[go: up one dir, main page]

JP7554127B2 - Alternator - Google Patents

Alternator Download PDF

Info

Publication number
JP7554127B2
JP7554127B2 JP2021013876A JP2021013876A JP7554127B2 JP 7554127 B2 JP7554127 B2 JP 7554127B2 JP 2021013876 A JP2021013876 A JP 2021013876A JP 2021013876 A JP2021013876 A JP 2021013876A JP 7554127 B2 JP7554127 B2 JP 7554127B2
Authority
JP
Japan
Prior art keywords
generator
voltage
output
power supply
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021013876A
Other languages
Japanese (ja)
Other versions
JP2022117269A (en
Inventor
和哉 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2021013876A priority Critical patent/JP7554127B2/en
Publication of JP2022117269A publication Critical patent/JP2022117269A/en
Application granted granted Critical
Publication of JP7554127B2 publication Critical patent/JP7554127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は交流発電機に関し,より詳細には,自動電圧調整器(AVR:Automatic Voltage Regulator)を備えた交流発電機の改良に関する。 The present invention relates to an AC generator, and more specifically to an improvement to an AC generator equipped with an automatic voltage regulator (AVR).

交流発電機を,界磁電流を変化させずに一定として運転する場合,該交流発電機に接続されたモータ機器等の負荷の始動や停止等に伴って負荷電流が変化すると,この負荷電流の変化に伴い交流発電機の出力電圧が変化して安定した出力電圧を得ることができない。 When an AC generator is operated with a constant field current, if the load current changes due to the start or stop of a load such as a motor connected to the AC generator, the output voltage of the AC generator changes with this change in load current, making it impossible to obtain a stable output voltage.

そのため,出力電圧を安定させることができるよう,交流発電機には通常,自動電圧調整器(以下,「AVR」と記載する。)が設けられ,出力電圧の安定が図られている(特許文献1参照)。 Therefore, in order to stabilize the output voltage, AC generators are usually equipped with an automatic voltage regulator (hereinafter referred to as "AVR") to stabilize the output voltage (see Patent Document 1).

このAVRは,発電機本体の出力電圧を予め設定された設定電圧と比較し,出力電圧が設定電圧に近付くように発電機本体の界磁電流の大きさを変化させることで発電機本体の出力電圧を制御するもので,予め設定された設定電圧に対し発電機本体の出力電圧が低くなると励磁回路212に設けた発電機界磁巻線(図示せず)に印加する界磁電流を増大させ,逆に,設定電圧に対し発電機本体の出力電圧が高くなると印加する界磁電流を減少させる制御を行う。 This AVR compares the output voltage of the generator body with a preset voltage and controls the output voltage of the generator body by changing the magnitude of the field current of the generator body so that the output voltage approaches the preset voltage. When the output voltage of the generator body becomes lower than the preset voltage, the field current applied to the generator field winding (not shown) provided in the excitation circuit 212 is increased, and conversely, when the output voltage of the generator body becomes higher than the set voltage, the applied field current is reduced.

AVRは,通常,制御対象である発電機本体210の発電機電機子巻線211の出力端子に接続され,該発電機本体210で発生した電力によって駆動されるように構成されており,一例として図7に示すようにAVR220によって制御されている発電機本体210の発電機電機子巻線211が,電気角で120°の位相差で三相巻線V,W,Uをスター結線して成る,三相4線200Vを出力する発電機電機子巻線211である場合,中性点Oに設けた中性点端子oと三相巻線V,W,Uのいずれか一相の出力端子間o-v,o-w,又はo-u(図示の例ではo-u間)で得られる単相交流115VをAVR220の電源電圧として使用する。 The AVR is usually connected to the output terminal of the generator armature winding 211 of the generator main body 210 to be controlled, and is configured to be driven by the power generated by the generator main body 210. As an example, as shown in FIG. 7, when the generator armature winding 211 of the generator main body 210 controlled by the AVR 220 is a three-phase, four-wire generator armature winding 211 that outputs 200V and is composed of three-phase windings V, W, and U star-connected with a phase difference of 120° in electrical angle, the single-phase AC of 115V obtained between the neutral terminal o at the neutral point O and the output terminal of one of the three-phase windings V, W, and U (between o-v, o-w, or o-u (between o-u in the illustrated example) is used as the power supply voltage for the AVR 220.

しかし,このように発電機本体210の出力電圧によってAVR220を駆動する場合,大型のモータ機器の投入等によって発電機本体210の負荷電流が急激に増大すると,発電機本体210の出力電圧が大きく降下すると共に,出力電圧が設定電圧に回復するまでに長時間を要し,その結果,モータ機器を円滑に起動することができないという問題が生じる。 However, when the AVR 220 is driven by the output voltage of the generator body 210 in this manner, if the load current of the generator body 210 suddenly increases due to the introduction of a large motor device, for example, the output voltage of the generator body 210 drops significantly and it takes a long time for the output voltage to recover to the set voltage, resulting in a problem that the motor device cannot be started smoothly.

すなわち,大型の負荷の投入によって発電機本体210の出力電圧が大幅に降下した場合,AVR220はこの降下幅に見合った大きさで界磁電流を増大させることで発電機本体210の出力電圧を設定電圧に復帰させる。 In other words, if the output voltage of the generator body 210 drops significantly due to the application of a large load, the AVR 220 increases the field current by an amount commensurate with the drop, thereby restoring the output voltage of the generator body 210 to the set voltage.

しかし,前述のようにAVR220は発電機電機子巻線211の出力電圧を電源電圧としているため,発電機本体210の出力電圧が大幅に降下すれば,AVR220の電源電圧も大幅に降下することになるから,AVR220は,発電機本体210の出力電圧の降下幅に見合った界磁電流の増加を行うことができなくなる。 However, as mentioned above, the AVR 220 uses the output voltage of the generator armature winding 211 as its power supply voltage. Therefore, if the output voltage of the generator body 210 drops significantly, the power supply voltage of the AVR 220 will also drop significantly, and the AVR 220 will not be able to increase the field current in proportion to the drop in the output voltage of the generator body 210.

そのため,前述したように大型のモータ機器の投入等が行われて負荷電流が急増すると,発電機本体210の出力電圧の大幅な降下が生じると共に,出力電圧が設定電圧に回復するまでに長時間を要することとなり,モータ機器を円滑に起動させることができなくなる。 Therefore, as mentioned above, when a large motor device is turned on and the load current increases suddenly, the output voltage of the generator main body 210 drops significantly, and it takes a long time for the output voltage to recover to the set voltage, making it impossible to start the motor device smoothly.

特開2012-10480号公報JP 2012-10480 A

前述したように,大型負荷の投入時に大幅な電圧降下や,設定電圧への復帰に遅れが生じるという問題は,発電機本体210の出力電圧の降下が,AVR220の電源電圧を,必要な界磁電流の増加を行い得ない程度となるまで低下させてしまうことに起因して生じるものである。 As mentioned above, the problem of a large voltage drop and a delay in returning to the set voltage when a large load is applied occurs because the drop in the output voltage of the generator body 210 reduces the power supply voltage of the AVR 220 to a level where the required increase in field current cannot be achieved.

そのため,このような問題を解消する方法としては,三相巻線V,W,Uのいずれか二つの出力端子間(v-w,w-u,又はv-u間)の電圧をAVR220の電源電圧とすることで,AVR220の電源電圧を200Vに底上げすることが考えられる。 Therefore, one way to solve this problem would be to raise the power supply voltage of AVR220 to 200V by using the voltage between any two output terminals of the three-phase windings V, W, and U (v-w, w-u, or v-u) as the power supply voltage of AVR220.

このように構成することで,大型の負荷の投入によって発電機本体210の出力電圧が降下してAVR220の電源電圧が低下したとしても,出力端子o-v,o-w,又はo-u間の115Vを電源電圧とする場合に比較して,低下後の電源電圧が比較的高い値(例えば115V以上)に維持されることで,発電機本体210の界磁電流を必要な大きさまで増大させるために必要な電源電圧が確保されることで,発電機本体210の電圧降下幅を小さくすることができると共に,早期に設定電圧に復帰させることが可能となる。 By configuring it in this way, even if the output voltage of the generator body 210 drops due to the application of a large load and the power supply voltage of the AVR 220 drops, the power supply voltage after the drop is maintained at a relatively high value (e.g., 115 V or higher) compared to when the power supply voltage is 115 V between the output terminals o-v, o-w, or o-u. This ensures the power supply voltage required to increase the field current of the generator body 210 to the required level, making it possible to reduce the voltage drop of the generator body 210 and quickly restore the set voltage.

しかし,このようにAVR220の電源電圧を115Vから200Vに変更するためには,AVR220を200V電源での駆動に耐え得る仕様とする必要がある。 However, in order to change the power supply voltage of the AVR220 from 115V to 200V in this way, the AVR220 needs to be designed to withstand being powered by a 200V power supply.

そのため,既に115V電源での駆動を前提として設計されているAVRが搭載されている交流発電機200にこの構成を採用しようとすれば,AVR220の電源配線を出力端子o-v,o-w,又はo-uから,出力端子v-w,w-u,又はv-uに単純に繋ぎ代えるだけでは対応できず,AVR220自体を200V対応のものに交換するか,AVR220の部品を交換する等して200Vの電圧の印加に耐え得る構造に改変する必要がある。 Therefore, if this configuration is to be adopted for an AC generator 200 equipped with an AVR that is already designed to be driven by a 115V power source, it is not possible to simply switch the power wiring of the AVR 220 from output terminals o-v, o-w, or o-u to output terminals v-w, w-u, or v-u. It is necessary to either replace the AVR 220 itself with one that is compatible with 200V, or to modify the structure of the AVR 220 so that it can withstand the application of a voltage of 200V by replacing parts of the AVR 220, etc.

