JP7561688B2 - Power Conversion Equipment - Google Patents
Power Conversion Equipment Download PDFInfo
- Publication number
- JP7561688B2 JP7561688B2 JP2021092225A JP2021092225A JP7561688B2 JP 7561688 B2 JP7561688 B2 JP 7561688B2 JP 2021092225 A JP2021092225 A JP 2021092225A JP 2021092225 A JP2021092225 A JP 2021092225A JP 7561688 B2 JP7561688 B2 JP 7561688B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- mode
- fixed
- power conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
Description
本発明は、電力変換装置に関し、より詳しくは、Vienna整流器を用いた電力変換装置に関する。 The present invention relates to a power conversion device, and more specifically, to a power conversion device using a Vienna rectifier.
三相系統を受電し、直流電圧へ変換する整流回路として、力率改善機能を有した三相PFC(Power Factor Correction)コンバータが提案されている(特許文献1)。特許文献1では、三相ダイオードブリッジの各相入力(三相系統側各端子)と、直流部の端子間に直列接続された2個のコンデンサの接続点との間に、それぞれスイッチを設けた回路方式となっている。この回路方式は、Vienna(ビエナ、ヴィエナ、ウィーン等といわれる)整流器と呼ばれている。
A three-phase PFC (Power Factor Correction) converter with a power factor correction function has been proposed as a rectifier circuit that receives power from a three-phase system and converts it to DC voltage (Patent Document 1). In
Vienna整流器では、各相のスイッチをPWM(Pulse Width Modulation)で高速スイッチングすることにより、三相系統の各相において電流を電圧と相似な正弦波に制御でき、力率を改善することができる。 In the Vienna rectifier, the switches for each phase are switched at high speed using PWM (Pulse Width Modulation), which allows the current in each phase of a three-phase system to be controlled to a sine wave similar to the voltage, improving the power factor.
しかしながら、Vienna整流器では、上述のとおり、各相のスイッチをPWMにより高速スイッチングする。そのため、スイッチング損失が生じ、電力の変換効率が低下する。 However, as mentioned above, the Vienna rectifier uses high-speed PWM switching of the switches for each phase. This results in switching losses and reduces the power conversion efficiency.
このような事情により、Vienna整流器を用いた電力変換装置において、スイッチング損失を低減する手法の提供が望まれている。 For these reasons, there is a need to provide a method for reducing switching losses in power conversion devices that use Vienna rectifiers.
なお、Vienna整流器を用いた電力変換装置において、スイッチング損失を低減する手法の一例が、特許文献である特開2004-343975号公報に記載されているが、この手法は、本願が開示する手法とは異なるものである。 Note that an example of a method for reducing switching losses in a power conversion device using a Vienna rectifier is described in the patent document JP 2004-343975 A, but this method is different from the method disclosed in this application.
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。 The following is a brief summary of the representative inventions disclosed in this application.
本発明の代表的な実施の形態による電力変換装置は、三相交流電圧を直流電圧へと変換する電力変換装置であって、それぞれが、前記三相交流電圧が入力される各相の端子に接続された複数のインダクタと、前記複数のインダクタの後段に接続された三相ダイオードブリッジと、前記三相ダイオードブリッジの出力側の二端子間に直列に接続された第一コンデンサおよび第二コンデンサと、それぞれが、前記各相について、前記インダクタと前記三相ダイオードブリッジとの接続点である第1の接続点と、前記第一コンデンサと前記第二コンデンサとの接続点である第2の接続点との間に接続された、複数の双方向スイッチと、前記複数の双方向スイッチのスイッチングを制御するコントローラと、を備え、前記コントローラは、前記三相交流電圧の各相のうち入力電圧の絶対値が最大である相の前記双方向スイッチを、前記入力電圧の絶対値が最大である期間の全部または一部において、オン状態に固定するよう前記スイッチングを制御するオン固定モードを、動作モードとして有する。 A power conversion device according to a representative embodiment of the present invention is a power conversion device that converts a three-phase AC voltage into a DC voltage, and includes a plurality of inductors, each of which is connected to a terminal of each phase to which the three-phase AC voltage is input, a three-phase diode bridge connected to the rear stage of the plurality of inductors, a first capacitor and a second capacitor connected in series between two terminals on the output side of the three-phase diode bridge, a plurality of bidirectional switches, each of which is connected for each phase between a first connection point that is a connection point between the inductor and the three-phase diode bridge and a second connection point that is a connection point between the first capacitor and the second capacitor, and a controller that controls the switching of the plurality of bidirectional switches, and the controller has an on-fixed mode as an operating mode, in which the bidirectional switch of the phase in which the absolute value of the input voltage is maximum among the phases of the three-phase AC voltage is controlled to be fixed to the on state during all or part of the period during which the absolute value of the input voltage is maximum.
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。 The effects achieved by the representative inventions disclosed in this application can be briefly explained as follows:
本発明の代表的な実施の形態によれば、Vienna整流器を用いた電力変換装置においてスイッチング損失を低減することができる。 According to a representative embodiment of the present invention, it is possible to reduce switching losses in a power conversion device using a Vienna rectifier.
これより、本発明の実施形態について説明する。なお、以下で説明する各実施形態は、本発明を実現するための一例であり、本発明の技術範囲を限定するものではない。 Now, we will explain the embodiments of the present invention. Note that each embodiment described below is an example for realizing the present invention, and does not limit the technical scope of the present invention.
また、以下の各実施形態において、同一の機能を有する構成要素には同一の符号を付し、その繰り返しの説明は、特に必要な場合を除き省略する。 In addition, in the following embodiments, components having the same functions are given the same reference numerals, and repeated explanations are omitted unless otherwise necessary.
