[go: up one dir, main page]

JP7567422B2 - Resin composition and cured film using same - Google Patents

Resin composition and cured film using same Download PDF

Info

Publication number
JP7567422B2
JP7567422B2 JP2020203876A JP2020203876A JP7567422B2 JP 7567422 B2 JP7567422 B2 JP 7567422B2 JP 2020203876 A JP2020203876 A JP 2020203876A JP 2020203876 A JP2020203876 A JP 2020203876A JP 7567422 B2 JP7567422 B2 JP 7567422B2
Authority
JP
Japan
Prior art keywords
graphene
resin composition
weight
cured film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020203876A
Other languages
Japanese (ja)
Other versions
JP2021095568A (en
Inventor
郁也 片瀬
智博 加藤
栄一郎 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2021095568A publication Critical patent/JP2021095568A/en
Application granted granted Critical
Publication of JP7567422B2 publication Critical patent/JP7567422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、グラフェンおよび耐熱性樹脂を含む樹脂組成物およびその硬化膜に関する。 The present invention relates to a resin composition containing graphene and a heat-resistant resin, and a cured film thereof.

近年、太陽電池や高温駆動半導体の回路、自動車部品の電磁波シールド、ハンダ代替品などの用途において、導電塗料や導電接着剤等の導電性樹脂組成物が広く用いられている。このような用途に用いられる導電性樹脂組成物には、導電性、耐熱性、基材に対する密着性が重要な特性であり、その向上が求められている。特に、高温駆動の半導体回路やハンダの代替などの用途においては、300℃付近で用いられる場合があり、耐熱性のさらなる向上が必要となる。 In recent years, conductive resin compositions such as conductive paints and conductive adhesives have been widely used in applications such as solar cells, high-temperature semiconductor circuits, electromagnetic shielding for automotive parts, and solder replacements. The important properties of conductive resin compositions used in such applications are electrical conductivity, heat resistance, and adhesion to substrates, and improvements in these properties are required. In particular, applications such as high-temperature semiconductor circuits and solder replacements may involve use at temperatures of around 300°C, making further improvements in heat resistance necessary.

導電性樹脂組成物として、これまでに、例えば、導電性粉、バインダー樹脂及び有機溶剤からなる導電性ペーストにおいて、バインダー樹脂としてブタジエン系ゴム、イソプレン系ゴム、ブチルゴム、エチレン-プロピレンゴム、クロロプレンゴム、フッ素ゴム、シリコーンゴム、ウレタンゴム、ポリエステル、ポリカーボネート、ポリエーテル、ポリラクトン及びダイマー酸からなる群より選ばれる少なくとも1種以上の成分を共重合したポリアミドイミド及び/又はポリイミドを含むことを特徴とする導電性ペースト(例えば、特許文献1参照)、ポリビニルアセタール(A)及び硬化性樹脂(B)を含む樹脂成分と、アスペクト比が10~15,000であり、平均繊維径dが5~100nmであるカーボンナノチューブ(C)を含む炭素成分と、を含有する導電性樹脂組成物であって、前記樹脂成分中の前記樹脂(A)の含有量が10~70質量%であり、前記樹脂成分100質量部に対する前記カーボンナノチューブ(C)の含有量が2~70質量部である導電性樹脂組成物(例えば、特許文献2参照)、炭素材料を含む炭素材料複合組成物であって、該炭素材料は、グラフェン骨格を有し、該組成物は、更にポリイミド及び/又はその前駆体を含むことを特徴とする炭素材料複合組成物(例えば、特許文献3参照)などが提案されている。 As the conductive resin composition, there have been disclosed, for example, a conductive paste comprising a conductive powder, a binder resin, and an organic solvent, the binder resin being characterized in that it contains polyamideimide and/or polyimide copolymerized with at least one component selected from the group consisting of butadiene-based rubber, isoprene-based rubber, butyl rubber, ethylene-propylene rubber, chloroprene rubber, fluororubber, silicone rubber, urethane rubber, polyester, polycarbonate, polyether, polylactone, and dimer acid (see, for example, Patent Document 1); a conductive paste comprising a resin component containing polyvinyl acetal (A) and a curable resin (B), and a fiber having an aspect ratio of 10 to 15,000 and an average fiber diameter d and a carbon component containing carbon nanotubes (C) having a C of 5 to 100 nm, wherein the content of the resin (A) in the resin component is 10 to 70 mass % and the content of the carbon nanotubes (C) is 2 to 70 mass parts relative to 100 mass parts of the resin component (see, for example, Patent Document 2); and a carbon material composite composition containing a carbon material, wherein the carbon material has a graphene skeleton and the composition further contains a polyimide and/or a precursor thereof (see, for example, Patent Document 3).

特開2004-221006号公報JP 2004-221006 A 特開2014-28900号公報JP 2014-28900 A 特開2016-127210号公報JP 2016-127210 A

特許文献1に記載された導電性ペーストにより、導電性、密着性などが向上するものの、導電性粉の分散性、耐熱性がなお不十分であり、300℃程度の高温環境下において、樹脂の熱分解やひび割れによって、樹脂組成物から得られる硬化膜の導電性や基材への密着性が低下する課題があった。一方、特許文献2に開示された導電性樹脂組成物により、炭素成分の分散性が向上するものの、耐熱性がなお不十分であり、300℃程度の高温環境下において、基材への密着性および導電性が低下する課題があった。また、特許文献3に開示された炭素材料複合組成物により、熱電性能が向上するものの、炭素成分の分散性が不十分であり、高温環境下における導電性や基材への密着性が低下する課題があった。 The conductive paste described in Patent Document 1 improves the conductivity and adhesion, but the dispersibility and heat resistance of the conductive powder are still insufficient, and there is a problem that in a high-temperature environment of about 300°C, the conductivity of the cured film obtained from the resin composition and the adhesion to the substrate are reduced due to thermal decomposition and cracking of the resin. On the other hand, the conductive resin composition disclosed in Patent Document 2 improves the dispersibility of the carbon component, but the heat resistance is still insufficient, and there is a problem that in a high-temperature environment of about 300°C, the adhesion to the substrate and the conductivity are reduced. In addition, the carbon material composite composition disclosed in Patent Document 3 improves the thermoelectric performance, but the dispersibility of the carbon component is insufficient, and there is a problem that the conductivity and adhesion to the substrate are reduced in a high-temperature environment.

そこで、本発明は、耐熱性樹脂に対するグラフェンの分散性を高め、耐熱性、高温環境下における導電性および基材への密着性に優れる硬化膜を得ることのできる樹脂組成物を提供することを目的とする。 The present invention aims to provide a resin composition that can improve the dispersibility of graphene in a heat-resistant resin and produce a cured film that has excellent heat resistance, electrical conductivity in high-temperature environments, and adhesion to the substrate.

上記の課題を解決するため、本発明は、X線光電子分光法により測定される炭素に対する窒素の元素比(N/C比)が0.005以上0.030以下であるグラフェン、および、窒素原子を有する耐熱性樹脂を含む樹脂組成物である。 In order to solve the above problems, the present invention provides a resin composition that includes graphene having an elemental ratio of nitrogen to carbon (N/C ratio) of 0.005 or more and 0.030 or less as measured by X-ray photoelectron spectroscopy, and a heat-resistant resin having nitrogen atoms.

本発明の樹脂組成物は、グラフェンの分散性に優れる。本発明の樹脂組成物により、耐熱性、高温環境下における導電性および基材への密着性に優れる硬化膜を得ることができる。 The resin composition of the present invention has excellent dispersibility of graphene. The resin composition of the present invention can provide a cured film that has excellent heat resistance, electrical conductivity in high-temperature environments, and adhesion to the substrate.

<樹脂組成物>
本発明の樹脂組成物は、X線光電子分光法により測定される炭素に対する窒素の元素比(N/C比)が0.005以上0.030以下であるグラフェンと、窒素原子を有する耐熱性樹脂を含む。N/C比がかかる範囲にあるグラフェンと窒素原子を有する耐熱性樹脂を組み合わせることにより、樹脂組成物中におけるグラフェンの分散性を向上させ、少量のグラフェンにより十分な導電性を発現させることができることから、樹脂組成物から得られる硬化膜の耐熱性、高温環境下における導電性および基材への密着性を向上させることができる。
<Resin Composition>
The resin composition of the present invention contains graphene having an elemental ratio of nitrogen to carbon (N/C ratio) of 0.005 or more and 0.030 or less as measured by X-ray photoelectron spectroscopy, and a heat-resistant resin having nitrogen atoms. By combining graphene having an N/C ratio in this range with a heat-resistant resin having nitrogen atoms, the dispersibility of graphene in the resin composition can be improved and sufficient conductivity can be exhibited with a small amount of graphene, so that the heat resistance, conductivity in a high-temperature environment, and adhesion to a substrate of a cured film obtained from the resin composition can be improved.

<グラフェン>
グラフェンは、薄く、面形状で、単位質量当りの導電パスが多く、樹脂組成物内において強固な導電ネットワークの核として作用する。グラフェンとは、狭義には1原子の厚さのsp結合炭素原子のシート(単層グラフェン)を指すが、本明細書においては、単層グラフェンが積層した薄片状の形態を持つものも含めてグラフェンと呼称する。さらに、グラフェンには分散性の向上等を目的とした表面処理がなされる場合があるが、本明細書においては、このような表面処理剤が付着したグラフェンも「グラフェン」と呼称するものとする。
<Graphene>
Graphene is thin, planar, and has many conductive paths per unit mass, and acts as the core of a strong conductive network in a resin composition. In a narrow sense, graphene refers to a sheet of sp2- bonded carbon atoms with a thickness of one atom (single-layer graphene), but in this specification, the term graphene also refers to a flaky form in which single-layer graphene is stacked. Furthermore, graphene may be surface-treated for the purpose of improving dispersibility, and in this specification, graphene to which such a surface treatment agent is attached is also referred to as "graphene".

