JP7569691B2 - Accelerator control system for autonomous vehicles - Google Patents
Accelerator control system for autonomous vehicles Download PDFInfo
- Publication number
- JP7569691B2 JP7569691B2 JP2021000359A JP2021000359A JP7569691B2 JP 7569691 B2 JP7569691 B2 JP 7569691B2 JP 2021000359 A JP2021000359 A JP 2021000359A JP 2021000359 A JP2021000359 A JP 2021000359A JP 7569691 B2 JP7569691 B2 JP 7569691B2
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- resistance
- vehicle
- accelerator
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001133 acceleration Effects 0.000 claims description 67
- 238000005096 rolling process Methods 0.000 claims description 19
- 230000004044 response Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 31
- 230000033001 locomotion Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Description
本発明は、自動運転車両の制御応答に直接影響する車両総重量の変化を、特別な装備を要せず、自動運転中のアクセル応答によって検出する自動運転車両のアクセル制御システムに関する。 The present invention relates to an accelerator control system for an autonomous vehicle that detects changes in the total vehicle weight, which directly affects the control response of the autonomous vehicle, by the accelerator response during autonomous driving without requiring any special equipment.
車種・車重の異なる車両が混在する交通流に乗って整然と走行するアクセル制御は、先行する車両との車間変化を抑制する制御になる。そのためには、自重の変化、道路勾配の変化に適応して必要な加速度を発揮するアクセル制御式が必要である。車間距離を狭めての隊列走行においては、その必要は、一層高い。 Acceleration control, which allows vehicles of different models and weights to travel in an orderly fashion in traffic, is a control that suppresses changes in the distance between the vehicle and the vehicle in front. To achieve this, an accelerator control system is required that can adapt to changes in vehicle weight and road gradient to provide the necessary acceleration. This is even more necessary when driving in a convoy with narrow inter-vehicle distances.
自動車には、その車両の動力性能を表現する走行性能線図が備えられている。動力性能とは、自動車の走行抵抗に打ち勝って、エンジンの動力によって自動車が発揮する走行性能のことであり、その走行性能は、横軸に車速(km/h)、縦軸に駆動力(kgf)と走行抵抗(kgf)をとった走行性能線図で示される。この線図がアクセル制御の拠りどころになる。 Automobiles are equipped with a driving performance diagram that shows the vehicle's power performance. Power performance refers to the driving performance that the vehicle exerts by overcoming the rolling resistance of the vehicle through the power of the engine, and this driving performance is shown on a driving performance diagram with vehicle speed (km/h) on the horizontal axis and driving force (kgf) and rolling resistance (kgf) on the vertical axis. This diagram is the basis for accelerator control.
走行抵抗とは、自動車の進行方向とは逆向きに作用するすべての力を言う。走行抵抗を発生原因別に分類すると次の4つからなる。
・ 空気抵抗
・ ころがり抵抗
・ 勾配抵抗
・ 加速抵抗
Rolling resistance refers to all forces acting in the opposite direction to the direction of travel of a vehicle. Rolling resistance can be classified into the following four types based on the cause of its generation:
Air resistance Rolling resistance Gradient resistance Acceleration resistance
水平な路面を一定速度で走行する場合はaとbが走行抵抗として作用する。登り坂ではcが新たに加わり、加速走行する場合にはdが加わる。従って登り坂を加速走行する場合にはa、b、c、dの全部が作用することになる。 When driving at a constant speed on a level road surface, a and b act as rolling resistance. When driving uphill, c is added, and when accelerating, d is added. Therefore, when accelerating uphill, a, b, c, and d all come into play.
aの「空気抵抗」は、車体の前面面積に空力抗力係数を乗じた車速の二乗に比例して増加する抵抗力、bの「ころがり抵抗」は、車両総重量にころがり抵抗係数を乗じた抵抗力、cの「勾配抵抗」は、車両総重量に勾配(θ%)の正弦(sinθ)を乗じた抵抗力、dの「加速抵抗」は、速度変化(加速)に抵抗する抵抗力である。 "Air resistance" (a) is the resistance force that increases in proportion to the square of the vehicle speed calculated by multiplying the frontal area of the vehicle body by the aerodynamic drag coefficient; "rolling resistance" (b) is the resistance force calculated by multiplying the total vehicle weight by the rolling resistance coefficient; "gradient resistance" (c) is the resistance force calculated by multiplying the total vehicle weight by the sine (sinθ) of the gradient (θ%); and "acceleration resistance" (d) is the resistance force that resists speed changes (acceleration).
