[go: up one dir, main page]

JP7560971B2 - Powder coating manufacturing method and manufacturing equipment - Google Patents

Powder coating manufacturing method and manufacturing equipment Download PDF

Info

Publication number
JP7560971B2
JP7560971B2 JP2020125293A JP2020125293A JP7560971B2 JP 7560971 B2 JP7560971 B2 JP 7560971B2 JP 2020125293 A JP2020125293 A JP 2020125293A JP 2020125293 A JP2020125293 A JP 2020125293A JP 7560971 B2 JP7560971 B2 JP 7560971B2
Authority
JP
Japan
Prior art keywords
powder
temperature
manufacturing
workpiece
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020125293A
Other languages
Japanese (ja)
Other versions
JP2022021618A (en
Inventor
淳一 藤田
泰広 吉野
美智雄 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIPOX CORPORATION
Original Assignee
MIPOX CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIPOX CORPORATION filed Critical MIPOX CORPORATION
Priority to JP2020125293A priority Critical patent/JP7560971B2/en
Publication of JP2022021618A publication Critical patent/JP2022021618A/en
Application granted granted Critical
Publication of JP7560971B2 publication Critical patent/JP7560971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Description

本発明は、粉体塗装物の製造方法及び製造設備に関するものである。 The present invention relates to a manufacturing method and manufacturing equipment for powder-coated products.

近年、環境保護の観点から、有機溶剤の大気中への放出は大きな問題になっており、塗料業界においても従来の有機溶剤型塗料に代わり得るものとして、排気処理・廃水処理が不要で回収再利用も可能な環境に優しい塗料として粉体塗料への期待が高まっている。 In recent years, from the perspective of environmental protection, the release of organic solvents into the atmosphere has become a major problem, and within the paint industry, expectations are growing for powder paints as an alternative to conventional organic solvent-based paints, as they are environmentally friendly paints that do not require exhaust or wastewater treatment and can be recovered and reused.

特開2005-218998号公報JP 2005-218998 A

粉体塗料が熱硬化性の場合には、熱を加えることにより架橋反応して硬化するので、被塗物に粉体塗料を付着させた後に、一定温度の雰囲気に一定時間置いて溶融・硬化させる、すなわち焼付けをする必要があり、特許文献1に記載のような極低速の熱風を炉内で循環させる熱風循環式乾燥炉が焼付け用に用いられている。
而して、焼付け温度は比較的高いため、昇温まで時間が掛かる。そのため、複数の粉体付着物を順次連続的に乾燥炉を通過させるようにすると、炉長が長くなり、その分製造設備の規模が大きくなる。また、粉体塗料は昇温速度が遅いと溶融と硬化が部分的に発生して塗膜不良を生じさせる恐れがある。
これに対して、乾燥炉の前段に赤外線の照射炉を設置して、赤外線の照射により粉体付着物を焼付け温度まで速やかに昇温させることが提案されているが、赤外線の当たらない影となる部分があるとその部分が昇温不足となってしまう。
If the powder coating is thermosetting, it hardens through a cross-linking reaction when heat is applied, so after the powder coating has been applied to the substrate, it must be left in an atmosphere of a certain temperature for a certain period of time to melt and harden, i.e., baked. For this purpose, a hot air circulating drying oven, in which extremely slow hot air is circulated inside the oven, as described in Patent Document 1, is used.
Since the baking temperature is relatively high, it takes time to heat up. Therefore, if multiple powder-coated objects are passed through a drying oven in succession, the oven length becomes longer, and the scale of the manufacturing equipment becomes larger. Also, if the temperature rise speed of the powder paint is slow, melting and hardening may occur partially, which may cause coating defects.
In response to this problem, it has been proposed to install an infrared ray irradiation furnace before the drying furnace and quickly raise the temperature of the powdered material to the baking temperature by irradiating it with infrared rays. However, if there are any shaded areas that are not hit by the infrared rays, those areas will not be heated enough.

本発明は上記従来の問題点に着目して為されたものであり、粉体塗料が付着された粉体付着物を焼付け温度まで速やかに且つムラなく昇温できる昇温方法を組み込んだ、新規且つ有用な粉体塗装物の製造方法を提供することを、その目的とする。
また、本発明は、前記の製造方法の製造設備を提供することを、その目的とする。
The present invention has been made in response to the above-mentioned problems in the conventional art, and has as its object to provide a new and useful method for producing powder-coated objects which incorporates a heating method capable of quickly and evenly raising the temperature of a powder-coated object to which a powder paint has been applied up to the baking temperature.
Another object of the present invention is to provide a production facility for the above-mentioned production method.