このような200V電圧に耐え得るAVRは,115V電圧対応のAVRに比較して高価となるため,前述したAVR220の交換や構造変更に伴うコスト増は,交流発電機200の価格に反映されることとなり,市場における交流発電機200の価格競争力を低下させることとなる。 Since AVRs capable of withstanding such a voltage of 200V are more expensive than AVRs compatible with a voltage of 115V, the increased costs associated with replacing or modifying the structure of the AVR 220 described above will be reflected in the price of the AC generator 200, reducing the price competitiveness of the AC generator 200 in the market.

なお,負荷電流の変化に対する交流発電機の出力電圧の変動を抑制する方法としては,交流発電機のコアを大きくして鉄機械(鉄芯の比率の多い機械)とし,また,交流発電機の電機子巻線に,前述した三相巻線の他に補助巻線を設け,大型の負荷投入時には補助巻線の出力電圧もAVRに印加して,AVRの電源電圧を一時的に上昇させることも考えられる。 In addition, one possible method for suppressing fluctuations in the AC generator's output voltage in response to changes in the load current is to make the AC generator's core larger and make it an iron machine (a machine with a high proportion of iron core). Also, in addition to the three-phase winding mentioned above, an auxiliary winding can be provided in the AC generator's armature winding, and when a large load is applied, the output voltage of the auxiliary winding can also be applied to the AVR, temporarily increasing the AVR's power supply voltage.

しかし,これらの方法では,鉄芯の増大や部品点数の増加に伴う重量や価格の増加をもたらすというデメリットがある。 However, these methods have the disadvantage of increasing the weight and cost due to the increase in the iron core and number of parts.

しかも,これらの方法では,交流発電機の基本設計自体を見直すことが必要で,既に商品化されている交流発電機等,既存の交流発電機の出力電圧の安定化のための改良としては採用し得ない。 Moreover, these methods require a review of the basic design of the AC generator itself, and cannot be adopted as an improvement for stabilizing the output voltage of existing AC generators, such as AC generators that have already been commercialized.

そのため,発電機本体に対する大幅な設計変更を行うことなく,かつ,AVR自体の交換や,AVRの部品交換等を行うことなしに,既存の115V対応のAVRをそのまま使用して,大型負荷の投入によっても出力電圧の降下幅を減少させることができると共に,設定電圧に早期に回復させることができる交流発電機の開発が要望される。 Therefore, there is a demand for the development of an AC generator that can reduce the drop in output voltage even when a large load is applied, and can quickly restore the set voltage, without making major design changes to the generator itself, and without replacing the AVR itself or any AVR parts, by using existing 115V compatible AVRs as is.

ここで,上記課題を解決するに当たり,本発明の発明者は,115V対応のAVRであっても,その耐電圧能にはある程度の余裕が持たせてあり,電源電圧を200Vに上昇させた場合に対する耐電圧能までは無いにしても,115Vよりもある程度高い電源電圧での駆動であれば,部品等の交換を行うことなく,かつ,故障等を生じさせることなしに駆動させることができるはずであると考えた。 In order to solve the above problem, the inventor of the present invention considered that even an AVR compatible with 115V has a certain margin in its voltage resistance, and even if it does not have the voltage resistance to withstand a power supply voltage increased to 200V, if it is operated with a power supply voltage somewhat higher than 115V, it should be possible to operate it without replacing parts, etc., and without causing breakdowns, etc.

従って,115V対応のAVRを,部品の交換等を行うことなくそのまま使用した場合であっても,AVRに故障等を生じさせない範囲で115Vよりも高い電圧で駆動すれば,115V電圧で駆動する場合に比較して,大型負荷の投入時においても発電機本体の出力電圧の降下幅を小さくすることができ,また,設定電圧に早期に復帰させることができるはずであると考えた。 Therefore, even if a 115V compatible AVR is used as is without replacing any parts, etc., if it is operated at a voltage higher than 115V within a range that does not cause any malfunctions in the AVR, it is thought that it should be possible to reduce the drop in the output voltage of the generator body even when a large load is applied, and to quickly return to the set voltage, compared to when it is operated at a voltage of 115V.

しかし,既存の三相4線200Vの交流発電機からは115V電圧と200V電圧が取り出せるのみであり,AVRの電源電圧として115Vよりも大きい,200V未満の電圧を任意に取り出せるようにはなっていない。 However, existing three-phase, four-wire, 200V AC generators can only extract 115V and 200V voltages, and it is not possible to arbitrarily extract a voltage greater than 115V but less than 200V as the power supply voltage for the AVR.

本発明は,本発明の発明者の上記着眼点に基づきなされたもので,既存の交流発電機の構成を大幅に変更することなく,比較的簡単な変更を加えるだけで,大型の負荷の投入によっても電圧降下幅を減少させて早期に設定電圧に復帰させることができ,従って,交流発電機に負荷として大型のモータが接続された場合であっても,該モータの始動性を改善することのできる交流発電機を提供することを目的とする。 The present invention was made based on the above-mentioned viewpoint of the inventor of the present invention, and aims to provide an AC generator that can reduce the voltage drop and quickly return to the set voltage even when a large load is applied, by simply making relatively simple modifications without making major changes to the configuration of existing AC generators, and therefore can improve the starting performance of the motor even when a large motor is connected as a load to the AC generator.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。 Below, the means for solving the problem are described together with the reference symbols used in the description of the embodiment of the invention. These reference symbols are intended to clarify the correspondence between the description of the claims and the description of the embodiment of the invention, and needless to say, are not used in a restrictive manner in interpreting the technical scope of the present invention.

上記目的を達成するために,本発明の交流発電機1は,
中性点Oを中心に電気角で120°の位相差でスター結線された三相巻線U,V,Wからなる発電機電機子巻線11と,少なくとも発電機界磁巻線124を備えた励磁回路12を備え,前記発電機電機子巻線11の前記三相巻線U,V,Wのそれぞれに設けられた出力端子u,v,wより所定電圧の三相交流を出力可能な発電機本体10と,前記発電機本体10を電源とすると共に,前記発電機本体10の前記励磁回路12の前記発電機界磁巻線124に印加する界磁電流を変化させて前記発電機本体10の出力電圧を予め設定された設定電圧に近付ける制御を行う自動電圧調整器(AVR)20を備えた交流発電機1において,
前記自動電圧調整器(AVR)20に,前記発電機本体10が出力した交流電圧を電源電圧として入力する一対の電源入力部21,22を設け,
一方の前記電源入力部21を,前記三相巻線U,V,Wのうちのいずれか1相(図示の例ではU相)の巻線に設けた前記出力端子(図示の例では出力端子u)に接続すると共に,
他方の前記電源入力部22を,前記三相巻線V,W,Uのうち,残りの巻線W,Vのいずれか一方(図示の例ではV相)の巻線上に設けた中間タップvmに接続可能としたことを特徴とする(請求項1;図1参照)。
In order to achieve the above object, the AC generator 1 of the present invention comprises:
An AC generator 1 including a generator armature winding 11 consisting of three-phase windings U, V, and W star-connected with a phase difference of 120° electrical angle centered on a neutral point O, and an excitation circuit 12 including at least a generator field winding 124, and a generator main body 10 capable of outputting three-phase AC of a predetermined voltage from output terminals u, v, and w provided on each of the three-phase windings U, V, and W of the generator armature winding 11, and an automatic voltage regulator (AVR) 20 that uses the generator main body 10 as a power source and controls the output voltage of the generator main body 10 to approach a preset voltage by changing the field current applied to the generator field winding 124 of the excitation circuit 12 of the generator main body 10,
The automatic voltage regulator (AVR) 20 is provided with a pair of power supply input units 21 and 22 for inputting the AC voltage output by the generator main body 10 as a power supply voltage,
One of the power supply input units 21 is connected to the output terminal (output terminal u in the illustrated example) provided on a winding of one of the three-phase windings U, V, and W (U phase in the illustrated example),
The other power supply input section 22 is characterized in that it can be connected to a center tap vm provided on one of the remaining windings W, V (V phase in the illustrated example) of the three-phase windings V, W, and U (claim 1; see FIG. 1).

前記励磁回路12は,これを発電機界磁巻線124のみで構成しても良く,自動電圧調整器(AVR)20の出力電流を直接,発電機界磁巻線124に印加して発電機界磁巻線124に印加する界磁電流を直接,自動電圧調整器(AVR)20で制御するように構成するものとしても良い。 The excitation circuit 12 may be composed of only the generator field winding 124, or may be configured so that the output current of the automatic voltage regulator (AVR) 20 is directly applied to the generator field winding 124, and the field current applied to the generator field winding 124 is directly controlled by the automatic voltage regulator (AVR) 20.