(実施形態1)
実施形態1に係る電力変換装置について説明する。この電力変換装置は、Vienna整流器を用いて三相交流電圧を直流電圧に変換する装置である。Vienna整流器では、6個のスイッチを使用した三相PWMコンバータと比較して、スイッチの耐圧をおよそ1/2に低減できる。例えば、三相400V系統を受電するVienna整流器では、600Vから650V耐圧のスイッチを使用することができ、1.2kV耐圧のスイッチが必要な三相PWMコンバータよりもコスト面で有利となる。実施形態1に係る電力変換装置では、このVienna整流器を用いつつ、スイッチの制御を行うコントローラの動作モードとして、相電圧の絶対値が最大となる相の双方向スイッチをオン状態に固定するオン固定モードを有する点に特徴がある。
(Embodiment 1)
A power conversion device according to a first embodiment will be described. This power conversion device is a device that converts a three-phase AC voltage into a DC voltage using a Vienna rectifier. In the Vienna rectifier, the withstand voltage of the switch can be reduced to approximately 1/2 compared to a three-phase PWM converter using six switches. For example, a Vienna rectifier that receives power from a three-phase 400V system can use a switch with a withstand voltage of 600V to 650V, which is more cost-effective than a three-phase PWM converter that requires a switch with a withstand voltage of 1.2kV. The power conversion device according to the first embodiment is characterized in that it uses the Vienna rectifier and has an on-fixed mode in which the bidirectional switch of the phase in which the absolute value of the phase voltage is maximum is fixed to the on state as an operation mode of a controller that controls the switch.
〈装置の構成〉
図1は、実施形態1に係る電力変換装置の回路構成の一例を示す図である。図1に示すように、電力変換装置100は、インダクタ102r,102s,102tと、三相ダイオードブリッジ103と、コンデンサ104,105と、双方向スイッチ106r,106s,106tと、を備えている。なお、双方向スイッチとは、電流が双方向に流れるスイッチを意味し、例えば、トランジスタなどのスイッチング素子である。
<Device Configuration>
Fig. 1 is a diagram showing an example of a circuit configuration of a power conversion device according to
三相系統101は、その電圧が国や地域によって異なるが、概ね三相200Vから400Vの間である。
The voltage of the three-
インダクタ102r,102s,102tは、三相系統101からの三相交流電圧が入力される各相の端子にそれぞれ接続されている。インダクタ102r,102s,102tは、例えば、コイル素子などにより構成される。
三相ダイオードブリッジ103は、インダクタ102r,102s,102tの後段に接続されている。
The three-
コンデンサ104,105は、三相ダイオードブリッジ103の出力側の二端子間、すなわち直流出力部の端子Pと端子Nとの間に、直列に接続されている。
双方向スイッチ106rは、r相について、インダクタ102rと三相ダイオードブリッジ103との接続点(第1の接続点)と、コンデンサ104とコンデンサ105との接続点(第2の接続点)Mとの間に接続されている。同様に、双方向スイッチ106sは、s相について、インダクタ102sと三相ダイオードブリッジ103との接続点と、コンデンサの接続点Mとの間に接続されている。また、双方向スイッチ106tは、t相について、インダクタ102tと三相ダイオードブリッジ103との接続点と、コンデンサの接続点Mとの間に接続されている。本実施形態では、双方向スイッチ106rは、MOSFET111,112の直接接続により構成される。同様に、双方向スイッチ106sは、MOSFET113,114の直接接続により構成され、双方向スイッチ106tは、MOSFET115,116の直接接続により構成される。
The
また、図1に示すように、電力変換装置100は、電圧センサ107r,107sと、電流センサ108r,108sと、電圧センサ109と、コントローラ110とを備えている。
As shown in FIG. 1, the
電圧センサ107rは、r相の電圧Vrを検出するセンサである。電圧センサ107sは、s相の電圧Vsを検出するセンサである。
The
電流センサ108rは、r相の電流Irを検出するセンサである。電流センサ108sは、s相の電流Isを検出するセンサである。
電圧センサ109は、直流出力部の電圧を検出するセンサである。
The
これらの各センサは、コントローラ110と接続されている。電流センサは、例えば、シャント抵抗および絶縁型アンプを用いたもの、コア付き電流センサまたはコアレス電流電サなどの磁気式センサ等により構成される。また、電圧センサは、例えば、抵抗分圧器および絶縁アンプを用いるもの、あるいは、コンデンサ分圧器および絶縁アンプを用いるもの、高感度非接触電流センサおよび直列抵抗を用いるもの等により構成される。
Each of these sensors is connected to the
コントローラ110は、各センサにて検出された検出値に基づいて、双方向スイッチ106r,106s,106tのスイッチングを制御する。コントローラ110は、例えば、集積回路、プログラマブル半導体チップ、マイコンチップ、あるいは、ディスクリート半導体を用いた回路により構成される。集積回路は、例えば、IC(Integrated Circuit),LSI(Large Scale Integration)などが挙げられる。プログラマブル半導体チップは、例えば、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などが挙げられる。
The
電力変換装置100は、三相系統101の三相交流電力を受電し、三相ダイオードブリッジ103および各相の双方向スイッチ106r,106s,106tによって直流電力に変換され、直流出力部の端子P,Nに接続されたコンデンサ104,105で平滑される。コンデンサ104,105の後段には、不図示のインバータやDC-DCコンバータ等の任意の負荷が接続され、この負荷に電力が送られる。
The
コントローラ110には、外部から入力される不図示の直流電圧指令値と、電圧センサ107r、107sで検出されたr相およびs相の相電圧と、電流センサ108r,108sで検出されたr相およびs相の相電流と、電圧センサ109で検出された直流電圧が入力される。コントローラ110は、直流電圧指令値と、各センサから入力される検出値から演算した、t相を含む三相の相電圧および相電流に基づいて、双方向スイッチ106r,106s,106tのスイッチング周期におけるオン時間の比率(duty比)を演算する。duty比は、直流電圧を一定に制御しつつ、三相系統101の各相電流を正弦波に近づけるべく、演算・制御される。これにより、三相系統101から受電する電力の力率を1に近づける。
The
なお、本実施形態では、r相とs相の二相について相電圧と相電流を検出しているが、これに限定されず、例えば三相全ての相電圧と相電流を検出してもよい。 In this embodiment, the phase voltages and currents are detected for two phases, the r phase and the s phase, but this is not limited to this. For example, the phase voltages and currents of all three phases may be detected.