即ち、アクセル開度に依存してエンジンが発する牽引力(F)は、aの車速の二乗に関係する空気抵抗と、bの車両総重量×ころがり抵抗係数のころがり抵抗と、cの車両総重量×道路勾配(θ)の正弦(sinθ)成分の勾配抵抗と、dの車両総重量を重力加速度(9.81m/s2)で割り算した車両質量に現在生じている加速度を掛け算した慣性力の和に等しいとの関係式になる。 In other words, the tractive force (F) generated by the engine, which depends on the throttle opening, is related to the sum of (a) air resistance related to the square of the vehicle speed, (b) rolling resistance equal to the total vehicle weight multiplied by the rolling resistance coefficient, (c) gradient resistance equal to the total vehicle weight multiplied by the sine (sin θ) component of the road gradient (θ), and (d) the inertial force equal to the vehicle mass calculated by dividing the total vehicle weight by the acceleration of gravity (9.81 m/ s2 ) multiplied by the current acceleration.
非特許文献1は、自動車力学の教科書であり、動力性能の章で走行性能線図についての説明がされているが、そこから車両総重量を求める方法、要求加速度を求める方法についての記述はない。
非特許文献2には、大型トラックの前後運動の同定とそのモデル化手法が報告されているが、車両総重量を求める方法、要求加速度を求める方法についての記述はない。
Non-Patent
特許文献1には、自重を推定し、アクセル開度を求める3次元計算図表が示されているが、図表を辿る手続きを要し改良の余地がある。
上述した先行文献には、走行中の車両総重量の変化を求めることができない。その結果、隊列走行を含む自動運転におけるアクセル制御を精度よく行うことができない。 The above-mentioned prior art documents are unable to determine the change in total vehicle weight while driving. As a result, it is not possible to perform accurate accelerator control during automated driving, including platooning.
本発明に係る自動運転車両のアクセル制御システムは、車両の前後運動(動力性能および制動性能)、横運動(操縦安定性)に影響する車両総重量の変化をアクセル応答によって検出する計算式(図表)を備える。車両の運動は、力が作用して、加速度が生じて、速度が決まり、変位(距離)が決まるので、「加速度の制御性が要」になる。また本発明に係る自動運転車両のアクセル制御システムは、前後運動の加速度を決めるアクセル開度の計算式(図表)を備える。 The accelerator control system of the autonomous vehicle according to the present invention is equipped with a calculation formula (diagram) that detects changes in the total vehicle weight, which affects the vehicle's longitudinal motion (power performance and braking performance) and lateral motion (handling stability), from the accelerator response. Vehicle motion is determined by the action of force, which generates acceleration, which determines speed and displacement (distance), so "controllability of acceleration is essential." The accelerator control system of the autonomous vehicle according to the present invention is also equipped with a calculation formula (diagram) for the accelerator opening, which determines the acceleration of the longitudinal motion.
具体的には、アクセル開度25%、50%、75%、100%一定に保持しての加速走行試験を空車で実施して、車速に対する加速度を計測して、横軸車速に対する縦軸加速度の「車速-加速度線図」を作成する。次に、高速域から変速機を中立にして、アクセルを放して惰行減速走行して、車速に対する減速度を計測して、横軸車速に対する縦軸減速度の「惰行-減速度線図」を作成する。「惰行-減速度線図は、y=ax2+bの二次曲線になる。得られた「a」は空力抗力係数であり、「b」はころがり抵抗である。 Specifically, acceleration tests are conducted with an empty vehicle, with the accelerator opening kept constant at 25%, 50%, 75%, and 100%, and acceleration versus vehicle speed is measured to create a "vehicle speed-acceleration diagram" of vertical axis acceleration versus horizontal axis vehicle speed. Next, the transmission is placed in neutral from the high-speed range, the accelerator is released and the vehicle is coasted while decelerating, and deceleration versus vehicle speed is measured to create a "coasting-deceleration diagram" of vertical axis deceleration versus horizontal axis vehicle speed. The coasting-deceleration diagram is a quadratic curve of y= ax2 +b. The resulting "a" is the aerodynamic drag coefficient, and "b" is the rolling resistance.
惰行減速度線図の符号を「負」から「正」に変更して、先のアクセル開度25%、50%、75%、100%「加速-加速度線図」に加算して重ね合わせると、アクセル開度25%、50%、75%、100%を指標とする横軸車速に対する縦軸加速度の「全-速度線図」が得られる。 If you change the sign of the coasting deceleration diagram from "negative" to "positive" and add it to the previous "acceleration-acceleration diagram" for accelerator openings of 25%, 50%, 75%, and 100% and overlay it, you will get an "all-speed diagram" of vertical axis acceleration versus horizontal axis vehicle speed, with accelerator openings of 25%, 50%, 75%, and 100% as indicators.
得られた「全-加速度線図」の25%、50%、75%、100%の線図は、横軸の車速を“x”とし、縦軸の加速度を“y”とすると、“xy=axy”或いは”y= axy/x”の双曲線を描く。ここに、“axy”は、双曲線定数である。この“axy”をアクセル開度“%”依存で取得して、“axy%”とすると、式(6)になる。 The obtained "total acceleration diagram" for 25%, 50%, 75%, and 100% plots will draw a hyperbola of "xy=a xy " or "y=a xy /x" where "x" is the vehicle speed on the horizontal axis and "y" is the acceleration on the vertical axis. Here, "a xy " is a hyperbolic constant. If this "a xy " is obtained depending on the accelerator opening "%" and set as "a xy% ", it will become formula (6).
前記式(1)におけるF、a、b、c、dは、全て、単位(N)ないし(kgf)の“力”であるが、“力”の代替として“加速度”で捉えると、“特別な装備を必要とせず捉えることが可能”になり都合がよい。加速度で捉えた時の式(1)は、その予備実験実施の際の車両重量(例えば、空車重量)が前提になるから、空車重量のn倍の積車状態に展開すると式(1)は式(7)になる。 In the above formula (1), F, a, b, c, and d are all "forces" in units of (N) or (kgf), but if you consider them as "accelerations" instead of "forces", it is convenient because "it is possible to understand them without the need for special equipment." When considered in terms of acceleration, formula (1) is based on the vehicle weight (e.g., unladen weight) at the time of the preliminary experiment, so when expanded to a loaded state of n times the unladen weight, formula (1) becomes formula (7).
式(10)を式(11)(12)の様に書き改めると、後述する図5の中央に示す図表を描くことができ、この図表から要求加速度に対するアクセル開度、及び、空車に対する積載比(n)を求めることが出来る。 By rewriting equation (10) as equations (11) and (12), we can plot the graph shown in the center of Figure 5, which will be described later. From this graph, we can determine the accelerator opening relative to the required acceleration, and the load ratio (n) relative to an empty vehicle.
本発明によれば、自動運転車両の前後及び横運動の制御のために必要な制御諸元である車両総重量の変化を、特別な装備を要せず、自動運転中のアクセル応答によって検出することができ、目標加速度をえるためのアクセル開度を得ることが出来る。 According to the present invention, changes in the total vehicle weight, which is a control parameter necessary for controlling the longitudinal and lateral movement of an autonomous vehicle, can be detected by the accelerator response during autonomous driving without requiring special equipment, and the accelerator opening angle required to achieve the target acceleration can be obtained.
本発明に係る自車の車両総重量の変化を推定し、目標加速度を生じさせるアクセル制御の方法は、エンジン制御入力としてのアクセル開度とその結果としての前後加速度、更に、前後加速度の結果としての車速を検出する手段、更に道路勾配を検出する手段を備えることも可能である。 The accelerator control method of the present invention, which estimates the change in the vehicle's total weight and generates a target acceleration, can also include a means for detecting the accelerator opening as an engine control input and the resulting longitudinal acceleration, as well as a means for detecting the vehicle speed as a result of the longitudinal acceleration, and a means for detecting the road gradient.
以下図1により装備の形態から、課題とする自重を検出する方法と目標加速度を出力するアクセル制御法について説明する。
図1は、車両それぞれの制御装置(ECU)に備えられる走行性能線図である。ここでは、GVW25トンの大型4軸トラックの事例を用いて説明する。横軸に車速をとり、左縦軸に牽引力及び走行抵抗を単位ニュートンで示し、右縦軸にエンジン回転速度を示す。I,II,III,IV.・・・IX,X,XI,XIIは各ギヤにおけるエンジン回転と車速の関係を示す。図の左上から右下に並ぶ山形の線は、エンジントルク曲線にギヤ比を乗じて得られるギヤ各段の牽引力を示す。この各段牽引力を包絡する線は双曲線(xy=axy)になる。0%,3%,5%,・・・40%,45%の若干右上がりの曲線は道路勾配を示す。
A method for detecting the target vehicle weight and an accelerator control method for outputting a target acceleration will be described below with reference to FIG.