また,発電機本体10の前記励磁回路12に,前述の発電機界磁巻線124の他に,該発電機界磁巻線124に印加する界磁電流を発生する,励磁機電機子巻線121と励磁機界磁巻線122を備えた交流発電機である励磁機120を設け,前記自動電圧調整器(AVR)20が,この励磁機120の前記励磁機界磁巻線122に印加する界磁電流を制御することにより前記発電機本体10の前記発電機界磁巻線124に印加する界磁電流を変化させるように構成するものとしても良い(請求項2,図2参照)。 In addition, the excitation circuit 12 of the generator main body 10 may be provided with an exciter 120, which is an AC generator equipped with an exciter armature winding 121 and an exciter field winding 122 that generate a field current to be applied to the generator field winding 124 in addition to the aforementioned generator field winding 124, and the automatic voltage regulator (AVR) 20 may be configured to change the field current to be applied to the generator field winding 124 of the generator main body 10 by controlling the field current to be applied to the exciter field winding 122 of the exciter 120 (see claim 2 and FIG. 2).

前記自動電圧調整器(AVR)20に設けた前記他方の電源入力部22は,例えば切替スイッチ30の操作により前記中間タップvmと前記中性点O(中性点端子o)のいずれか一方に選択的に接続可能とするものとしても良い(請求項3;図3参照)。 The other power supply input section 22 provided in the automatic voltage regulator (AVR) 20 may be selectively connectable to either the intermediate tap vm or the neutral point O (neutral point terminal o) by operating, for example, a changeover switch 30 (Claim 3; see Figure 3).

更に,前記三相巻線U,V,Wのそれぞれを複数個のエレメントコイル14~17の組合せにより形成し,所定の低圧出力(一例として三相4線200V出力)を行う低圧接続と,前記低圧接続時の出力に対して2倍の電圧の高圧出力(一例として三相4線400V出力)を行う高圧接続間で前記エレメントコイル14~17間の接続状態を切り替え可能とし,
前記三相巻線U,V,Wのそれぞれに,前記低圧出力を行う低圧出力端子u1,v1,w1と,前記高圧出力を行う高圧出力端子u2,v2,w2を設け,
前記低圧接続時,前記中性点Oと前記各低圧出力端子u1,v1,w1間に,同一巻数の2巻線が並列に接続されるよう前記エレメントコイル14~17を接続すると共に,
前記高圧接続時,前記中性点Oと前記各高圧出力端子u2,v2,w2間が,直列に接続された前記エレメントコイル14~17により接続されると共に,各三相巻線U,V,Wの巻数が1/2となる位置に前記各低圧出力端子u1,v1,w1が配置されるように前記エレメントコイル14~17を接続し,
前記自動電圧調整器(AVR)20の前記一方の電源入力部21を,前記低圧出力端子u1,v1,w1のうちのいずれか1つ(図示の例では低圧出力端子u1)に接続すると共に,
前記低圧出力端子(u1,v1,w1)のうち残りの端子(v1,w1)のいずれか一方(図示の例ではv1)と前記中性点O間の巻線上に前記中間タップvmを設けるものとしても良い(請求項4;図4参照)。
Furthermore, each of the three-phase windings U, V, and W is formed by combining a plurality of element coils 14 to 17, and the connection state between the element coils 14 to 17 can be switched between a low-voltage connection that performs a predetermined low-voltage output (for example, a three-phase, four-wire 200V output) and a high-voltage connection that performs a high-voltage output that is twice the voltage of the output in the low-voltage connection (for example, a three-phase, four-wire 400V output),
Each of the three-phase windings U, V, and W is provided with low voltage output terminals u1, v1, and w1 for outputting the low voltage and high voltage output terminals u2, v2, and w2 for outputting the high voltage,
At the time of the low voltage connection, the element coils 14 to 17 are connected between the neutral point O and each of the low voltage output terminals u1, v1, and w1 so that two windings having the same number of turns are connected in parallel,
During the high voltage connection, the neutral point O and each of the high voltage output terminals u2, v2, w2 are connected by the element coils 14 to 17 connected in series, and the element coils 14 to 17 are connected so that each of the low voltage output terminals u1, v1, w1 is disposed at a position where the number of turns of each of the three-phase windings U, V, W is 1/2,
The one power supply input section 21 of the automatic voltage regulator (AVR) 20 is connected to any one of the low voltage output terminals u1, v1, w1 (low voltage output terminal u1 in the illustrated example),
The center tap vm may be provided on the winding between one of the remaining terminals (v1, w1) of the low-voltage output terminals (u1, v1, w1) (v1 in the illustrated example) and the neutral point O (Claim 4; see FIG. 4).

なお,前記発電機電機子巻線11の前記三相巻線U,V,Wのそれぞれを,複数個のエレメントコイル14~17を接続して形成する場合,
好ましくは,前記中間タップvmを,該中間タップvmを設けた一相(図示の例ではV相)の巻線の,前記エレメントコイル間(図示の例ではエレメントコイル16と17間)の結線部に設ける(請求項5;図4及び図5参照)。
In addition, when each of the three-phase windings U, V, and W of the generator armature winding 11 is formed by connecting a plurality of element coils 14 to 17,
Preferably, the center tap vm is provided at a connection portion between the element coils (between element coils 16 and 17 in the illustrated example) of the winding of one phase (V phase in the illustrated example) in which the center tap vm is provided (Claim 5; see Figures 4 and 5).

以上で説明した本発明の構成により,本発明の交流発電機1では,以下の顕著な効果を得ることができた。 By using the configuration of the present invention described above, the AC generator 1 of the present invention can achieve the following remarkable effects:

AVR20の一方の前記電源入力部21を,前記三相巻線V,W,Uのうちのいずれか1相(図示の例ではU相)の巻線に設けた出力端子(図示の例では出力端子u)に接続すると共に,他方の前記電源入力部22を,前記三相巻線V,W,Uのうち,残りの巻線W,Vのいずれか一方(図示の例ではV相)の巻線上に設けた中間タップvmに接続可能としたことで,u-o端子間電圧(一例として115V)よりも高圧であるu-vm端子間電圧(実施例において147V)でAVR20を駆動することが可能となった。 One of the power supply input units 21 of the AVR20 is connected to an output terminal (output terminal u in the illustrated example) provided on one of the three-phase windings V, W, U (U phase in the illustrated example), and the other of the power supply input units 22 can be connected to an intermediate tap vm provided on one of the remaining windings W and V (V phase in the illustrated example) of the three-phase windings V, W, U. This makes it possible to drive the AVR20 with a u-vm terminal voltage (147 V in the illustrated example) that is higher than the u-o terminal voltage (115 V, for example).

その結果,u-o端子間電圧(一例として115V)をAVR20の電源電圧とする従来の構成に比較して,AVRの電源電圧の底上げが行われるため,大型負荷の投入に伴い発電機本体10の出力電圧が降下してAVR20の電源電圧が降下した場合であっても,低下後の電源電圧を所定の範囲(一例として115V以上)に維持することが可能となる。 As a result, compared to the conventional configuration in which the voltage between the u-o terminals (115V as an example) is used as the power supply voltage for the AVR20, the power supply voltage of the AVR is boosted, so even if the output voltage of the generator main body 10 drops due to the application of a large load, causing the power supply voltage of the AVR20 to drop, it is possible to maintain the power supply voltage after the drop within a specified range (115V or higher as an example).

これにより,発電機本体10の出力電圧の降下によっても,AVR20は,これに対応した大きさの界磁電流を発生させることができ,大型負荷の投入によっても発電機本体10の出力電圧の大幅な降下を抑制して,早期に設定電圧に復帰させることができ,モータ機器の始動を円滑に行わせることが可能となった。 As a result, even if the output voltage of the generator main body 10 drops, the AVR 20 can generate a field current of a corresponding magnitude, and even when a large load is applied, the output voltage of the generator main body 10 can be prevented from dropping significantly, and the set voltage can be restored quickly, making it possible to smoothly start the motor equipment.

なお,発電機本体10が発生する電力が増大すると,発電機本体10の回転抵抗は増大することから,例えば本発明の交流発電機1がエンジン駆動型発電機に搭載されている場合,エンジンの暖機が不十分な状態で大型のモータ負荷を投入するなどして発電機本体10の回転抵抗が急増すると,エンジンをストール(エンスト)させてしまう場合がある。 In addition, as the power generated by the generator body 10 increases, the rotational resistance of the generator body 10 also increases. For example, if the AC generator 1 of the present invention is mounted on an engine-driven generator, if the rotational resistance of the generator body 10 increases suddenly due to a large motor load being applied when the engine is not sufficiently warmed up, the engine may stall (stall).

しかし,AVR20に設けた前記他方の電源入力部22を,前記中間タップvmと前記中性点O(中性点端子o)のいずれか一方に選択的に接続可能とした構成では,例えばエンジンの暖機が不十分な状態にある場合などには,AVR20に設けた前記他方の電源入力部22をあえて中性点O(中性点端子o)に接続した状態でモータ負荷の投入を行うようにすることで,発電機本体10の出力電圧を降下させると共に,設定電圧への復帰を遅らせることで,エンジンにかかる回転抵抗が時間をかけて徐々に上昇するようにすることでエンジンのストールを防止する等,発電機本体10を駆動する駆動源の運転状態に合わせてAVR20の電源電圧を変更することが可能となる。 However, in a configuration in which the other power supply input section 22 provided in the AVR 20 can be selectively connected to either the intermediate tap vm or the neutral point O (neutral point terminal o), for example, when the engine is not sufficiently warmed up, the motor load is applied with the other power supply input section 22 provided in the AVR 20 deliberately connected to the neutral point O (neutral point terminal o), thereby lowering the output voltage of the generator main body 10 and delaying the return to the set voltage, so that the rotational resistance applied to the engine gradually increases over time, thereby preventing engine stall, and making it possible to change the power supply voltage of the AVR 20 according to the operating state of the drive source that drives the generator main body 10.

更に,前記発電機本体10を,前記三相巻線U,V,Wのそれぞれに,低圧出力(一例として三相200V出力)を行う低圧出力端子(u1,v1,w1)と,前記低圧出力に対して2倍の電圧の高圧出力(一例として三相400V出力)を行う高圧出力端子(u2,v2,w2)を備えた出力電圧切替型の発電機本体10とした構成では,前述した位置にAVR20の前記一方の電源入力部21を接続すると共に,前述の位置に中間タップvmを設けたことで,発電機本体10の出力電圧を低圧出力(三相200V)から高圧出力(三相400V)に切り替えた場合であっても,AVR20の電源電圧を低圧接続時の電源電圧(一例として147V)に維持してAVRの耐電圧能を超えた電圧が印加されることが防止される。 Furthermore, in a configuration in which the generator body 10 is an output voltage switching type generator body 10 equipped with low voltage output terminals (u1, v1, w1) for performing low voltage output (three-phase 200V output as an example) and high voltage output terminals (u2, v2, w2) for performing high voltage output (three-phase 400V output as an example) at twice the voltage of the low voltage output for each of the three-phase windings U, V, W, by connecting one of the power supply input parts 21 of the AVR 20 to the aforementioned position and providing an intermediate tap vm at the aforementioned position, even when the output voltage of the generator body 10 is switched from low voltage output (three-phase 200V) to high voltage output (three-phase 400V), the power supply voltage of the AVR 20 is maintained at the power supply voltage at the time of low voltage connection (147V as an example), and a voltage exceeding the voltage resistance capacity of the AVR is prevented from being applied.

なお,前述の中間タップvmを,エレメントコイル14~17間の結線部(図示の例ではエレメントコイル16と17間の連結部)に設けた構成では,例えばエレメントコイル16,17の結線部と中間タップvmに設けた導線を,圧着端子32を使用して同時に結線することで,中間タップvmを取り付けるための作業工程を別途設ける必要がなく,中間タップvmの取り付けをエレメントコイル14~17の結線作業と同時に行うことができた。 In addition, in a configuration in which the aforementioned intermediate tap vm is provided at the connection portion between element coils 14 to 17 (the connection portion between element coils 16 and 17 in the illustrated example), for example, the connection portions of element coils 16 and 17 and the conductor provided at the intermediate tap vm can be simultaneously connected using a crimp terminal 32, eliminating the need for a separate work process for attaching the intermediate tap vm, and the attachment of the intermediate tap vm can be performed simultaneously with the connection work of element coils 14 to 17.

本発明の交流発電機の概略説明図。1 is a schematic diagram of an alternating current generator according to the present invention; 発電機本体に設けた励磁回路の一構成例を示す説明図。FIG. 2 is an explanatory diagram showing one configuration example of an excitation circuit provided in the generator body. 本発明の交流発電機の変更例を示した概略説明図。FIG. 6 is a schematic explanatory diagram showing a modified example of an AC generator according to the present invention. 出力電圧を可変とした交流発電機の三相巻線の説明図であり,(A)は低圧接続,(B)は高圧接続を示す。1A and 1B are explanatory diagrams of three-phase windings of an AC generator with variable output voltage, where (A) shows a low voltage connection and (B) shows a high voltage connection. 図4に示した三相巻線(V相巻線)の構成例を示した説明図であり,(A)は低圧接続,(B)は高圧接続を示す。5A and 5B are explanatory diagrams showing an example of the configuration of the three-phase winding (V-phase winding) shown in FIG. 4, in which (A) shows a low-voltage connection and (B) shows a high-voltage connection. モータ負荷投入試験における発電機本体の出力電圧の波形図であり,(A)は本発明(AVRの電源電圧147V),(B)は比較例(AVRの電源電圧115V)の波形を示す。1A and 1B are waveform diagrams of the output voltage of the generator body during a motor load application test, in which (A) shows the waveform of the present invention (AVR power supply voltage 147V) and (B) shows the waveform of a comparative example (AVR power supply voltage 115V). 従来の交流発電機の概略説明図。FIG. 1 is a schematic diagram of a conventional AC generator.

以下に,添付図面を参照しながら本発明の交流発電機1の構成例を説明する。 Below, we will explain an example of the configuration of the AC generator 1 of the present invention with reference to the attached drawings.

〔交流発電機の全体構成〕
図1中の符号1は,本発明の交流発電機であり,この交流発電機1は,所定電圧(本実施形態において200V)の三相4線交流を出力可能な発電機本体10と,この発電機本体10を電源とし,前記発電機本体10の界磁電流を変化させて前記発電機本体10の出力電圧を予め設定された設定電圧(本実施形態において200V)に近付ける制御を行う自動電圧調整器(AVR)20を備えている。
[Overall configuration of AC generator]
Reference numeral 1 in FIG. 1 denotes an AC generator of the present invention. This AC generator 1 includes a generator main body 10 capable of outputting three-phase, four-wire AC of a predetermined voltage (200 V in this embodiment), and an automatic voltage regulator (AVR) 20 that uses this generator main body 10 as a power source and changes the field current of the generator main body 10 to control the output voltage of the generator main body 10 to approach a preset set voltage (200 V in this embodiment).

〔発電機本体〕
前述の発電機本体10は三相巻線U,V,Wから成る発電機電機子巻線11を備えており,該三相巻線U,V,Wは,それぞれ一端が中性点Oに接続され,該中性点Oを中心に電気角で120°の位相差でスター結線されている。
[Generator body]
The generator body 10 described above has a generator armature winding 11 consisting of three-phase windings U, V, and W. One end of each of the three-phase windings U, V, and W is connected to a neutral point O and is star-connected with a phase difference of 120° electrical angle around the neutral point O.

この発電機本体10には,発電機本体10を励磁するための励磁回路12が設けられており,この励磁回路12に設けた発電機界磁巻線124に印加する界磁電流の大きさを,後述するAVR20で制御することで,発電機本体10の出力電圧を所定の設定電圧(本実施形態において200V)に近づけるように制御することができるように構成されている。 This generator body 10 is provided with an excitation circuit 12 for exciting the generator body 10, and the magnitude of the field current applied to the generator field winding 124 provided in this excitation circuit 12 is controlled by the AVR 20 described below, so that the output voltage of the generator body 10 can be controlled to approach a predetermined set voltage (200 V in this embodiment).

この励磁回路12は,これを発電機界磁巻線124のみで構成し,AVR20の出力電流を直接,発電機界磁巻線124に印加することで,AVR20が直接,発電機界磁巻線124に印加する界磁電流を変化させるように構成するものとしても良いが,本実施形態では,この励磁回路12に,前述の発電機界磁巻線124の他に,図2に示すように励磁機電機子巻線121と励磁機界磁巻線122を備えた励磁機(励磁用交流発電機)120と,この励磁機120の励磁機電機子巻線121の交流出力を直流に整流する整流器123を設け,この整流器123で整流して得た直流を発電機界磁巻線124に界磁電流として印加することができるように構成されており,前述の励磁機120に設けた励磁機電機子巻線121に印加する界磁電流の大きさを,出力部23,24を介して行われるAVR20の出力によって制御することで,励磁機電機子巻線121が出力する電流の大きさを変化させることで,発電機界磁巻線124に印加する界磁電流の大きさを変化させることができるように構成されている。 This excitation circuit 12 may be configured only with the generator field winding 124, and the output current of the AVR 20 may be directly applied to the generator field winding 124 so that the AVR 20 changes the field current that it applies directly to the generator field winding 124. In this embodiment, however, in addition to the aforementioned generator field winding 124, the excitation circuit 12 also includes an exciter (excitation AC generator) 120 having an exciter armature winding 121 and an exciter field winding 122 as shown in FIG. 2, and an AC output of the exciter armature winding 121 of the exciter 120 is A rectifier 123 is provided to rectify the current to DC, and the DC obtained by rectification with the rectifier 123 can be applied as a field current to the generator field winding 124. The magnitude of the field current applied to the exciter armature winding 121 provided in the exciter 120 described above is controlled by the output of the AVR 20 via the output units 23 and 24, and the magnitude of the current output by the exciter armature winding 121 is changed, thereby changing the magnitude of the field current applied to the generator field winding 124.

〔自動電圧調整器(AVR)〕
交流発電機1には,前述の発電機界磁巻線124に印加する界磁電流の大きさを変化させて発電機本体10の出力電圧を制御する自動電圧調整器(AVR)20が設けられている。
[Automatic Voltage Regulator (AVR)]
The AC generator 1 is provided with an automatic voltage regulator (AVR) 20 that controls the output voltage of the generator main body 10 by changing the magnitude of the field current applied to the above-mentioned generator field winding 124 .

このAVR20は,発電機本体10の出力電圧を検出すると共に,この検出された発電機本体10の出力電圧を,予め設定された設定電圧と比較し,検出された発電機本体10の出力電圧と設定電圧に差がある場合,発電機本体10の出力電圧が設定電圧と一致するように,励磁回路12に設けた発電機界磁巻線124に印加する界磁電流を制御する。 The AVR 20 detects the output voltage of the generator body 10, and compares this detected output voltage of the generator body 10 with a preset voltage. If there is a difference between the detected output voltage of the generator body 10 and the preset voltage, it controls the field current applied to the generator field winding 124 provided in the excitation circuit 12 so that the output voltage of the generator body 10 matches the preset voltage.

励磁回路12として,図2を参照して説明した構成のものを備えた本実施形態の交流発電機1では,AVR20は,前述したように発電機本体10の励磁回路12に設けられた励磁機界磁巻線122に印加する界磁電流を変化させることで,発電機界磁巻線124に印加する界磁電流を変化させる。 In the AC generator 1 of this embodiment, which has the excitation circuit 12 configured as described with reference to FIG. 2, the AVR 20 changes the field current applied to the generator field winding 124 by changing the field current applied to the exciter field winding 122 provided in the excitation circuit 12 of the generator main body 10 as described above.

このAVR20は,発電機本体10の発電機電機子巻線11で発生した交流を電源電圧として駆動されるもので,AVR20には,発電機本体10と接続される,一対の電源入力部21,22が設けられており,この電源入力部21,22が,発電機本体10の発電機電機子巻線11に設けた三相巻線U,V,Wに接続されている。 This AVR 20 is driven by the AC generated in the generator armature winding 11 of the generator main body 10 as the power supply voltage. The AVR 20 is provided with a pair of power supply input units 21, 22 that are connected to the generator main body 10, and these power supply input units 21, 22 are connected to the three-phase windings U, V, and W provided in the generator armature winding 11 of the generator main body 10.

本発明の交流発電機1では,図1に示すように,AVR20に設けた一方の電源入力部21を,三相巻線U,V,Wのいずれか1つの出力端子u,v,w(図示の例ではU相巻線の出力端子u)に接続すると共に,他方の電源入力部22を,残りの二相の巻線のいずれか一方(図示の例ではV相)の巻線上の任意の位置に設けた中間タップvmに接続し,出力端子uと中間タップvm間の電圧をAVR20の電源電圧としている。 As shown in FIG. 1, in the AC generator 1 of the present invention, one power supply input section 21 provided on the AVR 20 is connected to the output terminals u, v, w of one of the three-phase windings U, V, W (in the illustrated example, the output terminal u of the U-phase winding), and the other power supply input section 22 is connected to an intermediate tap vm provided at an arbitrary position on one of the remaining two-phase windings (in the illustrated example, the V-phase), and the voltage between the output terminal u and the intermediate tap vm is the power supply voltage of the AVR 20.

この中間タップvmは,出力端子uと中間タップvm間の電圧がAVR20の耐電圧能の範囲内となるものであればV相巻線上のいずれの位置に設けるものとしても良いが,AVR20の耐電圧能の範囲内において可及的に高い電圧が得られる位置に設けることが望ましい。 This intermediate tap vm may be located anywhere on the V-phase winding as long as the voltage between the output terminal u and the intermediate tap vm is within the range of the AVR20's withstand voltage capability, but it is preferable to locate it at a position that provides the highest possible voltage within the range of the AVR20's withstand voltage capability.

本実施形態では,出力端子uと中間タップvm間の電圧が一例として147Vとなる位置に中間タップvmを設けた。 In this embodiment, the intermediate tap vm is provided at a position where the voltage between the output terminal u and the intermediate tap vm is, for example, 147 V.

〔作用等〕
以上のように構成された本発明の交流発電機1において,発電機本体10に接続されたモータ機器等の大型の負荷を投入すると,発電機本体10の負荷電流が増大し,この負荷電流の増大に伴って発電機本体10の出力電圧は低下する。
[Action, etc.]
In the AC generator 1 of the present invention configured as described above, when a large load such as a motor device connected to the generator main body 10 is applied, the load current of the generator main body 10 increases, and as the load current increases, the output voltage of the generator main body 10 decreases.

この発電機本体10の出力電圧の低下を検出したAVR20は,励磁回路12に設けた励磁機界磁巻線122に印加する界磁電流を増大させることで,励磁機電機子巻線121の出力電流を増大させて,発電機本体10の発電機界磁巻線124に印加する界磁電流を増大させ,これにより発電機電機子巻線11の出力電圧を設定電圧に復帰させる。 When the AVR 20 detects this drop in the output voltage of the generator main body 10, it increases the field current applied to the exciter field winding 122 provided in the excitation circuit 12, thereby increasing the output current of the exciter armature winding 121 and increasing the field current applied to the generator field winding 124 of the generator main body 10, thereby restoring the output voltage of the generator armature winding 11 to the set voltage.

ここで,中性点Oと出力端子u間の電圧(一例として115V)をAVR20の電源電圧としていた従来の構造(図7参照)では,発電機本体10の出力電圧が降下すると,AVR20の電源電圧も115V未満に低下してしまう。 Here, in a conventional structure (see Figure 7) in which the voltage between the neutral point O and the output terminal u (115 V as an example) was used as the power supply voltage for the AVR20, when the output voltage of the generator main body 10 dropped, the power supply voltage for the AVR20 also dropped below 115 V.

そのため,AVR20が発電機本体10の出力電圧の降下に見合った分,界磁電流を増大させようとしても,AVR20の電源電圧が降下しているために発電機本体10の界磁電流(励磁機120の励磁機界磁巻線122に印加する界磁電流)を必要量,増大させることができなくなる。 As a result, even if the AVR 20 attempts to increase the field current to match the drop in the output voltage of the generator main body 10, the AVR 20's power supply voltage has dropped, so the generator main body 10's field current (the field current applied to the exciter field winding 122 of the exciter 120) cannot be increased by the required amount.

その結果,発電機本体10の出力電圧の降下幅が大きくなると共に,発電機本体10の出力電圧を設定電圧に復帰させるまでに比較的長い時間を要するものとなっていた。 As a result, the drop in the output voltage of the generator body 10 becomes large, and it takes a relatively long time for the output voltage of the generator body 10 to return to the set voltage.

これに対し,出力端子uと中間タップvm間の電圧(一例として147V)をAVR20の電源電圧とした本発明の構成では,大型の負荷の投入によって発電機本体10の出力電圧が降下した場合であっても,降下後のAVR20の電源電圧は中性点Oと出力端子u間の電圧(一例として115V)を電源電圧とした場合に比較して高い状態に維持(一例として115V以上に維持)することができる。 In contrast, in the configuration of the present invention in which the voltage between the output terminal u and the center tap vm (147 V as an example) is used as the power supply voltage for the AVR20, even if the output voltage of the generator main body 10 drops due to the application of a large load, the power supply voltage of the AVR20 after the drop can be maintained at a higher level (for example, maintained at 115 V or higher) compared to when the voltage between the neutral point O and the output terminal u (115 V as an example) is used as the power supply voltage.

その結果,励磁回路12に設けた励磁機界磁巻線122に印加する界磁電流を直ちに必要な大きさまで増大(従って,励磁機120が整流器123を介して発電機本体10の発電機界磁巻線124に印加する界磁電流を必要な大きさまで増大)させることができ,その結果,発電機本体10の出力電圧の降下幅を減少させることができると共に,発電機本体10の出力電圧を早期に設定電圧まで回復させることが可能となっている。 As a result, the field current applied to the exciter field winding 122 provided in the excitation circuit 12 can be immediately increased to the required level (thus increasing the field current applied by the exciter 120 to the generator field winding 124 of the generator main body 10 via the rectifier 123 to the required level), which in turn reduces the drop in the output voltage of the generator main body 10 and enables the output voltage of the generator main body 10 to be quickly restored to the set voltage.

〔変更例1〕
以上,図1を参照して説明した本発明の交流発電機1では,AVR20に設けた他方の電源入力部22を,中間タップvmにのみ接続するものとして説明した。
[Modification 1]
In the AC generator 1 of the present invention described above with reference to FIG. 1, the other power supply input section 22 provided in the AVR 20 is connected only to the center tap vm.

これに対し,AVR20の他方の電源入力部22は,図3に示すように,中間タップvmと中性点O(中性点Oに設けた中性点端子o)のいずれか一方に選択的に接続可能に構成するものとしても良い。 In contrast, the other power supply input section 22 of the AVR 20 may be configured to be selectively connectable to either the center tap vm or the neutral point O (neutral point terminal o provided at the neutral point O), as shown in FIG. 3.

図3に示す実施形態では,このような選択的な接続を可能とするために,AVR20の他方の電源入力部22と,中間タップvm及び中性点端子o間の回路中に切替スイッチ30を設け,AVR20の他方の電源入力部22を,中間タップvm,又は中性点端子oのいずれか一方に選択的に接続可能としている。 In the embodiment shown in FIG. 3, in order to enable such selective connection, a changeover switch 30 is provided in the circuit between the other power supply input section 22 of the AVR 20 and the intermediate tap vm and neutral terminal o, so that the other power supply input section 22 of the AVR 20 can be selectively connected to either the intermediate tap vm or the neutral terminal o.

このように構成することで,AVR20の電源電圧を,例えば交流発電機1を駆動する駆動源(例えばエンジン)の駆動状態等に対応して,115V又は147Vのいずれかに選択することが可能となる。 By configuring it in this way, it is possible to select the power supply voltage of the AVR 20 to either 115V or 147V, depending on, for example, the driving state of the driving source (e.g., an engine) that drives the AC generator 1.

例えば,本発明の交流発電機1の駆動源がエンジンである場合,エンジンの暖機が不十分な状態で大型負荷を投入する場合には,自動電圧調整器(AVR)に設けた前記他方の電源入力部22を中性点O(中性点端子o)に接続した状態(AVR20の電源電圧を115Vとした状態)でモータ負荷の投入を行うようにする。 For example, if the driving source of the AC generator 1 of the present invention is an engine, when a large load is applied before the engine has been sufficiently warmed up, the motor load is applied in a state where the other power supply input section 22 provided in the automatic voltage regulator (AVR) is connected to the neutral point O (neutral point terminal o) (with the power supply voltage of the AVR 20 set to 115 V).

発電機本体10は,発電量が増えると回転抵抗が増大するが,このようにAVR20の電源電圧をあえて115Vに低下させた状態で負荷の投入を行うことで,負荷投入時の発電機本体10の出力電圧を意図的に降下させると共に,設定電圧への復帰を遅らせることで,エンジンに加わる回転抵抗を,負荷の投入から比較的長い時間をかけて徐々に増加させることができ,これによりエンジンのストールを防止することができる。 When the amount of electricity generated by the generator body 10 increases, the rotational resistance increases. However, by intentionally lowering the power supply voltage of the AVR 20 to 115V and applying a load in this manner, the output voltage of the generator body 10 when the load is applied is intentionally lowered and the return to the set voltage is delayed. This allows the rotational resistance applied to the engine to increase gradually over a relatively long period of time after the load is applied, thereby preventing the engine from stalling.

一方,エンジンの暖機が十分に行われている状態,すなわち,発電機本体10の回転抵抗の増大によってもエンジンがストールするおそれがない状態では,AVR20の他方の電源入力部22を中間タップvmに接続した状態(AVR20の電源電圧を147Vとした状態)で負荷を投入することで,発電機本体10の出力電圧の降下幅を減少させると共に,設定電圧への復帰を早期に行わせることで,モータ負荷の始動を円滑に行わせるようにすることができる。 On the other hand, when the engine has been sufficiently warmed up, i.e., when there is no risk of the engine stalling even due to an increase in the rotational resistance of the generator body 10, by connecting the other power supply input section 22 of the AVR 20 to the center tap vm (the power supply voltage of the AVR 20 is set to 147 V) and applying a load, the drop in the output voltage of the generator body 10 is reduced and the voltage is quickly restored to the set voltage, allowing the motor load to be started smoothly.

〔変更例2〕
以上,図1及び図3を参照した説明では,本発明の構成を,所定電圧(一例として200V)の三相4線出力の交流のみを出力可能な発電機本体10に対して適用する場合を例に取り説明した。
[Modification 2]
In the above explanation with reference to Figs. 1 and 3, the configuration of the present invention has been described by taking as an example a case where it is applied to a generator main body 10 capable of outputting only AC of a three-phase, four-wire output of a predetermined voltage (for example, 200V).

この構成に代え,本発明の構成は,各三相巻線U,V,Wを複数個のエレメントコイル14~17の組合せによって形成し,エレメントコイル14~17の接続状態を切り替えることにより,所定の低圧出力(一例として三相4線200V出力)を行う低圧接続と,前記低圧接続時の出力に対して2倍の電圧の高圧出力(一例として三相4線400V出力)を行う高圧接続間で前記エレメントコイル14~17間の接続状態を切り替え可能とした,出力電圧可変型の交流発電機に対し適用するものとしても良い。 Instead of this configuration, the configuration of the present invention may also be applied to an output voltage variable AC generator in which each three-phase winding U, V, W is formed by combining multiple element coils 14 to 17, and the connection state of the element coils 14 to 17 can be switched between a low voltage connection that provides a predetermined low voltage output (for example, a three-phase, four-wire 200V output) and a high voltage connection that provides a high voltage output that is twice the voltage of the output in the low voltage connection (for example, a three-phase, four-wire 400V output).

この場合,低圧接続から高圧接続への切り替えによって発電機本体10の出力電圧が2倍に増大しても,AVR20の電源電圧が低圧接続時の電源電圧(一例として147V)のまま維持されるように構成する必要がある。 In this case, even if the output voltage of the generator main body 10 doubles due to switching from a low-voltage connection to a high-voltage connection, the power supply voltage of the AVR 20 must be configured to remain the same as the power supply voltage at the time of the low-voltage connection (147 V, for example).

このような電源電圧を取り出し可能とするため,本実施形態では,図4に示すように,三相巻線U,V,Wのそれぞれを4つのエレメントコイル14~17の組合せにより形成した。 To make it possible to extract such a power supply voltage, in this embodiment, as shown in Figure 4, each of the three-phase windings U, V, and W is formed by combining four element coils 14 to 17.

この各相の巻線U,V,Wを構成するエレメントコイル14~17は,図4に示すように,2つの4段エレメントコイル14,16と,2つの5段エレメントコイル15,17から成り,三相巻線U,V,Wのそれぞれに低圧出力端子u1,v1,w1と高圧出力端子u2,v2,w2を設けると共に,中性点Oと低圧出力端子u1,v1,w1間,又は,中性点Oと高圧出力端子u2,v2,w2間で,図4(A)又は図4(B)に示すいずれかの接続状態に切り替えることで,三相4線200V出力を行う低圧接続〔図4(A),図5(A)参照〕と,三相4線400V出力を行う高圧接続〔図4(B),図5(B)参照〕間で発電機本体10の出力を切り替えることができるように構成されている。 The element coils 14 to 17 that make up the windings U, V, and W of each phase are composed of two four-stage element coils 14, 16 and two five-stage element coils 15, 17, as shown in FIG. 4. Each of the three-phase windings U, V, and W is provided with a low-voltage output terminal u1, v1, and w1 and a high-voltage output terminal u2, v2, and w2. By switching between the neutral point O and the low-voltage output terminals u1, v1, and w1, or between the neutral point O and the high-voltage output terminals u2, v2, and w2 to one of the connections shown in FIG. 4(A) or FIG. 4(B), the output of the generator body 10 can be switched between a low-voltage connection that outputs 200V three-phase, four-wire output (see FIG. 4(A) and FIG. 5(A)), and a high-voltage connection that outputs 400V three-phase, four-wire output (see FIG. 4(B) and FIG. 5(B)).

低圧出力を行う場合には,図4(A)に示すように,一方の4段のエレメントコイル14と一方の5段のエレメントコイル15を直列に接続したエレメントコイルの組(14-15)と,他方の4段のエレメントコイル16と他方の5段エレメントコイル17を直列に接続したエレメントコイルの組(16-17)を,中性点Oと各低圧出力端子u1,v1,w1の間に並列に接続することで,中性点Oに接続された中性点端子oと各低圧出力端子u1,v1,w1より3相4線200Vの出力が得られるように構成されている。 When low voltage output is required, as shown in FIG. 4(A), a set of element coils (14-15) in which one 4-stage element coil 14 and one 5-stage element coil 15 are connected in series, and a set of element coils (16-17) in which the other 4-stage element coil 16 and the other 5-stage element coil 17 are connected in series are connected in parallel between the neutral point O and each low voltage output terminal u1, v1, w1, so that a 3-phase 4-wire 200V output can be obtained from the neutral point terminal o connected to the neutral point O and each low voltage output terminal u1, v1, w1.

一方,高圧出力を行う場合には,図4(B)に示すように,他方の4段のエレメントコイル16と他方の5段のエレメントコイル17を直列に接続したエレメントコイルの組(16-17)と,一方の4段のエレメントコイル14と一方の5段のエレメントコイル15を直列に接続したエレメントコイルの組(14-15)を,中性点Oと各高圧出力端子u2,v2,w2の間に直列に接続することで,中性点Oに接続された中性点端子oと各高圧出力端子u2,v2,w2より三相4線400Vの出力が得られるように構成されていると共に,一方のエレメントコイルの組(14-15)と,他方のエレメントコイルの組(16-17)間,すなわち,各三相巻線U,V,Wの巻数が1/2となる位置に前記各低圧出力端子u1,v1,w1が配置されるように構成することで,中性点Oに接続された中性点端子と各低圧出力端子間(o-u1,o-v1,o-w1間)で115Vの電圧が得られるように構成されている。 On the other hand, when performing high voltage output, as shown in FIG. 4(B), a set of element coils (16-17) in which the other four-stage element coil 16 and the other five-stage element coil 17 are connected in series, and a set of element coils (14-15) in which one four-stage element coil 14 and one five-stage element coil 15 are connected in series are connected in series between the neutral point O and each high voltage output terminal u2, v2, w2. It is configured so that a three-phase, four-wire output of 400V can be obtained from v2 and w2, and by configuring each of the low-voltage output terminals u1, v1, and w1 to be positioned between one set of element coils (14-15) and the other set of element coils (16-17), that is, at a position where the number of turns of each of the three-phase windings U, V, and W is 1/2, a voltage of 115V can be obtained between the neutral terminal connected to the neutral point O and each of the low-voltage output terminals (between o-u1, o-v1, and o-w1).

このように,出力電圧を可変とした交流発電機10に本発明の構成を適用する場合,AVR20の前記一方の電源入力部21を,低圧出力端子u1,v1,w1のうちのいずれか1つの(図示の例では低圧出力端子u1)に接続する。 In this way, when the configuration of the present invention is applied to an AC generator 10 with a variable output voltage, the power input section 21 of the AVR 20 is connected to one of the low-voltage output terminals u1, v1, and w1 (low-voltage output terminal u1 in the illustrated example).

そして,前記低圧出力端子(u1,v1,w1)のうち残りの端子(v1,w1)のいずれか一方(図示の例ではv1)と前記中性点O間,図示の例では,他方の4段エレメントコイル16と他方の5段エレメントコイル17との結線部に中間タップvmを設け,この中間タップvmにAVR20に設けた他方の電源入力部22を接続可能とした。 Then, an intermediate tap vm is provided between one of the remaining terminals (v1, w1) of the low-voltage output terminals (u1, v1, w1) (v1 in the illustrated example) and the neutral point O, in the illustrated example, at the connection between the other 4-stage element coil 16 and the other 5-stage element coil 17, and the other power supply input unit 22 provided in the AVR 20 can be connected to this intermediate tap vm.

上記の位置にAVR20の電源入力部21,22を接続することで,発電機本体10が図4(A)に示す低圧接続,図4(B)に示す高圧接続のいずれの状態にあるときであっても,AVR20の電源電圧を共通(本実施形態ではいずれも147Vで共通)とすることができ,高圧接続に切り替えて発電機本体10の出力電圧が2倍となった場合であっても,AVR20の耐電圧能を超えた電圧が印加されることが防止される。 By connecting the power supply inputs 21 and 22 of the AVR 20 to the above positions, the power supply voltage of the AVR 20 can be made common (147 V in both cases in this embodiment) regardless of whether the generator body 10 is in the low voltage connection shown in Figure 4 (A) or the high voltage connection shown in Figure 4 (B). Even if the output voltage of the generator body 10 doubles when switched to the high voltage connection, a voltage exceeding the voltage resistance capacity of the AVR 20 is prevented from being applied.

なお,前述したように中間タップvmをエレメントコイル16,17間の結線部に取り付ける構成では,図5に示すように結線部を,圧着端子32等を使用して結線する際に,圧着端子32内にエレメントコイル16,17の結線部のみならず中間タップvmに設けた導線も挿入して共に圧着することで,中間タップvmを,エレメントコイル16,17間の結線と同時に取り付けることができ,中間タップvmを取り付けるための工程を別途設ける必要がない。 In addition, in the configuration in which the intermediate tap vm is attached to the connection portion between the element coils 16 and 17 as described above, when the connection portion is connected using a crimp terminal 32 or the like as shown in FIG. 5, not only the connection portion of the element coils 16 and 17 but also the conductor provided on the intermediate tap vm is inserted into the crimp terminal 32 and crimped together, so that the intermediate tap vm can be attached at the same time as the connection between the element coils 16 and 17, and there is no need to provide a separate process for attaching the intermediate tap vm.

次に,本発明の効果確認試験を行った結果を,実施例として以下に示す。 Next, the results of a test to verify the effectiveness of the present invention are shown below as examples.

〔試験の目的〕
交流発電機に本発明の構成を採用することで,大型負荷の投入時における発電機本体の出力電圧の降下幅を小さくすることができると共に,電圧降下後,設定電圧に復帰するまでの時間を短縮することができることを確認する。
[Purpose of the test]
It has been confirmed that by adopting the configuration of the present invention in an AC generator, it is possible to reduce the drop in the output voltage of the generator body when a large load is applied, and to shorten the time it takes for the voltage to return to the set voltage after a voltage drop.

〔試験方法〕
図4及び図5を参照して説明した交流発電機(定格出力80kVA)を,周波数50Hz,定格電圧200V〔図4(A),図5(A)の低圧接続〕で運転し,負荷の投入前後における出力電圧の変化を観察した。
[Test Method]
The AC generator (rated output 80 kVA) described with reference to Figs. 4 and 5 was operated at a frequency of 50 Hz and a rated voltage of 200 V (low voltage connection in Figs. 4(A) and 5(A)), and the change in output voltage before and after the application of a load was observed.

実施例として,図4(A)に示した低圧接続における低圧出力端子u1と中間タップvm間の電圧(147V)をAVRの電源電圧とした交流発電機を使用した。 As an example, an AC generator was used in which the voltage (147 V) between the low-voltage output terminal u1 and the center tap vm in the low-voltage connection shown in Figure 4 (A) was used as the power supply voltage for the AVR.

比較例として,図4(A)に示した低圧接続における低圧出力端子u1と中性点O(中性点端子o)間の電圧(115V)をAVRの電源電圧とした交流発電機を使用した。 As a comparative example, an AC generator was used in which the voltage (115 V) between the low-voltage output terminal u1 and the neutral point O (neutral point terminal o) in the low-voltage connection shown in Figure 4 (A) was used as the power supply voltage for the AVR.

負荷として,定格負荷を投入した際の出力電圧の変化を測定する「定格負荷投入試験」と,モータ負荷を投入した際の出力電圧の変化を測定する「モータ負荷投入試験」をそれぞれ行った。 As the load, we performed a "rated load application test" to measure the change in output voltage when the rated load was applied, and a "motor load application test" to measure the change in output voltage when a motor load was applied.

出力電圧の降下幅は,負荷の投入後,発電機本体の出力電圧が最も低くなった時点の出力電圧を「最低電圧」とし,次式により求めた「電圧降下率(%)」によって評価した。
電圧降下率=(定格電圧-最低電圧)/定格電圧×100(%)
The drop in output voltage was evaluated by the "voltage drop rate (%)" calculated by the following formula, with the output voltage at the point when the output voltage of the generator body became the lowest after the load was applied being defined as the "minimum voltage."
Voltage drop rate = (rated voltage - minimum voltage) / rated voltage x 100 (%)

なお,「モータ負荷投入試験」で使用したモータは,実施例及び比較例共に,東芝産業機器システム株式会社製「TKKH3-FBK21E」(出力37kW)である。 The motor used in the "motor load application test" for both the example and the comparative example was the "TKKH3-FBK21E" (output 37 kW) manufactured by Toshiba Industrial Products Systems Corporation.

〔試験結果〕
定格負荷投入試験の結果を表1に,モータ負荷投入試験の結果を表2にそれぞれ示す。
[Test Results]
The results of the rated load test are shown in Table 1, and the results of the motor load test are shown in Table 2.

また,モータ負荷投入前後における,実施例の交流発電機における出力電圧波形の変化を図6(A)に,比較例の交流発電機における出力電圧波形の変化を図6(B)にそれぞれ示す。 Figure 6(A) shows the change in the output voltage waveform of the AC generator of the embodiment before and after the motor load is applied, and Figure 6(B) shows the change in the output voltage waveform of the AC generator of the comparative example.

Figure 0007554127000001
Figure 0007554127000001

Figure 0007554127000002
Figure 0007554127000002

〔考察〕
上記試験結果より,定格負荷投入試験,及びモータ負荷投入試験のいずれの結果からも,実施例の交流発電機では電圧降下率が小さくなっており,負荷の投入時における出力電圧の降下幅が減少していることが確認でき,本発明の構成の採用が発電機本体の出力電圧の安定化に寄与するものであることが確認された。
[Considerations]
From the above test results, both in the rated load application test and the motor load application test, it was confirmed that the voltage drop rate was smaller in the AC generator of the embodiment, and the drop in output voltage when a load was applied was reduced, and it was confirmed that the adoption of the configuration of the present invention contributes to stabilizing the output voltage of the generator body.

また,図6(A),(B)に示した出力電圧波形より,本発明の交流発電機(実施例)の方が,負荷投入後,より短時間で定格電圧(200V)に復帰していることが判り,モータを円滑に始動させることができていることが確認された。 In addition, from the output voltage waveforms shown in Figures 6(A) and (B), it can be seen that the AC generator (embodiment) of the present invention returns to the rated voltage (200V) in a shorter time after the load is applied, and it has been confirmed that the motor can be started smoothly.

1 交流発電機
10 発電機本体
11 発電機電機子巻線
12 励磁回路
120 励磁機
121 励磁機電機子巻線
122 励磁機界磁巻線
123 整流器
124 発電機界磁巻線
14 エレメントコイル(4段/一方)
15 エレメントコイル(5段/一方)
16 エレメントコイル(4段/他方)
17 エレメントコイル(5段/他方)
20 自動電圧調整器(AVR)
21 電源入力部(一方)
22 電源入力部(他方)
23,24 出力部
30 切替スイッチ
32 圧着端子
200 交流発電機
210 発電機本体
211 発電機電機子巻線
212 励磁回路
220 自動電圧調整器(AVR)
U,V,W 三相巻線
u,v,w 出力端子
u1,v1,w1 低圧出力端子
u2,v2,w2 高圧出力端子
O 中性点
o 中性点端子
vm 中間タップ

Reference Signs List 1 AC generator 10 Generator body 11 Generator armature winding 12 Excitation circuit 120 Exciter 121 Exciter armature winding 122 Exciter field winding 123 Rectifier 124 Generator field winding 14 Element coil (4 stages/one side)
15 element coil (5 stages/one side)
16 Element coil (4 stages/other side)
17 Element coil (5 stages/other side)
20 Automatic Voltage Regulator (AVR)
21 Power supply input section (one side)
22 Power supply input section (other side)
23, 24 Output section 30 Changeover switch 32 Crimp terminal 200 AC generator 210 Generator body 211 Generator armature winding 212 Excitation circuit 220 Automatic voltage regulator (AVR)
U, V, W Three-phase windings u, v, w Output terminals u1, v1, w1 Low-voltage output terminals u2, v2, w2 High-voltage output terminal O Neutral point o Neutral point terminal vm Center tap

Claims (5)

中性点を中心に電気角で120°の位相差でスター結線された三相巻線からなる発電機電機子巻線と,少なくとも発電機界磁巻線を備えた励磁回路を備え,前記三相巻線のそれぞれに設けられた出力端子より所定電圧の三相交流を出力可能な発電機本体と,前記発電機本体を電源とすると共に,前記発電機本体の前記励磁回路の前記発電機界磁巻線に印加する界磁電流を変化させて前記発電機本体の出力電圧を予め設定された設定電圧に近付ける制御を行う自動電圧調整器を備えた交流発電機において,
前記自動電圧調整器に,前記発電機本体が出力した交流電圧を電源電圧として入力する一対の電源入力部を設け,
一方の前記電源入力部を,前記三相巻線のうちのいずれか1相の巻線に設けた前記出力端子に接続すると共に,
他方の前記電源入力部を,前記三相巻線のうち,残りの巻線のいずれか一方の巻線上に設けた中間タップに接続可能としたことを特徴とする交流発電機。
An AC generator including a generator armature winding consisting of a three-phase winding star-connected with a phase difference of 120° electrical angle centered on a neutral point, and an excitation circuit having at least a generator field winding, the generator main body being capable of outputting three-phase AC of a predetermined voltage from output terminals provided on each of the three-phase windings, and an automatic voltage regulator that uses the generator main body as a power source and controls the output voltage of the generator main body to approach a preset voltage by changing the field current applied to the generator field winding of the excitation circuit of the generator main body,
a pair of power supply input units for inputting the AC voltage output by the generator body as a power supply voltage to the automatic voltage regulator;
One of the power supply input units is connected to the output terminal provided on one of the three-phase windings,
The other power supply input section is connectable to a center tap provided on one of the remaining windings among the three-phase windings.
前記発電機本体に設けた前記励磁回路が,前記発電機界磁巻線に印加する界磁電流を発生する,励磁機電機子巻線と励磁機界磁巻線を備えた励磁機を備え,
前記自動電圧調整器が,前記励磁機の前記励磁機界磁巻線に印加する界磁電流を制御することにより前記発電機本体の前記発電機界磁巻線に印加する界磁電流を変化させることを特徴とする請求項1記載の交流発電機。
the excitation circuit provided in the generator body includes an exciter having an exciter armature winding and an exciter field winding that generate a field current to be applied to the generator field winding;
2. The alternating current generator according to claim 1, wherein the automatic voltage regulator changes the field current applied to the generator field winding of the generator body by controlling the field current applied to the exciter field winding of the exciter.
前記自動電圧調整器に設けた前記他方の電源入力部を,前記中間タップと前記中性点のいずれか一方に選択的に接続可能としたことを特徴とする請求項1又は2記載の交流発電機。 An alternating current generator according to claim 1 or 2, characterized in that the other power supply input section provided in the automatic voltage regulator can be selectively connected to either the center tap or the neutral point. 前記三相巻線のそれぞれを複数個のエレメントコイルの組合せにより形成し,所定の低圧出力を行う低圧接続と,前記低圧接続時の出力に対して2倍の電圧の高圧出力を行う高圧接続間で前記エレメントコイル間の接続状態を切り替え可能とし,
前記三相巻線のそれぞれに,前記低圧出力を行う低圧出力端子と,前記高圧出力を行う高圧出力端子を設け,
前記低圧接続時,前記中性点と前記各低圧出力端子間に,同一巻数の2巻線が並列に接続されるよう前記エレメントコイルを接続すると共に,
前記高圧接続時,前記中性点と前記各高圧出力端子間が,直列に接続された前記エレメントコイルにより接続されると共に,各三相巻線の巻数が1/2となる位置に前記各低圧出力端子が配置されるように前記エレメントコイルを接続し,
前記自動電圧調整器の前記一方の電源入力部を,前記低圧出力端子のうちのいずれか1つに接続すると共に,
前記低圧出力端子のうち残りの端子のいずれか一方と前記中性点間の巻線上に前記中間タップを設けたことを特徴とする請求項1~3いずれか1項記載の交流発電機。
Each of the three-phase windings is formed by a combination of a plurality of element coils, and the connection state between the element coils can be switched between a low voltage connection for performing a predetermined low voltage output and a high voltage connection for performing a high voltage output that is twice the voltage of the output of the low voltage connection,
A low voltage output terminal for performing the low voltage output and a high voltage output terminal for performing the high voltage output are provided for each of the three-phase windings,
At the time of the low voltage connection, the element coil is connected so that two windings having the same number of turns are connected in parallel between the neutral point and each of the low voltage output terminals,
During the high voltage connection, the neutral point and each of the high voltage output terminals are connected by the element coils connected in series, and the element coils are connected so that each of the low voltage output terminals is disposed at a position where the number of turns of each three-phase winding is 1/2;
The one power supply input of the automatic voltage regulator is connected to any one of the low voltage output terminals,
4. The alternating current generator according to claim 1, wherein the center tap is provided on a winding between the neutral point and any one of the remaining low voltage output terminals.
前記発電機電機子巻線の前記三相巻線のそれぞれを,複数個のエレメントコイルを接続して形成し,
前記中間タップを,該中間タップを設けた一相の巻線の,前記エレメントコイル間の結線部に設けたことを特徴とする請求項1~4いずれか1項記載の交流発電機。

Each of the three-phase windings of the generator armature winding is formed by connecting a plurality of element coils,
5. The alternating current generator according to claim 1, wherein the center tap is provided at a connection between the element coils of the one phase winding having the center tap.

JP2021013876A 2021-01-29 2021-01-29 Alternator Active JP7554127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021013876A JP7554127B2 (en) 2021-01-29 2021-01-29 Alternator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021013876A JP7554127B2 (en) 2021-01-29 2021-01-29 Alternator

Publications (2)

Publication Number Publication Date
JP2022117269A JP2022117269A (en) 2022-08-10
JP7554127B2 true JP7554127B2 (en) 2024-09-19

Family

ID=82749605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021013876A Active JP7554127B2 (en) 2021-01-29 2021-01-29 Alternator

Country Status (1)

Country Link
JP (1) JP7554127B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057030A1 (en) 2000-09-28 2002-05-16 General Electric Company Combined delta-wye armature winding for synchronous generators and method
JP2003274697A (en) 2002-03-19 2003-09-26 Denso Corp Ac generator for vehicle
JP2005151651A (en) 2003-11-13 2005-06-09 Denyo Co Ltd Automatic voltage regulator with overshoot suppression function
JP2015201918A (en) 2014-04-04 2015-11-12 北越工業株式会社 AC generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057030A1 (en) 2000-09-28 2002-05-16 General Electric Company Combined delta-wye armature winding for synchronous generators and method
JP2003274697A (en) 2002-03-19 2003-09-26 Denso Corp Ac generator for vehicle
JP2005151651A (en) 2003-11-13 2005-06-09 Denyo Co Ltd Automatic voltage regulator with overshoot suppression function
JP2015201918A (en) 2014-04-04 2015-11-12 北越工業株式会社 AC generator

Also Published As

Publication number Publication date
JP2022117269A (en) 2022-08-10

Similar Documents

Publication Publication Date Title
US8648562B2 (en) Single power supply dual converter open-winding machine drive
US6459606B1 (en) Control system and method for four-quadrant switches in three-phase PWM AC voltage regulators
Osama et al. A new inverter control scheme for induction motor drives requiring wide speed range
JP2009303298A (en) Ac motor device
EP3175546B1 (en) Multiple phase electric machine, drive and control
CN107534408B (en) Control device for AC rotating machine
US5760567A (en) Induced voltage reduction method and an induced voltage reduction apparatus for an induction motor
WO1997012438A9 (en) Inverter-controlled induction machine with an extended speed range
CN111247735B (en) Motor driving device
JPH10337063A (en) Method and device for starting ac electric motor
EP2044684B3 (en) Variable voltage supply system
JP7554127B2 (en) Alternator
CN104660132B (en) Manipulate method, motor, control equipment and the machine readable storage medium of motor
EP2903154A1 (en) Controlling apparatus for switched reluctance motor and controlling method thereof
CN113196646A (en) Motor drive device, refrigeration circuit device, air conditioner, water heater, and refrigerator
Fuchs et al. Analysis of critical-speed increase of induction machines via winding reconfiguration with solid-state switches
JP4395669B2 (en) Three-phase rectifier
CN115461980A (en) Motor drive device and air conditioner
JP5575424B2 (en) Synchronous generator
KR20160097645A (en) Brushless direct current motor type inverter driving circuit
RU2271600C1 (en) Synchronous motor
RU2272351C1 (en) Synchronous motor
Finley et al. Understanding Alternate Methods of Motor Starting, an Investigation on Advantages and Disadvantages
JP2021023047A (en) Starting device and starting method
JPH01110100A (en) Electric energy generator and operation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240119

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240906

R150 Certificate of patent or registration of utility model

Ref document number: 7554127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150