また、本実施形態では、直流出力部の端子Pの直流電圧を検出しているが、これに限定されず、例えばコンデンサ104,105の各電圧を検出してもよい。
In addition, in this embodiment, the DC voltage at terminal P of the DC output unit is detected, but this is not limited to this, and for example, the voltages of
〈装置の動作〉
以下、実施形態1に係る電力変換装置100の動作について、図2を用いて説明する。
<Device Operation>
Hereinafter, the operation of the
図2は、実施形態1に係る電力変換装置における各種波形の一例を示した図である。図2では、同一時間軸上における、入力電圧指令値Vd、相電流I、補正電圧Voffset、およびduty比Dの時間変化を表している。 Figure 2 shows an example of various waveforms in the power conversion device according to the first embodiment. Figure 2 shows the time changes of the input voltage command value Vd, the phase current I, the correction voltage Voffset, and the duty ratio D on the same time axis.
入力電圧指令値Vdは、コントローラ110によって演算されるVienna整流器の入力電圧指令値である。入力電圧指令値Vdは、インダクタの後段すなわち三相ダイオードブリッジ103の前段における各相の入力電圧の目標値に相当する。入力電圧指令値Vdは、r相の入力電圧指令値Vdr、s相の入力電圧指令値Vds、t相の入力電圧指令値Vdtによって構成される。これらの指令値は、それぞれ、位相が120°ずつシフトした単純な正弦波になる。
The input voltage command value Vd is the input voltage command value of the Vienna rectifier calculated by the
相電流Iは、各相の電流の総称であり、r相の電流Ir、s相の電流Is、t相の電流Itによって構成される。この相電流Iが相電圧Vの波形に近づくと、力率が1に近づき、力率が改善される。 Phase current I is the collective term for the currents of each phase, and is composed of r-phase current Ir, s-phase current Is, and t-phase current It. When this phase current I approaches the waveform of phase voltage V, the power factor approaches 1 and is improved.
補正電圧Voffsetは、入力電圧指令値Vdに加算する補正電圧であり、コントローラによって演算される。補正電圧Voffsetの算出方法の詳細については後述する。 The correction voltage Voffset is a correction voltage to be added to the input voltage command value Vd, and is calculated by the controller. The method for calculating the correction voltage Voffset will be described in detail later.
duty比Dは、各相の双方向スイッチをPWMでスイッチングする際のデューティ比の総称である。デューティ比は、スイッチング周期に対して双方向スイッチがオンしている時間の割合である。duty比Dは、r相の双方向スイッチ106rのスイッチングにおけるduty比Dr、s相での同様のduty比Ds、t相での同様のduty比Dtによって構成される。
Duty ratio D is the general term for the duty ratio when switching the bidirectional switches of each phase by PWM. The duty ratio is the ratio of the time that the bidirectional switch is on to the switching period. Duty ratio D is composed of the duty ratio Dr in the switching of the
なお、時刻t1~t2の期間A、時刻t2~t3の期間B、時刻t3~t4の期間Cは、それぞれ系統位相60度分の時間に相当する。 Note that period A from time t1 to t2, period B from time t2 to t3, and period C from time t3 to t4 each correspond to a time period of 60 degrees of the system phase.
《期間A:t1~t2》
時刻t1~t2の期間Aでは、t相の入力電圧指令値Vdtは負であり、絶対値が三相の中で最大となっている。この時、後述するコントローラ110のスイッチング制御により、入力電圧指令値Vdtに補正電圧Voffsetが加算され、t相の双方向スイッチ106tのduty比Dtが1、すなわちオン状態に固定される。また、同時にr相の双方向スイッチ106rとs相の双方向スイッチ106sのduty比Dr,Dsにも同じ補正電圧Voffsetが加算され、t相の双方向スイッチ106tをスイッチングしなくても各相の電流Ir,Is,Itは正弦波となるように制御される。
《Period A: t1-t2》
In a period A from time t1 to t2, the input voltage command value Vdt of the t-phase is negative and has the largest absolute value among the three phases. At this time, the input voltage The correction voltage Voffset is added to the command value Vdt, and the duty ratio Dt of the t-phase
《期間B:t2~t3》
時刻t2~t3の期間Bでは、s相の入力電圧指令値Vdsの絶対値が三相の中で最大となっている。この時、補正電圧Voffsetは、s相の双方向スイッチ106sのduty比Dsを1に固定するように計算される。期間Aでオン状態に固定されていた双方向スイッチ106tは期間Bではスイッチングし、双方向スイッチ106sのみがオン状態に固定される。期間Aと同様に、期間Bにおいても三相の電流Ir,Is,Itは正弦波となるように制御される。
《Period B: t2-t3》
In a period B from time t2 to t3, the absolute value of the input voltage command value Vds of the s-phase is the largest among the three phases. At this time, the correction voltage Voffset is set to a value equal to the duty ratio of the s-phase
《期間C:t3~t4》
時刻t3~t4の期間Cでは、r相の入力電圧指令値Vdrの絶対値が三相の中で最大となっている。この時、補正電圧Voffsetは、r相の双方向スイッチ106rのduty比Drを1に固定するように計算される。期間Bでオン状態に固定されていた双方向スイッチ106sは期間Cではスイッチングし、双方向スイッチ106rのみがオン状態に固定される。期間A、Bと同様に、期間Cにおいても三相の電流Ir,Is,Itは正弦波となるように制御される。
<<Period C: t3-t4>>
In period C from time t3 to t4, the absolute value of the r-phase input voltage command value Vdr is the largest among the three phases. At this time, the correction voltage Voffset is calculated so as to fix the duty ratio Dr of the r-phase
上述したように、期間A~期間Cはそれぞれ系統位相60度分の時間であり、各相の双方向スイッチは系統1周期のうち2回スイッチングを停止する期間がある。すなわち、合計で120度分スイッチングを停止し、オン状態に固定される。オン状態に固定されることでインダクタ102r,102s,102tへ三相ダイオードブリッジ103を経由せずに線間電圧を印加でき、電流Ir,Is,Itを正弦波に制御することができる。以上から、実施形態1の構成によって双方向スイッチ106r,106s,106tのスイッチング損失を低減でき、変換効率を向上させることができる。
As described above, each of periods A to C is a time for 60 degrees of the system phase, and the bidirectional switches of each phase have two periods during one system cycle during which switching is stopped. In other words, switching is stopped for a total of 120 degrees and fixed to the on state. Fixing the inductors in the on state allows the line voltage to be applied to the
《コントローラの動作》
実施形態1に係る電力変換装置のコントローラの動作について図3を用いて説明する。図3は、実施形態1におけるコントローラの制御ブロックの一例を示した図である。
Controller Operation
The operation of the controller of the power conversion device according to the first embodiment will be described with reference to Fig. 3. Fig. 3 is a diagram showing an example of a control block of the controller in the first embodiment.
