deteriorate the delayed fracture resistance properties. Therefore, from the viewpoint of suppressing hydrogen penetration into the steel, the hydrogen concentration in the atmosphere during the annealing must be 8.0% by volume or less, and is preferably 5.0% by volume or less. Furthermore, if the hydrogen concentration in the atmosphere during the annealing is 1.0% by volume or more, the Fe on the steel sheet surface will oxidize, thereby suppressing the oxidation of the steel sheet. Therefore, the hydrogen concentration during the annealing is preferably 1.0% by volume or more, and more preferably 2.0% by volume or more. The remainder of the annealing atmosphere other than hydrogen is preferably nitrogen.

また、前記焼鈍では、650℃以上900℃以下の温度域での保持時間を、30秒以上600秒以下とすることが好ましい。当該温度域での保持時間を30秒以上とすることで、焼鈍前Fe系電気めっき層表面に形成したFeの自然酸化膜を好適に除去し、後述するようにFe系電気めっき鋼板表面に化成処理皮膜を設ける場合の化成処理性を向上することができる。そのため、当該温度域での保持時間は30秒以上とすることが好ましい。当該温度域での保持時間の上限は特に定めないが、生産性の観点から、当該温度域での保持時間は600秒以下とすることが好ましい。 In addition, in the annealing, the holding time in the temperature range of 650°C to 900°C is preferably 30 seconds to 600 seconds. By holding the time in this temperature range for 30 seconds or more, the natural oxide film of Fe formed on the surface of the Fe-based electroplated layer before annealing can be suitably removed, and as described below, the chemical conversion treatability can be improved when a chemical conversion coating is provided on the surface of the Fe-based electroplated steel sheet. Therefore, the holding time in this temperature range is preferably 30 seconds or more. There is no particular upper limit to the holding time in this temperature range, but from the viewpoint of productivity, the holding time in this temperature range is preferably 600 seconds or less.

前記焼鈍前Fe系電気めっき鋼板の最高到達温度は、特に限定されないが、650℃以上900℃以下とすることが好ましい。焼鈍前Fe系電気めっき鋼板の最高到達温度を650℃以上とすることで、鋼板組織の再結晶が好適に進み、所望の強度を得ることができるためである。また、前記Fe系電気めっき鋼板の最高到達温度が900℃以下であれば、鋼中のSi及びMnの拡散速度が増加しすぎることを防ぎ、鋼板表面へのSi及びMnの拡散を防ぐことができるため、化成処理性を向上することができる。さらに、最高到達温度が900℃以下であれば、熱処理炉の炉体ダメージを防ぐことができ、コストダウンすることもできる。そのため、焼鈍前Fe系電気めっき鋼板の最高到達温度は900℃以下とすることが好ましい。なお、上記最高到達温度は、焼鈍前Fe系電気めっき鋼板の表面にて測定された温度を基準とする。 The maximum temperature of the Fe-based electroplated steel sheet before annealing is not particularly limited, but is preferably 650°C or higher and 900°C or lower. By setting the maximum temperature of the Fe-based electroplated steel sheet before annealing to 650°C or higher, the recrystallization of the steel sheet structure proceeds favorably, and the desired strength can be obtained. In addition, if the maximum temperature of the Fe-based electroplated steel sheet is 900°C or lower, the diffusion rate of Si and Mn in the steel can be prevented from increasing too much, and the diffusion of Si and Mn to the steel sheet surface can be prevented, thereby improving the chemical conversion treatability. Furthermore, if the maximum temperature is 900°C or lower, damage to the furnace body of the heat treatment furnace can be prevented, and costs can be reduced. Therefore, it is preferable that the maximum temperature of the Fe-based electroplated steel sheet before annealing is 900°C or lower. The above maximum temperature is based on the temperature measured on the surface of the Fe-based electroplated steel sheet before annealing.