本発明は、上記目的を達成するために為されたものであり、[1]の発明は、被塗物に静電気を利用して粉体塗料を付着する粉体付着工程と、前記粉体付着工程の後に誘導加熱を施して前記被塗物との境界側を溶融させることで前記粉体塗料を仮止め溶着する仮止め溶着工程と、前記仮止め溶着工程の後に熱風の束を高速で吹付けて焼付け温度まで昇温する昇温工程と、前記昇温工程の後に前記粉体塗料を焼付けして粉体塗装物にする焼付け工程を備え、仮止め溶着された前記粉体塗料は、前記昇温工程において熱風の束の高速吹付けの衝撃に耐え得て飛び出しが阻止されることを特徴とする粉体塗装物の製造方法である。 The present invention has been made to achieve the above object, and the invention [1] is a method for manufacturing a powder-coated product, which includes a powder-adhering step in which powder paint is applied to a substrate using static electricity, a temporary welding step in which induction heating is applied after the powder-adhering step to melt the boundary side with the substrate to temporarily weld the powder paint, a heating step in which a hot air flux is blown at high speed to raise the temperature to a baking temperature after the temporary welding step, and a baking step in which the powder paint is baked to produce a powder-coated product after the heating step, and the temporarily welded powder paint is capable of withstanding the impact of the hot air flux blown at high speed in the heating step and is prevented from flying out.

[2]の発明は、[1]に記載した粉体塗装物の製造方法において、被塗物の厚さは、0.5mm以上であることを特徴とする製造方法である。 The invention [2] is the method for producing a powder-coated article described in [1], characterized in that the thickness of the article to be coated is 0.5 mm or more.

[3]の発明は、[1]または[2]に記載した粉体塗装物の製造方法において、仮止め溶着工程では、被塗物に施された粉体塗料の表面を55℃以上80℃未満まで加熱することを特徴とする製造方法である。 The invention [3] is a method for producing a powder-coated article as described in [1] or [2], characterized in that in the temporary fixing and welding step, the surface of the powder paint applied to the article to be coated is heated to 55°C or higher and lower than 80°C.

[4]の発明は、[1]から[3]のいずれかに記載した粉体塗装物の製造方法において、昇温工程では、焼付け温度よりも高い温度の熱風を、被塗物に施された粉体塗料の近傍の風速が5m/sec以上になるように吹付けることを特徴とする製造方法である。 The invention of [4] is a method for producing a powder-coated article according to any one of [1] to [3], characterized in that in the heating step, hot air having a temperature higher than the baking temperature is blown so that the air speed in the vicinity of the powder coating applied to the article is 5 m/sec or more.

[5]の発明は、[1]から[4]のいずれかに記載の方法を実施するための粉体塗装物の製造設備であって、粉体付着工程を実施する塗装ブースと、仮止め溶着工程を実施する誘導加熱装置と、昇温工程を実施するジェット噴出式加熱装置と、焼付け工程を実施する均熱炉がライン化されて設置されており、被塗物が搬送されながら、各工程に順次供されることを特徴とする製造設備である。 The invention of [5] is a manufacturing facility for powder-coated objects for carrying out the method according to any one of [1] to [4], characterized in that a coating booth for carrying out the powder attachment process, an induction heating device for carrying out the temporary fixing and welding process, a jet ejection heating device for carrying out the temperature increase process, and a soaking furnace for carrying out the baking process are installed in a line, and the object to be coated is transported and subjected to each process in sequence.

[6]の発明は、[5]に記載した粉体塗装物の製造設備において、誘導加熱装置は粉体塗料が付着された被塗物を対向するワークコイルの間に通過させることで誘導加熱するものであり、溶着促進機構として、前記ワークコイルと前記被塗物の距離を変更できる距離変更手段及び/または前記ワークコイルを構成する複数のコイル要素どうしの上下方向の対向間隔を変更する間隔変更手段を備えることを特徴とする製造設備である。 The invention of [6] is a manufacturing equipment for powder-coated products described in [5], in which the induction heating device inductively heats the workpiece to which the powder coating has been applied by passing it between opposing work coils, and is characterized in that the manufacturing equipment is provided with, as a welding promotion mechanism, a distance changing means for changing the distance between the work coil and the workpiece and/or a spacing changing means for changing the vertical spacing between the multiple coil elements that make up the work coil.

本発明の製造方法によれば、粉体付着物を焼付け温度まで速やかに且つムラなく昇温できる昇温方法が組み込まれており、この製造設備では、塗装ブースの後段に設置する焼付けラインを短縮化できる。 The manufacturing method of the present invention incorporates a heating method that can quickly and evenly raise the temperature of the powder-attached material to the baking temperature, and this manufacturing facility can shorten the baking line installed downstream of the paint booth.

本発明の実施の形態に係る製造設備のライン構成図である。1 is a line configuration diagram of a manufacturing facility according to an embodiment of the present invention. 図1の誘導加熱装置の一対のワークコイルの構成図である。FIG. 2 is a configuration diagram of a pair of work coils of the induction heating device of FIG. 1. 図2の誘導加熱装置の概略的構成図である。FIG. 3 is a schematic diagram of the induction heating device of FIG. 2 . 図2とは別例の誘導加熱装置の概略的説明図である。FIG. 3 is a schematic explanatory diagram of an induction heating device according to another embodiment of the present invention, different from that shown in FIG. 2 . 図1のジェット噴出式加熱装置のイメージ的説明図である。FIG. 2 is an image explanatory diagram of the jet ejection type heating device of FIG. 1. 実施例で用いた粉体付着物の温度測定点を示す斜視図である。FIG. 2 is a perspective view showing temperature measurement points of the powder deposit used in the examples. 実施例で得られた粉体付着物の昇温グラフである。1 is a graph showing temperature rise of powdery deposits obtained in the examples.