図3に示すように、まず、外部から入力された直流電圧指令値Vrefと電圧センサ109で検出された直流出力部の直流電圧Vpnとの差分Verrが算出される。
As shown in FIG. 3, first, the difference Verr between the DC voltage command value Vref input from outside and the DC voltage Vpn of the DC output section detected by the
PI(Proportion-Integral)制御器121は、一般的なフィードバック制御によく用いられる制御器であり,差分Verrに基づき、差分Verrをゼロにするように比例制御出力と積分制御出力とを足し合わせた電流振幅指令値Iamp_refを演算する。なお、PI制御器121は、電圧制御器に相当する。電流振幅指令値Iamp_refは、三相系統101の各相電圧の位相情報sinと乗算され、各相の電流指令値Irefが演算される。
The PI (Proportion-Integral)
PI制御器122は、電流指令値Irefと電流センサ108r,108sで検出された相電流Iとの差分Ierrに基づき、入力電圧指令値Vdを演算する。
The
補正電圧演算器123は、入力された入力電圧指令値Vdに基づいて、入力電圧指令値Vdのうち絶対値が最大である相の双方向スイッチのduty比を1に固定するような補正電圧Voffsetを演算する。
The
補正電圧Voffsetは、各相の入力電圧指令値Vdに等しく加算され、補正後入力電圧指令値Vd2(Vdr2,Vds2,Vdt2の総称)が演算される。 The correction voltage Voffset is added equally to the input voltage command value Vd of each phase to calculate the corrected input voltage command value Vd2 (a collective term for Vdr2, Vds2, and Vdt2).
duty演算器124は、入力された補正後入力電圧指令値Vd2に基づいて、各相のduty比D(Dr,Ds,Dt)を演算し、双方向スイッチ106r,106s,106tを駆動するゲート信号を生成する。
The
このように、電力変換装置100は、そのコントローラ110の動作モードとして、相電圧の絶対値が最大となる相の双方向スイッチをオン状態に固定するオン固定モードを有している。
In this way, the
以上のような動作により、負荷変動等によって電流振幅指令値Iamp_refが変動しても常に適切な補正電圧Voffsetを演算することができる。 By performing the above operations, it is possible to always calculate an appropriate correction voltage Voffset even if the current amplitude command value Iamp_ref fluctuates due to load fluctuations, etc.
なお、補正電圧Voffsetは、コンデンサ104とコンデンサ105との接続点Mに与えられるコモン電圧とも考えることができる。
The correction voltage Voffset can also be considered as a common voltage applied to the connection point M between the
また、ここでは、電流振幅指令値Iamp_refから位相情報sinを用いて各相の電流指令値Irefを演算しているが、これに限定されず、例えばdq変換を用いて各相の電流指令値Irefを演算してもよい。 In addition, here, the current command value Iref for each phase is calculated from the current amplitude command value Iamp_ref using the phase information sin, but this is not limited to this, and the current command value Iref for each phase may be calculated using, for example, a dq transformation.
また、ここでは、コンデンサ104,105の電圧バランスを制御するブロック等は組み込まれていないが、このようなブロック等を追加するようにしてもよい。
In addition, here, no blocks for controlling the voltage balance of
《補正電圧演算器の動作》
ここで、補正電圧演算器123の動作について図4を用いて説明する。
<<Operation of the correction voltage calculator>>
Here, the operation of the
図4は、補正電圧演算器の動作を示す制御ブロックの一例を示した図である。各相の入力電圧指令値Vdr,Vds,Vdtの絶対値が絶対値演算器によって算出され、最大電圧選択器131に入力される。
Figure 4 shows an example of a control block that illustrates the operation of the correction voltage calculator. The absolute values of the input voltage command values Vdr, Vds, and Vdt of each phase are calculated by the absolute value calculator and input to the
相電圧の絶対値が最大となる相の双方向スイッチをオン状態に固定するためには、固定対象の入力電圧指令値(Vdr,Vds,Vdtのいずれか)の絶対値を小さくする必要がある。例えば、r相の電流Irが正の向きに流れている場合、r相の双方向スイッチ106rをオフするとr相の入力電圧は直流出力の端子Pの電位となり、オンするとコンデンサの接続点Mの電位(理想的には三相系統101の中性点と同電位でゼロ)と等しくなる。ここで、端子Pの電位>接続点Mの電位であるため、入力電圧指令値Vdrが小さい程双方向スイッチ106rのduty比Drは1に近づく。また、r相の電流Irが負の向きに流れている場合は、双方向スイッチ106rをオフするとr相の入力電圧は直流出力の端子Nの電位となり、同様に入力電圧指令値Vdrの絶対値がゼロに近い程双方向スイッチ106rのduty比Drは1に近づく。
In order to fix the bidirectional switch of the phase whose absolute value of the phase voltage is the maximum in the on state, it is necessary to reduce the absolute value of the input voltage command value (Vdr, Vds, or Vdt) to be fixed. For example, when the r-phase current Ir flows in a positive direction, when the r-phase
したがって、最大電圧選択器131は、入力電圧指令値Vdr,Vds,Vdtのうち最大絶対値を選択して出力し,入力電圧指令値Vdr,Vds,Vdtは、極性決定器132に入力される。極性決定器132は、絶対値が最大となる入力電圧指令値の正負を判定し、正なら-1、負なら+1を出力する。最大電圧選択器131の出力と、極性決定器132の出力とを乗算し、補正電圧Voffsetが演算される。
Therefore, the
演算された補正電圧Voffsetは、各相の入力電圧指令値Vdr,Vds,Vdtに等しく加算され、補正後の入力電圧指令値Vdr2,Vds2,Vdt2となる。こうすることで,例えば、r相の入力電圧指令値Vdrが正でかつ絶対値が最大となっている場合に、Vdr2=Vdr-Vdr=0となり、補正後の入力電圧指令値Vdr2をゼロにすることができ、r相の双方向スイッチ106rをオン状態に固定できる。また、他相についても等しく補正電圧Voffsetを加算するため、線間電圧に影響を与えない。
The calculated correction voltage Voffset is added equally to the input voltage command values Vdr, Vds, and Vdt of each phase to obtain corrected input voltage command values Vdr2, Vds2, and Vdt2. In this way, for example, when the input voltage command value Vdr of the r-phase is positive and has a maximum absolute value, Vdr2 = Vdr - Vdr = 0, the corrected input voltage command value Vdr2 can be set to zero, and the
以上のような動作により、入力電圧指令値Vdr,Vds,Vdtの極性に応じて加算すべき補正電圧Voffsetを適切に計算することができる。 By performing the above operations, the correction voltage Voffset to be added depending on the polarity of the input voltage command values Vdr, Vds, and Vdt can be appropriately calculated.