FIG. 1 shows a driving performance diagram equipped in the control unit (ECU) of each vehicle. Here, an example of a large 4-axle truck with a GVW of 25 tons is used for explanation. The horizontal axis shows the vehicle speed, the left vertical axis shows the tractive force and running resistance in units of Newtons, and the right vertical axis shows the engine speed. I, II, III, IV...IX, X, XI, XII show the relationship between engine speed and vehicle speed in each gear. The mountain-shaped lines aligned from the upper left to the lower right of the diagram show the tractive force of each gear stage obtained by multiplying the engine torque curve by the gear ratio. The line that envelopes these tractive forces of each stage is a hyperbola (xy=a xy ). The slightly upward-sloping curves of 0%, 3%, 5%,...40%, 45% show the road gradient.
例えば、車速65km/hにおけるアクセル全開での牽引力は、14550(N)と読み取れる。その内、勾配0%の平坦路での走行抵抗が2000(N)で14%を占める。平坦路であるから、この14%はころがり抵抗(前述のb)と空気抵抗(前述のc)と解釈される。それが、3%勾配では8640(N)の59%になる。残りの41%が3%勾配における余剰牽引力になる。 For example, the tractive force with the accelerator fully open at a vehicle speed of 65 km/h can be read as 14,550 (N). Of this, the rolling resistance on a flat road with a 0% gradient is 2,000 (N), accounting for 14%. Because it is a flat road, this 14% is interpreted as rolling resistance (b above) and air resistance (c above). On a 3% gradient this becomes 59% of 8,640 (N). The remaining 41% is excess tractive force on a 3% gradient.
この余剰牽引力による加速度の大きさを算出すると0.229(m/S2)になる。65km/hにおいて、勾配0%では10速、11速、12速のギヤでの走行が可能であるが、3%勾配では12速では走行不可になり、5%勾配では11速、12速とも不可になり、10速へギヤを下げる必要があると読み取れる。この様に読み取って、運行経路のギヤシフト計画を組み立てる必要があるが、運行現場でのその時々の積載量、勾配、車速の変動に適応する計画が制御のため必要である。その必要を特別な装備を備えずに実行可能にするために牽引力と走行抵抗の「力」の代わりに「加速度」を用いる。加速度であれば、CANの車輪速ないしジャイロからの検出が可能であり、自動運転車両に普通に備えられている。 The magnitude of acceleration due to this excess traction force is calculated to be 0.229 (m/ s2 ). At 65km/h, it is possible to drive in 10th, 11th, and 12th gears on a 0% gradient, but it is impossible to drive in 12th gear on a 3% gradient, and neither 11th nor 12th gear is possible on a 5% gradient, so it is necessary to shift down to 10th gear. It is necessary to compile a gear shift plan for the route based on this reading, but a plan that can adapt to fluctuations in load, gradient, and vehicle speed at the time of operation is necessary for control. In order to make this possible without special equipment, "acceleration" is used instead of the "force" of traction force and running resistance. Acceleration can be detected from the wheel speed of the CAN or a gyro, and is normally equipped in self-driving vehicles.
図2は、牽引力と走行抵抗の「力」の代わりに「加速度」を用いるべく、実車加速実験から取得した加速抵抗の事例図である。上段左から空車アクセル100%、50%、40%、下段左から12トン積載でのアクセル100%、50%を示す。発生加速度は、アクセル開度に比例し、車両総重量に反比例する当然の結果が出ている。 Figure 2 shows examples of acceleration resistance obtained from actual vehicle acceleration experiments, in order to use "acceleration" instead of the "forces" of traction force and running resistance. From the top left, it shows 100%, 50%, and 40% accelerator for an empty vehicle, and from the bottom left, it shows 100% and 50% accelerator with a 12-ton load. The results show that the generated acceleration is proportional to the accelerator opening and inversely proportional to the total vehicle weight, as would be expected.