以下、本発明の実施の形態に係る粉体塗装物の製造方法を、ライン化して実現した製造設備と共に説明する。
本発明の被塗物は、誘導加熱を利用することから、導電性材料、主に金属製の物で構成されている。薄物の厚さは0.5~4.0mm、厚物の厚さはそれ以上になっているが、本発明では被塗物の厚さは0.5mm以上が対象になっている。すなわち、本発明では、薄物も厚物も同じように対象になっている。
粉体塗料は、従来から粉体塗装に使用されていたものならば、特に制限なく使用できる。粉体塗料は、高分子樹脂及び顔料等を主原料とする粉末状の固体で、有機溶剤が含まれていない。但し、大きく分けて熱可塑性系と熱硬化性系があり、熱硬化性系には、エポキシ系粉体塗料、ポリエステル系粉体塗料、エポキシポリエステル系粉体塗料、フッ素樹脂系粉体塗料、アクリル系粉体塗料などがあり、これらのタイプの粉体塗料を用いるときには通常付着した後に焼付けをして溶融・硬化をしていることから、現状では本発明ではこれらのタイプの使用が主に想定されている。
Hereinafter, a method for producing a powder coated article according to an embodiment of the present invention will be described together with a production line implemented as a production facility.
The coating object of the present invention is made of a conductive material, mainly metal, because induction heating is used. Thin objects are 0.5 to 4.0 mm thick, and thick objects are thicker than that, but the coating object of the present invention is intended to be 0.5 mm or thicker. In other words, the present invention is intended to be used for both thin and thick objects.
Powder coatings can be used without any particular restrictions as long as they have been used for powder coating in the past. Powder coatings are solid powders made mainly of polymer resins and pigments, and do not contain organic solvents. However, they are broadly divided into thermoplastic and thermosetting types, and thermosetting types include epoxy-based powder coatings, polyester-based powder coatings, epoxy-polyester-based powder coatings, fluororesin-based powder coatings, and acrylic-based powder coatings. When using these types of powder coatings, they are usually baked after application to melt and harden, so currently, the present invention mainly assumes the use of these types.

製造設備の内部では、被塗物(W)が治具に吊下げられたり、ベルトコンベアに着荷されたりして搬送されるようになっており、図1に示す製造設備1では、着脱エリアで治具に吊下げられて搬送路(L)上を搬送されている。なお、粉体が付着されると粉体付着物、仮止め溶着されると粉体溶着物、更に焼付けが完了すると粉体塗装物になるが、以下の記載では、説明の状況に応じて、被塗物(W1)、粉体付着物(W2)、粉体溶着物(W3)、粉体塗装物(W4)を使い分けている。 Inside the manufacturing equipment, the object to be coated (W) is transported by being hung from a jig or attached to a belt conveyor; in the manufacturing equipment 1 shown in Figure 1, the object is hung from a jig in the attachment/detachment area and transported on the transport path (L). Note that when powder is attached, it becomes a powder-adhered object, when it is temporarily welded, it becomes a powder-welded object, and when baking is completed, it becomes a powder-coated object; however, in the following description, the terms object to be coated (W1), powder-adhered object (W2), powder-welded object (W3), and powder-coated object (W4) are used depending on the situation.

粉体付着の前に、油脂分や異物を除去し、塗料が密着し易い状態にするために、一例として湯洗~脱脂化成(リン酸鉄)~水洗1、2、3~水切~冷却の一連の処理が施されるが、慣用的な処理方法及び処理設備になっている。
この前処理が施された被塗物(W1)が投入エリアから塗装ブース3に投入される。
Before the powder is applied, a series of processes is carried out to remove oil and other foreign matter and to prepare the surface for easy adhesion of the paint, for example washing with hot water, degreasing (iron phosphate), water washing 1, 2, 3, draining, and cooling. These are conventional processing methods and equipment.
The workpiece (W1) that has been subjected to this pretreatment is loaded into the coating booth 3 from the loading area.

塗装ブース3では、被塗物(W1)に静電気を利用して粉体塗料を付着する粉体付着工程が実施される。この実施の形態では、静電乾式吹付け法が採用されており、被塗物(W1)の表面に粉体塗料を吹付けるようになっている。この方法によれば、静電ガンから帯電された粉体塗料が被塗物(W1)に向かって吹付けられて+イオンと-イオンとの引力により粉体塗料が被塗物(W1)の表面に付着する。なお、その他に、静電気を用いたものとして、摩擦帯電式塗装があり、本発明ではいずれも採用可能になっている。 In the coating booth 3, a powder application process is carried out in which powder paint is applied to the workpiece (W1) using static electricity. In this embodiment, an electrostatic dry spraying method is used, in which powder paint is sprayed onto the surface of the workpiece (W1). According to this method, charged powder paint is sprayed from an electrostatic gun toward the workpiece (W1), and the powder paint adheres to the surface of the workpiece (W1) due to the attractive force between positive and negative ions. Another method that uses static electricity is frictional charging coating, and both of these methods can be used in the present invention.

いずれの塗装法も従来から広く採用されており、静電乾式吹付け法を実施する塗装ブース3も慣用的な構成になっている。先ず、メイン吹付け部で被塗物(W1)の全体に粉体塗料を付着させ、更に、サブ吹付け部で微調整して粉体塗料の付着の均一化を図っている。
付着量は、最終的に得られる塗膜の厚さも、粉体塗装として慣用的な30~150μm程度になるように調整される。
Both coating methods have been widely adopted, and the coating booth 3 in which the electrostatic dry spraying method is performed is also of a conventional configuration. First, the powder paint is applied to the entire workpiece (W1) in the main spray section, and then fine adjustments are made in the sub-spray section to ensure uniform application of the powder paint.
The amount of coating is adjusted so that the thickness of the final coating film is about 30 to 150 μm, which is conventional for powder coating.

塗装ブース3から出てきた段階では、被塗物(W1)の表面に粉体塗料が付着して粉体付着物(W2)になっている。この粉体付着物(W2)が誘導加熱装置5に送られる。
誘導加熱装置5では、高周波誘導加熱を施して、被塗物(W1)と付着した粉体塗料との境界側を溶融して粉体塗料を被塗物(W1)に対して仮止め溶着させる仮止め溶着工程が実施される。
具体的には、特開2005-259575号に記載の装置で構成されている。図2、図3に示すように、一対のワークコイル5a、5aが銅線を通した柔軟性の有るチューブ5bで繋がれた状態で平行に立設されており、この一対のワークコイル5a、5aの間を、粉体付着物(W2)が通過する。
When the workpiece (W1) leaves the coating booth 3, the powder paint has adhered to the surface of the workpiece (W1) to form a powder deposit (W2). This powder deposit (W2) is sent to the induction heating device 5.
In the induction heating device 5, high-frequency induction heating is applied to melt the boundary between the workpiece (W1) and the attached powder paint, thereby carrying out a temporary welding process to temporarily weld the powder paint to the workpiece (W1).
Specifically, the device is configured with the device described in JP 2005-259575 A. As shown in Fig. 2 and Fig. 3, a pair of work coils 5a, 5a are connected by a flexible tube 5b through which a copper wire is passed and are erected in parallel, and the powder deposit (W2) passes between the pair of work coils 5a, 5a.

高周波誘導加熱方式では、被塗物(W1)が加熱され、それに付着した粉体塗料が被塗物(W1)から熱を受けとって加熱されるようになっており、粉体塗料の溶融は被塗物(W1)との境界側から開始される。
本発明では、この仕組みを利用して、粉体塗料の全体ではなく、被塗物(W1)との境界側を溶融させることで、その溶融部分を接着剤として粉体塗料を被塗物(W1)に溶着させて仮止めさせており、仮止め溶着の強度は次の熱風の束を高速で吹付けて焼付け温度まで一気に昇温する昇温工程において粉体塗料が高速の熱風の衝撃を受けて飛び出さない程度であればよく、厚物でも仮止めであれば十分に目的を達成できる。
In the high-frequency induction heating method, the workpiece (W1) is heated, and the powder paint adhering to it receives heat from the workpiece (W1) and is heated accordingly, with melting of the powder paint starting from the boundary side with the workpiece (W1).
In the present invention, this mechanism is utilized to melt only the boundary side with the substrate (W1) rather than the entire powder paint, and the molten portion acts as an adhesive to weld the powder paint to the substrate (W1) and temporarily secure it. The strength of the temporary welding need only be sufficient to prevent the powder paint from flying off due to the impact of the high-velocity hot air in the next heating process, in which a beam of hot air is blown at high speed to quickly raise the temperature to the baking temperature, and the purpose can be sufficiently achieved even with thick substrates if the temporary attachment is performed.

高周波誘導加熱だけでも焼付けは可能ではあるが、被塗物(W1)が厚物の場合には様々な形状やサイズに分かれており、一気に焼付けまでするとなると、加熱にバラつきが出やすい。一方、製造品種ごとにワークコイルの付け替えをするのはコストや作業上からも現実的ではない。
これに対して、本発明では、上記したように昇温の前段階用に利用しており、その段階用では上記したように厚物でも十分に対応可能になっている。
Although it is possible to perform the baking process using only high-frequency induction heating, if the workpiece (W1) is thick and has various shapes and sizes, the heating is likely to be uneven if the workpiece is baked all at once. On the other hand, it is not realistic in terms of cost and work to change the work coil for each product type.
In contrast, the present invention is used in the preliminary stage of temperature rise as described above, and is therefore fully capable of handling thick objects in this stage as described above.

なお、誘導加熱装置5では、ワークコイル5aの保持部材5cが開閉モータに連結されたボールねじ機構5dにより開閉方向に移動できると共に、開閉モータとボールねじ機構5dを中心移動モータ5eの駆動により一体に移動できる構成になっており、ワークコイル5aと粉体付着物(W2)との距離を変更したり、高周波出力を変更したりできるようになっており、これらの変更手段の適用範囲内で被塗物(W1)の形状やサイズに応じて仮止め溶着状態を最適化することができる。すなわち、これらの変更手段は溶着促進機構として利用されている。 In the induction heating device 5, the holding member 5c of the work coil 5a can be moved in the opening and closing direction by a ball screw mechanism 5d connected to the opening and closing motor, and the opening and closing motor and the ball screw mechanism 5d can be moved together by driving the center movement motor 5e. This makes it possible to change the distance between the work coil 5a and the powder deposit (W2) and to change the high-frequency output. The temporary welding state can be optimized according to the shape and size of the workpiece (W1) within the range of application of these changing means. In other words, these changing means are used as a welding promotion mechanism.

仮止め溶着工程での仮止め溶着の完了は、現在市販されている粉体塗料であれば、被塗物(W1)に施された粉体塗料の表面が55℃以上80℃未満まで到達していることが目安になっている。非接触式温度計等を使用した温度測定や予め蓄積された昇温データに基づいて時間管理で完了を把握できる。 In the temporary welding process, the completion of the temporary welding is determined when the surface of the powder paint applied to the workpiece (W1) reaches a temperature of 55°C or higher and less than 80°C, for powder paints currently available on the market. Completion can be determined by time management based on temperature measurements using a non-contact thermometer or pre-accumulated temperature rise data.

誘導加熱装置5は、特開2012-138175号に記載の別例のものを使用してもよい。この装置では、高周波出力を変更できるだけでなく、図4に示すように、ワークコイル5aを複数のコイル要素5f、5f……で構成し、それぞれ保持部材5g、5g……に保持させ、保持部材5g、5g、……を上下方向に移動させることでコイル要素5f、5f……どうしの上下方向の対向間隔をアーム部材5hの回動を利用して変更できるようになっており、この変更手段を利用することでも、この手段の適用範囲内で被塗物(W1)の形状やサイズに応じて仮止め溶着状態を最適化することができる。
なお、距離の変更手段と併用した構造にすることも技術的には可能であり、両方の変更手段を組み合わせたものを利用してもよいが、仮止め溶着の目的ではそこまでは必ずしも要求されていない。
The induction heating device 5 may be another example described in JP 2012-138175 A. In this device, not only can the high-frequency output be changed, but as shown in Fig. 4, the work coil 5a is composed of multiple coil elements 5f, 5f ..., which are held by holding members 5g, 5g ..., and the holding members 5g, 5g ... are moved in the vertical direction to change the opposing distance between the coil elements 5f, 5f ... in the vertical direction by utilizing the rotation of the arm member 5h, and by utilizing this changing means, the temporary welding state can be optimized according to the shape and size of the workpiece (W1) within the applicable range of this means.
It is technically possible to use a structure in which this is also used in conjunction with a distance changing means, and a combination of both change means may be used, but this is not necessarily required for the purpose of temporary welding.

誘導加熱装置5から出てきた粉体溶着物(W3)は、トンネル状の炉7に送られる。この炉7の上流側にはジェット噴出式加熱装置9が配置されており、先ず、昇温工程が実施されて、粉体溶着物(W3)は加熱されて焼付け温度まで昇温する。
ジェット噴出式加熱装置9はジェット噴射された熱風の束を被加熱物に衝突させて熱を伝えるもので、ジェットオーブンとも言われており、高い熱伝達率で熱エネルギーを被加熱物の表面に伝えることができる。この特徴を生かして、本発明では焼付け温度までの速やかな昇温を図っている。
このジェット噴出式加熱装置9では、図5に示すように、前後上下に配列された多数のノズル9a、9a、……のノズル群が左右で対向配置され、且つ、それぞれのノズル吹出し口が左右で対向している。この左右のノズル群の間を、粉体溶着物(W3)が通過する。従って、粉体溶着物(W3)はこの高速熱風の束の衝撃を左右両側から受け止めることになる。
The powder welded material (W3) coming out of the induction heating device 5 is sent to a tunnel-shaped furnace 7. A jet ejection type heating device 9 is arranged upstream of the furnace 7, and a heating process is first carried out, where the powder welded material (W3) is heated to a baking temperature.
The jet-type heating device 9 transmits heat by colliding a jet of hot air with the object to be heated, and is also called a jet oven, and can transmit thermal energy to the surface of the object to be heated with a high thermal conductivity. Taking advantage of this feature, the present invention aims to quickly raise the temperature to the baking temperature.
In this jet-ejection type heating device 9, as shown in Fig. 5, a number of nozzle groups 9a, 9a, ... are arranged vertically and front to back, and are arranged opposite each other on the left and right, and the nozzle outlets of each nozzle face each other on the left and right. The powder welded material (W3) passes between the left and right nozzle groups. Therefore, the powder welded material (W3) receives the impact of the high-speed hot air flux from both the left and right sides.

粉体塗料の種類に応じて最適な焼付け状態を実現するために焼付け温度と焼付け時間の範囲が決まっているので、高速熱風の温度と風速は、仮止め溶着状態と装置能力を考慮して粉体溶着物(W3)を焼付け温度まで迅速に到達させるために最適設定される。
温度は粉体塗料の焼付け温度よりも幾分か高い温度、好ましくは20~50℃程度高い温度、例えば、200~250℃程度に設定することが推奨される。温度は高いほど粉体溶着物(W3)に与える熱を増やすことができるが、高くなり過ぎると焼付け温度を超えて過熱してしまうから上限が設定されている。
風速は、ジェット噴射を効果的にするために粉体溶着物(W3)の近傍で5m/sec以上になるように設定することが推奨される。風速は速いほど熱風の束の勢いが強くなるが、過剰に速くなると仮止め溶着の強度が衝撃に負けて粉体塗料が飛び出す恐れがあることから、15m/sec程度が上限になると想定されている。
Since the baking temperature and baking time ranges are determined to realize the optimal baking state depending on the type of powder paint, the temperature and wind speed of the high-velocity hot air are optimally set to quickly bring the powder welded material (W3) up to the baking temperature, taking into account the temporary welding state and the equipment capacity.
It is recommended that the temperature be set to a temperature somewhat higher than the baking temperature of the powder paint, preferably about 20 to 50° C. higher, for example, about 200 to 250° C. The higher the temperature, the more heat can be applied to the powder deposit (W3), but if the temperature is too high, it will exceed the baking temperature and will overheat, so an upper limit is set.
It is recommended that the wind speed be set to 5 m/sec or more near the powder welded material (W3) in order to make the jet spray effective. The faster the wind speed, the stronger the force of the hot air flux becomes, but if the wind speed is too fast, the strength of the temporary welded joint may be defeated by the impact and the powder paint may fly out, so it is assumed that the upper limit is about 15 m/sec.

仮止め溶着された粉体塗料はこの高速熱風の束を表面側から受けて内部を含めて全体が万遍なく溶融した状態で焼付け温度まで到達した後に、炉7の下流側に搬送される。
炉7の下流側は熱風循環式で、均熱加温・循環機器11により、バーナー燃焼により加熱された空気が吹出しファンにより炉7内に吹出され、炉7内を循環して空気が吸込みファンの動作により炉7外に回収されて再び加熱されるようになっている。
炉7内では、風は極低速、具体的には0.1~1m/sec程度で流れており、殆ど無風状態になっている。
粉体塗料の焼付けはこの雰囲気温度に一定時間、例えば180℃で20分程度置かれることで進行する。
The temporarily welded powder coating material receives this high-velocity hot air flux from the surface side, and is melted evenly throughout, including the inside, until it reaches the baking temperature, after which it is transported downstream of the furnace 7.
The downstream side of the furnace 7 is a hot air circulation type, and the air heated by burner combustion is blown into the furnace 7 by the outlet fan using the uniform heating and circulation device 11, and the air circulates inside the furnace 7 and is collected outside the furnace 7 by the operation of the intake fan, where it is heated again.
Within the furnace 7, the wind flows at a very low speed, specifically, about 0.1 to 1 m/sec, and there is almost no wind.
The baking of the powder coating material proceeds by leaving it at this atmospheric temperature for a certain period of time, for example, about 20 minutes at 180°C.

本発明の方法によれば、この焼付けに必要な雰囲気温度を焼付け温度までの昇温には利用しておらず、誘導加熱装置5及びジェット噴出式加熱装置9を利用して焼付け温度まで一気に昇温させており、炉7内を雰囲気温度に保持して粉体塗料の焼付け温度までの昇温も担わせていた場合に比べて、炉長が1/3程度まで短縮化が可能になっている。この短縮化分は誘導加熱装置5やジェット噴出式加熱装置9を新たに設置した分を差し引いても余りある。
しかも、迅速な昇温により、粉体特有の溶融と硬化の混ざりも避けられ、塗膜品質も良い。
According to the method of the present invention, the atmospheric temperature required for this baking is not used to raise the temperature to the baking temperature, but the induction heating device 5 and the jet ejection type heating device 9 are used to raise the temperature to the baking temperature in one go, making it possible to shorten the furnace length to about one-third compared to when the inside of the furnace 7 is maintained at the atmospheric temperature and these devices are also responsible for raising the temperature to the baking temperature of the powder paint. This reduction more than covers the additional installation of the induction heating device 5 and the jet ejection type heating device 9.
Furthermore, the rapid heating process avoids the mixture of melting and hardening that is typical of powders, resulting in good coating quality.

以上、本発明の実施の形態について詳述してきたが、具体的構成は、上記の各実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲における設計の変更があっても発明に含まれる。 Although the embodiments of the present invention have been described in detail above, the specific configuration is not limited to the above-mentioned embodiments, and the invention also includes design changes that do not deviate from the spirit of the present invention.

上記の実施の形態に係る誘導加熱装置5(図2)と炉7内に設置したジェット噴出式加熱装置9を用いて、粉体付着物(W2)の仮止め溶着・昇温試験を行った。
粉体付着物(W2)は、図6に示す肉厚2mm、直径32mm、長さ30cmの鋼管にエポキシ樹脂の粉体塗料を塗膜の厚さが100μmになるように付着したものである。
誘導加熱装置5で測定位置(No.1~No.4)全てが70℃以上になった時点でジェット噴出式加熱装置9(220℃、風速12m/sec)に移動させて、焼付け温度である180℃まで昇温させた。図7の昇温グラフに示すように、誘導加熱装置5に入れて出し更にジェット噴出式加熱装置9に入れて最終的に焼付け温度まで昇温させるのに掛かった時間は5分程度であった。その後、均熱加温・循環機器11により180℃で焼付けをすると、焼付けは10分で終了した。すなわち、粉体付着物(W2)に対して、焼付け終了までに掛かった時間は15分であった。
Using the induction heating device 5 (FIG. 2) according to the above embodiment and a jet ejection type heating device 9 installed in a furnace 7, a temporary fixing, welding and temperature rise test for the powdery adhesion (W2) was carried out.
The powder deposit (W2) was prepared by depositing an epoxy resin powder coating on a steel pipe having a wall thickness of 2 mm, a diameter of 32 mm and a length of 30 cm as shown in FIG. 6 to a coating thickness of 100 μm.
When all of the measurement positions (No. 1 to No. 4) in the induction heating device 5 reached 70°C or higher, the material was moved to the jet ejection heating device 9 (220°C, wind speed 12 m/sec) and heated to the baking temperature of 180°C. As shown in the temperature rise graph in Figure 7, it took about 5 minutes to put the material into the induction heating device 5, take it out, and then put it back into the jet ejection heating device 9 to finally raise the temperature to the baking temperature. Thereafter, the material was baked at 180°C by the uniform heating and circulation device 11, and the baking was completed in 10 minutes. In other words, it took 15 minutes to complete baking of the powder deposit (W2).

一方、均熱加温・循環機器11により粉体付着物(W2)の温度を180℃まで昇温し、その後続けて焼付けをした場合に掛かった時間は30分であった。すなわち、粉体付着物(W2)に対して、焼付け終了までに掛かった時間は30分であった。
すなわち、本発明の方法によれば、焼付けまでの時間が大幅に短縮できるので、複数の粉体付着物(W2)を順次連続的に焼付けする製造設備における炉長を短くして、製造設備の規模をコンパクト化できる。
しかも、本発明の方法では昇温工程で衝撃を受けても粉体塗料の飛び出しは阻止され、且つ、硬化と溶融の混在も抑制されるので、粉体塗装物(W4)の塗膜が緻密化されて却って品質が向上している。
On the other hand, when the temperature of the powder-attached material (W2) was raised to 180° C. by the uniform heating and circulation device 11 and baking was then continued, the time required was 30 minutes. In other words, the time required to complete baking of the powder-attached material (W2) was 30 minutes.
In other words, according to the method of the present invention, the time until baking can be significantly shortened, so that the furnace length in a manufacturing facility in which multiple powder deposits (W2) are baked in succession can be shortened, thereby making the scale of the manufacturing facility more compact.
Furthermore, in the method of the present invention, even if the powder paint is subjected to an impact during the heating process, the powder paint is prevented from flying out, and the mixture of hardened and molten paint is suppressed, so that the coating film of the powder-coated product (W4) is densified, thereby improving the quality.

1…製造設備 3…塗装ブース 5…誘導加熱装置 5a…ワークコイル
5b…チューブ 5c…保持部材 5d…ボールねじ機構 5e…中心移動モータ
5f…コイル要素 5g…保持部材 5h…アーム部材 7…炉
9…ジェット噴出式加熱装置 9a…ノズル 11…均熱加温・循環機器
W1…被塗物 W2…粉体付着物 W3…粉体溶着物 W4…粉体塗装物
Reference Signs List 1... Manufacturing equipment 3... Paint booth 5... Induction heating device 5a... Work coil 5b... Tube 5c... Holding member 5d... Ball screw mechanism 5e... Center movement motor 5f... Coil element 5g... Holding member 5h... Arm member 7... Furnace 9... Jet ejection type heating device 9a... Nozzle 11... Uniform heating and circulation device W1... Coating object W2... Powder-adhered object W3... Powder-welded object W4... Powder-coated object

Claims (5)

被塗物に静電気を利用して粉体塗料を付着する粉体付着工程と、前記粉体付着工程の後に誘導加熱を施して前記被塗物との境界側を溶融させることで前記粉体塗料を仮止め溶着する仮止め溶着工程と、前記仮止め溶着工程の後に熱風の束を高速で吹付けて焼付け温度まで昇温する昇温工程と、前記昇温工程の後に前記粉体塗料を焼付けして粉体塗装物にする焼付け工程を備え、
前記昇温工程では、焼付け温度よりも高い温度の熱風を、被塗物に施された粉体塗料の近傍の風速が5m/sec以上になるように吹付け、
仮止め溶着された前記粉体塗料は、前記昇温工程において熱風の束の高速吹付けの衝撃に耐え得て飛び出しが阻止されることを特徴とする粉体塗装物の製造方法。
The method includes a powder adhesion step in which powder paint is adhered to the substrate by utilizing static electricity, a temporary welding step in which induction heating is applied after the powder adhesion step to melt the boundary side with the substrate to temporarily weld the powder paint, a heating step in which a hot air flux is blown at high speed after the temporary welding step to raise the temperature to a baking temperature, and a baking step in which the powder paint is baked to produce a powder coated product after the heating step.
In the heating step, hot air having a temperature higher than the baking temperature is blown onto the powder coating material applied to the workpiece at a wind speed of 5 m/sec or more in the vicinity of the powder coating material applied to the workpiece,
A method for manufacturing powder coated articles, characterized in that the powder paint that has been temporarily welded is capable of withstanding the impact of a hot air flux being blown at high speed during the temperature raising process, thereby preventing it from flying out.
請求項1に記載した粉体塗装物の製造方法において、
被塗物の厚さは、0.5mm以上であることを特徴とする製造方法。
In the method for producing a powder coated article according to claim 1,
A manufacturing method characterized in that the thickness of the substrate is 0.5 mm or more.
請求項1または2に記載した粉体塗装物の製造方法において、
仮止め溶着工程では、被塗物に施された粉体塗料の表面を55℃以上80℃未満まで加熱することを特徴とする製造方法。
In the method for producing a powder coated article according to claim 1 or 2,
This manufacturing method is characterized in that in the temporary fixing and welding process, the surface of the powder paint applied to the substrate is heated to a temperature of 55°C or higher and lower than 80°C.
請求項1から3のいずれかに記載の方法を実施するための粉体塗装物の製造設備であって、
粉体付着工程を実施する塗装ブースと、仮止め溶着工程を実施する誘導加熱装置と、昇温工程を実施するジェット噴出式加熱装置と、焼付け工程を実施する均熱炉がライン化されて設置されており、
被塗物が搬送されながら、各工程に順次供されることを特徴とする製造設備
A powder-coated object manufacturing facility for carrying out the method according to any one of claims 1 to 3, comprising:
The painting booth for the powder application process, the induction heating device for the temporary fixing and welding process, the jet ejection heating device for the temperature increase process, and the soaking furnace for the baking process are all installed in a line.
A manufacturing facility characterized in that the workpieces are transported and subjected to each process in sequence .
請求項4に記載した粉体塗装物の製造設備において、In the powder coating manufacturing equipment according to claim 4,
誘導加熱装置は粉体塗料が付着された被塗物を対向するワークコイルの間に通過させることで誘導加熱するものであり、The induction heating device heats the workpiece with the powder coating by passing it between two opposing work coils.
溶着促進機構として、前記ワークコイルと前記被塗物の距離を変更できる距離変更手段及び/または前記ワークコイルを構成する複数のコイル要素どうしの上下方向の対向間隔を変更する間隔変更手段を備えることを特徴とする製造設備。A manufacturing equipment characterized in that, as a welding promotion mechanism, it is equipped with a distance changing means that can change the distance between the work coil and the workpiece, and/or a spacing changing means that changes the vertical spacing between multiple coil elements that constitute the work coil.
JP2020125293A 2020-07-22 2020-07-22 Powder coating manufacturing method and manufacturing equipment Active JP7560971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125293A JP7560971B2 (en) 2020-07-22 2020-07-22 Powder coating manufacturing method and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125293A JP7560971B2 (en) 2020-07-22 2020-07-22 Powder coating manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2022021618A JP2022021618A (en) 2022-02-03
JP7560971B2 true JP7560971B2 (en) 2024-10-03

Family

ID=80220555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125293A Active JP7560971B2 (en) 2020-07-22 2020-07-22 Powder coating manufacturing method and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7560971B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259575A (en) 2004-03-12 2005-09-22 Yoshino Kosakusho:Kk Work heating device and work heating method
JP2012138175A (en) 2010-12-24 2012-07-19 Yoshino Kosakusho:Kk Induction heating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259575A (en) 2004-03-12 2005-09-22 Yoshino Kosakusho:Kk Work heating device and work heating method
JP2012138175A (en) 2010-12-24 2012-07-19 Yoshino Kosakusho:Kk Induction heating apparatus

Also Published As

Publication number Publication date
JP2022021618A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
KR0154131B1 (en) Plastic powder coated metal strip
US3311085A (en) Apparatus for coating objects
US4273798A (en) Process for coating metal tubes with plastic materials
US20100266782A1 (en) Method of powder coating-multiple layer powder applications of thermoset powder in a single booth for conductive and non-conductive substrates
KR20180022479A (en) Powder coating system using zinc primer and powder coating method thereof
KR100352369B1 (en) Painting method and coating device
JP4505736B2 (en) Painting machine
JP7560971B2 (en) Powder coating manufacturing method and manufacturing equipment
GB2333725A (en) Powder coating of wood-based products
US6589607B1 (en) Method of coating a continuously moving substrate with thermoset material and corresponding apparatus
US20040253373A1 (en) Method of powder coating
CN103521953B (en) A kind of coating processes of preformed soldering scaling powder
JP2006130384A (en) Coating and drying method of aqueous paint and apparatus therefor
KR102161589B1 (en) deformed fittings intersuface heating device and method of coating powder epoxy lining the same
JP2014018727A (en) Spring member
CN116493221B (en) Anti-swing curing device and curing process for sprayed aluminum profile
CN103233194A (en) Flame spraying method for polyether-ether-ketone powder
US6306468B1 (en) Metal tube coating process
JP6846741B2 (en) Insulation coating method for aluminum die-cast products
CN109465161A (en) A kind of plastic coating method and plastic-coated device of steel pipe
JP5664953B2 (en) Method for forming a multilayer coating film on cast iron pipe
JP5842766B2 (en) Plasma coating method and apparatus
JPS621468A (en) Method and apparatus for painting deformed bar
KR20200011698A (en) Method of powder coating a welded structure and work
US20070178236A1 (en) Method and apparatus for anti-corrosive coating

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20230713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240920

R150 Certificate of patent or registration of utility model

Ref document number: 7560971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150