なお、本実施形態では、相電圧の絶対値が最大となる相の双方向スイッチを、その絶対値が最大である期間の全部において、オン状態に固定している。しかしながら、本発明はこれに限定されず、相電圧の絶対値が最大となる相の双方向スイッチを、その絶対値が最大である期間の一部、例えば、50%以上、100%未満において、オン状態に固定するようにしてもよい。このような場合であっても、力率を改善しつつスイッチング損失を低減することができる。 In this embodiment, the bidirectional switch of the phase in which the absolute value of the phase voltage is maximum is fixed to the on state for the entire period during which the absolute value is maximum. However, the present invention is not limited to this, and the bidirectional switch of the phase in which the absolute value of the phase voltage is maximum may be fixed to the on state for a portion of the period during which the absolute value is maximum, for example, 50% or more but less than 100%. Even in such a case, it is possible to reduce switching loss while improving the power factor.
(実施形態2)
実施形態2に係る電力変換装置について説明する。この電力変換装置は、実施形態1に係る電力変換装置を基礎に、コントローラの動作モードとして、オン固定モードのほかに、オフ固定モードを有している。オフ固定モードとは、相電圧の絶対値が最大となる相の双方向スイッチをオフ状態に固定する動作モードである。また、この電力変換装置は、入力電圧もしくは昇圧比に基づいて、コントローラの動作モードをオン固定モードとオフ固定モードとに切り替えるものである。なお、昇圧比とは、三相系統の入力電圧に対する出力直流電圧の比を意味する。
(Embodiment 2)
A power conversion device according to a second embodiment will be described. Based on the power conversion device according to the first embodiment, this power conversion device has an off-fixed mode as an operation mode of the controller in addition to the on-fixed mode. The off-fixed mode is an operation mode in which the bidirectional switch of the phase in which the absolute value of the phase voltage is maximum is fixed to the off state. This power conversion device switches the operation mode of the controller between the on-fixed mode and the off-fixed mode based on the input voltage or the step-up ratio. The step-up ratio means the ratio of the output DC voltage to the input voltage of a three-phase system.
実施形態1に係る電力変換装置、すなわちオン固定モードで動作する装置では、三相系統の入力電圧が出力直流電圧を基準にして相対的に低い条件、あるいは、入力電圧に対する出力直流電圧の比すなわち昇圧比が高い条件において、特に適した動作をする。
The power conversion device according to
一方、入力電圧が出力直流電圧を基準にして相対的に高い、あるいは、昇圧比が低い条件においては、オフ固定モードで動作する方が安定した動作が期待できる。例えば、三相系統101の線間電圧の最大値がコンデンサ104もしくは105の電圧よりも高い場合、オン固定モードで動作させると、三相系統101からコンデンサ104もしくは105に電流が自動的に流れてしまい、相電流を制御することが難しくなる。このため、入力電圧もしくは昇圧比に基づいて、オン固定モードにするのかオフ固定モードにするのかを選択することで、広い入力電圧範囲でスイッチング損失を低減できる。
On the other hand, when the input voltage is relatively high based on the output DC voltage or when the step-up ratio is low, operation in fixed off mode is expected to provide more stable operation. For example, when the maximum value of the line voltage of three-
図5は、実施形態2に係る電力変換装置における入力電圧とduty比固定値との関係の一例を示した図である。なお、図5では、直流電圧は一定であると想定している。 Figure 5 shows an example of the relationship between the input voltage and the fixed duty ratio value in a power conversion device according to embodiment 2. Note that in Figure 5, it is assumed that the DC voltage is constant.
図5において、入力電圧が閾電圧Vthよりも低い場合は、コントローラ110の動作モードをオン固定モードとし、相電圧の絶対値が最大となる相の双方向スイッチのスイッチングにおけるduty比の固定値を1としている。一方、入力電圧が閾電圧Vth以上の領域では、コントローラ110の動作モードを、オフ固定モードとし、相電圧の絶対値が最大となる相の双方向スイッチのスイッチングにおけるduty比の固定値を0とする。
In FIG. 5, when the input voltage is lower than the threshold voltage Vth, the operation mode of the
以上のような動作をさせることで、広い入力電圧範囲で双方向スイッチ106r,106s,106tのスイッチング損失を低減できる。
By operating as described above, the switching loss of the
なお、閾電圧Vthは、力率を改善しつつスイッチング損失の低減度を最大化するという観点では、三相系統101の線間電圧の最大値が出力直流電圧のおおよそ1/2となる値に設定することが望ましい。しかしながら、閾電圧Vthは、これに限定されない。例えば、閾電圧Vthは、直流電圧の0%より大きく50%以下の範囲で設定してもよいし、直流電圧の45%以上、55%以下の範囲で設定するようにしてもよい。
From the viewpoint of maximizing the degree of reduction in switching loss while improving the power factor, it is desirable to set the threshold voltage Vth to a value at which the maximum value of the line voltage of the three-
図6は、実施形態2における入力電圧と効率との関係の一例を示した図である。変換効率201は、入力電圧が閾電圧Vthよりも低い場合と高い場合とでオン固定モードとオフ固定モードとを切り替える場合の変換効率である。変換効率202は、全ての入力電圧範囲において、三相の双方向スイッチを全てスイッチングさせる三相変調モードを用いた場合の変換効率である。図6に示すように、入力電圧に応じてオン固定モードとオフ固定モードとを切り替える場合の変換効率201は、全ての入力電圧範囲で三相変調モードを用いる場合の変換効率202よりも高くなる。
Figure 6 is a diagram showing an example of the relationship between input voltage and efficiency in embodiment 2.
(実施形態3)
実施形態3に係る電力変換装置について説明する。この電力変換装置は、実施形態1に係る電力変換装置を基礎に、コントローラの動作モードとして、オン固定モードのほかに、オフ固定モードと、三相変調モードとを有している。三相変調モードとは、三相の双方向スイッチを全てスイッチングさせる動作モードである。また、この電力変換装置は、実施形態2のように閾電圧を1点に設けず、入力電圧の大きさに対して、オン固定モードとオフ固定モードとの間に三相変調モードを設けた場合の装置である。
(Embodiment 3)
A power conversion device according to a third embodiment will be described. This power conversion device is based on the power conversion device according to the first embodiment, and has a fixed-off mode and a three-phase modulation mode as operation modes of the controller in addition to the fixed-on mode. The three-phase modulation mode is an operation mode in which all three-phase bidirectional switches are switched. This power conversion device is a device in which the threshold voltage is not set at one point as in the second embodiment, but the three-phase modulation mode is set between the fixed-on mode and the fixed-off mode for the magnitude of the input voltage.
図7は、実施形態3に係る電力変換装置における入力電圧とduty比固定値との関係の一例を示した図である。なお、図7では、直流電圧は一定であると想定している。 Figure 7 shows an example of the relationship between the input voltage and the fixed duty ratio value in a power conversion device according to embodiment 3. Note that in Figure 7, it is assumed that the DC voltage is constant.
図7において、入力電圧が第一閾電圧Vth1よりも低い場合、コントローラ110は、動作モードをオン固定モードとする。入力電圧が第一閾電圧Vth1以上であり、かつ第二閾電圧Vth2よりも低い場合、コントローラ110は、動作モードを三相変調モードとする。入力電圧が第二閾電圧Vth2以上の場合、コントローラ110は、動作モードをオフ固定モードとする。
In FIG. 7, when the input voltage is lower than the first threshold voltage Vth1, the
以上のような動作をさせることで、三相系統101の電圧もしくは直流電圧が変化した場合における動作モードのチャタリングを防ぐことができる。また、三相変調では、実施形態1および実施形態2で示した1相の双方向スイッチを停止する場合と比較して、生じる高調波が少ないという特徴がある。したがって、スイッチング損失が問題にならない一定以上の入力電圧範囲では、あえて三相変調を用いることで高調波ノイズを低減できる。
By performing the above-described operation, chattering of the operation mode can be prevented when the voltage or DC voltage of the three-
(実施形態4)
実施形態4に係る電力変換装置について説明する。この電力変換装置は、実施形態1に係る電力変換装置を基礎に、コントローラの動作モードとして、オン固定モードのほかに、三相変調モードを有している。この電力変換装置は、入力電圧もしくは昇圧比に基づいて、コントローラの動作モードをオン固定モードと三相変調モードとに切り替えるものである。
(Embodiment 4)
A power conversion device according to embodiment 4 will be described. This power conversion device is based on the power conversion device according to
このように、入力電圧もしくは昇圧比に基づいて、オン固定モードにするのか三相変調モードにするのかを選択することでも、広い入力電圧範囲でスイッチング損失を低減できる。 In this way, switching losses can be reduced over a wide input voltage range by selecting between fixed on mode and three-phase modulation mode based on the input voltage or step-up ratio.
図8は、実施形態4に係る電力変換装置における入力電圧とduty比固定値との関係の一例を示した図である。なお、図8では、直流電圧は一定であると想定している。 Figure 8 shows an example of the relationship between the input voltage and the fixed duty ratio value in a power conversion device according to embodiment 4. Note that in Figure 8, it is assumed that the DC voltage is constant.
図8において、入力電圧が閾電圧Vthよりも低い場合は、コントローラ110の動作モードをオン固定モードとし、相電圧の絶対値が最大となる相の双方向スイッチのスイッチングにおけるduty比の固定値を1としている。一方、入力電圧が閾電圧Vth以上の領域では、コントローラ110の動作モードを、三相変調モードとし、各相の双方向スイッチのスイッチングを常に行うようにする。
In FIG. 8, when the input voltage is lower than the threshold voltage Vth, the operation mode of the
以上のような動作をさせることで、広い入力電圧範囲で双方向スイッチ106r,106s,106tのスイッチング損失を低減できる。
By operating as described above, the switching losses of the
なお、閾電圧Vthは、三相系統101の線間電圧の最大値が直流電圧のおおよそ1/2となる値に設定することが望ましいが、実施形態2と同様に、所定の範囲で設定するようにしてもよい。
It is desirable to set the threshold voltage Vth to a value at which the maximum line voltage of the three-
(実施形態5)
実施形態5は、実施形態1に係る電力変換装置の回路構成の変形例である。
(Embodiment 5)
The fifth embodiment is a modification of the circuit configuration of the power conversion device according to the first embodiment.
図9は、実施形態5に係る電力変換装置の回路構成の一例である。実施形態1では、双方向スイッチ106r,106s,106tを、それぞれ、2個のMOSFETの直列接続で構成されている。
Figure 9 shows an example of a circuit configuration of a power conversion device according to embodiment 5. In
一方、図9に示すように、実施形態5に係る電力変換装置500では、各双方向スイッチを、1個のスイッチと4個のダイオードで構成することができる。すなわち、実施形態1における双方向スイッチ106r,106s,106tを、それぞれ、図9に示すような双方向スイッチ506r,506s,506tとすることができる。
On the other hand, as shown in FIG. 9, in the
具体的には、インダクタ102r,102s,102tと三相ダイオードブリッジ103との接続点を第1の接続点とし、コンデンサ104とコンデンサ105との接続点を第2の接続点とする。このとき、各相の双方向スイッチ506r,506s,506tは、それぞれ、1個のスイッチング素子、例えばパワートランジスタと、第1の接続点から当該スイッチング素子の一端に順方向に接続された第1のダイオード、当該スイッチング素子の他端から第1の接続点に順方向に接続された第2のダイオードと、第2の接続点から上記一端に順方向に接続された第3のダイオードと、上記他端から第2の接続点に順方向に接続された第4のダイオードとを含む構成とすることができる。
Specifically, the connection point between the
なお、スイッチング素子としては、MOSFETの代わりに、IGBT、サイリスタ、GTO、バイポーラトランジスタ等他のスイッチング素子を用いてもよい。 In addition, instead of MOSFETs, other switching elements such as IGBTs, thyristors, GTOs, and bipolar transistors may be used as switching elements.
このような回路構成とする実施形態5によれば、故障率が比較的高いスイッチング素子(ダイオードを除く)の数を減らすことができ、電力変換装置の故障率を低減することができる。 According to embodiment 5, which has such a circuit configuration, it is possible to reduce the number of switching elements (excluding diodes) that have a relatively high failure rate, thereby reducing the failure rate of the power conversion device.
また、スイッチング素子として高価な素子を使用する場合には、コストを低減することができる。 In addition, when expensive elements are used as switching elements, costs can be reduced.
また、スイッチング素子として、比較的大きな素子を使用する場合には、実装スペースを縮小することができる。 In addition, when using a relatively large element as the switching element, the mounting space can be reduced.
以上、本発明の各種実施形態について説明したが、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。また、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。これらは全て本発明の範疇に属するものである。さらに文中や図中に含まれる数値や名称等もあくまで一例であり、異なるものを用いても本発明の効果を損なうものではない。 Although various embodiments of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments and includes various modified examples. Furthermore, the above-mentioned embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. Furthermore, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. All of these belong to the scope of the present invention. Furthermore, the numerical values, names, etc. contained in the text and figures are merely examples, and the effect of the present invention will not be impaired if different ones are used.
また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、回路等は、それらの一部又は全部を、例えば集積回路あるいはプログラマブル半導体チップで設計する等により実現してもよい。 In addition, it is possible to add, remove, or replace part of the configuration of each embodiment with other configurations. Furthermore, the above configurations, functions, circuits, etc. may be realized in whole or in part by designing, for example, an integrated circuit or a programmable semiconductor chip.
100・・・電力変換装置、101…三相系統、102r,102s,102t…インダクタ、103…三相ダイオードブリッジ、104,105…コンデンサ、106r,106s,106t…双方向スイッチ、107r、107s…電圧センサ、108r,108s…電流センサ、109…電圧センサ、110…コントローラ、P,N…直流出力部の端子、M…コンデンサの接続中点 100...power conversion device, 101...three-phase system, 102r, 102s, 102t...inductor, 103...three-phase diode bridge, 104, 105...capacitor, 106r, 106s, 106t...bidirectional switch, 107r, 107s...voltage sensor, 108r, 108s...current sensor, 109...voltage sensor, 110...controller, P, N...terminals of DC output section, M...connection midpoint of capacitor
Claims (8)
それぞれが、前記三相交流電圧が入力される各相の端子に接続された複数のインダクタと、
前記複数のインダクタの後段に接続された三相ダイオードブリッジと、
前記三相ダイオードブリッジの出力側の二端子間に直列に接続された第一コンデンサおよび第二コンデンサと、
それぞれが、前記各相について、前記インダクタと前記三相ダイオードブリッジとの接続点である第1の接続点と、前記第一コンデンサと前記第二コンデンサとの接続点である第2の接続点との間に接続された、複数の双方向スイッチと、
前記複数の双方向スイッチのスイッチングを制御するコントローラと、を備え、
前記コントローラは、前記三相交流電圧の各相のうち入力電圧の絶対値が最大である相の前記双方向スイッチを、前記入力電圧の絶対値が最大である期間の全部または一部において、オン状態に固定するよう前記スイッチングを制御するオン固定モードを、動作モードとして有する、電力変換装置。 A power conversion device that converts a three-phase AC voltage into a DC voltage,
a plurality of inductors each connected to a terminal of each phase to which the three-phase AC voltage is input;
a three-phase diode bridge connected to a downstream stage of the plurality of inductors;
a first capacitor and a second capacitor connected in series between two terminals on the output side of the three-phase diode bridge;
a plurality of bidirectional switches, each connected for each phase between a first connection point that is a connection point between the inductor and the three-phase diode bridge and a second connection point that is a connection point between the first capacitor and the second capacitor;
A controller that controls switching of the plurality of bidirectional switches,
the controller has, as an operation mode, a fixed on mode in which the switching of the bidirectional switch of a phase having a maximum absolute value of an input voltage among each phase of the three-phase AC voltage is controlled to be fixed to an on state during all or part of a period during which the absolute value of the input voltage is maximum.
前記コントローラは、前記動作モードが前記オン固定モードであるときに、前記三相ダイオードブリッジの各相に対する指令電圧に補正電圧を加算することにより、前記入力電圧の絶対値が最大である相の前記双方向スイッチを前記オン状態に固定する、電力変換装置。 2. The power conversion device according to claim 1,
When the operation mode is the fixed on mode, the controller adds a correction voltage to a command voltage for each phase of the three-phase diode bridge, thereby fixing the bidirectional switch of a phase in which the absolute value of the input voltage is maximum to the on state.
前記コントローラは、前記動作モードが前記オン固定モードであるときに、前記入力電圧の絶対値が最大である相の前記双方向スイッチを、前記入力電圧の絶対値が最大である期間の全部において、前記オン状態に固定する、電力変換装置。 2. The power conversion device according to claim 1,
When the operation mode is the fixed on mode, the controller fixes the bidirectional switch of the phase in which the absolute value of the input voltage is maximum to the on state during an entire period in which the absolute value of the input voltage is maximum.
前記コントローラは、前記入力電圧の絶対値が最大である相の前記双方向スイッチをオフ状態に固定するオフ固定モードを前記動作モードとして有し、前記三相交流電圧と前記直流電圧との比率に基づいて、前記動作モードを、前記オン固定モードまたは前記オフ固定モードにする、電力変換装置。 2. The power conversion device according to claim 1,
The controller has, as the operation mode, a fixed off mode in which the bidirectional switch of a phase in which an absolute value of the input voltage is maximum is fixed to an off state, and sets the operation mode to the fixed on mode or the fixed off mode based on a ratio between the three-phase AC voltage and the DC voltage.
前記コントローラは、前記各相の前記双方向スイッチをスイッチングする三相変調モードを前記動作モードとして有し、前記三相交流電圧と前記直流電圧との比率に基づいて、前記動作モードを、前記オン固定モードまたは前記三相変調モードにする、電力変換装置。 2. The power conversion device according to claim 1,
The controller has, as the operation mode, a three-phase modulation mode in which the bidirectional switches of the phases are switched, and sets the operation mode to the fixed on mode or the three-phase modulation mode based on a ratio between the three-phase AC voltage and the DC voltage.
前記コントローラは、前記入力電圧の絶対値が最大である相の前記双方向スイッチをオフ状態に固定するオフ固定モードと、前記各相の前記双方向スイッチをスイッチングする三相変調モードとを前記動作モードとして有し、前記三相交流電圧と前記直流電圧との比率に基づいて、前記動作モードを、前記オン固定モード、前記三相変調モード、または前記オフ固定モードにする、電力変換装置。 2. The power conversion device according to claim 1,
The controller has, as the operation modes, a fixed off mode in which the bidirectional switch of the phase in which the absolute value of the input voltage is maximum is fixed to an off state, and a three-phase modulation mode in which the bidirectional switch of each phase is switched, and sets the operation mode to the fixed on mode, the three-phase modulation mode, or the fixed off mode based on a ratio between the three-phase AC voltage and the DC voltage.
前記各相の前記双方向スイッチは、それぞれ、直列に接続された2個のスイッチング素子を含む、電力変換装置。 2. The power conversion device according to claim 1,
A power conversion device, wherein the bidirectional switch for each phase includes two switching elements connected in series.
前記各相の前記双方向スイッチは、それぞれ、1個のスイッチング素子と、前記第1の接続点から前記スイッチング素子の一端に順方向に接続された第1のダイオードと、前記スイッチング素子の他端から前記第1の接続点に順方向に接続された第2のダイオードと、前記第2の接続点から前記一端に順方向に接続された第3のダイオードと、前記他端から前記第2の接続点に順方向に接続された第4のダイオードとを含む、電力変換装置。 2. The power conversion device according to claim 1,
a first diode connected in a forward direction from the first connection point to one end of the switching element, a second diode connected in a forward direction from the other end of the switching element to the first connection point, a third diode connected in a forward direction from the second connection point to the one end, and a fourth diode connected in a forward direction from the other end to the second connection point.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021092225A JP7561688B2 (en) | 2021-06-01 | 2021-06-01 | Power Conversion Equipment |
PCT/JP2021/043060 WO2022254746A1 (en) | 2021-06-01 | 2021-11-24 | Power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021092225A JP7561688B2 (en) | 2021-06-01 | 2021-06-01 | Power Conversion Equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022184401A JP2022184401A (en) | 2022-12-13 |
JP7561688B2 true JP7561688B2 (en) | 2024-10-04 |
Family
ID=84324057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021092225A Active JP7561688B2 (en) | 2021-06-01 | 2021-06-01 | Power Conversion Equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7561688B2 (en) |
WO (1) | WO2022254746A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012151993A (en) | 2011-01-19 | 2012-08-09 | Hitachi Industrial Equipment Systems Co Ltd | Electric power conversion system and rotary machine drive system using the same |
CN103973136A (en) | 2014-04-24 | 2014-08-06 | 华为技术有限公司 | VIENNA rectifier current sampling device and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5119222B2 (en) * | 2009-08-31 | 2013-01-16 | 株式会社日立産機システム | Converter device, motor driving module, and refrigeration device |
-
2021
- 2021-06-01 JP JP2021092225A patent/JP7561688B2/en active Active
- 2021-11-24 WO PCT/JP2021/043060 patent/WO2022254746A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012151993A (en) | 2011-01-19 | 2012-08-09 | Hitachi Industrial Equipment Systems Co Ltd | Electric power conversion system and rotary machine drive system using the same |
CN103973136A (en) | 2014-04-24 | 2014-08-06 | 华为技术有限公司 | VIENNA rectifier current sampling device and method |
Also Published As
Publication number | Publication date |
---|---|
JP2022184401A (en) | 2022-12-13 |
WO2022254746A1 (en) | 2022-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10819222B2 (en) | Circuitry for power factor correction and methods of operation | |
JP5282855B2 (en) | AC-AC converter | |
US10622914B2 (en) | Multi-stage DC-AC inverter | |
US8310848B2 (en) | Direct AC power converting apparatus | |
JP5254357B2 (en) | Power converter | |
US10164546B2 (en) | Electric power conversion device | |
US20090040800A1 (en) | Three phase rectifier and rectification method | |
CN111542999A (en) | Power conversion device | |
CN101584107A (en) | DC power supply unit and air conditioner with the same | |
JP2010252451A (en) | Switching element drive circuit for power converter | |
JP4743116B2 (en) | PWM cycloconverter | |
JP2015162951A (en) | Bidirectional converter | |
JP2012075263A (en) | Power conversion device | |
WO2019003270A1 (en) | Power conversion device, motor drive control device, fan, compressor, and air conditioner | |
US9887539B2 (en) | Power conversion device | |
JP6022883B2 (en) | Power supply | |
JP7561688B2 (en) | Power Conversion Equipment | |
JPH11235040A (en) | Power supply with three-phase high power factor converter | |
JP2010172146A (en) | Switching power supply and power supply control semiconductor integrated circuit | |
JP5400956B2 (en) | Power converter | |
JP2016208693A (en) | Power converter | |
JP7492441B2 (en) | Switching power supply device, control device thereof, and control method | |
CN111213308B (en) | Auxiliary converter circuit and method of operating the same | |
JP3269532B2 (en) | AC-DC converter | |
WO2018180275A1 (en) | Ac/dc conversion circuit and power factor improvement circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7561688 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |