[go: up one dir, main page]

JP7553413B2 - Autonomous driving method - Google Patents

Autonomous driving method Download PDF

Info

Publication number
JP7553413B2
JP7553413B2 JP2021135650A JP2021135650A JP7553413B2 JP 7553413 B2 JP7553413 B2 JP 7553413B2 JP 2021135650 A JP2021135650 A JP 2021135650A JP 2021135650 A JP2021135650 A JP 2021135650A JP 7553413 B2 JP7553413 B2 JP 7553413B2
Authority
JP
Japan
Prior art keywords
vehicle
axle
center
equation
gravity position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021135650A
Other languages
Japanese (ja)
Other versions
JP2023030490A (en
Inventor
健一 番場
史典 相馬
博学 椋本
洋 塩崎
冨士男 籾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Smart Mobility Co Ltd
Original Assignee
Advanced Smart Mobility Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Smart Mobility Co Ltd filed Critical Advanced Smart Mobility Co Ltd
Priority to JP2021135650A priority Critical patent/JP7553413B2/en
Publication of JP2023030490A publication Critical patent/JP2023030490A/en
Application granted granted Critical
Publication of JP7553413B2 publication Critical patent/JP7553413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、乗客・荷物の変化に伴う自車両の状態量、即ち車両総重量(自重)・勾配・重心位置・タイヤコーナリング係数(タイヤ荷重)の変化量をリアルタイムで検出して、その変化量に対応する制御モデルの状態量を更新しつつ制御する自動運転方法に関する。 The present invention relates to an autonomous driving method that detects changes in the vehicle's state variables, i.e., total vehicle weight (weight), gradient, center of gravity position, and tire cornering coefficient (tire load), in real time in response to changes in passengers and luggage, and controls the vehicle while updating the state variables of a control model that correspond to those changes.

車両の運動は、ニュートンの第二法則で律せられる。即ち、力と質量と加速度、或いは、トルクと慣性モーメントと回転加速度の関係で律せられる。作用と反作用の関係から「車両からの走る、曲がる、止まる、の作用」に対する「路面からの反作用」との関係で、律せられる。 The motion of a vehicle is governed by Newton's second law. In other words, it is governed by the relationship between force, mass, and acceleration, or torque, moment of inertia, and rotational acceleration. It is governed by the relationship between action and reaction, that is, the relationship between the "actions of the vehicle to run, turn, and stop" and the "reactions from the road surface."

自動運転車両の制御は、その作用と反作用の関係を制御して行われる。制御応答を見ながら、制御技術者の経験則でチューニングされるPID制御が、最も広く使われている。 Self-driving vehicles are controlled by controlling the relationship between action and reaction. PID control, which is tuned by control engineers using their experience while observing the control response, is the most widely used method.

自動運転車両の制御は、乗客・荷物などの変化に伴う、質量・重心位置・タイヤ荷重などの状態量の変化がある。その変化は、駅・バス停での乗客乗降、物流ターミナルでの荷物の積み下ろしの際に、急変するので、PID制御のためのチューニングしている時間余裕はない。 The control of autonomous vehicles involves changes in state quantities such as mass, center of gravity, and tire load due to changes in passengers, luggage, etc. These changes occur suddenly when passengers get on and off at stations and bus stops, and when luggage is loaded and unloaded at logistics terminals, so there is no time to tune the PID control.

チューニングとは、与えられた特性の上で目標とのずれを修正する作業である。状態量が変化する制御対象のチューニングには限界がある。モデルを用いずに、或いは固定仕様諸元モデルのままで合わせ込むのではなくて、状態量で記述される制御モデル(数式モデル)を用いて状態量の変化に合わせて、モデルの状態量を書き換える(入れ替える)ようにして変化に適応することが求められる。 Tuning is the process of correcting the deviation from the target based on given characteristics. There are limitations to tuning a control object whose state quantities change. Rather than tuning without using a model, or using a fixed specification model, it is necessary to use a control model (mathematical model) described in state quantities and adapt to the changes by rewriting (replacing) the state quantities of the model according to the changes in the state quantities.

非特許文献1には、その第9章、状態フィードバック制御とオブザーバにて、状態フィードバック制御は制御対象の状態をすべて観測できるという前提で可能となるとし、しかしながら、実際の制御対象ですべての状態を観測できる場合は少なく、この場合、観測機を用いて状態を推測する必要があるとあるが、その実際の記述はない。 In Chapter 9, State Feedback Control and Observers, Non-Patent Document 1 states that state feedback control is possible on the premise that all states of the controlled object can be observed, but that it is rare that all states of an actual controlled object can be observed, and in such cases, it is necessary to estimate the state using an observer, but there is no actual description of this.

非特許文献2は、大型トラックの前後運動のモデル化手法を報告しているが、車両重量の変化などの状態量推定には言及していない。 Non-Patent Document 2 reports a method for modeling the longitudinal motion of large trucks, but does not mention estimating state quantities such as changes in vehicle weight.

非特許文献3は、トラックのバウンシングとピッチングの固有振動数を検出して積載量と重心位置の変化を推定する方法を紹介しているが、懸架系(サスペンション)の仕様に依存するため汎用性に欠ける。 Non-patent document 3 introduces a method for estimating changes in the load and center of gravity by detecting the natural frequencies of bouncing and pitching of a truck, but this method lacks versatility because it depends on the specifications of the suspension system.

特許文献1は、アクセル開度と車両重量と発生加速度の計算図表を示しているが、道路勾配の影響が含まれていない。また、動力性能の状態量に限られている。 Patent document 1 shows a calculation diagram of the accelerator opening, vehicle weight, and generated acceleration, but does not include the effect of road gradient. In addition, it is limited to the state quantity of power performance.

特許文献2は、車両運動方程式から導出される重心位置変化の計算式を示し、GPSによって検出される車速、ヨーレイト及び横すべり角から、重心位置変化を算出する方法を示しているが、2軸車両に関するものであり3軸、4軸の多軸車には言及していないし、重心位置変化の原因である自重変化を推定する方法は示していない。 Patent document 2 shows a formula for calculating the change in the center of gravity position derived from the vehicle motion equation, and shows a method for calculating the change in the center of gravity position from the vehicle speed, yaw rate, and sideslip angle detected by GPS, but it is related to two-axle vehicles and does not mention multi-axle vehicles with three or four axles, and does not show a method for estimating the change in the vehicle's own weight, which is the cause of the change in the center of gravity position.

特許文献3は、4軸車について、GPSを用いず車輪速センサと偏揺角センサを用いて重心位置を検出する方法を示しているが、重心位置変化の原因である自重変化を推定する方法は示していない。 Patent document 3 shows a method for detecting the center of gravity of a four-axle vehicle using a wheel speed sensor and a yaw angle sensor without using GPS, but does not show a method for estimating the change in the vehicle's own weight, which is the cause of the change in the center of gravity.

特開2020-011555号公報JP 2020-011555 A 特開2021-70377号公報JP 2021-70377 A 特開2021-84587号公報JP 2021-84587 A

野波健蔵編著、西村秀和共著;MATLAB(登録商標)による制御理論の基礎Kenzo Nonami (ed.) and Hidekazu Nishimura (co-author); Fundamentals of Control Theory Using MATLAB (registered trademark) 籾山冨士男ほか; “大型トラックの前後運動の同定とそのモデル化手法”自動車技術開論文集, Vol.43, No.2, March 2012, No.20124209, pp.211-216Fujio Momiyama et al.; “Identification and modeling of longitudinal motion of large trucks” Journal of Automotive Technology, Vol. 43, No. 2, March 2012, No. 20124209, pp. 211-216 籾山冨士男ほか;自動運転大型トラックのための横運動モデルの積載状態推定、自動車技術会論文集,Vol.44,No.6,November 2013.,No.20134847,p.1377-1382.Fujio Momiyama et al.; Loading State Estimation Using Lateral Motion Model for Autonomous Large Trucks, Transactions of the Society of Automotive Engineers of Japan, Vol. 44, No. 6, November 2013, No. 20134847, p. 1377-1382.

上述した従来技術にあっては、走行中に刻々と変化する自動運転車両の制御モデルの諸元(状態量)の変化量を正確に推定し、その変化量をリアルタイムで制御モデルに反映させて継続的に自動運転することができない。 The above-mentioned conventional technology is unable to accurately estimate the amount of change in the parameters (state quantities) of the control model of an autonomous vehicle, which changes from moment to moment while the vehicle is traveling, and is unable to reflect the amount of change in the control model in real time to enable continuous autonomous driving.

上記課題を解消するため本発明は、車両の状態量で記述される運転を制御する数式が車載コンピュータ(ECU)に組み込まれ、リアルタイムで推定した車両の状態量を前記数式に更新しつつ入力し、前記数式で計算された運転を制御する信号が車載コンピュータから出力される自動運転方法であって、前記状態量は自重、坂の勾配、重心位置およびタイヤコーナリング係数であり、前記自重と勾配はアクセル入力に対する発生加速度の式によって推定し、前記重心位置およびタイヤコーナリング係数はGPSと車輪速によって推定し、前記重心位置の推定は、GPSと車輪速により各輪の横すべり角を算出し、前記重心位置の移動量を求める式から重心位置の移動量を求め重心位置を推定するようにした。 In order to solve the above problems, the present invention provides an automatic driving method in which equations for controlling driving described by vehicle state quantities are incorporated into an on-board computer (ECU), the vehicle state quantities estimated in real time are input while being updated into the equations, and a signal for controlling driving calculated by the equations is output from the on-board computer, wherein the state quantities are the vehicle's own weight, slope gradient, center of gravity position, and tire cornering coefficient, the vehicle's own weight and slope are estimated from an equation for acceleration generated in response to accelerator input, the center of gravity position and tire cornering coefficient are estimated from GPS and wheel speed, and the center of gravity position is estimated by calculating the lateral slip angle of each wheel from GPS and wheel speed, and determining the amount of movement of the center of gravity position from an equation for determining the amount of movement of the center of gravity position to estimate the center of gravity position.

上記において、勾配および自重は、車両の前後運動モデル式、即ちエンジン出力と走行抵抗のつり合い式から導出される「アクセル入力に対する発生加速度の式」を用いて推定する。具体的には、アクセルOFFしたときに生じる減速度から道路勾配を推定し、その後アクセルONしたときに生じる加速度から自重を推定する。
本発明では、車両の横運動モデル式から導出される「重心位置変化の式」を備えて、この式に、先に求めた自重及び、GPSによる「前第1軸及び前第2軸横すべり角」と「後第1軸及び後第2軸横すべり角」を代入して、重心位置変化長を求め、求めた「重心位置変化長」を「空車時重心位置」に加算して、積車時重心位置を求める。加えて、操向輪及び非操向輪に備える車輪速センサによっても重心位置を推定する。
そして、車両の横運動モデル式から導出されるタイヤコーナリング係数の式を備えて、この式に先に求めた自重・重心位置を代入し、定常円旋回して得られるスタビリティファクタと横すべり係数を代入して、実装しているタイヤコーナリング係数を推定する。かくして、その場・その時の状態に適応しての、前後方向の加減速運動・横方向の横運動回転運動の自動運転制御を可能にする。
In the above, the gradient and vehicle weight are estimated using the vehicle longitudinal motion model equation, i.e., the "equation of acceleration generated by accelerator input" derived from the balance equation of engine output and running resistance. Specifically, the road gradient is estimated from the deceleration that occurs when the accelerator is released, and the vehicle weight is estimated from the acceleration that occurs when the accelerator is subsequently released.
In the present invention, a "formula for change in center of gravity position" derived from the vehicle lateral motion model formula is provided, and the previously determined weight and the "first and second front axle sideslip angles" and "first and second rear axle sideslip angles" obtained by GPS are substituted into this formula to determine the change length of the center of gravity position, and the loaded center of gravity position is determined by adding the determined "change length of the center of gravity position" to the "unloaded center of gravity position." In addition, the center of gravity position is also estimated by wheel speed sensors provided on the steered and non-steered wheels.
The tire cornering coefficient equation derived from the vehicle's lateral motion model equation is prepared, and the vehicle's own weight and center of gravity position obtained above are substituted into this equation, and the stability factor and side slip angle coefficient obtained by turning in a steady circle are substituted to estimate the implemented tire cornering coefficient. Thus, automatic driving control of longitudinal acceleration/deceleration motion and lateral motion/rotational motion in the lateral direction, adapted to the conditions at that time, is made possible.

また、状態量(自重、勾配、重心位置およびタイヤコーナリング係数)の変化を検出し、これを制御モデルの式に代入して自動運転に反映させるまでには、極めて短い時間ではあるがタイムラグが生じる。このタイムラグが生じても問題がない速度で自動運転を行うことが好ましい。 In addition, there is a very short time lag between detecting changes in state quantities (weight, gradient, center of gravity position, and tire cornering coefficient) and substituting them into the control model equations to reflect the changes in autonomous driving. It is preferable to perform autonomous driving at a speed where this time lag does not cause any problems.

本発明によれば、自動運転車両の前後及び横運動の制御のために必要な制御モデルとそのモデルの状態量の変化に適応する状態フィードバック制御が可能になる。 The present invention makes it possible to realize a control model required for controlling the longitudinal and lateral movements of an autonomous vehicle and state feedback control that adapts to changes in the state quantities of that model.

前後運動モデルと自重推定及び勾配推定の説明図である。FIG. 2 is an explanatory diagram of a longitudinal motion model and weight estimation and gradient estimation. 加速度で表現した動力性能線図の積載変化の説明図である。FIG. 13 is an explanatory diagram of a change in load on a power performance diagram expressed in terms of acceleration. 横運動モデルと内部状態量の説明図である。FIG. 2 is an explanatory diagram of a lateral motion model and internal state quantities. GPSを装備し、積車に伴うタイヤ横すべり角変化を検出して、重心位置変化を推定する方法の説明図である。FIG. 1 is an explanatory diagram of a method for estimating changes in center of gravity position by equipping a vehicle with a GPS and detecting changes in tire sideslip angle due to a loaded vehicle. 空車から積車に伴う重心位置移動(Δl)による軸荷重変化の説明図である。FIG. 11 is an explanatory diagram of the change in axle load due to the shift in the center of gravity (Δl) associated with a change from an empty vehicle to a loaded vehicle. 車輪速から推定される前輪実舵角および重心位置の近似解の説明図である。5 is an explanatory diagram of an approximation of the actual front wheel steering angle and the center of gravity position estimated from the wheel speed. FIG. 車速に対する車両の旋回特性変化の説明図である。4 is a graph showing a change in turning characteristic of a vehicle relative to vehicle speed; FIG. 「旋回保舵軌跡」の「計画経路」への設定の仕方の説明図である。FIG. 13 is an explanatory diagram of how to set the "turning steering path" to the "planned route." 状態推定のフローの説明図である。FIG. 11 is an explanatory diagram of a flow of state estimation.

本発明の実施の形態を図1から図9にもとづいて説明する。
図1に前後運動モデルと自重推定及び勾配推定を示す。(A)は、駆動軸まわりに車両の等価慣性モーメントをIeqと置いた駆動系の簡略図である。TEはエンジントルク、ωはエンジン回転速度、imnは変速機のギヤ比、ifは終減速比、ωwは車輪回転速度、vは車速、rは車輪の回転半径、Rr,Rd,Rθは、それぞれころがり抵抗、空気抵抗、勾配抵抗である。エンジン出力と走行抵抗のつり合い関係は伝達効率などを無視して簡単表現すると図中(B)の式(1)になる。
An embodiment of the present invention will be described with reference to FIGS.
Figure 1 shows the longitudinal motion model and the vehicle weight and gradient estimation. (A) is a simplified diagram of the drive system with the vehicle's equivalent moment of inertia around the drive shaft as Ieq. T E is the engine torque, ω is the engine speed, imn is the gear ratio of the transmission, if is the final reduction ratio, ωw is the wheel rotation speed, v is the vehicle speed, r is the wheel rotation radius, and Rr, Rd, and R θ are the rolling resistance, air resistance, and gradient resistance, respectively. The balance relationship between engine output and running resistance can be simply expressed by ignoring transmission efficiency and other factors, and is expressed as equation (1) in (B) in the figure.

Figure 0007553413000001
Figure 0007553413000001

式(1)から図中(C)に示すアクセル入力に対する発生加速度の式(2)になる。
左辺が車両加速度α、右辺の第1項はエンジントルクTEを変速機のギヤ比imn及び終減速比if倍してタイヤ半径rで除した駆動力を駆動軸回りに換算した車両質量で除したエンジンから発せられる加速度である。右辺第2項はころがり抵抗相当減速度αr、空気抵抗騒動減速度αd、勾配抵抗相当減速度αθである。
From equation (1), we obtain equation (2) for the generated acceleration in response to accelerator input, as shown in (C) in the figure.
The left side is the vehicle acceleration α, and the first term on the right side is the acceleration generated by the engine, calculated by multiplying the engine torque T E by the gear ratio imn and the final reduction ratio if of the transmission and dividing the result by the tire radius r, and dividing it by the vehicle mass converted into the rotational axis. The second term on the right side is the deceleration equivalent to rolling resistance αr, the air resistance deceleration αd, and the gradient resistance deceleration αθ .

Figure 0007553413000002
Figure 0007553413000002

式(2)の左辺の車両加速度αをY、右辺の中カッコ部をAとし、アクセル開度X=エンジントルクTEとおいて、右辺第2項のカッコ内減速度をBとすると、アクセル開度(X)に対する車両加速度(Y)の関係は、Y=AX-Bの直線式になる。Aが後述図2の加速抵抗に相当し、Bが惰行抵抗(但し、平地データのため勾配抵抗は含まれていない)に相当する。 If the vehicle acceleration α on the left side of equation (2) is Y, the part in brackets on the right side is A, accelerator opening X = engine torque TE , and the deceleration in brackets in the second term on the right side is B, then the relationship between accelerator opening (X) and vehicle acceleration (Y) is a linear equation: Y = AX - B. A corresponds to the acceleration resistance in Figure 2, which will be described later, and B corresponds to the coasting resistance (however, since this is flat ground data, gradient resistance is not included).

即ち、アクセル入力に対する発生加速度は、Y=AX-Bの直線式になり、直線の勾配Aから車両等価質量meqの変化、即ち自重変化が検出でき、Y軸切片Bから勾配抵抗αθが検出できる(参照:図2)。 In other words, the acceleration generated in response to accelerator input is expressed as a linear equation Y = AX-B, and the change in the vehicle equivalent mass meq, i.e., the change in vehicle weight, can be detected from the gradient A of the line, and the gradient resistance αθ can be detected from the Y-axis intercept B (see Figure 2).

図中(D)に実走行中に加速度・減速度を取得する方法を示す。AMTのギヤ変速が入らない車速(この場合は25km/h)を選び、アクセルを放した時の減速度とアクセル開度例えば80%のパルス入力を入れた時の加速度を取得して、図中(E)に示すアクセル開度に対する発生加速度図を得る。
得られたA値と空車A値との比(参照:図2)から自重を算出し、平地でのB値と現在地B値との差から現在地勾配を認識する。DCCの平均とACCの平均を結ぶ直線式Y=AX-BからX=(Y+B)/Aを得て要求加速度Yに対するアクセル開度Xを決めることができる。
(D) in the figure shows how to obtain acceleration and deceleration during actual driving. A vehicle speed at which the AMT does not shift gears (25km/h in this case) is selected, and the deceleration when the accelerator is released and the acceleration when an accelerator opening pulse input of, for example, 80% is input are obtained, and a graph of the generated acceleration versus accelerator opening shown in (E) in the figure is obtained.
The vehicle's weight is calculated from the ratio of the obtained A value to the empty vehicle A value (see Figure 2), and the current gradient is recognized from the difference between the B value on flat ground and the current location B value. The linear equation Y = AX-B, which connects the DCC average and the ACC average, is used to obtain X = (Y + B)/A, and the accelerator opening X for the required acceleration Y can be determined.

図2に加速度で表現した動力性能線図の積載変化を示す。全自動電子機械式12段変速機の例を示す。図中左側に空積載(車両総重量11.7トン)、右側に12トン積載(車両総重量23.7トン)の例を示す。アクセル100%で加速して車速90km/hに至る過程における変速機ギヤ1stから12thの各段ギヤ位置での発生加速度及び、車速80km/hからアクセルを放して車速ゼロに至る過程の減速度を示す。車速と加速度の関係は、加速度をyとし、車速をxとする双曲線xy=aの関係になり、双曲線定数aは、車両総重量(自重)の変化に反比例することがわかる。
また、減速度は車速の二乗に反比例して車両総重量の変化に依存しない(但し巨視的に見て)ことがわかる。a/xが、前出のY=AX-BのAに対応する。即ち、Aから自重の変化を検出できる。又、図中のy=-0.0003449x2-0.006の0.0003449が空気抵抗の抗力係数、0.06がころがり抵抗と解することができる。即ち、ころがり抵抗から勾配変化が検出できる。
Figure 2 shows the load change of the power performance diagram expressed in terms of acceleration. An example of a fully automatic electronic mechanical 12-speed transmission is shown. The left side of the figure shows an example of an empty load (total vehicle weight 11.7 tons), and the right side shows an example of a 12-ton load (total vehicle weight 23.7 tons). The figure shows the acceleration generated at each gear position from 1st to 12th in the process of accelerating with the accelerator pedal at 100% to a vehicle speed of 90 km/h, and the deceleration in the process of releasing the accelerator pedal from a vehicle speed of 80 km/h to zero. The relationship between vehicle speed and acceleration is a hyperbolic relationship of xy=a, where y is the acceleration and x is the vehicle speed, and it can be seen that the hyperbolic constant a is inversely proportional to the change in the total vehicle weight (weight).
It can also be seen that deceleration is inversely proportional to the square of the vehicle speed and is not dependent on changes in the total vehicle weight (but macroscopically). a/x corresponds to A in the above Y=AX-B. That is, changes in vehicle weight can be detected from A. Also, in the figure, y= -0.0003449x2-0.006 can be interpreted as 0.0003449 being the drag coefficient of air resistance, and 0.06 being the rolling resistance. That is, changes in gradient can be detected from the rolling resistance .

図3に横運動モデルとその内部状態量を示す。図の左側に、車両前方をx軸、車両左側方をy軸とするISO座標系をとる前第1軸、前第2軸、後第1軸、及び後第2軸で構成される4軸車両の平面図を示し、その右側に各軸の左右輪をX軸上の単輪で表現して簡単化した図を示す。以下、その簡単化した図について説明する。 Figure 3 shows the lateral motion model and its internal state quantities. On the left side of the figure is a plan view of a four-axle vehicle consisting of the first front axle, the second front axle, the first rear axle, and the second rear axle, in an ISO coordinate system with the front of the vehicle as the x-axis and the left side of the vehicle as the y-axis, and on the right side is a simplified diagram in which the left and right wheels of each axle are represented as a single wheel on the x-axis. The simplified diagram is explained below.

xy座標は、車両の重心に原点を置く移動座標である。この場合の運動のつり合い式は次の通りである。 The x and y coordinates are moving coordinates with the origin at the center of gravity of the vehicle. The equation for balance of motion in this case is as follows.

Figure 0007553413000003
Figure 0007553413000003

ここに、
mは車両質量、Iは慣性モーメント、vは車速、rはヨーレイト、βは車体横すべり角、CF1,CF2,CF3,CF4は、前第1軸、前第2軸、後第1軸、後第2軸のコーナリングフォース、Kf1,Kf2,Kr1,Kr2は、前第1軸、前第2軸、後第1軸、後第2軸のコーナリングパワー、βf1, βf2, βr1, βr2,は、前第1軸、前第2軸、後第1軸、後第2軸のタイヤ横すべり角、Ccf,Ccrは、前第1軸及び前第2軸タイヤ、後第1軸及び後第2軸タイヤのコーナリング係数、Nf1,Nf2,Nr1,Nr2,は、前第1軸、前第2軸、後第1軸、後第2軸の軸荷重、δ12は、前第1軸、前第2軸の実舵角、akは、δ2に対するδ1の角度比である。lf1をゼロと置くことによって、前2軸後2軸の4軸車から前1軸後2軸の3軸車への適用、lr1をゼロと置くことによって、前2軸後1軸の3軸車への適用、lf1およびlr1をゼロと置くことによって、前1軸後1軸の2軸車への適用を可能にしている。
Here,
where m is the vehicle mass, I is the moment of inertia, v is the vehicle speed, r is the yaw rate, β is the vehicle side slip angle, CF1 , CF2 , CF3 , CF4 are the cornering forces of the first front axle, second front axle, first rear axle, and second rear axle, Kf1 , Kf2 , Kr1 , Kr2 are the cornering powers of the first front axle, second front axle, first rear axle, and second rear axle , βf1 , βf2, βr1 , βr2 are the tire side slip angles of the first front axle, second front axle, first rear axle, and second rear axle, Ccf, Ccr are the cornering coefficients of the first front axle and second front axle tires and the first rear axle and second rear axle tires, and Nf1 , Nf2 , Nr1 , Nr2 , are the axle loads of the first front axle, second front axle, first rear axle, and second rear axle, δ 1 and δ 2 are the actual steering angles of the first front axle and second front axle, and a k is the angle ratio of δ 1 to δ 2. Setting lf1 to zero makes it possible to apply the model to a four-axle vehicle with two front axles and two rear axles, or a three-axle vehicle with one front axle and two rear axles, setting lf1 to zero makes it possible to apply the model to a three-axle vehicle with two front axles and one rear axle, and setting lf1 and lf1 to zero makes it possible to apply the model to a two-axle vehicle with one front axle and one rear axle.

図4に、GPSを装備し積車に伴うタイヤ横すべり角変化を検出して、重心位置変化を推定する方法を説明する。車両前後軸(X軸)上の任意の位置にGPSを設置する。その任意の位置においてGPSから出力される速度VGPSと横すべり角βGPSを記録する。車速VGPSに横すべり角βGPSの余弦を乗じるとVxGPSが得られ、車速VGPSに横すべり角βGPSの正弦を乗じるとVyGPSが得られる。VxGPSは、車体前後方向(x軸方向)の前後速度であり、非操舵輪の車輪速Vwheelに等しい。VyGPSは、GPS装備位置における車体横方向(y軸方向)の横速度である。このGPS出力値VGPS、βGPS及びVxGPS、VyGPSから前第1軸位置、前第2軸位置、後第1軸、後第2軸における速度と横すべり角は、式(13)から式(18)のようにして算出できる。 FIG. 4 illustrates a method of estimating the change in the center of gravity position by detecting the tire side slip angle change associated with a loaded vehicle using a GPS. A GPS is installed at an arbitrary position on the front-rear axis (X-axis) of the vehicle. The speed V GPS and side slip angle β GPS output from the GPS at that arbitrary position are recorded. Multiplying the vehicle speed V GPS by the cosine of the side slip angle β GPS gives Vx GPS , and multiplying the vehicle speed V GPS by the sine of the side slip angle β GPS gives Vy GPS . Vx GPS is the front-rear speed in the front-rear direction (x-axis direction) of the vehicle body, and is equal to the wheel speed Vwheel of the non-steered wheel. Vy GPS is the lateral speed in the lateral direction (y-axis direction) of the vehicle body at the position where the GPS is installed. From these GPS output values V GPS , β GPS and Vx GPS , Vy GPS , the speeds and side slip angles at the front first axle position, front second axle position, rear first axle, and rear second axle can be calculated as shown in Equations (13) to (18).

Figure 0007553413000004
Figure 0007553413000004

ここに、Vf1は前第1軸位置の速度、Vf2は前第2軸位置の速度、Vr1は後第1軸位置の速度、Vr2は後第2軸位置の速度、βf1GPSは前第1軸位置の横すべり角、βf2GPSは前第2軸位置の横すべり角、βf1は前第1軸タイヤの横すべり角、βf2は前第2軸タイヤの横すべり角、βr1は後第1軸タイヤの横すべり角、βr2は後第2軸タイヤの横すべり角である。
尚、空積載から積載状態の場合の横すべり角についてもサフィックスL付にしての同じ式で求めることができる。即ち、空積から積載に伴うタイヤ横すべり角の変化は、式(5)~式(8)からタイヤが発するコーナリングフォースの変化を意味するので、これらの式に含まれるタイヤ荷重(軸荷重)の空車から積車への変化、Nf1→NLf1,Nf2→NLf2,Nr1→NLr1, Nr2→NLr2、を求めて、後述する空車重心位置から積車重心位置への変化長(Δl)算出へつなげる。式(19)(20)に含まれるδ2、δ1、akについては図6にて、後述する。
Here, Vf1 is the speed at the front first axle position, Vf2 is the speed at the front second axle position, Vr1 is the speed at the rear first axle position, Vr2 is the speed at the rear second axle position, βf1GPS is the side slip angle at the front first axle position, βf2GPS is the side slip angle at the front second axle position, βf1 is the side slip angle of the front first axle tires, βf2 is the side slip angle of the front second axle tires, βr1 is the side slip angle of the rear first axle tires, and βr2 is the side slip angle of the rear second axle tires.
The side slip angle when the vehicle changes from an empty to a loaded state can also be calculated using the same formula with the suffix L. In other words, the change in tire side slip angle when the vehicle changes from an empty to loaded state means the change in cornering force generated by the tire according to formulas (5) to (8), so the changes in tire load (axle load) from an empty vehicle to a loaded vehicle, Nf1 → N Lf1 , Nf2 → N Lf2 , Nr1 → N Lr1 , Nr2 → N Lr2 , contained in these formulas, are calculated and used to calculate the change length (Δl) from the empty vehicle center of gravity position to the loaded vehicle center of gravity position, which will be described later. δ2, δ1, and ak contained in formulas (19) and (20) will be described later with reference to FIG. 6.

図5により、空車から積車に伴う重心位置移動(Δl)による軸荷重変化について述べて、図7におけるタイヤコーナリング係数の同定の説明につなげる。図5において、空車質量mが積車質量mになり、それに重力の加速度gが作用して、荷重mgになり荷重mgになる。それを、前第1軸と前第2軸で等分及び後第1軸と後第2軸で等分して支持する。前軸における等分はイコライザ機構によってなされ、後軸における等分はエアサスペンションの空気ばねを連通させることでなされる。かくして、前軸荷重は、式(23)後軸荷重は、式(24)になる。 Using Figure 5, we will explain the change in axle load due to the shift in the center of gravity (Δl) associated with changing from an empty vehicle to a loaded vehicle, and then connect this to the explanation of the identification of the tire cornering coefficient in Figure 7. In Figure 5, the empty vehicle mass m becomes the loaded vehicle mass m L , and the acceleration g of gravity acts on it, turning it into a load mg and a load m L g. This is supported by being equally divided between the first and second front axles and equally divided between the first and second rear axles. The equal division on the front axles is achieved by an equalizer mechanism, and the equal division on the rear axles is achieved by connecting the air springs of the air suspension. Thus, the front axle load is expressed by equation (23), and the rear axle load is expressed by equation (24).

Figure 0007553413000005
Figure 0007553413000005

前出の図3における空車質量(m)での重心位置(lf1,lf2,lr1,lr2)を既知として、積載質量(m)及び各軸の積車横すべり角(βLf1Lf2Lr1lr2)が分かると、横運動のつり合い式から、積車重心位置を計算できる。その計算方法を示す。
先ず、前出の式(3)に式(5)~(8)を代入すると式(25)になる。
If the center of gravity position (lf1,lf2,lr1,lr2) of the empty vehicle mass (m) in Figure 3 mentioned above is known, and the loaded mass (m L ) and the loaded vehicle side slip angle of each axle (β Lf1 , β Lf2 , β Lr1 , β lr2 ) are known, the loaded vehicle center of gravity position can be calculated from the lateral motion balance equation. The calculation method is as follows.
First, by substituting the formulas (5) to (8) into the above formula (3), we obtain formula (25).

Figure 0007553413000006
Figure 0007553413000006

積載により、m→m, r→rL, β→βL, βf1→βLf1, βf2→βLf2,の状態変化が生じ、且つ重心位置がΔlだけ後退すると、前出の式(23)(24)及び式(26)になる。 When loading causes state changes such as m→ mL , r→ rL , β→ βL , βf1βLf1 , and βf2βLf2 , and the center of gravity position moves back by Δl, the above equations (23), (24), and (26) are obtained.

Figure 0007553413000007
Figure 0007553413000007

Figure 0007553413000008
Figure 0007553413000008

Figure 0007553413000009
Figure 0007553413000009

Figure 0007553413000010
Figure 0007553413000010

Figure 0007553413000011
Figure 0007553413000011

Figure 0007553413000012
Figure 0007553413000012

Figure 0007553413000013
Figure 0007553413000013

ここに、式中のβは横すべり角速度である。定常状態ではゼロになるので、定常状態を保持走行中のヨーレイトrL、タイヤ横すべり角(βLf1Lf2Lr1lr2)をGPSによって実測し式(32)に代入することによって、重心位置の移動距離Δlを求めることができる。 Here, β L in the formula is the sideslip angular velocity. Since it is zero in a steady state, the movement distance Δl of the center of gravity position can be calculated by actually measuring the yaw rate rL and tire sideslip angles (β Lf1 , β Lf2 , β Lr1 , β lr2 ) while maintaining the steady state using GPS and substituting them into formula (32).

前述の、タイヤ横すべり角、ヨーレイトをGPSによって実測して、横運動モデル式から展開される重心位置移動距離の式(32)に代入し計算して、積載に伴う重心位置を求め、制御を継続する方法に加え、車輪速から推定される前輪実舵角及び近似的重心位置を得る方法を図6により説明する。 The above-mentioned tire side slip angle and yaw rate are measured by GPS, and substituted into equation (32) for the center of gravity position movement distance developed from the lateral motion model equation to calculate and obtain the center of gravity position associated with loading, and control is continued. In addition, a method for obtaining the actual front wheel steering angle and approximate center of gravity position estimated from the wheel speed is explained with reference to Figure 6.

ABS、ASR或いはEBSのために各軸車輪に車輪速センサが装備されている。この車輪速センサによって取得される車輪速から式(33)によりヨーレイト、式(34)により前後速度、式(35)により前第2軸実舵角、式(36)により車両前後軸から旋回中心までの距離、式(37)により重心の旋回半径、式(38)により重心点の横すべり角、式(39)により後2軸間中心から重心までの距離が得られる。 Each axle wheel is equipped with a wheel speed sensor for ABS, ASR or EBS. From the wheel speed obtained by this wheel speed sensor, the yaw rate can be obtained using equation (33), the longitudinal speed using equation (34), the actual steering angle of the second front axle using equation (35), the distance from the vehicle's longitudinal axle to the turning center using equation (36), the turning radius of the center of gravity using equation (37), the side slip angle of the center of gravity using equation (38), and the distance from the center between the two rear axles to the center of gravity using equation (39).

Figure 0007553413000014
Figure 0007553413000014

ここに、式(33)のvrR、vrL、は後軸右輪及び左輪の車輪速度、Trは後軸のトレッド、a1は、GPSによって検出される車速との整合調整項としての修正係数である。式(34)におけるa2はGPSによって検出される対地実速度の車両前後軸成分との整合調整項としての修正係数である。式(35)におけるaは、非操舵軸の車輪速と、操舵軸の車輪速その余弦から求める実舵角を操舵軸のタイロッドストロークから求める実舵角との整合調整項としての修正項である。 Here, vrR and vrL in equation (33) are the wheel speeds of the right and left rear wheels, Tr is the rear axle tread, a1 is a correction coefficient as a matching adjustment term with the vehicle speed detected by GPS, a2 in equation (34) is a correction coefficient as a matching adjustment term with the vehicle front/rear axle component of the actual ground speed detected by GPS, and a3 in equation (35) is a correction term as a matching adjustment term with the wheel speed of the non-steered axle and the actual steering angle calculated from the wheel speed of the steering axle and its cosine, calculated from the tie rod stroke of the steering axle.

図1の(E)におけるアクセル開度と発生加速度の関係式Y=Ax-Bから自重推定ができ、図4乃至図5のΔl、即ち式(32)及び式(39)から重心位置が推定できると、前出の式(3)と式(4)の状態方程式の状態量(諸元値)が、タイヤのコーナリング係数(Ccf,Ccr)を除き既知になる。このCcf,Ccrの推定は、状態方程式(3)と(4)から計算して求められる旋回特性と実車実験から取得される旋回特性を等しいと置いて、計算式に含まれるCcf,Ccrの値を求める。 When the vehicle's weight can be estimated from the equation Y = Ax-B, which is the relationship between the accelerator opening and the generated acceleration in (E) of Figure 1, and the center of gravity position can be estimated from Δl in Figures 4 and 5, i.e., equations (32) and (39), the state quantities (values of elements) of the state equations in equations (3) and (4) above become known, except for the tire cornering coefficients (Ccf, Ccr). The estimation of Ccf and Ccr is carried out by assuming that the turning characteristics calculated from equations (3) and (4) are equal to the turning characteristics obtained from actual vehicle testing, and determining the values of Ccf and Ccr included in the calculation equations.

図7に、車速に対する車両の旋回特性変化を示す。半径R0の円旋回をする。微速旋回して、半径R0一定で周回できるハンドル角(保舵角)を決めて、徐々に増速(Vlow→Vhigh)すると、図の様に回転半径が変化(Rv_low→Rv_high)し、車体横すべり角が変化(β0→βv)する。この変化を横軸に車速の二乗、縦軸にβv0及びRv/R0をとって、横すべり角の変化特性及び回転半径の変化特性を取得して、横すべり角係数Kβ0及びスタビリティファクタKsfを得る。ここで、βv0及びRv/R0の車速ゼロにおける“1.0”の点は一義的に決まるので、×印で示す実測点v2を少なくとも1水準以上取得し、“1.0”の点と結ぶことによって、横すべり係数、スタビリティファクタを取得する。 FIG. 7 shows the change in the turning characteristics of a vehicle with respect to the vehicle speed. A circle with a radius of R0 is made. When the vehicle turns at a slow speed and the steering angle (steering angle) that allows the vehicle to turn at a constant radius R0 is determined, and the vehicle speed is gradually increased (Vlow→Vhigh), the turning radius changes (Rv_low→Rv_high) as shown in the figure, and the vehicle side slip angle changes ( β0βv ). This change is plotted as the square of the vehicle speed on the horizontal axis and βv / β0 and Rv/ R0 on the vertical axis, and the change characteristics of the side slip angle and the turning radius are obtained, and the side slip angle coefficient Kβ0 and the stability factor Ksf are obtained. Here, the "1.0" point at zero vehicle speed for βv / β0 and Rv/ R0 is uniquely determined, so the side slip angle coefficient and the stability factor are obtained by obtaining at least one level of the actual measurement point v2 indicated by the cross mark and connecting it to the "1.0" point.

横すべり係数およびスタビリティファクタは、状態方程式(3)及び(4)から展開(参照:別添資料)導出されて式(40)、式(41)になる。 The sideslip angle coefficient and stability factor are derived from the state equations (3) and (4) by expanding (see attached document) them into equations (40) and (41).

Figure 0007553413000015
Figure 0007553413000015

ここに、式(40)式(41)共に、lf1をゼロと置くことによって、前2軸後2軸の4軸車から前1軸後2軸の3軸車への適用、lr1をゼロと置くことによって、前2軸後1軸の3軸車への適用、lf1およびlr1をゼロと置くことによって、前1軸後1軸の2軸車への適用を可能にしている。 In both equations (40) and (41), by setting lf1 to zero, it is possible to apply the formula to a four-axle vehicle with two axles at the front and two at the rear, or to a three-axle vehicle with one axle at the front and two at the rear, by setting lr1 to zero, it is possible to apply the formula to a three-axle vehicle with two axles at the front and one at the rear, and by setting both lf1 and lr1 to zero, it is possible to apply the formula to a two-axle vehicle with one axle at the front and one at the rear.

Figure 0007553413000016
Figure 0007553413000016

Figure 0007553413000017
Figure 0007553413000017

Figure 0007553413000018
Figure 0007553413000018

Figure 0007553413000019
Figure 0007553413000019

以上、式(42-2)に含まれる横すべり係数Kβ0、及び、式(43-1)式(43-2)にスタビリティファクタKsfに実験同定値を代入して、式(42-1)式(43-3)と共に、式(46)式(47)に代入することにより後軸及び前軸のタイヤコーナリング係数を推定することができる。 As described above, the tire cornering coefficients of the rear axle and the front axle can be estimated by substituting the experimentally identified values for the sideslip angle coefficient Kβ0 included in equation (42-2) and the stability factor Ksf in equations (43-1) and (43-2) and substituting these values into equations (46) and (47) together with equations (42-1) and (43-3).

図8に「旋回保舵軌跡」の「計画経路」への設定の仕方を示す。前述図7の旋回ができる広い場所に限定されずに、公道において車線移行しながら「旋回保舵軌跡」を描いて横すべり角係数Kβ0、スタビリティファクタKsfを取得するための「旋回保舵軌跡」と、その「旋回保舵軌跡」を運行計画経路の任意の位置に設定する方法を示す。 Fig. 8 shows how to set the "turning steering path" to the "planned route". This shows the "turning steering path" for obtaining the side slip angle coefficient Kβ0 and the stability factor Ksf by drawing the "turning steering path" while shifting lanes on a public road, not limited to the wide area where turning is possible as shown in Fig. 7, and a method for setting the "turning steering path" at an arbitrary position on the operation planned route.

図8の上部に「旋回保舵軌跡」を示す。片側2車線以上の道路を想定する。図の右側から左側に向けての走行軌跡である。走行車線を走っていてP0からP1のL01間にて右舵してP1からP3のL123間で右舵から左舵への操舵切替をし、P3からP4間で保舵角を定めて、P4-P5-P6のL456間で速度と舵角を保持してデータ取得して、P6-P7のL67間で保舵を解除して、P7-P8-P9のL789間で左舵から右舵して、P9-P10のL910にて右舵から直進に戻す。 The "turning steering trajectory" is shown at the top of Figure 8. We are assuming a road with two or more lanes on each side. This is the driving trajectory from the right side of the figure to the left side. While driving in the driving lane, the car steers to the right between P0 and P1 at L01, switches from right to left steering between P1 and P3 at L123, determines the steering angle between P3 and P4, maintains the speed and steering angle between P4-P5-P6 at L456 and acquires data, releases the steering angle between P6-P7 at L67, steers from left to right between P7-P8-P9 at L789, and switches from right to straight at L910 between P9-P10.

図8の下部に、予め用意しておいた上述の「旋回保舵軌跡」を計画経路に組み込む方法を示す。公道において車線移行しながら「旋回保舵軌跡」を描こうとするも、その公道は直線とは限らないので、曲線路上でも「旋回保舵軌跡」を描けるようにする。(A)の直線路にたいして、(B)に右旋回路、(C)に左旋回路を想定する。これら(A)(B)(C)の経路曲率を予め取得して置く。その曲率にその場所での車速を乗ずるとヨーレイトになり、そのヨーレイトを積分して計画経路の進路角を得て、それに「旋回保舵角軌跡」の進路角を加えて、積分し、それに車速を乗じるとによって計画経路へ設定された「旋回保舵軌跡」をえることができる。この計画経路へ設定された「旋回保舵軌跡」にて、図7に準じて、横すべり係数Kβ0とスタビリティファクタKsfを取得する。 The lower part of FIG. 8 shows a method of incorporating the above-mentioned "turning steering path" prepared in advance into the planned route. Although the "turning steering path" is drawn while changing lanes on a public road, the public road is not necessarily a straight line, so the "turning steering path" can be drawn even on a curved road. For a straight road (A), a right-turn circuit is assumed in (B) and a left-turn circuit is assumed in (C). The route curvatures of (A), (B), and (C) are obtained in advance. The curvature is multiplied by the vehicle speed at that location to obtain the yaw rate, and the yaw rate is integrated to obtain the course angle of the planned route, and the course angle of the "turning steering angle path" is added to it, integrated, and multiplied by the vehicle speed to obtain the "turning steering path" set to the planned route. For the "turning steering path" set to the planned route, the sideslip angle coefficient Kβ0 and the stability factor Ksf are obtained according to FIG. 7.

図9に状態推定のフローを示す。このフローは自重と重心位置とタイヤコーナリング係数の状態量推定のはじめから終了までに関する。推定取得した状態量に制御諸元(パラメータ)に切替えての制御に関する説明は本件発明には含まない。工程1では、状態推定しようとする自重、重心位置、タイヤコーナリング係数が、制御モデルが必要とするパラメータ(状態量)であること、その数値が、空車状態値になっていること(設定されていること)の確認工程である。工程2では、タイヤコーナリング係数の空車同定実験は実施されていて、その同定された数値がモデルに装備されていることの確認である。工程3は、運行計画、運行ダイヤは設定されていて、効果的なリアルタイム状態推定の実行場所・実行時間の実施計画の整備の確認工程である。工程4にて、
(1)アクセルによる自重推定、勾配推定をして前後モデル修験の更新
(2)「旋回保舵軌跡」相応の部分定常旋回を実行しての、重心位置推定をして横運動モデル諸元の更新
(3)「旋回保舵軌跡」相応の部分定常旋回を実行しての、タイヤコーナリング係数の確認・更新の順で実施しつつ運行する。
FIG. 9 shows the flow of state estimation. This flow relates to the estimation of state quantities of vehicle weight, center of gravity position, and tire cornering coefficient from start to finish. The present invention does not include an explanation of the control of switching the estimated state quantities to control specifications (parameters). Step 1 is a step of confirming that the vehicle weight, center of gravity position, and tire cornering coefficient to be estimated are parameters (state quantities) required by the control model, and that their numerical values are set (set) as empty vehicle state values. Step 2 is a step of confirming that an empty vehicle identification experiment for the tire cornering coefficient has been conducted , and that the identified numerical values are installed in the model. Step 3 is a step of confirming that an operation plan and a bus schedule have been set, and that an implementation plan for the location and time of effective real-time state estimation has been prepared. Step 4 is
(1) Estimate the vehicle's own weight and gradient using the accelerator, and update the front and rear model parameters. (2) Perform a partial steady turn corresponding to the "turning steering path," estimate the center of gravity position, and update the lateral movement model parameters. (3) Perform a partial steady turn corresponding to the "turning steering path," and check and update the tire cornering coefficient. The vehicle is operated in this order.

以上述べた様に、本発明は、乗客・荷物の変化に伴う自車両の状態量、即ち車両総重量・重心位置・タイヤ荷重、の変化を検出して、その変化に対応する制御モデルの状態量を更新しつつ適応制御するための状態量検出の方法に関する。
・式(2)に対応するアクセル開度Xに対する車両加速度YのY=AX-Bの直線式を備え、直線の勾配Aから自重変化を検出し、Y切片Bから勾配を検出する方法である。
・GPSを装備し、積車に伴うタイヤ横すべり角を検出して、重心位置変化を式(32)により推定する方法である。
・自重変化が分かり、重心位置変化が分かると、前後荷重が分かり、車両としての横すべり角係数、スタビリティファクタを把握する「旋回保舵軌跡」を備えて、その旋回保舵走行できる場所にて、それらを検出して、式(46)式(47)に代入して、タイヤコーナリング係数の推定ができる。
かくして、乗客変化、積載変化に伴う車両の前後運動特性、横運動特性の変化に適応する自動運転車両の適応制御の必要に応えるものである。
As described above, the present invention relates to a method for detecting state quantities in order to detect changes in the state quantities of a vehicle, i.e., total vehicle weight, center of gravity position, and tire load, that accompany changes in passengers and baggage, and to perform adaptive control while updating the state quantities of a control model that correspond to those changes.
A method that uses a linear equation Y=AX-B, which is the vehicle acceleration Y relative to the accelerator opening X corresponding to equation (2), detects the change in vehicle weight from the gradient A of the straight line, and detects the gradient from the Y intercept B.
A method in which a GPS is installed, the tire side slip angle caused by the loaded vehicle is detected, and the change in the center of gravity position is estimated using equation (32).
When the change in vehicle weight and the change in center of gravity are known, the front and rear loads can be determined, and the vehicle's lateral slip angle coefficient and stability factor can be grasped by a "turning steering path." By detecting these at a location where the vehicle can be driven while maintaining steering and substituting them into equations (46) and (47), the tire cornering coefficient can be estimated.
Thus, the present invention addresses the need for adaptive control of an autonomous vehicle to accommodate changes in the vehicle's forward and backward motion characteristics and lateral motion characteristics associated with changes in passenger and load.

Claims (1)

車両の状態量で記述される運転を制御する数式が車載コンピュータ(ECU)に組み込まれ、リアルタイムで推定した車両の状態量を前記数式に更新しつつ入力し、前記数式で計算された運転を制御する信号が車載コンピュータから出力される自動運転方法であって、前記状態量は自重、坂の勾配、重心位置およびタイヤコーナリング係数であり、前記自重と勾配はアクセル入力に対する発生加速度の式によって推定し、前記重心位置およびタイヤコーナリング係数はGPSと車輪速によって推定し、前記重心位置の推定は、GPSと車輪速により各輪の横すべり角を算出し、以下の式(32)により前記重心位置の移動量を求めて推定することを特徴とする自動運転方法。
An autonomous driving method in which an equation for controlling driving, which is described by vehicle state quantities, is incorporated into an on-board computer (ECU), the vehicle state quantities estimated in real time are input into the equation while being updated, and a signal for controlling driving calculated by the equation is output from the on-board computer, wherein the state quantities are the vehicle's own weight, slope gradient, center of gravity position, and tire cornering coefficient, the vehicle's own weight and slope are estimated by an equation for generated acceleration in response to accelerator input, the center of gravity position and tire cornering coefficient are estimated by GPS and wheel speed , and the center of gravity position is estimated by calculating the lateral slip angle of each wheel from the GPS and wheel speed, and determining the amount of movement of the center of gravity position by the following equation (32) :
JP2021135650A 2021-08-23 2021-08-23 Autonomous driving method Active JP7553413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021135650A JP7553413B2 (en) 2021-08-23 2021-08-23 Autonomous driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021135650A JP7553413B2 (en) 2021-08-23 2021-08-23 Autonomous driving method

Publications (2)

Publication Number Publication Date
JP2023030490A JP2023030490A (en) 2023-03-08
JP7553413B2 true JP7553413B2 (en) 2024-09-18

Family

ID=85414373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021135650A Active JP7553413B2 (en) 2021-08-23 2021-08-23 Autonomous driving method

Country Status (1)

Country Link
JP (1) JP7553413B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024265A (en) 2016-08-08 2018-02-15 日立オートモティブシステムズ株式会社 Vehicle state amount estimation device
JP2020011555A (en) 2018-07-17 2020-01-23 先進モビリティ株式会社 Platoon running system
JP2021070377A (en) 2019-10-30 2021-05-06 先進モビリティ株式会社 Gravity center position estimation system of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024265A (en) 2016-08-08 2018-02-15 日立オートモティブシステムズ株式会社 Vehicle state amount estimation device
JP2020011555A (en) 2018-07-17 2020-01-23 先進モビリティ株式会社 Platoon running system
JP2021070377A (en) 2019-10-30 2021-05-06 先進モビリティ株式会社 Gravity center position estimation system of vehicle

Also Published As

Publication number Publication date
JP2023030490A (en) 2023-03-08

Similar Documents

Publication Publication Date Title
US8775048B2 (en) Method and apparatus for determining a reference vehicle velocity and a rear wheel speed in a vehicle having three speed sensors
US9919738B2 (en) Vehicle control system and method
US6745112B2 (en) Method of estimating quantities that represent state of vehicle
US11872989B2 (en) Method and system for controlling vehicle operation
CN112218792A (en) Apparatus and method for controlling steering
CN101311050A (en) Motion control device of vehicle using acceleration information
CN116457270A (en) Predictive energy and motion management for multi-trailer heavy vehicles
CN108248583A (en) A kind of automobile electron stabilization control system and its hierarchical control method
JP7322144B2 (en) How to make a vehicle follow a desired curvilinear path
CN104136290A (en) Vehicle turn characteristics estimation apparatus
US8340881B2 (en) Method and system for assessing vehicle movement
US20030089542A1 (en) Method of estimating quantities that represent state of vehicle
CN113665669B (en) Vehicle stability control system and method
JP2000292316A (en) Estimation arithmetic device of center-of-gravity height of vehicle
JP2569591B2 (en) Vehicle driving assist device
JP7553413B2 (en) Autonomous driving method
JP2019206312A (en) Control device of towing vehicle
CN109747710B (en) Method for controlling a rear axle steering system of a motor vehicle
JP7469424B1 (en) Method for automatic driving of articulated vehicles
JP7618602B2 (en) Autonomous driving method
CN115771518A (en) System and method for determining whether a vehicle is in an understeer or oversteer condition
CN112590774A (en) Intelligent electric automobile drifting and warehousing control method based on deep reinforcement learning
Wang et al. Dynamics control for EVs
US20240391434A1 (en) Wheel slip-based motion control for heavy-duty vehicles
US20240270214A1 (en) Automatic trailer brake gain scaling system and method using hitch forces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240905

R150 Certificate of patent or registration of utility model

Ref document number: 7553413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150