図3は、惰行実験から取得する加速度表現での空気抵抗ところがり抵抗の事例説明図である。(A)が空車、(B)が12t積載である。ころがり抵抗が積載量に依存し、車速の二乗に比例する空気抵抗が理論通り捉えられている。図3において、上下方向の振幅が大きい線分がG計加速度を表し、中心の振幅の小さな線分が車速微分加速度を表す。 Figure 3 shows an example of air resistance and rolling resistance expressed in acceleration obtained from a coasting experiment. (A) is an empty vehicle, (B) is a vehicle with a load of 12 tons. Rolling resistance depends on the load, and air resistance proportional to the square of the vehicle speed is captured as per theory. In Figure 3, the line segment with large amplitude in the vertical direction represents the G meter acceleration, and the line segment with small amplitude in the center represents the vehicle speed differential acceleration.
図4は、図3による実測加速抵抗と実測惰行抵抗を合算して、その合算値が双曲線になることを検証した図である。横軸を車速x(m/s)、縦軸を加速度y(m/s2)、空車アクセル100%では双曲線22、アクセル50%では7.5、アクセル40%、更に、12t積載のアクセル100%では12、アクセル40%では3.5と、加速度はアクセル開度に比例し、積載量に反比例することが実証された。
Figure 4 is a diagram verifying that the sum of the actually measured acceleration resistance and the actually measured coasting resistance from Figure 3 forms a hyperbola. The horizontal axis is vehicle speed x (m/s) and the vertical axis is acceleration y (m/ s2 ), with the
図5は、自重推定式及びアクセル制御式の事例説明図である。前記式(1)から、式(7)への展開、式(7)から式(13)への展開について、その展開の流れを図解している。 Figure 5 is an explanatory diagram of an example of the weight estimation formula and the accelerator control formula. It illustrates the flow of the expansion from formula (1) to formula (7), and from formula (7) to formula (13).
図6は、勾配抵抗の求め方の説明図である。走行中に目標加速或いは指示加速度を生じるアクセル開度を決めるためには、その場、その場での車速と道路勾配を検出しておいて、自重検出に応える備える必要がある。3軸加速度計を備える。水平路路面で静止している時の前後加速度の読み値(Gx(static))は、勾配(θ)の坂道での静止状態では式(14)の-9.81xsineθ(m/s2)になる。坂道で走行すると式(15)の静止加速度(Gstatic)に前進走行加速度が加わる。 FIG. 6 is an explanatory diagram of how to calculate the gradient resistance. In order to determine the accelerator opening that produces the target acceleration or command acceleration while driving, it is necessary to detect the vehicle speed and road gradient at each location and respond to the detection of the vehicle's own weight. A three-axis accelerometer is provided. The reading of the longitudinal acceleration (G x(static) ) when stationary on a horizontal road surface is -9.81xsineθ(m/ s2 ) in equation (14) when stationary on a slope with a gradient (θ). When driving on a slope, the forward driving acceleration is added to the static acceleration (G static ) in equation (15).
図6の左下に勾配4%の坂路で、式(16)を実験検証した結果のグラフをジャイロピッチ角と比較して示す。四つのグラフは上段から車速、加速度、道路勾配、ジャイロピッチ角である。加速度のグラフは、加速度計による前後加速度(Gx)を緑色で示し、車輪速の微分値を赤色で示している。車輪速の微分値(赤色)のゼロは、一定速度で登坂していることを示している。このグラフの前後加速度と車輪速の微分値を式(16)に代入した計算結果を上段から3番目のグラフ(道路勾配)に示す。4°の勾配が検出されている。上段から4番目に比較検証のためのジャイロピッチ角を示す。初期値誤差が含まれているが、ジャイロピッチ角でも坂路勾配検出可能であることが分かる。 The bottom left of Figure 6 shows a graph comparing the gyro pitch angle with the results of experimentally verifying equation (16) on a 4% slope. The four graphs, from the top, are vehicle speed, acceleration, road gradient, and gyro pitch angle. The acceleration graph shows the longitudinal acceleration (Gx) measured by the accelerometer in green, and the differential value of the wheel speed in red. A zero differential value of the wheel speed (red) indicates climbing at a constant speed. The third graph from the top (road gradient) shows the calculation results when the longitudinal acceleration and wheel speed differential values of this graph are substituted into equation (16). A gradient of 4° was detected. The fourth graph from the top shows the gyro pitch angle for comparative verification. Although it contains an initial value error, it can be seen that it is possible to detect the slope gradient using the gyro pitch angle as well.
図7は制御の流れの説明図である。積載量に伴って変化する車両総重量を推定することと、要求加速度に対するアクセル開度を出力することを、計算によって出力する流れと計算図表によって出力する流れを備える。図の上段に計算式の流れ図、下段に計算図表の流れを示す。 Figure 7 is an explanatory diagram of the control flow. It has a flow that outputs the total vehicle weight, which changes with the load, by calculation, and a flow that outputs the accelerator opening degree corresponding to the required acceleration by using a nomogram. The upper part of the figure shows the flow of the calculation formula, and the lower part shows the flow of the nomogram.
上段の計算式の流れ図を左から右への順に説明する。CANからの車輪速と加速度計からの前後加速度を読み込んで式(16)に代入して道路勾配(θ)を検出する。平行して、GPSもしくはジャイロからのピッチ角(θ)を取り込んで、選択使用する。このθと、車輪速x(m/s)および検定加速度が式(13)に入力されて、θによってcの勾配抵抗が更新され、車速によってadx2の空気抵抗とFの車速依存の双曲線定数が更新され、検定加速度入力がdの加速抵抗に入力されて、積載比nが推定され、車両総重量が推定される。その車両総重量が式(12)に代入されて、アクセル開度が決まる。 The flow chart of the calculation formula in the upper part will be explained from left to right. The road gradient (θ) is detected by reading the wheel speed from the CAN and the longitudinal acceleration from the accelerometer and substituting them into equation (16). In parallel, the pitch angle (θ) from the GPS or gyro is taken in and selected for use. This θ, the wheel speed x (m/s) and the test acceleration are input into equation (13), the gradient resistance of c is updated by θ, the air resistance of a d x 2 and the hyperbolic constant of F, which depends on the vehicle speed, the test acceleration input is input into the acceleration resistance of d, the load ratio n is estimated, and the total vehicle weight is estimated. The total vehicle weight is substituted into equation (12) to determine the accelerator opening.
下段の計算図表について説明する。この図は、横軸のアクセル開度(F)と縦軸の加速度(d)の二次元で構成される。車速域を例えば、低速域、中速域、高速域と決めて使用する。空車で実施した予備実験データ(細線)を直線式で記述しておく。その直線と縦軸との交点が、空気抵抗ところがり抵抗と勾配抵抗で決まる“- adx2-(b+c)”に対応し、直線の傾きが、車両重量に対応する。実稼働において、積載されたら、アクセル開度と発生加速度を数点入力して、その数点の相関直線式を求める。求めた直線の傾きと空車直線式との傾きの比(n)になる。空車重量に求めたnを乗じることによって積載状態での車両総重量を推定することができる。また、推定した直線式によって、要求加速度(縦軸)に応答するアクセル開度を求めることができる。 The lower part of the calculation diagram will be explained. This diagram is two-dimensional, with the accelerator opening (F) on the horizontal axis and the acceleration (d) on the vertical axis. For example, the vehicle speed range is determined as low speed range, medium speed range, and high speed range. The preliminary experiment data (thin line) conducted with an empty vehicle is described in a linear equation. The intersection point of this line and the vertical axis corresponds to "- a d x 2 -(b+c)" determined by air resistance, rolling resistance, and gradient resistance, and the slope of the line corresponds to the vehicle weight. In actual operation, when the vehicle is loaded, the accelerator opening and the generated acceleration are input at several points to obtain a correlation linear equation for those several points. The slope of the obtained line is the ratio (n) of the slope of the line to the slope of the empty vehicle linear equation. The total vehicle weight in the loaded state can be estimated by multiplying the empty vehicle weight by the obtained n. The accelerator opening that responds to the required acceleration (vertical axis) can also be obtained from the estimated linear equation.