なお、前記焼鈍前Fe系電気めっき鋼板を得る工程及び前記Fe系電気めっき鋼板を得る工程のその他の条件については、本発明のFe系電気めっき高強度鋼板の中で説明した内容と同様である。 The other conditions for the process for obtaining the pre-annealed Fe-based electroplated steel sheet and the process for obtaining the Fe-based electroplated steel sheet are the same as those described in the Fe-based electroplated high-strength steel sheet of the present invention.

以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。 The present invention will be described in more detail below with reference to examples. However, these examples are intended to illustrate the present invention and are not intended to limit the present invention in any way.

<サンプル1~79>
(1)表1に示す化学成分の鋼を溶製して得た鋳片に対して、熱間圧延、酸洗、冷間圧延を施すことによって、板厚1.4mmの鋼板A~Oを得た。
(2)得られた各鋼板に対して、アルカリでの脱脂処理を施し、その後、表2に示す条件で、Fe系電気めっき及び焼鈍を実施し、Fe系電気めっき鋼板のサンプルを製造した。
ここで、Fe系電気めっき浴は、Fe2+を1.5mol/L、硫酸ナトリウムを0.35mol/L含有し、pHを硫酸で2.0に調整した溶液を用い、陽極には酸化イリジウム電極を使用した。Fe系電気めっき層の付着量(g/m)については、通電時間を変化させることで制御した。Fe系電気めっき層とSi含有冷延鋼板との界面においてこれらの結晶方位が一体化している割合(%)については、各サンプルの任意の3箇所を集束イオンビームにより加工し、観察用サンプルを作製した後、走査イオン顕微鏡を用いて該観察用サンプルのSIM像を撮影し、式撮像したSIM像から、式(1)に基づいて、Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合を求め、3箇所の平均値を算出することで導出した。
式(1):Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合=(Fe系電気めっき層とSi含有冷延鋼板との界面のうち、Fe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している箇所の長さ)÷(観察視野での界面の長さ)×100(%)
各サンプルの、Fe系電気めっき層の付着量、並びに、Fe系電気めっき層及びSi含有冷延鋼板の結晶方位が一体化している割合については、表2に示す。
また、焼鈍については、表2に示す露点を有し、表2に示す含有量で水素を含有する窒素雰囲気において、温度が800℃になるように焼鈍した。なお、Fe系電気めっきと焼鈍とのいずれが先に実施されたかについても表2に示す。
<Samples 1 to 79>
(1) Steel plates A to O having a thickness of 1.4 mm were obtained by melting steel having the chemical composition shown in Table 1 and subjecting the resulting cast pieces to hot rolling, pickling, and cold rolling.
(2) Each of the obtained steel sheets was subjected to an alkaline degreasing treatment, and then subjected to Fe-based electroplating and annealing under the conditions shown in Table 2 to produce samples of Fe-based electroplated steel sheets.
Here, the Fe-based electroplating bath contained 1.5 mol/L of Fe2+ and 0.35 mol/L of sodium sulfate, and the pH was adjusted to 2.0 with sulfuric acid, and an iridium oxide electrode was used as the anode. The deposition amount (g/ m2 ) of the Fe-based electroplating layer was controlled by changing the current application time. The ratio (%) of the crystal orientations integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet was determined by processing three arbitrary points of each sample with a focused ion beam to prepare an observation sample, taking a SIM image of the observation sample using a scanning ion microscope, and calculating the ratio of the crystal orientations integrated between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet based on the equation (1) from the SIM image taken, and calculating the average value of the three points.
Formula (1): Percentage of integrated crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet = (length of a portion of the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet where the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet are integrated) ÷ (length of the interface in the observation field) × 100 (%)
Table 2 shows the deposition amount of the Fe-based electroplated layer and the ratio of the crystal orientation of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet that are integrated for each sample.
Annealing was performed at a temperature of 800° C. in a nitrogen atmosphere having a dew point shown in Table 2 and containing hydrogen at the content shown in Table 2. Table 2 also shows which of the Fe-based electroplating and the annealing was performed first.

<評価>
上記のように得られたFe系電気めっき鋼板の各サンプルについて、以下の評価を行った。評価結果を表2に示す。
<Evaluation>
The following evaluations were carried out on each sample of the Fe-based electroplated steel sheet obtained as described above. The evaluation results are shown in Table 2.

(1)化成処理性
各サンプルのFe系電気めっき鋼板から採取した試験片に、日本パーカライジング社製の脱脂剤:FC-E2011、表面調整剤:PL-Z及び化成処理剤:パルボンドPB-SX35を用いて、下記の標準条件で、化成処理皮膜付着量が2.0~3.0g/mとなるよう化成処理を施した。
(化成処理条件)
・脱脂工程:処理温度43°C、処理時間120秒
・スプレー脱脂、表面調整工程:pH9.5、処理温度室温、処理時間20秒
・化成処理工程:化成処理液の温度35℃、処理時間90秒
(化成処理性評価)
化成処理を施した各試験片(n=1)の表面を、倍率×1000倍にてSEM観察し、以下の基準に従って評価を行った。
◎ : 化成結晶の粒径が5μm以下かつ未析出部が認められない
○ : 化成結晶の粒径が5μm以上だが、未析出部が認められない
× : 化成結晶の粒径が5μm以上かつ未析出部が認められる
(1) Chemical conversion treatability Test pieces taken from the Fe-based electroplated steel sheets of each sample were subjected to chemical conversion treatment using a degreaser FC-E2011, a surface conditioner PL-Z, and a chemical conversion treatment agent Palbond PB-SX35, all manufactured by Nihon Parkerizing Co., Ltd., under the following standard conditions so that the amount of chemical conversion coating applied was 2.0 to 3.0 g/ m2 .
(Conversion treatment conditions)
Degreasing process: treatment temperature 43°C, treatment time 120 seconds Spray degreasing, surface conditioning process: pH 9.5, treatment temperature room temperature, treatment time 20 seconds Chemical conversion process: chemical conversion solution temperature 35°C, treatment time 90 seconds (chemical conversion treatment performance evaluation)
The surface of each test piece (n=1) that had been subjected to the chemical conversion treatment was observed with a SEM at a magnification of 1000 times, and evaluated according to the following criteria.
◎: The grain size of the chemical crystals is 5 μm or less and no unprecipitated areas are observed. ○: The grain size of the chemical crystals is 5 μm or more, but no unprecipitated areas are observed. ×: The grain size of the chemical crystals is 5 μm or more and no unprecipitated areas are observed.

(2)耐食性
上記(1)化成処理性の評価の際と同様の条件で化成処理を施した試験片の表面に、関西ペイント社製の電着塗料:GT-100を用いて、膜厚が15μmとなるように電着塗装を施し、下記の腐食試験に供した。
(塩温水浸漬試験条件)
化成処理および電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、5mass%NaCl溶液(60℃)に360時間浸漬し、その後、水洗し、乾燥した。
(耐食性評価)
カット疵部に粘着テープを貼り付けた後、引き剥がすテープ剥離試験を行い、カット疵部左右を合わせた最大剥離全幅を測定し、以下の基準に従って評価を行った。
◎ : 最大剥離全幅が3.0mm以下
○ : 最大剥離全幅が5.0mm以下
× : 最大剥離全幅が5.0mm越え
(2) Corrosion Resistance The surfaces of the test pieces subjected to chemical conversion treatment under the same conditions as those in the evaluation of chemical conversion treatability in (1) above were electrocoated with an electrodeposition coating material GT-100 manufactured by Kansai Paint Co., Ltd. to a film thickness of 15 μm, and then subjected to the following corrosion test.
(Hot salt water immersion test conditions)
A cross-cut scratch having a length of 45 mm was made with a cutter on the surface of the above test piece (n=1) that had been subjected to chemical conversion treatment and electrodeposition coating, and then the test piece was immersed in a 5 mass % NaCl solution (60° C.) for 360 hours, and then washed with water and dried.
(Corrosion resistance evaluation)
A tape peeling test was performed in which adhesive tape was applied to the cut flaw and then peeled off. The maximum total peel width of the cut flaw, including both the left and right sides, was measured and evaluated according to the following criteria.
◎: Maximum peeled width is 3.0 mm or less. ○: Maximum peeled width is 5.0 mm or less. ×: Maximum peeled width is more than 5.0 mm.

(3)耐遅れ破壊特性
(3-1)鋼中の水素含有量
各サンプルのFe系電気めっき鋼板について、試験片の温度が上昇し、鋼中水素が抜けるのを抑制する目的で、焼鈍後の試験片を液体窒素に保管した。
その後、試験片をAr雰囲気中で100℃/sの昇温速度で250℃まで昇温し、放出された水素ガスを、ガスクロマトグラフィーで定量測定した。
(3) Delayed fracture resistance (3-1) Hydrogen content in steel For each sample of Fe-based electroplated steel sheet, the test specimen after annealing was stored in liquid nitrogen for the purpose of suppressing the temperature rise of the test specimen and the escape of hydrogen from the steel.
Thereafter, the test piece was heated to 250° C. at a heating rate of 100° C./s in an Ar atmosphere, and the amount of released hydrogen gas was quantitatively measured by gas chromatography.

(3-2)遅れ破壊特性評価
各サンプルのFe系電気めっき鋼板について、所定の応力が曲げ先端に生じるようにボルトで締め込んだ状態(図4を参照)で、図3に示すように、温度10℃、塩分付着量10000mg/mの条件で、40日間に渡って乾湿繰り返し工程(相対湿度30%と90%を各2時間繰り返し、1サイクル8時間の条件で、塩水付与を2回/週を行う工程)を実施した際の割れ発生の有無を確認した。評価は、以下の基準により評価した。
○:40日間割れの発生なし
×:割れの発生あり
(3-2) Evaluation of delayed fracture properties For each sample of Fe-based electroplated steel sheet, in a state where it was fastened with a bolt so that a specified stress was generated at the bent tip (see Figure 4), the presence or absence of cracking was confirmed when a dry-wet cycle (a process in which a relative humidity of 30% and 90% was repeated for 2 hours each, with salt water applied twice a week under conditions of a temperature of 10°C and a salt deposition amount of 10,000 mg/m2, as shown in Figure 3) was carried out over a period of 40 days. Evaluation was made according to the following criteria.
○: No cracks occurred for 40 days ×: Cracks occurred

(4)引張強さ(TS)
各サンプルのFe系電気めっき鋼板から、圧延方向に対して直角方向にJIS5号引張試験片(JIS Z 2201)を採取し、引張速度(クロスヘッドスピード)10mm/minで引張試験を行った。引張強さTSは、引張試験における最大荷重を初期の試験片平行部断面積で除した値とした。平行部の断面積算出における板厚は、めっき厚込みの板厚値を用いた。
(4) Tensile strength (TS)
A JIS No. 5 tensile test piece (JIS Z 2201) was taken from each sample of Fe-based electroplated steel sheet in the direction perpendicular to the rolling direction, and a tensile test was performed at a tensile speed (crosshead speed) of 10 mm/min. The tensile strength TS was determined by dividing the maximum load in the tensile test by the initial cross-sectional area of the parallel part of the test piece. The thickness of the plated steel sheet used in calculating the cross-sectional area of the parallel part was the thickness of the plated steel sheet.

Figure 0007578118000001
Figure 0007578118000001

Figure 0007578118000002
Figure 0007578118000002

表2の結果から、本発明例のサンプルは、いずれも、化成処理性及び耐食性が良好であり、Fe電気めっき後に焼鈍したことで、鋼中水素も少なく、耐遅れ破壊特性も優れていることがわかる。また、本発明例は、いずれも、Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が50%以上であった。 The results in Table 2 show that all of the samples of the present invention have good chemical conversion treatability and corrosion resistance, and by annealing after Fe electroplating, there is little hydrogen in the steel and the delayed fracture resistance is also excellent. In addition, in all of the examples of the present invention, the proportion of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet that are integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet was 50% or more.

本発明によれば、優れた化成処理性及び塗装後耐食性を有するとともに、耐遅れ破壊特性に優れるFe系電気めっき高強度鋼板及びその製造方法を提供できる。 The present invention provides an Fe-based electroplated high-strength steel sheet that has excellent chemical conversion treatability and corrosion resistance after painting, as well as excellent delayed fracture resistance, and a method for manufacturing the same.

Claims (5)

質量%で、
Si:0.5~3.0%、
C:0.8%以下、
Mn:1.5~3.5%、
P:0.1%以下、
S:0.03%以下、及び、
Al:0.1%以下
を含有し、残部がFe及び不可避的不純物からなる組成を有し、980MPa以上の引張強度を有する、Si含有冷延鋼板と、
該Si含有冷延鋼板の少なくとも片面に形成された、片面あたりの付着量が1.0~20.0g/mである、Fe系電気めっき層と、を備え、該Si含有冷延鋼板の表面にはFe系電気めっき以外のめっき層が形成されておらず、
鋼中拡散性水素の含有量が、0.21質量ppm以下であり、
前記Fe系電気めっき層と前記Si含有冷延鋼板との界面における、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合が50%超であることを特徴とする、Fe系電気めっき高強度鋼板。
In mass percent,
Si: 0.5-3.0%,
C: 0.8% or less,
Mn: 1.5-3.5%,
P: 0.1% or less,
S: 0.03% or less, and
A Si-containing cold-rolled steel sheet having a composition containing Al: 0.1% or less, with the balance being Fe and unavoidable impurities, and having a tensile strength of 980 MPa or more;
and an Fe-based electroplating layer having a coating weight of 1.0 to 20.0 g/ m2 per side formed on at least one side of the Si-containing cold-rolled steel sheet, wherein no plating layer other than the Fe-based electroplating is formed on the surface of the Si-containing cold-rolled steel sheet,
The content of diffusible hydrogen in the steel is 0.21 mass ppm or less,
A Fe-based electroplated high-strength steel sheet, characterized in that a ratio of crystal orientations of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet that are integrated at an interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet is more than 50% .
前記Si含有冷延鋼板の組成は、さらに、質量%で、
B:0.005%以下、
Ti:0.2%以下、
N:0.010%以下、
Cr:1.0%以下、
Cu:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Nb:0.20%以下、
V:0.5%以下、
Sb:0.200%以下、
Ta:0.1%以下、
W:0.5%以下、
Zr:0.1%以下、
Sn:0.20%以下、
Ca:0.005%以下、
Mg:0.005%以下、及び、
REM:0.005%以下
からなる群より選択される少なくとも一種を含有することを特徴とする、請求項に記載のFe系電気めっき高強度鋼板。
The composition of the Si-containing cold-rolled steel sheet further comprises, in mass%,
B: 0.005% or less,
Ti: 0.2% or less,
N: 0.010% or less,
Cr: 1.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
Mo: 1.0% or less,
Nb: 0.20% or less,
V: 0.5% or less,
Sb: 0.200% or less,
Ta: 0.1% or less,
W: 0.5% or less,
Zr: 0.1% or less,
Sn: 0.20% or less,
Ca: 0.005% or less,
Mg: 0.005% or less; and
The ferroelectric plated high strength steel sheet according to claim 1 , further comprising at least one selected from the group consisting of REM: 0.005% or less.
前記Fe系電気めっき層は、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、V及びCoからなる群から選択される一種以上の元素を、合計で10質量%以下を含有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする、請求項1又は2に記載のFe系電気めっき高強度鋼板。 3. The Fe-based electroplated high-strength steel sheet according to claim 1, wherein the Fe-based electroplated layer has a composition containing one or more elements selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co in a total amount of 10 mass% or less, with the balance being Fe and unavoidable impurities. 質量%で、
Si:0.5~3.0%、
C:0.8%以下、
Mn:1.5~3.5%、
P:0.1%以下、
S:0.03%以下、及び、
Al:0.1%以下
を含有し、残部がFe及び不可避的不純物からなる組成を有し、980MPa以上の引張強度を有する、Si含有冷延鋼板に、Fe系電気めっきを施して、片面あたりの付着量が1.0~20.0g/mのFe系電気めっき層が少なくとも片面に形成され、前記Si含有冷延鋼板の表面にはFe系電気めっき以外のめっき層が形成されていない、焼鈍前Fe系電気めっき鋼板を得る工程と、
前記焼鈍前Fe系電気めっき鋼板を、露点-30℃以下、水素濃度8体積%以下の雰囲気下で焼鈍して、Fe系電気めっき鋼板を得る工程と、
を含み、
形成された前記Fe系電気めっき層と前記Si含有冷延鋼板との界面における、前記Fe系電気めっき層及び前記Si含有冷延鋼板の結晶方位が一体化している割合が50%超となることを特徴とする、Fe系電気めっき鋼板の製造方法。
In mass percent,
Si: 0.5-3.0%,
C: 0.8% or less,
Mn: 1.5-3.5%,
P: 0.1% or less,
S: 0.03% or less, and
a step of subjecting a Si-containing cold-rolled steel sheet, the Si-containing cold-rolled steel sheet having a composition containing 0.1% or less of Al, with the balance being composed of Fe and unavoidable impurities, and having a tensile strength of 980 MPa or more, to Fe-based electroplating to form an Fe-based electroplating layer on at least one side with a coating weight of 1.0 to 20.0 g/ m2 per side, and no plating layer other than the Fe-based electroplating is formed on the surface of the Si-containing cold-rolled steel sheet;
annealing the pre-annealed Fe-based electroplated steel sheet in an atmosphere having a dew point of −30° C. or less and a hydrogen concentration of 8 vol.% or less to obtain a Fe-based electroplated steel sheet;
Including,
a rate at which crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet are integrated at an interface between the formed Fe-based electroplating layer and the Si-containing cold-rolled steel sheet exceeds 50% .
前記焼鈍時の雰囲気は、露点が-40℃以下、水素濃度が5体積%以下であることを特徴とする、請求項に記載のFe系電気めっき鋼板の製造方法。 5. The method for producing an Fe-based electroplated steel sheet according to claim 4 , wherein the atmosphere during the annealing has a dew point of −40° C. or less and a hydrogen concentration of 5 volume % or less.
JP2022084829A 2021-05-24 2022-05-24 Fe-based electroplated high strength steel sheet and manufacturing method thereof Active JP7578118B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021087243 2021-05-24
JP2021087243 2021-05-24

Publications (2)

Publication Number Publication Date
JP2022180344A JP2022180344A (en) 2022-12-06
JP7578118B2 true JP7578118B2 (en) 2024-11-06

Family

ID=84327148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022084829A Active JP7578118B2 (en) 2021-05-24 2022-05-24 Fe-based electroplated high strength steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7578118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024228381A1 (en) * 2023-05-01 2024-11-07 日本製鉄株式会社 Organic coated steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005121A1 (en) 2008-07-11 2010-01-14 新日本製鐵株式会社 Aluminum-plated steel sheet for hot pressing with rapid heating, process for producing same, and method of hot-pressing same with rapid heating
JP2010270348A (en) 2009-05-19 2010-12-02 Kobe Steel Ltd Nitrided slide member, steel material for slide member and method for manufacturing slide member
JP2012036499A (en) 2010-07-16 2012-02-23 Jfe Steel Corp High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
JP2013139872A (en) 2011-12-09 2013-07-18 National Institute For Materials Science High tensile bolt and method for manufacturing the same
WO2019142559A1 (en) 2018-01-17 2019-07-25 Jfeスチール株式会社 High strength alloyed electrolytic zinc-plated steel sheet and method for producing same
WO2020148944A1 (en) 2019-01-18 2020-07-23 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005121A1 (en) 2008-07-11 2010-01-14 新日本製鐵株式会社 Aluminum-plated steel sheet for hot pressing with rapid heating, process for producing same, and method of hot-pressing same with rapid heating
JP2010270348A (en) 2009-05-19 2010-12-02 Kobe Steel Ltd Nitrided slide member, steel material for slide member and method for manufacturing slide member
JP2012036499A (en) 2010-07-16 2012-02-23 Jfe Steel Corp High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
JP2013139872A (en) 2011-12-09 2013-07-18 National Institute For Materials Science High tensile bolt and method for manufacturing the same
WO2019142559A1 (en) 2018-01-17 2019-07-25 Jfeスチール株式会社 High strength alloyed electrolytic zinc-plated steel sheet and method for producing same
WO2020148944A1 (en) 2019-01-18 2020-07-23 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2022180344A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP4943558B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2021200412A1 (en) Fe-ELECTROPLATED STEEL SHEET, ELECTRODEPOSITION COATED STEEL SHEET, AUTOMOBILE COMPONENT, METHOD FOR MANUFACTURING ELECTRODEPOSITION COATED STEEL SHEET, AND METHOD FOR MANUFACTURING Fe-ELECTROPLATED STEEL SHEET
CN108291283B (en) High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet
EP3138931B1 (en) Method for manufacturing high-strength galvanized steel sheet
JP5862002B2 (en) High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and method for producing the same
WO2014136412A1 (en) High-strength steel sheet, method for manufacturing same, high-strength molten-zinc-plated steel sheet, and method for manufacturing same
CN116419989A (en) Galvanized steel sheet, electrodeposition-coated steel sheet, automobile part, method for producing electrodeposition-coated steel sheet, and method for producing galvanized steel sheet
KR20250044386A (en) Galvanized steel plate
EP4316719A1 (en) Resistance spot welding member and resistance spot welding method therefor
JP7137492B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
KR102788895B1 (en) Galvannealed steel sheet, electrodeposition-coated steel sheet, automotive part, method of producing electrodeposition-coated steel sheet, and method of producing galvannealed steel sheet
JP5516380B2 (en) Cold-rolled steel sheet for resistance welding and method for producing the same
JP7578118B2 (en) Fe-based electroplated high strength steel sheet and manufacturing method thereof
KR20200093048A (en) High strength alloyed electro-galvanized steel sheet and manufacturing method thereof
JP7444283B2 (en) Fe-based electroplated steel sheet, hot-dip galvanized steel sheet, and manufacturing method thereof
JP7323062B2 (en) Fe-based electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe-based electroplated steel sheet
WO2022097735A1 (en) Zinc plated steel sheet, electrodeposition coated steel sheet, automotive parts, production method for electrodeposition coated steel sheet, and production method for zinc plated steel sheet
JP7151948B1 (en) High-strength galvanized steel sheet and member, and manufacturing method thereof
KR102781122B1 (en) Alloyed galvanized steel sheet, electrodeposition-coated steel sheet, automotive part, method of producing electrodeposition-coated steel sheet, and method of producing alloyed galvanized steel sheet
WO2021193038A1 (en) Raw cold-rolled steel plate with iron-based coating, method for manufacturing raw cold-rolled steel plate with iron-based coating, method for manufacturing cold-rolled steel plate with iron-based coating, method for manufacturing steel plate plated with molten zinc, and method for manufacturing steel plate plated with alloyed molten zinc
WO2024147276A1 (en) Steel plate, resistance spot welding method, resistance spot welding member, and method for manufacturing steel plate
CN118829742A (en) Hot-pressed component and hot-pressed steel sheet and method for producing the same
WO2022264585A1 (en) High-strength galvanized steel sheet and member, and method for manufacturing same
WO2024053544A1 (en) High-strength hot-dip-galvanized steel sheet and production method for same
KR20230166132A (en) Material cold rolled steel sheet with Fe-based film, manufacturing method of material cold-rolled steel sheet with Fe-based film, manufacturing method of cold-rolled steel sheet with Fe-based film, manufacturing method of hot-dip galvanized steel sheet, and manufacturing method of alloyed hot-dip galvanized steel sheet.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241007

R150 Certificate of patent or registration of utility model

Ref document number: 7578118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150