グラフェンの面方向の大きさは、樹脂組成物中における電子伝導のネットワークを形成しやすくして導電性をより向上させる観点から、0.1μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましい。一方、グラフェンの面方向の大きさは、樹脂組成物中における分散性や高温環境下における基材に対する密着性をより向上させる観点から、10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。ここでいうグラフェンの面方向の大きさとは、グラフェン面の最長径と最短径の平均値を指す。グラフェンの面方向の大きさは、グラフェンの希薄分散液を基板上に塗布し、電子顕微鏡を用いて、グラフェンが適切な視野に収まる倍率において拡大観察し、無作為に選択した10個のグラフェンについて、その最長径と最短径を測定し、その平均値から個々のグラフェンの面方向の大きさを算出し、その算術平均値を算出することにより求めることができる。なお、樹脂組成物や硬化膜からグラフェンを採取する方法としては、例えば、凍結粉砕機などを用いて樹脂組成物や硬化膜を粉砕した後、N-メチル-2-ピロリドン(NMP)を用いて抽出したグラフェンを乾燥する方法などが挙げられる。また、グラフェンの面方向の大きさは、一般的な製造方法においては樹脂組成物や硬化膜中においても変化しないことから、樹脂組成物の原料となるグラフェンが既知の場合には、原料グラフェンから直接測定してもよい。 The size of the graphene in the plane direction is preferably 0.1 μm or more, more preferably 0.5 μm or more, and even more preferably 1 μm or more, from the viewpoint of facilitating the formation of an electronic conduction network in the resin composition and further improving the electrical conductivity. On the other hand, the size of the graphene in the plane direction is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less, from the viewpoint of further improving the dispersibility in the resin composition and the adhesion to the substrate in a high-temperature environment. The size of the graphene in the plane direction here refers to the average value of the longest diameter and the shortest diameter of the graphene plane. The size of the graphene in the plane direction can be determined by applying a dilute graphene dispersion onto a substrate, enlarging and observing the graphene using an electron microscope at a magnification at which the graphene fits within an appropriate field of view, measuring the longest diameter and the shortest diameter for 10 randomly selected graphenes, calculating the size of each graphene in the plane direction from the average value, and calculating the arithmetic average value. Examples of methods for extracting graphene from a resin composition or a cured film include crushing the resin composition or the cured film using a freeze crusher or the like, and then drying the graphene extracted using N-methyl-2-pyrrolidone (NMP). In addition, since the size of the graphene in the planar direction does not change in the resin composition or the cured film in a typical manufacturing method, if the graphene used as the raw material for the resin composition is known, it may be measured directly from the raw graphene.

グラフェンの面方向の大きさは、例えば、後述するグラフェンの製造方法において、好ましい製造方法を用いること、微細化工程の時間を選択することなどにより、所望の範囲に調整することができる。微細化工程の時間を長くすることにより面方向の大きさを小さくすることができ、微細化工程の時間を短く、もしくは微細化工程を行ないことにより、面方向の大きさを大きく保つことができる。 The size of the graphene in the planar direction can be adjusted to a desired range, for example, by using a preferred manufacturing method in the graphene manufacturing method described below, selecting the time of the micronization process, etc. The size in the planar direction can be reduced by extending the time of the micronization process, and the size in the planar direction can be kept large by shortening the time of the micronization process or by not performing the micronization process at all.

グラフェンの、X線回折法においてグラフェン結晶の(002)面に対応するピークからScherrerの式により算出される結晶子径は、2nm以下が好ましい。このようにグラフェンのベーサル面に対し垂直方向の結晶子サイズが小さい、すなわち厚みが薄いことにより、樹脂組成物中においてグラフェンにより効率的な電子伝導パスが形成され、グラフェン含有量が少ない場合であっても導電性をより向上させることができる。ここで、グラフェンのX線回折測定は、60℃の温度で12時間真空乾燥したグラフェンについて、走査範囲:5°~50°、ステップサイズ:0.016°、走査速度:1ステップ/秒の条件で行い、グラフェン結晶の(002)面に対応するピーク(2θ/θ=25°付近)の半値幅から、Scherrerの式により結晶子サイズを算出することができる。なお、樹脂組成物や硬化膜からグラフェンを採取する方法としては、例えば、凍結粉砕機などを用いて樹脂組成物や硬化膜を粉砕した後、N-メチルピロリドン(NMP)を用いて抽出したグラフェンを乾燥する方法などが挙げられる。また、グラフェンの結晶子径は、一般的な製造方法においては樹脂組成物や硬化膜中においても変化しないことから、樹脂組成物の原料となるグラフェンが既知の場合には、真空乾燥した原料グラフェンから直接測定してもよい。 The crystallite size of graphene calculated by Scherrer's formula from the peak corresponding to the (002) plane of the graphene crystal in the X-ray diffraction method is preferably 2 nm or less. In this way, the crystallite size in the direction perpendicular to the basal plane of graphene is small, i.e., the thickness is thin, so that an efficient electron conduction path is formed by graphene in the resin composition, and the conductivity can be further improved even when the graphene content is small. Here, the X-ray diffraction measurement of graphene is performed on graphene that has been vacuum dried at a temperature of 60° C. for 12 hours under the conditions of a scanning range of 5° to 50°, a step size of 0.016°, and a scanning speed of 1 step/second, and the crystallite size can be calculated from the half-width of the peak (near 2θ/θ=25°) corresponding to the (002) plane of the graphene crystal by Scherrer's formula. In addition, as a method for extracting graphene from a resin composition or a cured film, for example, a method of crushing the resin composition or the cured film using a freeze crusher or the like, and then drying the graphene extracted using N-methylpyrrolidone (NMP) can be mentioned. In addition, since the graphene crystallite size does not change in the resin composition or in the cured film in a typical manufacturing method, if the graphene used as the raw material for the resin composition is known, it may be measured directly from the raw graphene that has been vacuum-dried.

グラフェンの結晶子径の大きさは、例えば、後述するグラフェンの製造方法において、好ましい製造方法や、表面処理剤を用いること、表面処理剤の添加量を好ましい範囲に調整することなどにより、所望の範囲に調整することができる。例えば、好ましい表面処理剤を適量添加し撹拌することにより、グラフェンの剥離を進行させ、結晶子径を小さくすることができる。また、後述するグラフェンの製造工程において、強撹拌工程におけるせん断速度を大きくすることや、撹拌時間を長くすることにより、結晶子径を小さくすることができる。 The size of the graphene crystallite diameter can be adjusted to a desired range, for example, by using a preferred manufacturing method or a surface treatment agent in the graphene manufacturing method described below, or by adjusting the amount of the surface treatment agent added to a preferred range. For example, by adding an appropriate amount of a preferred surface treatment agent and stirring, the graphene can be peeled off and the crystallite diameter can be reduced. In addition, in the graphene manufacturing process described below, the crystallite diameter can be reduced by increasing the shear rate in the strong stirring step or by extending the stirring time.

本発明において、グラフェンの、X線光電子分光法により測定される炭素に対する窒素の元素比(N/C比)は、0.005以上0.030以下である。グラフェンが窒素を含有することにより、耐熱性樹脂中の窒素原子とグラフェン上の窒素原子間の相互作用により、樹脂組成物中におけるグラフェンの分散性を高め、少量のグラフェンにより硬化膜の導電性、特に高温環境下での導電性を向上させることができる。N/C比が0.005未満であると、樹脂組成物中におけるグラフェンの分散性が低下するため、硬化膜の導電性、特に高温環境下における導電性が低下する。また、グラフェンの分散性が低下するため、グラフェンの凝集部を起点に硬化膜が基材から剥離しやすくなり、特に高温環境下における硬化膜の密着性も低下する。N/C比は、0.006以上が好ましく、0.008以上がより好ましい。一方、N/C比が0.030を超えると、グラフェン自体の導電性が低下する。また、グラフェンと耐熱性樹脂との界面の接着性が低下するため、界面を起点に剥離が生じやすく、特に高温環境下における硬化膜の密着性も低下する。N/C比は、0.020以下が好ましく、0.018以下がより好ましく、0.016以下がさらに好ましい。ここで、N/C比の測定は、X線光電子分光器、例えばPHI Quantera II(Ulvac-PHI株式会社製)、QuanteraSXM(Ulvac-PHI株式会社製)、JPS-9030(日本電子株式会社製)などを用いて、グラフェンの光電子スペクトルを取得し、そのピーク面積比から元素比を定量することにより求めることができる。X線光電子分光分析では、超高真空中に置いた試料表面に軟X線を照射し、表面から放出される光電子をアナライザーで検出する。この光電子をワイドスキャンで測定し、物質中の束縛電子の結合エネルギー値を求めることにより、物質表面の元素情報が得られる。さらに、ピーク面積比を用いて元素比を定量することができる。なお、樹脂組成物や硬化膜からグラフェンを採取する方法としては、例えば、凍結粉砕機などを用いて樹脂組成物や硬化膜を粉砕した後、N-メチルピロリドン(NMP)を用いて抽出したグラフェンを乾燥する方法などが挙げられる。樹脂組成物や硬化膜からグラフェンを抽出した際は、グラフェンのみの領域を選択的に測定する目的から、ビーム径を10μmまで絞って測定できるX線光電子分光器、例えばPHI Quantera II(Ulvac-PHI株式会社製)を用いて、測定を行うことが好ましい。また、グラフェンのN/C比は、一般的な製造方法においては樹脂組成物や硬化膜中においても変化しないことから、樹脂組成物の原料となるグラフェンが既知の場合には、真空乾燥した原料グラフェンから直接測定してもよい。 In the present invention, the element ratio of nitrogen to carbon (N/C ratio) of graphene measured by X-ray photoelectron spectroscopy is 0.005 or more and 0.030 or less. When graphene contains nitrogen, the dispersibility of graphene in the resin composition is increased by the interaction between the nitrogen atoms in the heat-resistant resin and the nitrogen atoms on the graphene, and a small amount of graphene can improve the conductivity of the cured film, especially the conductivity under a high temperature environment. If the N/C ratio is less than 0.005, the dispersibility of graphene in the resin composition decreases, so that the conductivity of the cured film, especially the conductivity under a high temperature environment, decreases. In addition, since the dispersibility of graphene decreases, the cured film becomes more likely to peel off from the substrate starting from the graphene aggregation portion, and the adhesion of the cured film, especially under a high temperature environment, also decreases. The N/C ratio is preferably 0.006 or more, more preferably 0.008 or more. On the other hand, if the N/C ratio exceeds 0.030, the conductivity of the graphene itself decreases. In addition, since the adhesiveness at the interface between the graphene and the heat-resistant resin is reduced, peeling is likely to occur starting from the interface, and the adhesion of the cured film is also reduced, particularly in a high-temperature environment. The N/C ratio is preferably 0.020 or less, more preferably 0.018 or less, and even more preferably 0.016 or less. Here, the N/C ratio can be measured by obtaining a photoelectron spectrum of graphene using an X-ray photoelectron spectrometer, such as PHI Quantera II (manufactured by Ulvac-PHI Co., Ltd.), Quantera SXM (manufactured by Ulvac-PHI Co., Ltd.), or JPS-9030 (manufactured by JEOL Ltd.), and quantifying the element ratio from the peak area ratio. In X-ray photoelectron spectroscopy, soft X-rays are irradiated onto the surface of a sample placed in an ultra-high vacuum, and photoelectrons emitted from the surface are detected by an analyzer. These photoelectrons are measured by wide scanning to determine the binding energy value of the bound electrons in the material, thereby obtaining elemental information on the surface of the material. Furthermore, the element ratio can be quantified using the peak area ratio. As a method for extracting graphene from a resin composition or a cured film, for example, a method of crushing the resin composition or the cured film using a freeze crusher or the like, and then drying the graphene extracted using N-methylpyrrolidone (NMP) can be mentioned. When graphene is extracted from a resin composition or a cured film, it is preferable to perform the measurement using an X-ray photoelectron spectrometer that can measure with a beam diameter of 10 μm, such as PHI Quantera II (manufactured by Ulvac-PHI Co., Ltd.), in order to selectively measure the region of only graphene. In addition, since the N/C ratio of graphene does not change in a resin composition or a cured film in a general production method, when the graphene that is the raw material of the resin composition is known, it may be measured directly from the raw graphene that has been vacuum-dried.

グラフェンに窒素を導入する方法としては、例えば、グラフェン面内への窒素原子のドープ、グラフェン上に残像する酸素官能基との反応による窒素原子を含む分子の導入、窒素原子を含む分子を非共有結合的にグラフェンに吸着させる表面処理などが挙げられる。これらの中でも、表面処理が好ましく、樹脂組成物中におけるグラフェンの分散性をより向上させることができる。 Methods for introducing nitrogen into graphene include, for example, doping the graphene surface with nitrogen atoms, introducing molecules containing nitrogen atoms by reacting with oxygen functional groups remaining on the graphene, and surface treatment for non-covalently adsorbing molecules containing nitrogen atoms to the graphene. Among these, surface treatment is preferred, as it can further improve the dispersibility of graphene in the resin composition.

表面処理剤としては、フェニル基および/またはアミノ基を有する化合物が好ましく、例えば、アンチピリン、アミノピリン、4-アミノアンチピリン、1-フェニル-3-メチル-5-ピラゾロン、4-ベンゾイル-3-メチル-1-フェニル-2-ピラゾリン-5-オン、1-(2-クロロフェニル)-3-メチル-2-ピラゾリン-5-オン、5-オキソ-1-フェニル-2-ピラゾリン-3-カルボン酸、1-(2-クロロ-5-スルホフェニル)-3-メチル-5-ピラゾロン、1-(4-クロロフェニル)-3-メチル-2-ピラゾリン-5-オン、1-(4-スルホフェニル)-3-メチル-5-ピラゾロン、3-クロロアニリン、ベンジルアミン、2-フェニルエチルアミン、1-ナフチルアミン、ドーパミン塩酸塩、ドーパミン、ドーパなどが挙げられる。これらを2種以上用いてもよい。N/C比は、例えば、表面処理剤の種類や量により所望の範囲に調整することができる。 As the surface treatment agent, a compound having a phenyl group and/or an amino group is preferable, for example, antipyrine, aminopyrine, 4-aminoantipyrine, 1-phenyl-3-methyl-5-pyrazolone, 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one, 1-(2-chlorophenyl)-3-methyl-2-pyrazolin-5-one, 5-oxo-1-phenyl-2-pyrazoline-3-carboxylic acid, 1-(2-chloro-5-sulfophenyl)-3-methyl-5-pyrazolone, 1-(4-chlorophenyl)-3-methyl-2-pyrazolin-5-one, 1-(4-sulfophenyl)-3-methyl-5-pyrazolone, 3-chloroaniline, benzylamine, 2-phenylethylamine, 1-naphthylamine, dopamine hydrochloride, dopamine, dopa, etc. Two or more of these may be used. The N/C ratio can be adjusted to the desired range, for example, by changing the type and amount of the surface treatment agent.

本発明において、グラフェンの、X線光電子分光分析により測定される炭素に対する酸素の元素比(O/C比)は、0.08以上0.30以下が好ましい。グラフェンの分散性をより向上させる観点から、O/C比は、0.09以上がより好ましく、0.12以上がさらに好ましい。一方、グラフェンのπ電子共役構造を回復させ、グラフェンの導電性をより向上させるとともに、高温環境下における官能基由来のガス発生によって生じる基材への密着性低下をより抑制する観点から、O/C比は、0.25以下が好ましく、0.20以下がより好ましく、0.18以下がさらに好ましい。ここで、O/C比は、前述のN/C比と同様に求めることができる。 In the present invention, the oxygen to carbon element ratio (O/C ratio) of graphene measured by X-ray photoelectron spectroscopy is preferably 0.08 or more and 0.30 or less. From the viewpoint of further improving the dispersibility of graphene, the O/C ratio is more preferably 0.09 or more, and even more preferably 0.12 or more. On the other hand, from the viewpoint of recovering the π-electron conjugated structure of graphene, further improving the conductivity of graphene, and further suppressing the decrease in adhesion to the substrate caused by gas generation derived from functional groups in a high-temperature environment, the O/C ratio is preferably 0.25 or less, more preferably 0.20 or less, and even more preferably 0.18 or less. Here, the O/C ratio can be determined in the same manner as the above-mentioned N/C ratio.

グラフェン表面の酸素原子は、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、エステル結合(-C(=O)-O-)、エーテル結合(-C-O-C-)、カルボニル基(-C(=O)-)、エポキシ基などの酸素原子を含有する極性の高い官能基に由来する。なお、グラフェンに表面処理剤を付与しているが、グラフェン自体の官能基だけでなく、このような表面処理剤が有する官能基に由来する酸素原子も、「グラフェン表面の酸素原子」に含めるものとする。すなわち、表面処理剤が付与されたグラフェンにおいては、表面処理剤処理後の表面のO/C比が上記範囲であることが好ましい。 The oxygen atoms on the graphene surface are derived from highly polar functional groups containing oxygen atoms, such as hydroxyl groups (-OH), carboxyl groups (-COOH), ester bonds (-C(=O)-O-), ether bonds (-C-O-C-), carbonyl groups (-C(=O)-), and epoxy groups. Note that while a surface treatment agent is applied to the graphene, oxygen atoms derived from functional groups of such surface treatment agents as well as functional groups of the graphene itself are included in the "oxygen atoms on the graphene surface." In other words, in graphene to which a surface treatment agent is applied, it is preferable that the O/C ratio of the surface after treatment with the surface treatment agent is within the above range.

O/C比は、例えば、化学剥離法を用いた場合は、原料となる酸化グラフェンの酸化度を変えたり表面処理剤の量を変えたりすることにより調整することができる。酸化グラフェンの酸化度が高いほど還元後に残る酸素の量も多くなり、酸化グラフェンの酸化度が低いほど還元後の酸素量が低くなる。また、酸性基を有する表面処理剤の付着量が多くなるほど酸素量を多くすることができる。 For example, when a chemical peeling method is used, the O/C ratio can be adjusted by changing the degree of oxidation of the graphene oxide raw material or the amount of the surface treatment agent. The higher the degree of oxidation of the graphene oxide, the greater the amount of oxygen remaining after reduction, and the lower the degree of oxidation of the graphene oxide, the lower the amount of oxygen remaining after reduction. Also, the greater the amount of the surface treatment agent having acidic groups attached, the greater the amount of oxygen can be.

特性の異なる2種以上のグラフェンを含有する場合、グラフェン全体として、上記特性を有することが好ましい。 When two or more types of graphene with different properties are included, it is preferable that the graphene as a whole has the above properties.

本発明の樹脂組成物中におけるグラフェンの含有量は、導電性、特に高温環境下における導電性をより向上させる観点から、後述する窒素原子を有する耐熱性樹脂100重量部に対して、1重量部以上が好ましく、3重量部以上がより好ましく、5重量部以上がさらに好ましい。一方、グラフェンの含有量は、特に高温環境下における、硬化膜の基材に対する密着性をより向上させる観点から、後述する窒素原子を有する耐熱性樹脂100重量部に対して、30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下がさらに好ましい。 The content of graphene in the resin composition of the present invention is preferably 1 part by weight or more, more preferably 3 parts by weight or more, and even more preferably 5 parts by weight or more, per 100 parts by weight of the heat-resistant resin having a nitrogen atom described later, from the viewpoint of further improving the electrical conductivity, particularly electrical conductivity under a high-temperature environment. On the other hand, the content of graphene is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, and even more preferably 10 parts by weight or less, per 100 parts by weight of the heat-resistant resin having a nitrogen atom described later, from the viewpoint of further improving the adhesion of the cured film to the substrate, particularly under a high-temperature environment.

本発明に用いられるグラフェンは、物理剥離法により製造されたものであってもよく、化学剥離法により製造されたものであってもよい。化学剥離法により製造される場合、酸化グラフェンの作製法に特に限定はなく、ハマーズ法等の公知の方法を使用できる。また、市販の酸化グラフェンを用いてもよい。 The graphene used in the present invention may be produced by a physical exfoliation method or a chemical exfoliation method. When produced by a chemical exfoliation method, the method for producing graphene oxide is not particularly limited, and known methods such as the Hummers method can be used. Commercially available graphene oxide may also be used.

化学剥離法は、黒鉛を酸化剥離して酸化グラフェンを得る工程(黒鉛剥離工程)、還元を行う工程(還元工程)をこの順に有することが好ましい。必要に応じて、黒鉛剥離工程と還元工程の間に、表面処理剤をグラフェンに付着させる工程(表面処理工程)および/またはグラフェンの面方向の大きさを調整する工程(微細化工程)を有してもよい。表面処理グラフェンを用いる場合、表面処理剤はグラフェンに付着させてもよく、酸化グラフェンに付着させた後に還元処理を行って表面処理グラフェンとしてもよい。また、グラフェンを微細化する場合、酸化グラフェンを微細化してもよいし、還元後のグラフェンを微細化してもよい。還元反応の均一性の観点から、酸化グラフェンを微細化した状態で還元工程を行うことが好ましく、微細化工程は還元工程の前または還元工程の最中に行うことが好ましい。このため、黒鉛剥離工程、表面処理工程、微細化工程、還元工程をこの順に有することが好ましい。 The chemical peeling method preferably includes a step of obtaining graphene oxide by oxidatively peeling graphite (graphite peeling step) and a step of performing reduction (reduction step) in this order. If necessary, a step of attaching a surface treatment agent to graphene (surface treatment step) and/or a step of adjusting the size of the graphene in the planar direction (fine-refining step) may be included between the graphite peeling step and the reduction step. When surface-treated graphene is used, the surface treatment agent may be attached to graphene, or the surface-treated graphene may be obtained by attaching the surface treatment agent to graphene oxide and then performing a reduction treatment. When graphene is fine-refined, the graphene oxide may be fine-refined, or the graphene after reduction may be fine-refined. From the viewpoint of uniformity of the reduction reaction, it is preferable to perform the reduction step in a fine-refined state of graphene oxide, and it is preferable to perform the fine-refining step before or during the reduction step. For this reason, it is preferable to have the graphite peeling step, the surface treatment step, the fine-refining step, and the reduction step in this order.

また、本発明に用いられるグラフェンは、樹脂組成物における分散性をより向上させるために、分散液の状態で用いることが好ましい。分散液を製造する際には、還元工程を経た中間体分散液と有機溶媒とを混合する工程(有機溶媒混合工程)と、有機溶媒を含む中間体分散液をミキサーの回転刃の周速6m/s以上70m/s以下で撹拌処理する工程(強撹拌工程)をさらに有することが好ましい。 The graphene used in the present invention is preferably used in the form of a dispersion in order to further improve dispersibility in the resin composition. When producing the dispersion, it is preferable to further include a step of mixing the intermediate dispersion that has undergone the reduction step with an organic solvent (organic solvent mixing step), and a step of stirring the intermediate dispersion containing the organic solvent at a peripheral speed of the rotating blade of the mixer of 6 m/s or more and 70 m/s or less (strong stirring step).

以下に、各工程の好ましい態様について説明する。 The preferred aspects of each step are described below.

[黒鉛剥離工程]
まず、黒鉛を酸化剥離して酸化グラフェンを得る。酸化グラフェンの酸化度は、黒鉛の酸化反応に用いる酸化剤の量を変化させることにより調整することができる。具体的には、酸化反応の際に用いる、黒鉛に対する硝酸ナトリウムおよび過マンガン酸カリウムの量が多いほど、酸化度は高くなり、少ないほど、酸化度は低くなる。黒鉛に対する硝酸ナトリウムの重量比は、0.200以上0.800以下が好ましい。黒鉛に対する過マンガン酸カリウムの比は、1.00以上4.0以下が好ましい。
[Graphite peeling process]
First, graphene oxide is obtained by oxidative peeling of graphite. The oxidation degree of graphene oxide can be adjusted by changing the amount of oxidizing agent used in the oxidation reaction of graphite. Specifically, the greater the amount of sodium nitrate and potassium permanganate used in the oxidation reaction relative to graphite, the higher the oxidation degree, and the smaller the amount, the lower the oxidation degree. The weight ratio of sodium nitrate to graphite is preferably 0.200 to 0.800. The ratio of potassium permanganate to graphite is preferably 1.00 to 4.0.

[表面処理工程]
次に、酸化グラフェンと表面処理剤を混合し、グラフェンに表面処理剤を付着させる。混合方法としては、例えば、自動乳鉢、三本ロール、ビーズミル、遊星ボールミル、ホモジナイザー、ホモディスパー、ホモミクサー、プラネタリーミキサー、二軸混練機などのミキサーや混練機を用いて混合する方法などが挙げられる。
[Surface treatment process]
Next, the graphene oxide and the surface treatment agent are mixed to adhere the surface treatment agent to the graphene. Examples of the mixing method include a method of mixing using a mixer or kneader such as an automatic mortar, a triple roll, a bead mill, a planetary ball mill, a homogenizer, a homodisper, a homomixer, a planetary mixer, or a twin-screw kneader.

[微細化工程]
次に、酸化グラフェンを微細化する。微細化方法としては、例えば、超音波を印加する手法、圧力を印加した中間体分散液を単体のセラミックボールに衝突させる手法、圧力を印加した中間体分散液同士を衝突させて分散を行う液-液せん断型の湿式ジェットミルを用いる手法などが挙げられる。特に、超音波処理は、メディアレスな分散手法であることから好ましい。微細化工程においては、酸化グラフェンまたはグラフェンは、出力や処理圧力が高いほど微細化する傾向にあり、処理時間が長いほど微細化する傾向にある。微細化工程における微細化処理の種類・処理条件・処理時間により、還元後のグラフェンの大きさを調製することができる。グラフェン層に平行な大きさを前述の範囲に調整するためには、微細化工程における酸化グラフェンやグラフェンの固形分濃度は、0.01重量%以上2重量%以下が好ましい。また、超音波処理を行う場合の超音波出力は、100W以上3000W以下が好ましい。
[Miniaturization process]
Next, the graphene oxide is refined. Examples of the refinement method include a method of applying ultrasonic waves, a method of colliding a pressurized intermediate dispersion against a single ceramic ball, and a method of using a liquid-liquid shear type wet jet mill in which pressurized intermediate dispersions are collided with each other to perform dispersion. In particular, ultrasonic treatment is preferable because it is a media-less dispersion method. In the refinement step, the graphene oxide or graphene tends to be refined as the output and treatment pressure are higher, and tends to be refined as the treatment time is longer. The size of the graphene after reduction can be adjusted by the type, treatment conditions, and treatment time of the refinement treatment in the refinement step. In order to adjust the size parallel to the graphene layer to the above-mentioned range, the solid content concentration of the graphene oxide or graphene in the refinement step is preferably 0.01% by weight or more and 2% by weight or less. In addition, the ultrasonic output when the ultrasonic treatment is performed is preferably 100 W or more and 3000 W or less.

[還元工程]
次に、微細化した酸化グラフェンを還元する。還元方法としては、化学還元が好ましい。化学還元の場合、還元剤としては、有機還元剤、無機還元剤が挙げられる。これらの中でも、還元後の洗浄の容易さから、無機還元剤が好ましく、亜ジチオン酸ナトリウム、亜ジチオン酸カリウムなどがより好ましい。
[Reduction process]
Next, the fine graphene oxide is reduced. A preferable reduction method is chemical reduction. In the case of chemical reduction, examples of the reducing agent include organic reducing agents and inorganic reducing agents. Among these, inorganic reducing agents are preferable because of ease of cleaning after reduction, and sodium dithionite, potassium dithionite, and the like are more preferable.

〔有機溶媒混合工程〕
有機溶媒混合工程においては、還元工程後の中間体分散液中の水を有機溶媒に置換するために、中間体分散液と有機溶媒とを混合する。有機溶媒混合工程においては、還元工程を経て得られた中間体分散液と、有機溶媒とを直接混合する。すなわち、還元工程終了後から有機溶媒混合工程における有機溶媒との混合まで、中間体分散液は常に分散液の状態にあり、中間体分散液から分散媒を除去してグラフェンを粉末状態として回収する凍結乾燥等の操作は行わない。
[Organic solvent mixing step]
In the organic solvent mixing step, the intermediate dispersion liquid and an organic solvent are mixed in order to replace the water in the intermediate dispersion liquid after the reduction step with the organic solvent. In the organic solvent mixing step, the intermediate dispersion liquid obtained through the reduction step is directly mixed with the organic solvent. That is, from the end of the reduction step to the mixing with the organic solvent in the organic solvent mixing step, the intermediate dispersion liquid is always in a dispersion state, and an operation such as freeze-drying for removing the dispersion medium from the intermediate dispersion liquid and recovering graphene in a powder state is not performed.

[強撹拌工程]
強撹拌工程においては、高せん断ミキサーを用いて、せん断速度毎秒5,000~毎秒50,000の条件で撹拌処理を行う。強撹拌工程において、高せん断ミキサーを用いてグラフェンを剥離することにより、グラフェン同士のスタックを解消することができる。高せん断ミキサーとしては、薄膜旋回方式、ローター/ステーター式、メディアミル式を採用したものが好ましく、例えば、“フィルミックス”(登録商標)30-30型(プライミクス社)、“クレアミックス”(登録商標)CLM-0.8S(エム・テクニック社)、“ラボスター”(登録商標)ミニLMZ015(アシザワ・ファインテック社)、スーパーシェアミキサーSDRT0.35-0.75(佐竹化学機械工業株式会社)などが挙げられる。
[Strong stirring process]
In the strong stirring step, a high shear mixer is used to perform stirring at a shear rate of 5,000 to 50,000 per second. In the strong stirring step, graphene is peeled off using a high shear mixer, thereby making it possible to dissolve stacks between graphene. As the high shear mixer, a thin film rotation type, a rotor/stator type, or a media mill type is preferably used, and examples thereof include "Filmix" (registered trademark) 30-30 type (Primix Corporation), "Clearmix" (registered trademark) CLM-0.8S (M Technique Co., Ltd.), "Labostar" (registered trademark) Mini LMZ015 (Ashizawa Finetech Co., Ltd.), and Super Shear Mixer SDRT0.35-0.75 (Satake Chemical Machinery Co., Ltd.).

強撹拌工程におけるせん断速度は、上述のとおり、毎秒5,000~毎秒50,000が好ましい。せん断速度を毎秒5,000以上とすることにより、グラフェンの剥離を促進し、グラフェンの(002)面に対応するピークの半値幅からScherrerの式により算出される結晶子サイズを、前述の範囲に容易に調整することができる。 As described above, the shear rate in the strong stirring step is preferably 5,000 to 50,000 per second. By setting the shear rate at 5,000 or more per second, the exfoliation of graphene is promoted, and the crystallite size calculated from the half-width of the peak corresponding to the (002) plane of graphene using Scherrer's formula can be easily adjusted to within the aforementioned range.

<窒素原子を有する耐熱性樹脂>
本発明の樹脂組成物には、窒素原子を有する耐熱性樹脂を含有する。耐熱性樹脂を含有することにより、樹脂組成物や硬化膜の耐熱性を向上させることができる。さらに、耐熱性樹脂が窒素原子を有することにより、耐熱性樹脂中の窒素原子とグラフェン上の窒素原子間の相互作用により、樹脂組成物中におけるグラフェンの分散性を高め、少量のグラフェンにより硬化膜の導電性、特に高温環境下での導電性を向上させることができる。ここで、本発明における耐熱性樹脂とは、アルゴン雰囲気下、200℃、30分間熱処理した後のサンプルにおいて、熱重量分析を行った際に、空気雰囲気下、25℃から昇温速度10℃/分で300℃まで昇温し、300℃で30分間保持したときの重量減少が3重量%未満であり、かつ、示差走査熱量測定を行った際の、25℃から330℃まで10℃/分で昇温したときに得られるDSC曲線において、300℃以下に融点が現れない樹脂のことを言う。
<Heat-resistant resin having nitrogen atom>
The resin composition of the present invention contains a heat-resistant resin having nitrogen atoms. By containing a heat-resistant resin, the heat resistance of the resin composition and the cured film can be improved. Furthermore, by the heat-resistant resin having nitrogen atoms, the dispersibility of graphene in the resin composition can be increased by the interaction between the nitrogen atoms in the heat-resistant resin and the nitrogen atoms on the graphene, and the conductivity of the cured film, particularly in a high-temperature environment, can be improved by a small amount of graphene. Here, the heat-resistant resin in the present invention refers to a resin in which, when a sample after heat treatment at 200°C for 30 minutes in an argon atmosphere is subjected to thermogravimetric analysis, the weight loss when the sample is heated from 25°C to 300°C at a heating rate of 10°C/min in an air atmosphere and held at 300°C for 30 minutes is less than 3 wt%, and the melting point does not appear below 300°C in the DSC curve obtained when the sample is heated from 25°C to 330°C at a rate of 10°C/min when differential scanning calorimetry is performed.

窒素原子を有する耐熱性樹脂としては、熱硬化性樹脂が好ましく、例えば、ポリイミド樹脂、ポリベンゾイミダゾール樹脂、窒素原子を有するエポキシ樹脂やこれらの共重合体、これらと他の共重合成分との共重合体などが挙げられる。これらを2種以上含んでもよい。これらの中でも、耐熱性や、樹脂組成物中におけるグラフェンの分散性向上の観点から、ポリイミド樹脂が好ましい。 The heat-resistant resin having nitrogen atoms is preferably a thermosetting resin, and examples thereof include polyimide resins, polybenzimidazole resins, epoxy resins having nitrogen atoms, copolymers thereof, and copolymers of these with other copolymerization components. Two or more of these may be included. Among these, polyimide resins are preferred from the viewpoints of heat resistance and improving the dispersibility of graphene in the resin composition.

また本発明の樹脂組成物には、耐熱性樹脂以外の樹脂を含んでもよいが、その含有量は少ないほうがよい。具体的には、樹脂組成物中の全樹脂成分の固形分100重量部に対して、耐熱性樹脂以外の樹脂の固形分含有量は、20重量部以下が好ましく、10重量部以下がより好ましく、5重量部以下がさらに好ましい。 The resin composition of the present invention may also contain resins other than the heat-resistant resin, but the smaller the content, the better. Specifically, the solid content of resins other than the heat-resistant resin is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 5 parts by weight or less, per 100 parts by weight of the solid content of all resin components in the resin composition.

本発明の樹脂組成物は、さらに架橋剤を含んでいてもよく、硬化膜の強度や基材への密着性をより向上させることができる。架橋剤としては、例えば、エポキシ化合物や多官能アミン化合物、アルコール化合物、シリカ化合物などが挙げられる。これらを2種以上含んでもよい。 The resin composition of the present invention may further contain a crosslinking agent, which can further improve the strength of the cured film and the adhesion to the substrate. Examples of crosslinking agents include epoxy compounds, polyfunctional amine compounds, alcohol compounds, and silica compounds. Two or more of these may be included.

本発明の樹脂組成物は、さらに溶剤を含んでいてもよい。溶剤としては、例えば、NMP、ジメチルアセトアミド、ジメチルホルムアミドなどのアミド系溶剤、ジメチルスルホキシドやスルホランなどの硫黄系溶剤、テトラヒドロフランやジオキサンなどのエーテル系溶剤、シクロヘキサノン、メチルエチルケトンなどのケトン系溶剤や、γ-ブチロラクトン、アセトニトリルなどの誘電率の高い溶剤などが挙げられる。これらを2種以上含んでもよい。 The resin composition of the present invention may further contain a solvent. Examples of the solvent include amide-based solvents such as NMP, dimethylacetamide, and dimethylformamide, sulfur-based solvents such as dimethylsulfoxide and sulfolane, ether-based solvents such as tetrahydrofuran and dioxane, ketone-based solvents such as cyclohexanone and methyl ethyl ketone, and solvents with high dielectric constants such as gamma-butyrolactone and acetonitrile. Two or more of these may be included.

<樹脂組成物の製造方法>
本発明の樹脂組成物の製造方法としては、例えば、前述のグラフェン、耐熱性樹脂、溶剤および必要に応じてその他の成分を混合する方法などが挙げられる。グラフェンを粉末のまま混合してもよいが、樹脂組成物中におけるグラフェンの分散性をより向上させる観点から、グラフェンを溶剤中に分散させた状態で他の成分と混合することが好ましい。混合装置としては、せん断力を加えることができる装置が好ましく、例えば、プラネタリーミキサー、“フィルミックス”(登録商標)(プライミクス株式会社製)、自公転ミキサーなどが挙げられる。
<Method of producing resin composition>
Examples of the method for producing the resin composition of the present invention include a method of mixing the graphene, heat-resistant resin, solvent, and other components as necessary. Graphene may be mixed as a powder, but from the viewpoint of further improving the dispersibility of graphene in the resin composition, it is preferable to mix graphene dispersed in a solvent with other components. As a mixing device, a device capable of applying a shear force is preferable, and examples thereof include a planetary mixer, "Filmix" (registered trademark) (manufactured by Primix Corporation), and a planetary mixer.

<硬化膜>
次に、本発明の硬化膜について説明する。本発明の硬化膜は、前述の樹脂組成物から膜を形成し、硬化させることにより得ることができる。
<Cured film>
Next, the cured film of the present invention will be described. The cured film of the present invention can be obtained by forming a film from the above-mentioned resin composition and curing it.

硬化方法としては、例えば、加熱による硬化や紫外光照射による硬化などが挙げられる。 Curing methods include, for example, curing by heating or curing by exposure to ultraviolet light.

以下に実施例を用いて本発明を説明する。まず、各実施例および比較例における評価方法を以下に示す。 The present invention will be explained below using examples. First, the evaluation methods used in each example and comparative example are shown below.

[測定例1]X線光電子分光分析によるN/C比、O/C比の測定
各実施例および比較例に用いたグラフェン分散液から、凍結乾燥により溶剤を除去して得られたグラフェン粉末について、X線光電子分光器QuanteraSXM(Ulvac-PHI株式会社製)を用いてX線光電子分光分析を行い、炭素原子に基づくC1sメインピークを284.3eVとし、酸素原子に基づくO1sピークを533eV付近のピーク、窒素原子に基づくN1sピークを402eV付近のピークに帰属し、各ピークの面積比からO/C比およびN/C比を算出した。N/C比は、小数点第4位を四捨五入して小数点第3位まで求め、O/C比は、小数点第3位を四捨五入して小数点第2位まで求めた。分析条件とデータ処理条件は以下の通りとした。
<分析条件>
励起X線:Monochromatic AlKα1,2線(1486.6eV)
X線径:200μm
光電子検出角度(試料表面に対する検出器の傾き):45°
<データ処理条件>
スムージング:9-point smoothing
横軸補正:C1sメインピークを284.3eVとした。
[Measurement Example 1] Measurement of N/C ratio and O/C ratio by X-ray photoelectron spectroscopy The graphene powder obtained by removing the solvent from the graphene dispersion used in each Example and Comparative Example by freeze-drying was subjected to X-ray photoelectron spectroscopy using an X-ray photoelectron spectrometer Quantera SXM (manufactured by Ulvac-PHI Co., Ltd.), and the C1s main peak based on carbon atoms was assigned to 284.3 eV, the O1s peak based on oxygen atoms was assigned to a peak near 533 eV, and the N1s peak based on nitrogen atoms was assigned to a peak near 402 eV, and the O/C ratio and N/C ratio were calculated from the area ratio of each peak. The N/C ratio was calculated to the third decimal place by rounding off the fourth decimal place, and the O/C ratio was calculated to the second decimal place by rounding off the third decimal place. The analysis conditions and data processing conditions were as follows.
<Analysis conditions>
Excitation X-ray: Monochromatic AlKα1,2 radiation (1486.6 eV)
X-ray diameter: 200 μm
Photoelectron detection angle (tilt of detector relative to sample surface): 45°
<Data processing conditions>
Smoothing: 9-point smoothing
Horizontal axis correction: C1s main peak was set to 284.3 eV.

[測定例2]X線回折測定
各実施例および比較例に用いたグラフェン分散液から、凍結乾燥により溶剤を除去して得られたグラフェン粉末について、60℃、12時間の条件で真空乾燥を行った後、X線回折装置D8 ADVANCE(ブルカー株式会社製)を使用して、以下の条件でX線回折測定を行い、グラフェン結晶の(002)面に対応するピーク(2θ/θ=25°付近)の半値幅から、Scherrerの式を利用して結晶子サイズを算出した。
<分析条件>
走査範囲:5°~50°
ステップサイズ:0.016°
走査速度:1ステップ/秒。
[Measurement Example 2] X-ray diffraction measurement Graphene powder obtained by removing the solvent from the graphene dispersion liquid used in each of the Examples and Comparative Examples by freeze-drying was vacuum-dried at 60°C for 12 hours, and then X-ray diffraction measurement was performed under the following conditions using an X-ray diffractometer D8 ADVANCE (manufactured by Bruker Corporation). The crystallite size was calculated using the Scherrer formula from the half-width of the peak (around 2θ/θ=25°) corresponding to the (002) plane of the graphene crystal.
<Analysis conditions>
Scanning range: 5° to 50°
Step size: 0.016°
Scanning speed: 1 step/sec.

[測定例3]SEM観察によるグラフェンの面方向の大きさの測定
各実施例および比較例に用いたグラフェン分散液を0.01重量%に希釈した後、マイカ基板上に滴下して乾燥したサンプルを、走査型電子顕微鏡S-5500(株式会社日立ハイテク製)を使用して、グラフェンが適切な視野に収まる倍率において拡大観察した。無作為に選択した10個のグラフェンについて、その最長径と最短径を測定し、その平均値から個々のグラフェンの面方向の大きさを算出し、その算術平均値を算出することにより、グラフェンの面方向の大きさを求めた。
[Measurement Example 3] Measurement of the size of graphene in the plane direction by SEM observation After the graphene dispersion used in each Example and Comparative Example was diluted to 0.01 wt%, the sample was dropped onto a mica substrate and dried, and then magnified and observed using a scanning electron microscope S-5500 (manufactured by Hitachi High-Tech Corporation) at a magnification such that the graphene fits within an appropriate field of view. The longest and shortest diameters of 10 randomly selected graphenes were measured, and the size of each graphene in the plane direction was calculated from the average value, and the arithmetic average value was calculated to determine the size of the graphene in the plane direction.

[測定例4]分散性評価
各実施例および比較例により得られた硬化膜を、空気雰囲気下、300℃の温度で30分間熱処理した後、ECLIPSE L200N(ニコンインステック株式会社製)を使用して、接眼レンズ:×10倍、対物レンズ:×10倍の条件下、無作為に選択した5視野について、それぞれ1視野内で観察される凝集物の中で、最長径と最短径の平均値が20μm以上である凝集物を計数し、5視野の平均値を算出し、小数第一位で四捨五入し、凝集物の数とした。凝集物の数が10個以下の場合に分散性○、11~30個の場合に分散性△、31個以上の場合に分散性×と評価した。
[Measurement Example 4] Evaluation of Dispersibility The cured films obtained in each of the Examples and Comparative Examples were heat-treated in an air atmosphere at a temperature of 300°C for 30 minutes, and then, using an ECLIPSE L200N (manufactured by Nikon Instech Co., Ltd.), under conditions of an eyepiece: ×10 magnification, and an objective lens: ×10 magnification, for five randomly selected visual fields, aggregates having an average of the longest and shortest diameters of 20 μm or more were counted among the aggregates observed in each visual field, and the average value of the five visual fields was calculated and rounded off to the first decimal place to obtain the number of aggregates. Dispersibility was evaluated as ○ when the number of aggregates was 10 or less, as △ when the number was 11 to 30, and as × when the number was 31 or more.

[測定例5]耐熱性評価
各実施例および比較例により得られた硬化膜を10mg程度秤量してアルミパンにのせ、TG/DTA6200(セイコーインスツル株式会社製)を使用して、空気雰囲気下、昇温速度10℃/分で25℃から300℃まで昇温した後、300℃で30分間保持し、加熱前後の重量を測定した。{(加熱前の重量-加熱後の重量)/加熱前の重量}×100を算出し、重量減少[%]を求めた。
[Measurement Example 5] Evaluation of heat resistance Approximately 10 mg of the cured film obtained in each Example and Comparative Example was weighed out and placed on an aluminum pan, and the film was heated from 25° C. to 300° C. at a rate of 10° C./min in an air atmosphere using a TG/DTA6200 (manufactured by Seiko Instruments Inc.), and then held at 300° C. for 30 minutes, and the weights before and after heating were measured. The weight loss [%] was calculated by {(weight before heating-weight after heating)/weight before heating}×100.

一方、各実施例および比較例により得られた硬化膜を10mg程度秤量してアルミニウム製の密閉パンに封止し、DSC6200(セイコーインスツル株式会社製)を使用して、25℃から330℃まで10℃/分で昇温して熱重量分析を行い、DSC曲線を得た。得られたDSC曲線から、融解ピークの有無を観察し、融点を求めた。 On the other hand, about 10 mg of the cured film obtained in each Example and Comparative Example was weighed out and sealed in an aluminum sealed pan, and a thermogravimetric analysis was performed by heating from 25°C to 330°C at a rate of 10°C/min using a DSC6200 (Seiko Instruments Inc.), and a DSC curve was obtained. The presence or absence of a melting peak was observed from the obtained DSC curve, and the melting point was determined.

上記重量減少が3重量%未満であり、かつ、300℃以下に融点が現れない場合に耐熱性〇、それ以外を耐熱性×と評価した。 If the weight loss was less than 3% by weight and the melting point did not appear below 300°C, the heat resistance was rated as good; otherwise, the heat resistance was rated as bad.

[測定例6]高温環境下における導電性評価
各実施例および比較例により得られた硬化膜を、空気雰囲気下、300℃の温度で30分間熱処理した後、“ロレスタ”(登録商標)GP(MCP-T610)(三菱化学アナリテック株式会社製)を使用して、シート抵抗値を算出した。また、マイクロメーター MDH-25MB(ミツトヨ株式会社製)を使用して、シート抵抗値を算出した箇所の厚みを測定した。得られたシート抵抗値と厚みの積から、体積抵抗率を算出し、高温環境下における導電性を評価した。
[Measurement Example 6] Evaluation of electrical conductivity in a high-temperature environment The cured films obtained in each of the Examples and Comparative Examples were heat-treated in an air atmosphere at a temperature of 300°C for 30 minutes, and then the sheet resistance was calculated using a "Loresta" (registered trademark) GP (MCP-T610) (manufactured by Mitsubishi Chemical Analytech Co., Ltd.). In addition, the thickness of the portion where the sheet resistance was calculated was measured using a micrometer MDH-25MB (manufactured by Mitutoyo Corporation). The volume resistivity was calculated from the product of the obtained sheet resistance and the thickness, and the electrical conductivity in a high-temperature environment was evaluated.

[測定例7]高温環境下における基材への密着性評価
各実施例および比較例により得られたガラス基板と硬化膜との積層体を、空気雰囲気下、300℃の温度で30分間熱処理した後、クロスカット法により、基材への密着性を評価した。具体的には、ガラス基板上の硬化膜に、縦横方向にそれぞれ間隔1mmの切り込みを基材に到達するまで11本ずつ入れ、1mmの碁盤目領域を100箇所設けた。この碁盤領域に対して“セロテープ”(登録商標)CT-15(ニチバン株式会社製、幅15mm、長さ2cm)を気泡が入らないように貼付けし、ガラス基板の面に対して垂直方向に剥がした後、ガラス基板上に残存した1mmの碁盤目領域の数を計数し、基材への密着性を評価した。
Measurement Example 7: Evaluation of Adhesion to Substrate in High-Temperature Environment The laminate of the glass substrate and the cured film obtained in each Example and Comparative Example was heat-treated in an air atmosphere at a temperature of 300°C for 30 minutes, and then the adhesion to the substrate was evaluated by a cross-cut method. Specifically, 11 cuts were made in the lengthwise and widthwise directions of the cured film on the glass substrate, each cut at intervals of 1 mm until the substrate was reached, to provide 100 checkered regions of 1 mm2 . Cellotape (registered trademark) CT-15 (manufactured by Nichiban Co., Ltd., width 15 mm, length 2 cm) was attached to the checkered regions so as not to trap air bubbles, and the tape was peeled off in a direction perpendicular to the surface of the glass substrate, and the number of checkered regions of 1 mm2 remaining on the glass substrate was counted to evaluate the adhesion to the substrate.

[合成例1]酸化グラフェンゲルの調製
1500メッシュの天然黒鉛粉末(上海一帆石墨有限会社製)を原料として、氷浴中の10gの天然黒鉛粉末に、220mlの98%濃硫酸、5gの硝酸ナトリウム、30gの過マンガン酸カリウムを入れ、混合液の温度を20℃以下に保持しながら1時間機械撹拌した。この混合液を氷浴から取り出し、35℃水浴中で4時間撹拌し、その後イオン交換水500mlを入れて得られた懸濁液を90℃で更に15分間撹拌した。最後に600mlのイオン交換水と50mlの過酸化水素を入れ、5分間撹拌し、酸化グラフェン分散液を得た。熱いうちにこれを濾過し、希塩酸溶液で金属イオンを洗浄し、イオン交換水で酸を洗浄し、pHが7になるまで洗浄を繰り返して酸化グラフェンゲルを調製した。調製した酸化グラフェンゲルの、X線光電子分光法により測定される酸素原子の炭素原子に対する元素比は0.53であった。
[Synthesis Example 1] Preparation of graphene oxide gel Using 1500 mesh natural graphite powder (manufactured by Shanghai Yifan Graphite Co., Ltd.) as a raw material, 220 ml of 98% concentrated sulfuric acid, 5 g of sodium nitrate, and 30 g of potassium permanganate were added to 10 g of natural graphite powder in an ice bath, and the temperature of the mixture was kept below 20 ° C. while mechanically stirring for 1 hour. The mixture was removed from the ice bath and stirred in a 35 ° C. water bath for 4 hours, and then 500 ml of ion-exchanged water was added to obtain a suspension, which was stirred at 90 ° C. for another 15 minutes. Finally, 600 ml of ion-exchanged water and 50 ml of hydrogen peroxide were added and stirred for 5 minutes to obtain a graphene oxide dispersion. This was filtered while hot, and metal ions were washed with a dilute hydrochloric acid solution, and acid was washed with ion-exchanged water. The graphene oxide gel was prepared by repeating washing until the pH reached 7. The elemental ratio of oxygen atoms to carbon atoms of the prepared graphene oxide gel measured by X-ray photoelectron spectroscopy was 0.53.

[合成例2]表面処理グラフェン分散液-1の調製
合成例1により調製した酸化グラフェンゲルを、イオン交換水を用いて濃度30mg/mlに希釈し、超音波洗浄機を用いて30分間処理し、均一な酸化グラフェン分散液を得た。得られた酸化グラフェン分散液20mlと、表面処理剤として0.3gのドーパミン塩酸塩を混合し、ホモディスパー2.5型(プライミクス株式会社製)を用いて、回転数3,000rpmで60分間処理した。処理後の酸化グラフェン分散液を、超音波装置UP400S(hielscher株式会社製)を使用して、出力300Wで超音波を30分間印加(微細化工程)した。微細化工程を得た酸化グラフェン分散液を、イオン交換水を用いて5mg/mlに希釈し、希釈した分散液20mlに0.3gの亜ジチオン酸ナトリウムを入れて、40℃で撹拌しながら、1時間還元反応を行った。その後、減圧吸引濾過器を用いて濾過し、さらに水を用いて0.5重量%まで希釈して吸引濾過する洗浄工程を5回繰り返して洗浄して、表面処理グラフェン水分散液を得た。
[Synthesis Example 2] Preparation of Surface-Treated Graphene Dispersion-1 The graphene oxide gel prepared in Synthesis Example 1 was diluted to a concentration of 30 mg/ml using ion-exchanged water, and treated for 30 minutes using an ultrasonic cleaner to obtain a uniform graphene oxide dispersion. 20 ml of the obtained graphene oxide dispersion was mixed with 0.3 g of dopamine hydrochloride as a surface treatment agent, and treated for 60 minutes at a rotation speed of 3,000 rpm using a Homo Disper 2.5 type (manufactured by Primix Corporation). The graphene oxide dispersion after the treatment was subjected to ultrasonic waves at an output of 300 W for 30 minutes (micro-refining process) using an ultrasonic device UP400S (manufactured by Hielscher Corporation). The graphene oxide dispersion obtained by the micro-refining process was diluted to 5 mg/ml using ion-exchanged water, and 0.3 g of sodium dithionite was added to 20 ml of the diluted dispersion, and a reduction reaction was carried out for 1 hour while stirring at 40 ° C. Thereafter, the mixture was filtered using a reduced pressure suction filter, and then the washing step of diluting the mixture with water to 0.5% by weight and filtering by suction was repeated five times to obtain an aqueous dispersion of surface-treated graphene.

得られた表面処理グラフェン水分散液を、N-メチルピロリドン(NMP)を用いて濃度0.5重量%に希釈し、“フィルミックス”(登録商標)30-30型(プライミクス株式会社製)を用いて回転速度40m/s(せん断速度:毎秒20,000)で60秒間処理(強撹拌工程)した。処理後に減圧吸引濾過により溶剤を除去した。さらに水分を除くために、NMPを用いて濃度0.5重量%に希釈し、ホモディスパー2.5型(プライミクス株式会社製)を使用して回転数3,000rpmで30分間処理し、減圧吸引濾過する工程を2回繰り返したのち、NMPを用いて濃度1.5重量%に希釈することにより、表面処理グラフェン分散液-1を得た。 The obtained surface-treated graphene aqueous dispersion was diluted with N-methylpyrrolidone (NMP) to a concentration of 0.5% by weight, and treated with a "Filmix" (registered trademark) 30-30 model (manufactured by Primix Corporation) at a rotation speed of 40 m/s (shear rate: 20,000 per second) for 60 seconds (strong stirring process). After treatment, the solvent was removed by vacuum suction filtration. To further remove water, the solution was diluted with NMP to a concentration of 0.5% by weight, treated with a Homo Disper 2.5 model (manufactured by Primix Corporation) at a rotation speed of 3,000 rpm for 30 minutes, and vacuum suction filtration were repeated twice, and then diluted with NMP to a concentration of 1.5% by weight to obtain surface-treated graphene dispersion-1.

[合成例3]表面処理グラフェン分散液-2の調製
表面処理剤として2-フェニルエチルアミン(PEA)を0.3g用いたこと以外は合成例2と同様にして表面処理グラフェン分散液-2を得た。
[Synthesis Example 3] Preparation of surface-treated graphene dispersion-2 A surface-treated graphene dispersion-2 was obtained in the same manner as in Synthesis Example 2, except that 0.3 g of 2-phenylethylamine (PEA) was used as the surface treatment agent.

[合成例4]表面処理グラフェン分散液-3の調製
表面処理剤としてベンジルアミンを0.3g用いたこと以外は合成例2と同様にして表面処理グラフェン分散液-3を得た。
[Synthesis Example 4] Preparation of Surface-Treated Graphene Dispersion-3 A surface-treated graphene dispersion-3 was obtained in the same manner as in Synthesis Example 2, except that 0.3 g of benzylamine was used as the surface treatment agent.

[合成例5]表面処理グラフェン分散液-4の調製
亜ジチオン酸ナトリウムの添加量を0.01gに変更したこと以外は合成例2と同様にして表面処理グラフェン分散液-4を得た。
[Synthesis Example 5] Preparation of Surface-Treated Graphene Dispersion-4 A surface-treated graphene dispersion-4 was obtained in the same manner as in Synthesis Example 2, except that the amount of sodium dithionite added was changed to 0.01 g.

[合成例6]表面処理グラフェン分散液-5の調製
表面処理剤としてドーパミン塩酸塩を0.05g用いた以外は合成例2と同じ条件で表面処理グラフェン分散液-5を得た。
Synthesis Example 6 Preparation of Surface-Treated Graphene Dispersion-5 A surface-treated graphene dispersion-5 was obtained under the same conditions as in Synthesis Example 2, except that 0.05 g of dopamine hydrochloride was used as the surface treatment agent.

[合成例7]表面処理グラフェン分散液-6の調製
表面処理剤としてドーパミン塩酸塩を1.0g用いた以外は合成例2と同じ条件で表面処理グラフェン分散液-6を得た。
Synthesis Example 7 Preparation of Surface-Treated Graphene Dispersion-6 A surface-treated graphene dispersion-6 was obtained under the same conditions as in Synthesis Example 2, except that 1.0 g of dopamine hydrochloride was used as the surface treatment agent.

[合成例8]表面処理グラフェン分散液-7の調製
グラフェン粉末(XGScience株式会社製“XGNP”(登録商標)R10)を、イオン交換水を用いて濃度30mg/mlに希釈し、超音波洗浄機を用いて30分間処理し、グラフェン水分散液を得た。得られたグラフェン分散液20mlと、表面処理剤として0.3gのドーパミン塩酸塩を混合し、ホモディスパー2.5型(プライミクス株式会社製)を用いて、回転数3,000rpmで60分間処理した。その後、減圧吸引濾過器を用いて濾過したのちに、凍結乾燥することにより表面処理グラフェンを得た。得られた表面処理グラフェンに、固形分濃度が1.5重量%となるようにNMPを添加し、ホモディスパー2.5型(プライミクス株式会社製)を用いて、回転数3,000rpmで60間分処理することにより、表面処理グラフェン分散液-7を得た。
[Synthesis Example 8] Preparation of Surface-Treated Graphene Dispersion-7 Graphene powder ("XGNP" (registered trademark) R10 manufactured by XGScience Corporation) was diluted to a concentration of 30 mg/ml using ion-exchanged water, and treated for 30 minutes using an ultrasonic cleaner to obtain a graphene aqueous dispersion. 20 ml of the obtained graphene dispersion was mixed with 0.3 g of dopamine hydrochloride as a surface treatment agent, and treated for 60 minutes at a rotation speed of 3,000 rpm using a Homo Disper 2.5 type (manufactured by Primix Corporation). Thereafter, the mixture was filtered using a vacuum suction filter, and then freeze-dried to obtain surface-treated graphene. NMP was added to the obtained surface-treated graphene so that the solid content concentration was 1.5 wt%, and the mixture was treated for 60 minutes at a rotation speed of 3,000 rpm using a Homo Disper 2.5 type (manufactured by Primix Corporation) to obtain surface-treated graphene dispersion-7.

[合成例9]表面処理グラフェン分散液-8の調製
表面処理剤として2-フェニルエチルアミン(PEA)を0.3g用いたこと以外は合成例8と同様にして表面処理グラフェン分散液-8を得た。
[Synthesis Example 9] Preparation of Surface-Treated Graphene Dispersion-8 A surface-treated graphene dispersion-8 was obtained in the same manner as in Synthesis Example 8, except that 0.3 g of 2-phenylethylamine (PEA) was used as the surface treatment agent.

[合成例10]グラフェン分散液の調製
表面処理剤を用いないこと以外は合成例2と同様にしてグラフェン分散液を得た。
Synthesis Example 10 Preparation of Graphene Dispersion A graphene dispersion was obtained in the same manner as in Synthesis Example 2, except that no surface treatment agent was used.

[合成例11]表面処理グラフェン分散液-9の調製
超音波装置UP400S(hielscher株式会社製)を使用して、出力300Wで超音波を20分間印加したこと以外は合成例2と同じ条件で表面処理グラフェン分散液-9を得た。
Synthesis Example 11 Preparation of Surface-Treated Graphene Dispersion-9 A surface-treated graphene dispersion-9 was obtained under the same conditions as in Synthesis Example 2, except that ultrasonic waves were applied for 20 minutes at an output of 300 W using an ultrasonic device UP400S (manufactured by Hielscher Corporation).

[合成例12]表面処理グラフェン分散液-10の調製
超音波装置UP400S(hielscher株式会社製)を使用して、出力300Wで超音波を90分間印加したこと以外は合成例2と同じ条件で表面処理グラフェン分散液-10を得た。
Synthesis Example 12 Preparation of Surface-Treated Graphene Dispersion-10 A surface-treated graphene dispersion-10 was obtained under the same conditions as in Synthesis Example 2, except that ultrasonic waves were applied for 90 minutes at an output of 300 W using an ultrasonic device UP400S (manufactured by Hielscher Corporation).

[合成例13]表面処理グラフェン分散液-11の調製
超音波装置UP400S(hielscher株式会社製)を使用して、出力300Wで超音波を2分間印加したこと以外は合成例2と同じ条件で表面処理グラフェン分散液-11を得た。
[Synthesis Example 13] Preparation of Surface-Treated Graphene Dispersion-11 A surface-treated graphene dispersion-11 was obtained under the same conditions as in Synthesis Example 2, except that ultrasonic waves were applied for 2 minutes at an output of 300 W using an ultrasonic device UP400S (manufactured by Hielscher Corporation).

[合成例14]ポリアミドイミド/ブタジエン共重合体溶液の調製
反応容器に、トリメリット酸無水物(TMA)(東京化成工業株式会社製 製品番号C0046)192g、ジフェニルメタンジイソシアネート(MDI)(東京化成工業株式会社製 製品番号D0897)250g、カルボキシル基末端アクリロニトリル-ブタジエンゴム(日本ゼオン株式会社製“Nipol”(登録商標)LX511A)(ゴム成分)70gとNMP541gをそれぞれ仕込み、120℃で約1時間加熱撹拌した後、170℃に昇温して5時間加熱撹拌することにより重合反応を行った。冷却しながら、さらにNMPを加えて、固形分濃度が20重量%のポリマー溶液を得た。
[Synthesis Example 14] Preparation of polyamideimide / butadiene copolymer solution In a reaction vessel, 192 g of trimellitic anhydride (TMA) (Tokyo Chemical Industry Co., Ltd. product number C0046), 250 g of diphenylmethane diisocyanate (MDI) (Tokyo Chemical Industry Co., Ltd. product number D0897), 70 g of carboxyl group-terminated acrylonitrile-butadiene rubber (Nipol (registered trademark) LX511A manufactured by Nippon Zeon Co., Ltd.) (rubber component) and 541 g of NMP were charged, and the mixture was heated and stirred at 120 ° C. for about 1 hour, and then heated to 170 ° C. and heated and stirred for 5 hours to carry out a polymerization reaction. While cooling, NMP was further added to obtain a polymer solution with a solid content concentration of 20 wt%.

[実施例1]
導電材として合成例2で調製した表面処理グラフェン分散液-1(1.5重量%)をグラフェン固形分として6重量部、耐熱性樹脂としてポリイミド樹脂(東レ株式会社製“セミコファイン”(登録商標)SP-453)のNMP溶液(21重量%)をポリイミド固形分として100重量部加え、自公転ミキサーで2000rpm、5分間撹拌することにより樹脂組成物を得た。得られた樹脂組成物をガラス基板上に塗工し、アルゴン雰囲気下、200℃で1時間熱処理を行い、厚み50μmの硬化膜を得た。
[Example 1]
A resin composition was obtained by adding 6 parts by weight of the surface-treated graphene dispersion-1 (1.5% by weight) prepared in Synthesis Example 2 as the conductive material in terms of graphene solid content, and 100 parts by weight of an NMP solution (21% by weight) of a polyimide resin ("Semicofine" (registered trademark) SP-453 manufactured by Toray Industries, Inc.) in terms of polyimide solid content as the heat-resistant resin, and stirring at 2000 rpm for 5 minutes with a planetary mixer. The obtained resin composition was coated on a glass substrate and heat-treated at 200°C for 1 hour in an argon atmosphere to obtain a cured film having a thickness of 50 μm.

[実施例2]
導電材として合成例3で調製した表面処理グラフェン分散液-2(1.5重量%)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 2]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-2 (1.5 wt%) prepared in Synthesis example 3 was used as the conductive material.

[実施例3]
導電材として合成例4で調製した表面処理グラフェン分散液-3(1.5重量%)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 3]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-3 (1.5 wt%) prepared in Synthesis example 4 was used as the conductive material.

[実施例4]
導電材として合成例8で調製した表面処理グラフェン分散液-7(1.5重量%)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 4]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-7 (1.5 wt%) prepared in Synthesis example 8 was used as the conductive material.

[実施例5]
導電材として合成例5で調製した表面処理グラフェン分散液-4(1.5重量%)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 5]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-4 (1.5 wt%) prepared in Synthesis example 5 was used as the conductive material.

参考例1
導電材として合成例9で調製した表面処理グラフェン分散液-8(1.5重量%)を使
用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[ Reference Example 1 ]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-8 (1.5 wt%) prepared in Synthesis example 9 was used as the conductive material.

[実施例7]
導電材として合成例2で調製した表面処理グラフェン分散液-1(1.5重量%)をグラフェン固形分として3重量部加えた以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 7]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that 3 parts by weight of the surface-treated graphene dispersion-1 (1.5 wt%) prepared in Synthesis example 2 was added as the conductive material, in terms of graphene solid content.

[実施例8]
導電材として、合成例2で調製した表面処理グラフェン分散液-1(1.5重量%)をグラフェン固形分として1.5重量部加えた以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 8]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that 1.5 parts by weight of the surface-treated graphene dispersion-1 (1.5 wt%) prepared in Synthesis example 2 was added as the conductive material, in terms of graphene solid content.

[実施例9]
導電材として合成例11で調製した表面処理グラフェン分散液-9(1.5重量%)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 9]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-9 (1.5 wt%) prepared in Synthesis example 11 was used as the conductive material.

[実施例10]
導電材として合成例12で調製した表面処理グラフェン分散液-10(1.5重量%)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 10]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-10 (1.5 wt%) prepared in Synthesis example 12 was used as the conductive material.

[実施例11]
導電材として合成例13で調製した表面処理グラフェン分散液-11(1.5重量%)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Example 11]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the surface-treated graphene dispersion-11 (1.5 wt%) prepared in Synthesis example 13 was used as the conductive material.

[比較例1]
導電材として合成例6で調製した表面処理グラフェン分散液-5(1.5重量%)をグラフェン固形分として6重量部加えた以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 1]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that 6 parts by weight of the surface-treated graphene dispersion-5 (1.5 wt%) prepared in Synthesis example 6 was added as the conductive material, in terms of graphene solid content.

[比較例2]
導電材として合成例7で調製した表面処理グラフェン分散液-6(1.5重量%)をグラフェン固形分として6重量部加えた以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 2]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that 6 parts by weight of the surface-treated graphene dispersion-6 (1.5 wt%) prepared in Synthesis example 7 was added as the conductive material, in terms of graphene solid content.

[比較例3]
導電材として合成例10で調製したグラフェン分散液を使用した以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 3]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that the graphene dispersion prepared in Synthesis Example 10 was used as the conductive material.

[比較例4]
窒素原子を有しない耐熱性樹脂としてポリエーテルエーテルケトン樹脂(PEEK)(富士フィルム和光純薬株式会社製 製品番号23969-50)のNMP溶液(20重量%)を使用した以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 4]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that an NMP solution (20% by weight) of polyether ether ketone resin (PEEK) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product number 23969-50) was used as the heat-resistant resin not having nitrogen atoms.

[比較例5]
樹脂成分として300℃以下に融点を有するポリアミド樹脂(東レ株式会社製“AQナイロン”(登録商標)P-70)のNMP溶液(10重量%)を使用した以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 5]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that a NMP solution (10% by weight) of a polyamide resin having a melting point of 300° C. or less ("AQ Nylon" (registered trademark) P-70 manufactured by Toray Industries, Inc.) was used as the resin component.

[比較例6]
樹脂成分として300℃における重量減少が3重量%以上であるポリビニルアルコール樹脂(PVA)(シグマアルドリッチ株式会社製 製品番号348406)のNMP溶液(50重量%)を使用した以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 6]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that an NMP solution (50 wt%) of polyvinyl alcohol resin (PVA) (Sigma-Aldrich Corporation, product number 348406) having a weight loss of 3 wt% or more at 300°C was used as the resin component.

[比較例7]
導電材としてCNT(シグマアルドリッチ株式会社製多層カーボンナノチューブ 製品番号698849:直径6-13nm 長さ2.5-20μm)を使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 7]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that CNT (multi-walled carbon nanotubes manufactured by Sigma-Aldrich Corporation, product number 698849: diameter 6-13 nm, length 2.5-20 μm) was used as the conductive material.

[比較例8]
導電材としてアセチレンブラック(デンカ株式会社製“デンカブラック”(登録商標))を粉体のまま6重量部使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 8]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that 6 parts by weight of acetylene black ("Denka Black" (registered trademark) manufactured by Denka Company Ltd.) was used as the conductive material.

[比較例9]
導電材としてアセチレンブラック(デンカ株式会社製“デンカブラック”(登録商標))を粉体のまま6重量部、樹脂成分として合成例14で作製した300℃における重量減少が3重量%以上であるポリアミドイミド/ブタジエン共重合体のNMP溶液(20重量%)を100重量部使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 9]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that 6 parts by weight of acetylene black ("Denka Black" (registered trademark) manufactured by Denka Company Ltd.) in powder form was used as the conductive material, and 100 parts by weight of an NMP solution (20% by weight) of the polyamideimide/butadiene copolymer having a weight loss of 3% by weight or more at 300° C. prepared in Synthesis Example 14 was used as the resin component.

[比較例10]
導電材としてCNT(シグマアルドリッチ株式会社製多層カーボンナノチューブ 製品番号69849:直径6-13nm 長さ2.5-20μm)、耐熱性樹脂としてポリイミド樹脂(東レ株式会社製“セミコファイン”(登録商標)SP-453)のNMP溶液(21重量%)をポリイミド固形分として70重量部、樹脂成分として300℃における重量減少が3重量%以上であるポリビニルブチラール樹脂(積水化学株式会社製“エスレック”(登録商標)BM-2)のNMP溶液を(30重量%)を30重量部使用したこと以外は実施例1と同様の条件で樹脂組成物、硬化膜を作製した。
[Comparative Example 10]
A resin composition and a cured film were prepared under the same conditions as in Example 1, except that CNT (multi-walled carbon nanotubes manufactured by Sigma-Aldrich Corporation, product number 69849: diameter 6-13 nm, length 2.5-20 μm) were used as the conductive material, 70 parts by weight of an NMP solution (21% by weight) of a polyimide resin (manufactured by Toray Industries, Inc., "Semicofine" (registered trademark) SP-453) was used as the heat-resistant resin in terms of polyimide solids, and 30 parts by weight of an NMP solution (30% by weight) of a polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd., "S-LEC" (registered trademark) BM-2) having a weight loss of 3% or more at 300° C. was used as the resin component.

各実施例および比較例の内容と評価結果を表1~2に示す。 The details and evaluation results of each example and comparative example are shown in Tables 1 and 2.

Figure 0007567422000001
Figure 0007567422000001

Figure 0007567422000002
Figure 0007567422000002

Claims (5)

グラフェン、および、窒素原子を有する耐熱性樹脂を含む樹脂組成物であって、
グラフェンのX線光電子分光法により測定される炭素に対する窒素の元素比(N/C比)が0.005以上0.030以下であり、炭素に対する酸素の元素比(O/C比)が0.08以上0.30以下であり、
窒素原子を有する耐熱性樹脂が、アルゴン雰囲気下において200℃で30分間熱処理した後に熱重量分析を行った際に、空気雰囲気下において25℃から昇温速度10℃/分で300℃まで昇温し、300℃で30分間保持したときの重量減少が3重量%未満であり、かつ、示差走査熱量測定を行った際の、25℃から330℃まで10℃/分で昇温したときに得られるDSC曲線において、300℃以下に融点が現れない樹脂であり、
グラフェンの含有量が、窒素原子を有する耐熱性樹脂100重量部に対して、1重量部以上30重量部以下である、樹脂組成物。
A resin composition comprising graphene and a heat-resistant resin having nitrogen atoms,
the graphene has an atomic ratio of nitrogen to carbon (N/C ratio) of 0.005 or more and 0.030 or less, and an atomic ratio of oxygen to carbon (O/C ratio) of 0.08 or more and 0.30 or less, as measured by X-ray photoelectron spectroscopy;
a heat-resistant resin having nitrogen atoms, which, when subjected to a heat treatment at 200°C for 30 minutes in an argon atmosphere and then subjected to a thermogravimetric analysis, loses less than 3% by weight when heated from 25°C to 300°C at a heating rate of 10°C/min in an air atmosphere and maintained at 300°C for 30 minutes; and which, when subjected to a differential scanning calorimetry measurement, does not exhibit a melting point at or below 300°C in a DSC curve obtained when the temperature is raised from 25°C to 330°C at a rate of 10°C/min;
A resin composition having a graphene content of 1 part by weight or more and 30 parts by weight or less based on 100 parts by weight of a heat-resistant resin having a nitrogen atom .
前記窒素原子を有する耐熱性樹脂がポリイミド樹脂を含む請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the heat-resistant resin having nitrogen atoms includes a polyimide resin. 前記グラフェンの、X線回折測定においてグラフェン結晶の(002)面に対応するピークからScherrerの式により算出される結晶子径が2nm以下である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the graphene has a crystallite diameter of 2 nm or less, calculated by Scherrer's formula from a peak corresponding to the (002) plane of the graphene crystal in an X-ray diffraction measurement. 前記グラフェンの面方向の大きさが0.5μm以上5μm以下である請求項1~のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3 , wherein the size of the graphene in a planar direction is 0.5 µm or more and 5 µm or less. 請求項1~のいずれかに記載の樹脂組成物の硬化膜。
A cured film of the resin composition according to any one of claims 1 to 4 .
JP2020203876A 2019-12-17 2020-12-09 Resin composition and cured film using same Active JP7567422B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019227030 2019-12-17
JP2019227030 2019-12-17

Publications (2)

Publication Number Publication Date
JP2021095568A JP2021095568A (en) 2021-06-24
JP7567422B2 true JP7567422B2 (en) 2024-10-16

Family

ID=76430714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020203876A Active JP7567422B2 (en) 2019-12-17 2020-12-09 Resin composition and cured film using same

Country Status (1)

Country Link
JP (1) JP7567422B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074652A1 (en) * 2021-11-01 2023-05-04 東レ株式会社 Composition and coating material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506013A (en) 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-polymer nanocomposites for gas barrier applications
JP2012188645A (en) 2011-03-09 2012-10-04 Ind Technol Res Inst Electrically insulating and thermally conductive composition and electronic device
JP2016127210A (en) 2015-01-07 2016-07-11 株式会社日本触媒 Carbon material complex composition
WO2017047521A1 (en) 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
WO2017154533A1 (en) 2016-03-09 2017-09-14 東レ株式会社 Surface-treated graphene, surface-treated graphene/organic solvent dispersion liquid, surface-treated graphene/electrode active material composite particles and electrode paste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506013A (en) 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-polymer nanocomposites for gas barrier applications
JP2012188645A (en) 2011-03-09 2012-10-04 Ind Technol Res Inst Electrically insulating and thermally conductive composition and electronic device
JP2016127210A (en) 2015-01-07 2016-07-11 株式会社日本触媒 Carbon material complex composition
WO2017047521A1 (en) 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
WO2017154533A1 (en) 2016-03-09 2017-09-14 東レ株式会社 Surface-treated graphene, surface-treated graphene/organic solvent dispersion liquid, surface-treated graphene/electrode active material composite particles and electrode paste

Also Published As

Publication number Publication date
JP2021095568A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
TWI694054B (en) Graphene dispersion liquid and manufacturing method thereof, manufacturing method of graphene-electrode active material composite particles, and manufacturing method of electrode paste
JP4591666B2 (en) Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof
TW201825391A (en) Surface-treated graphene, surface-treated graphene/organic solvent dispersion liquid, surface-treated graphene/electrode active material composite particles and electrode paste
TW201711958A (en) Graphene/organic solvent dispersion and method for producing same, and method for producing lithium-ion battery electrode
WO2017047523A1 (en) Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
JP6863099B2 (en) Graphene / Organic Solvent Dispersion, Graphene-Active Material Complex Particle Production Method and Electrode Paste Production Method
JP7479390B2 (en) Dispersible edge-functionalized graphene platelets
TW201800336A (en) Graphene dispersion, method for producing electrode paste, and method for producing electrode
WO2016056557A1 (en) Graphene powder, electrode paste for lithium ion battery and electrode for lithium ion battery
WO2013080843A1 (en) Functional-group-modified carbon material, and method for producing same
JP7402610B2 (en) Thermal conductive resin compositions, thermal conductive sheets and electronic components
JP6806898B2 (en) Conductive film, thermoelectric conversion layer, thermoelectric conversion element, thermoelectric conversion module, method for manufacturing conductive film, composition
US8080179B2 (en) Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them
JP5374973B2 (en) Negative electrode composite and lithium secondary battery using the same
WO2022050114A1 (en) Electroconductive two-dimensional particles and method for manufacturing same
JP7567422B2 (en) Resin composition and cured film using same
JP2023107750A (en) Graphene dispersion and graphene resin composite film
CN114631202B (en) Graphene dispersion and positive electrode paste
CN111117369A (en) Polyaniline functionalized graphene conductive ink and preparation method thereof
JP2009259716A (en) Conductor and its method for manufacturing
EP3648115A1 (en) Conductive paste
JP2022167301A (en) Positive electrode for lithium ion secondary battery
CN114502681B (en) Mixed adhesive composition for shielding electromagnetic waves, preparation method of mixed adhesive for shielding electromagnetic waves, and mixed adhesive film for shielding electromagnetic waves
JP2022071333A (en) Heat-dissipation material
JP7436053B2 (en) Porous carbon and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240916

R150 Certificate of patent or registration of utility model

Ref document number: 7567422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150