以上から、自重の変化、道路勾配の変化に適応して必要な加速度を発揮するアクセル制御式が可能になる。ここに述べた方法は、貨物運送車両や旅客輸送車両に限らず、動力源の種類に限らず全ての車両に適用できる普遍的な方法である。
From the above, it is possible to realize an accelerator control system that can adapt to changes in the vehicle's own weight and road gradient to achieve the required acceleration. The method described here is not limited to freight vehicles or passenger transport vehicles, and is a universal method that can be applied to all vehicles regardless of the type of power source.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021000359A JP7569691B2 (en) | 2021-01-05 | 2021-01-05 | Accelerator control system for autonomous vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021000359A JP7569691B2 (en) | 2021-01-05 | 2021-01-05 | Accelerator control system for autonomous vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022105803A JP2022105803A (en) | 2022-07-15 |
JP7569691B2 true JP7569691B2 (en) | 2024-10-18 |
Family
ID=82365586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021000359A Active JP7569691B2 (en) | 2021-01-05 | 2021-01-05 | Accelerator control system for autonomous vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7569691B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406862A (en) | 1993-11-02 | 1995-04-18 | Eaton Corporation | Method and apparatus for selecting a starting gear in an automated mechanical transmission |
JP2004046439A (en) | 2002-07-10 | 2004-02-12 | Horiba Ltd | Operation control system |
JP2009083542A (en) | 2007-09-27 | 2009-04-23 | Toyota Motor Corp | Control device for vehicle |
JP2018199357A (en) | 2017-05-25 | 2018-12-20 | トヨタ自動車株式会社 | Driving control device |
JP2020011555A (en) | 2018-07-17 | 2020-01-23 | 先進モビリティ株式会社 | Platoon running system |
JP2020117206A (en) | 2019-01-28 | 2020-08-06 | 先進モビリティ株式会社 | Automatic driving vehicle |
-
2021
- 2021-01-05 JP JP2021000359A patent/JP7569691B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406862A (en) | 1993-11-02 | 1995-04-18 | Eaton Corporation | Method and apparatus for selecting a starting gear in an automated mechanical transmission |
JP2004046439A (en) | 2002-07-10 | 2004-02-12 | Horiba Ltd | Operation control system |
JP2009083542A (en) | 2007-09-27 | 2009-04-23 | Toyota Motor Corp | Control device for vehicle |
JP2018199357A (en) | 2017-05-25 | 2018-12-20 | トヨタ自動車株式会社 | Driving control device |
JP2020011555A (en) | 2018-07-17 | 2020-01-23 | 先進モビリティ株式会社 | Platoon running system |
JP2020117206A (en) | 2019-01-28 | 2020-08-06 | 先進モビリティ株式会社 | Automatic driving vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2022105803A (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Phanomchoeng et al. | New rollover index for the detection of tripped and untripped rollovers | |
Rajamani et al. | Tire-road friction-coefficient estimation | |
Zhao et al. | Design of a nonlinear observer for vehicle velocity estimation and experiments | |
Yi et al. | Nonlinear brake control for vehicle CW/CA systems | |
Phanomchoeng et al. | Real-time estimation of rollover index for tripped rollovers with a novel unknown input nonlinear observer | |
US9738284B2 (en) | Vehicle acceleration determination | |
US10108197B2 (en) | Deceleration determination of a vehicle | |
Rajamani et al. | Parameter and state estimation in vehicle roll dynamics | |
US8630767B2 (en) | Estimation of the load of a vehicle | |
US8751141B2 (en) | Method for estimating the height of the gravity center of a vehicle | |
GB2546869A (en) | Vehicle curvature determination | |
Jeong et al. | Estimation of tire load and vehicle parameters using intelligent tires combined with vehicle dynamics | |
CN105667521A (en) | Method and system for calculating total mass of vehicle | |
US20130190945A1 (en) | Vehicle mass estimating apparatus | |
Kim et al. | Development of estimation algorithms for vehicle’s mass and road grade | |
Ferrara et al. | Minimum sensor second-order sliding mode longitudinal control of passenger vehicles | |
Acosta et al. | A Virtual Sensor for Integral Tire Force Estimation using Tire Model-Less Approaches and Adaptive Unscented Kalman Filter. | |
Joshi | Real-Time Implementation and Validation for Automated Path Following Lateral Control Using Hardware-in-the-Loop (HIL) Simulation | |
Alonso et al. | Toward a methodology to assess safety of a vehicle | |
Buggaveeti et al. | Longitudinal vehicle dynamics modeling and parameter estimation for plug-in hybrid electric vehicle | |
JP7569691B2 (en) | Accelerator control system for autonomous vehicles | |
Erdinc et al. | Validation of high-fidelity simulation-based safe operating envelopes for articulated heavy vehicles using real test data | |
KR20230013262A (en) | Target trajectory suitability test method for vehicle trajectory control | |
JP7469424B1 (en) | Method for automatic driving of articulated vehicles | |
Kedar-Dongarkar et al. | Vehicle parameter estimation using nested RLS algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7569691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |