[go: up one dir, main page]

JP7553243B2 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP7553243B2
JP7553243B2 JP2020011852A JP2020011852A JP7553243B2 JP 7553243 B2 JP7553243 B2 JP 7553243B2 JP 2020011852 A JP2020011852 A JP 2020011852A JP 2020011852 A JP2020011852 A JP 2020011852A JP 7553243 B2 JP7553243 B2 JP 7553243B2
Authority
JP
Japan
Prior art keywords
frame member
current collector
active material
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011852A
Other languages
Japanese (ja)
Other versions
JP2021118132A (en
JP2021118132A5 (en
Inventor
浩太郎 那須
雄介 水野
直也 大前
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
+APB CORPORATION
Sanyo Chemical Industries Ltd
Original Assignee
+APB CORPORATION
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by +APB CORPORATION, Sanyo Chemical Industries Ltd filed Critical +APB CORPORATION
Priority to JP2020011852A priority Critical patent/JP7553243B2/en
Priority to CN202080085624.1A priority patent/CN114788072A/en
Priority to PCT/JP2020/046622 priority patent/WO2021117908A1/en
Priority to US17/289,621 priority patent/US11637334B2/en
Priority to EP20898732.1A priority patent/EP4074534A1/en
Publication of JP2021118132A publication Critical patent/JP2021118132A/en
Publication of JP2021118132A5 publication Critical patent/JP2021118132A5/ja
Application granted granted Critical
Publication of JP7553243B2 publication Critical patent/JP7553243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、組電池に関する。 The present invention relates to a battery pack.

近年、深海用機器、潜水調査船、潜水作業ロボット等は、潜水深度の深化、潜水時間の長時間化の要求が高まり、その主動力電源あるいはこれらに搭載される計器類、通信機器類の電源としての電池にも大容量化の要求が高まっている。 In recent years, there has been an increasing demand for deeper diving depths and longer diving times for deep-sea equipment, submersible research vessels, and submersible work robots, and there is also an increasing demand for larger capacity batteries to power these devices as their main power sources or the instruments and communication devices installed on them.

また、深海で使用する電池は、高圧の環境下で使用するための構成を備えていることが要求されており、特許文献1には、深海で使用するための電池として、伸縮可能なベローズを有する均圧装置を備えた電池が開示されている。 Furthermore, batteries used in the deep sea are required to be configured for use in a high-pressure environment, and Patent Document 1 discloses a battery for use in the deep sea that is equipped with a pressure equalizing device having an expandable bellows.

また、特許文献2には、リチウムイオン電池からなる単電池が開示されており、これを複数枚直列に積層して積層型電池モジュールとして使用することが記載されている。 Patent document 2 also discloses a single cell made of a lithium-ion battery, and describes stacking multiple cells in series for use as a stacked battery module.

特開2007-18573号公報JP 2007-18573 A 特開2018-125213号公報JP 2018-125213 A

本発明者らは、特許文献2に記載されたようなリチウムイオン電池を、高圧の環境下で使用することができるかについて検討した。
特許文献2に記載されたリチウムイオン電池は、正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなり、電解液を含む単電池を有しており、正極集電体及び負極集電体の間に配置されて正極集電体及び負極集電体の間にセパレータの周縁部を固定し、かつ正極活物質層、セパレータ、及び負極活物質層を封止する固定部を備えている。
The present inventors have investigated whether the lithium ion battery described in Patent Document 2 can be used in a high-pressure environment.
The lithium ion battery described in Patent Document 2 has a single cell including an electrolyte, in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector are laminated in this order, and is provided with a fixing part that is disposed between the positive electrode current collector and the negative electrode current collector to fix the peripheral portion of the separator between the positive electrode current collector and the negative electrode current collector, and that seals the positive electrode active material layer, the separator, and the negative electrode active material layer.

特許文献2に記載された単電池を積層したリチウムイオン電池を、高圧の環境下で使用すると、正極活物質層及び負極活物質層と、その周囲の固定部の間の隙間が大きく凹むことがあった。このような凹みが生じると、この凹みに応力集中が生じて正極集電体及び/又は負極集電体に亀裂が生じることが懸念された。 When a lithium-ion battery formed by stacking the single cells described in Patent Document 2 was used in a high-pressure environment, the gaps between the positive electrode active material layer and the negative electrode active material layer and the surrounding fixing parts could become significantly recessed. When such a recess occurs, there is a concern that stress concentration will occur in the recess, causing cracks in the positive electrode current collector and/or the negative electrode current collector.

上記の検討から、特許文献2に記載されたようなリチウムイオン電池を高圧の環境下で使用できる電池とするためには何らかの改良が必要であると思われた。
特許文献1に記載された電池は高圧の環境下で使用するためのものであるが、この電池は電池の基本構成が異なるため、特許文献1に記載された構成を参考にして特許文献2に記載された電池を改良することは困難であった。
From the above investigations, it was thought that some improvement was necessary to make the lithium ion battery described in Patent Document 2 into a battery that could be used in a high-pressure environment.
The battery described in Patent Document 1 is intended for use in a high-pressure environment, but since this battery has a different basic battery configuration, it was difficult to improve the battery described in Patent Document 2 by referring to the configuration described in Patent Document 1.

本発明は、上記課題を鑑みてなされたものであり、高圧の環境下での使用に適した組電池を提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a battery pack suitable for use in high-pressure environments.

本発明は、順に積層されたひと組の正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体からなる積層単位と、上記正極集電体及び上記負極集電体の間で、上記正極活物質層、上記セパレータ及び上記負極活物質層の周囲に配置された環状の枠部材とを有する単電池を2個以上有する組電池であって、組電池を構成する単電池につき、上記枠部材が存在する部位と、上記積層単位が存在する部位の厚さの差が0.3mm以下であり、組電池を構成する単電池につき、上記枠部材と上記積層単位の間の隙間が0.5mm以下である組電池、及び、順に積層されたひと組の正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体からなる積層単位と、上記正極集電体及び上記負極集電体の間で、上記正極活物質層、上記セパレータ及び上記負極活物質層の周囲に配置された環状の枠部材とを有する単電池を2個以上有する組電池であって、上記枠部材上、及び、上記枠部材と上記積層単位の間の隙間上の、正極集電体上及び/又は負極集電体上に段差充填材が設けられており、上記段差充填材は、上記枠部材が存在する部位における厚さと、上記枠部材が存在する部位と上記積層単位が存在する部位の間の部位における厚さと、上記積層単位が存在する部位における厚さとの差が、0.3mm以下となるように設けられていることを特徴とする組電池、に関する。 The present invention relates to an assembled battery having two or more single cells having a stacking unit consisting of a set of a positive electrode collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode collector stacked in order, and an annular frame member arranged around the positive electrode active material layer, the separator, and the negative electrode active material layer between the positive electrode collector and the negative electrode collector, wherein the difference in thickness between the portion where the frame member is present and the portion where the stacking unit is present is 0.3 mm or less for the single cells constituting the assembled battery, and the gap between the frame member and the stacking unit is 0.5 mm or less for the single cells constituting the assembled battery; and This battery assembly includes two or more single cells each having a stacking unit made of a negative electrode current collector and an annular frame member arranged around the positive electrode active material layer, the separator, and the negative electrode active material layer between the positive electrode current collector and the negative electrode current collector, and is characterized in that a step filler is provided on the frame member and on the gap between the frame member and the stacking unit, on the positive electrode current collector and/or the negative electrode current collector, and the step filler is provided so that the difference between the thickness at the location where the frame member is present, the thickness at the location between the location where the frame member is present and the location where the stacking unit is present, and the thickness at the location where the stacking unit is present is 0.3 mm or less.

本発明によると、高圧の環境下での使用に適した組電池を提供することができる。 The present invention provides a battery pack suitable for use in high-voltage environments.

図1は、本発明の組電池を構成する単電池の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view showing a schematic diagram of an example of a unit cell constituting the battery pack of the present invention. 図2は、枠部材と積層単位の間の隙間の定め方を説明するための上面図である。FIG. 2 is a top view for explaining how to determine the gap between the frame member and the stack unit. 図3は、枠部材が存在する部位と積層単位が存在する部位の厚さの差が大きく、枠部材と積層単位の間の隙間が大きい単電池の一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view that shows a schematic example of a unit cell in which there is a large difference in thickness between a portion where a frame member is present and a portion where a laminate unit is present, and there is a large gap between the frame member and the laminate unit. 図4は、図3に示す単電池を積層した組電池の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view that illustrates an example of a battery pack in which the unit cells shown in FIG. 3 are stacked. 図5は、図1に示す単電池を積層した組電池の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view that illustrates an example of a battery pack in which the unit cells shown in FIG. 1 are stacked. 図6は、本発明の組電池を構成する単電池の別の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view that illustrates a schematic diagram of another example of a unit cell that constitutes the battery pack of the present invention. 図7は、組電池の外側に段差充填材を設けた組電池の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view that shows a schematic example of a battery pack in which a step filler is provided on the outside of the battery pack. 図8は、実施例1のラミネートセルの上面の一部を拡大して示す写真である。FIG. 8 is a photograph showing an enlarged view of a part of the upper surface of the laminate cell of Example 1. 図9は、実施例2のラミネートセルの上面の一部を拡大して示す写真である。FIG. 9 is a photograph showing an enlarged view of a part of the upper surface of the laminate cell of Example 2. 図10は、比較例1のラミネートセルの上面の一部を拡大して示す写真である。FIG. 10 is a photograph showing an enlarged view of a portion of the upper surface of the laminate cell of Comparative Example 1. 図11は、比較例2のラミネートセルの上面の一部を拡大して示す写真である。FIG. 11 is a photograph showing an enlarged view of a portion of the upper surface of the laminate cell of Comparative Example 2. 図12は、比較例3のラミネートセルの上面の一部を拡大して示す写真である。FIG. 12 is a photograph showing an enlarged view of a portion of the upper surface of the laminate cell of Comparative Example 3. 図13は、実施例5のラミネートセルの上面の一部を拡大して示す写真である。FIG. 13 is a photograph showing an enlarged view of a part of the upper surface of the laminate cell of Example 5.

以下、本発明を詳細に説明する。
なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。
The present invention will be described in detail below.
In this specification, the term "lithium ion battery" is intended to include the concept of a lithium ion secondary battery.

(第1実施形態)
本発明の組電池の第1実施形態は、順に積層されたひと組の正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体からなる積層単位と、上記正極集電体及び上記負極集電体の間で、上記正極活物質層、上記セパレータ及び上記負極活物質層の周囲に配置された環状の枠部材とを有する単電池を2個以上有する組電池であって、
組電池を構成する単電池につき、上記枠部材が存在する部位と、上記積層単位が存在する部位の厚さの差が0.3mm以下であり、
組電池を構成する単電池につき、上記枠部材と上記積層単位の間の隙間が0.5mm以下であることを特徴とする。
First Embodiment
A first embodiment of a battery pack of the present invention is an assembled battery including two or more single cells each having a stacking unit including a set of a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector, which are stacked in order, and an annular frame member disposed around the positive electrode active material layer, the separator, and the negative electrode active material layer between the positive electrode current collector and the negative electrode current collector,
With respect to the unit cells constituting the assembled battery, the difference in thickness between a portion where the frame member is present and a portion where the laminated unit is present is 0.3 mm or less;
The battery pack is characterized in that the gap between the frame member and the stacking unit is 0.5 mm or less for each cell constituting the battery pack.

まず、組電池を構成する単電池が第1実施形態の単電池である場合について説明する。
図1は、本発明の組電池を構成する単電池の一例を模式的に示す断面図である。
図1に示す単電池100は、正極集電体11、正極活物質層13、セパレータ30、負極活物質層23及び負極集電体21がこの順に積層されており、正極集電体11と負極集電体21とを最外層に有する。
正極集電体11、正極活物質層13、セパレータ30、負極活物質層23及び負極集電体21が積層単位50を構成している。
First, a case where the unit cells constituting the battery pack are the unit cells of the first embodiment will be described.
FIG. 1 is a cross-sectional view showing a schematic diagram of an example of a unit cell constituting the battery pack of the present invention.
The single battery 100 shown in FIG. 1 has a positive electrode current collector 11, a positive electrode active material layer 13, a separator 30, a negative electrode active material layer 23, and a negative electrode current collector 21 laminated in this order, with the positive electrode current collector 11 and the negative electrode current collector 21 as the outermost layers.
The positive electrode current collector 11 , the positive electrode active material layer 13 , the separator 30 , the negative electrode active material layer 23 and the negative electrode current collector 21 constitute a laminate unit 50 .

積層単位50は、図1に示すような断面において、上下方向に正極集電体11、正極活物質層13、セパレータ30、負極活物質層23及び負極集電体21の全ての要素が存在する位置であり、図1における両矢印(参照符号50)で示す領域である。
正極集電体11のうち正極活物質層13と接していない領域、及び、負極集電体21のうち負極活物質層23と接していない領域は、積層単位には含まない。
The stacking unit 50 is a position where all of the elements, i.e., the positive electrode collector 11, the positive electrode active material layer 13, the separator 30, the negative electrode active material layer 23, and the negative electrode collector 21, are present in the vertical direction in the cross section shown in FIG. 1, and is the region indicated by a double-headed arrow (reference symbol 50) in FIG. 1.
A region of the positive electrode current collector 11 that is not in contact with the positive electrode active material layer 13 and a region of the negative electrode current collector 21 that is not in contact with the negative electrode active material layer 23 are not included in the laminate unit.

正極集電体11及び負極集電体21の間で、正極活物質層13、セパレータ30及び負極活物質層23の周囲に、環状の枠部材40が配置されている。
単電池は、枠部材40及び正極集電体11及び負極集電体21により封止され、電解液が封入される。
なお、環状の枠部材とは、単電池を上面視した際に環状である構造であることを意味しており、枠部材の環の中に積層単位を配置することのできる構造である。
また、枠部材は、正極活物質の周囲に配置された枠部材と負極活物質の周囲に配置された枠部材が接合されて1つの環状の枠部材となったものであってもよい。
図1では接合されて1つの環状の枠部材となったものと、元々1つの環状の枠部材であるものとを区別せず、1つの環状の枠部材40として示している。
Between the positive electrode current collector 11 and the negative electrode current collector 21 , an annular frame member 40 is disposed around the positive electrode active material layer 13 , the separator 30 and the negative electrode active material layer 23 .
The unit cell is sealed by a frame member 40, a positive electrode current collector 11, and a negative electrode current collector 21, and an electrolyte is enclosed.
The annular frame member means a structure that is annular when the unit cell is viewed from above, and is a structure in which stack units can be disposed within the ring of the frame member.
The frame member may be one annular frame member formed by joining a frame member arranged around the positive electrode active material and a frame member arranged around the negative electrode active material.
In FIG. 1, there is no distinction between a member that has been joined together to form a single annular frame member and a member that was originally a single annular frame member, and they are shown as a single annular frame member 40.

単電池において、枠部材が存在する部位と、積層単位が存在する部位の厚さの差が0.3mm以下となっている。
枠部材が存在する部位と積層単位が存在する部位の厚さには、それぞれ正極集電体及び負極集電体の厚さを含める。
枠部材が存在する部位の厚さは、図1において両矢印Tで示す厚さであり、積層単位が存在する部位の厚さは、図1において両矢印Tで示す厚さである。
In the unit cell, the difference in thickness between the portion where the frame member is present and the portion where the laminate unit is present is 0.3 mm or less.
The thicknesses of the portion where the frame member is present and the portion where the laminate unit is present include the thicknesses of the positive electrode current collector and the negative electrode current collector, respectively.
The thickness of the portion where the frame member is present is indicated by a double-headed arrow T1 in FIG. 1, and the thickness of the portion where the laminate unit is present is indicated by a double-headed arrow T2 in FIG.

枠部材が存在する部位と積層単位が存在する部位の厚さの差は以下のように定める。
枠部材が存在する部位について5点以上の厚さを測定しその平均厚さを枠部材が存在する部位の厚さ(枠部材厚さ)とする。同様に、積層単位が存在する部位について5点以上の厚さを測定しその平均厚さを積層単位が存在する部位の厚さ(積層単位厚さ)とする。
上記枠部材厚さと、上記積層単位厚さの差の絶対値を、枠部材が存在する部位と積層単位が存在する部位の厚さの差として定める。
The difference in thickness between the portion where the frame member exists and the portion where the laminate unit exists is determined as follows.
The thickness is measured at five or more points in the area where the frame member is present, and the average thickness is defined as the thickness of the area where the frame member is present (frame member thickness).Similarly, the thickness is measured at five or more points in the area where the laminate unit is present, and the average thickness is defined as the thickness of the area where the laminate unit is present (lamination unit thickness).
The absolute value of the difference between the thickness of the frame member and the thickness of the laminate unit is defined as the difference in thickness between the portion where the frame member is present and the portion where the laminate unit is present.

また、正極活物質層の厚さ、セパレータの厚さ及び負極活物質層の厚さの合計厚さと、枠部材の厚さとの差が0.3mm以下であることが好ましい。
正極活物質層の厚さ、セパレータの厚さ及び負極活物質層の厚さの合計厚さは、図1において両矢印Tで示す厚さであり、枠部材の厚さは、図1において両矢印Tで示す厚さである。
図1に示す単電池は、枠部材の厚さを正極活物質層の厚さ、セパレータの厚さ及び負極活物質層の厚さの合計厚さと合わせることによって、枠部材が存在する部位と積層単位が存在する部位の厚さの差を小さくしている形態である。
It is also preferable that the difference between the total thickness of the positive electrode active material layer, the separator and the negative electrode active material layer and the thickness of the frame member is 0.3 mm or less.
The total thickness of the positive electrode active material layer, the separator, and the negative electrode active material layer is indicated by a double-headed arrow T4 in FIG. 1, and the thickness of the frame member is indicated by a double-headed arrow T3 in FIG. 1.
The cell shown in FIG. 1 has a configuration in which the difference in thickness between the portion where the frame member is present and the portion where the laminate unit is present is reduced by matching the thickness of the frame member with the total thickness of the positive electrode active material layer, the separator, and the negative electrode active material layer.

枠部材が存在する部位と積層単位が存在する部位の厚さの差を小さくすることで、単電池を積層した際に枠部材が存在する部位と積層単位が存在する部位の段差が小さくなる。そのため、組電池に圧力が加わった際に枠部材と積層単位の間に応力集中が生じることが防止される。 By reducing the difference in thickness between the area where the frame member is present and the area where the stacking unit is present, the step between the area where the frame member is present and the area where the stacking unit is present is reduced when the single cells are stacked. This prevents stress concentration between the frame member and the stacking unit when pressure is applied to the battery pack.

また、組電池を構成する単電池につき、枠部材と積層単位の間の隙間が0.5mm以下である。
単電池における枠部材と積層単位の間の隙間の定め方について図面を参照して説明する。
図2は、枠部材と積層単位の間の隙間の定め方を説明するための上面図である。
単電池を上面視し、枠部材と積層単位の間の隙間(距離)を測定箇所4箇所以上で測定してその平均値を枠部材と積層単位の間の隙間とする。
積層単位の上面視形状が多角形である場合は、多角形を構成する各辺の中央を測定部位とする。
図2には、枠部材40と積層単位50の間の隙間を四角形の各辺の中央において両矢印W、W、W、Wで示している。W、W、W、Wの平均値を枠部材と積層単位の間の隙間とする。
In addition, for each of the cells constituting the battery pack, the gap between the frame member and the stacking unit is 0.5 mm or less.
The method of determining the gap between the frame member and the stacking unit in the unit cell will be described with reference to the drawings.
FIG. 2 is a top view for explaining how to determine the gap between the frame member and the stack unit.
The cell is viewed from above, and the gap (distance) between the frame member and the stacking unit is measured at four or more measurement points, and the average value is taken as the gap between the frame member and the stacking unit.
When the shape of the laminate unit in top view is polygonal, the center of each side constituting the polygon is set as the measurement site.
2, the gaps between the frame member 40 and the laminate unit 50 are indicated by double-headed arrows W1 , W2 , W3 , and W4 at the center of each side of a rectangle. The average value of W1 , W2 , W3 , and W4 is defined as the gap between the frame member and the laminate unit.

このように定められる枠部材と積層単位の間の隙間が小さいと、単電池を積層した組電池に対して圧力が加わったときに、枠部材と積層単位の間の隙間に凹みが生じる余地が少なく、凹みに応力集中が生じるという問題が生じにくくなる。
また、枠部材と積層単位の間の隙間は0.3mm以下であることが好ましく、0.1mm以下であることがより好ましい。また、枠部材と積層単位の間の隙間の下限値は0mmであることが好ましく、枠部材と積層単位の間の隙間の下限値は0.05mmであることも好ましい。
If the gap between the frame member and the stacking unit defined in this manner is small, there is little room for a dent to form in the gap between the frame member and the stacking unit when pressure is applied to a battery pack formed by stacking single cells, and the problem of stress concentration in the dent is less likely to occur.
The gap between the frame member and the laminate unit is preferably 0.3 mm or less, more preferably 0.1 mm or less. The lower limit of the gap between the frame member and the laminate unit is preferably 0 mm, and the lower limit of the gap between the frame member and the laminate unit is preferably 0.05 mm.

本発明の組電池との対比のために、枠部材が存在する部位と積層単位が存在する部位の厚さの差が大きく、枠部材と積層単位の間の隙間が大きい場合に生じる問題について説明する。
図3は、枠部材が存在する部位と積層単位が存在する部位の厚さの差が大きく、枠部材と積層単位の間の隙間が大きい単電池の一例を模式的に示す断面図である。
For comparison with the battery pack of the present invention, a problem that occurs when there is a large difference in thickness between the portion where the frame member is present and the portion where the laminate unit is present, and there is a large gap between the frame member and the laminate unit, will be described.
FIG. 3 is a cross-sectional view that shows a schematic example of a unit cell in which there is a large difference in thickness between a portion where a frame member is present and a portion where a laminate unit is present, and there is a large gap between the frame member and the laminate unit.

図3に示す単電池500は、正極集電体11、正極活物質層13、セパレータ30、負極活物質層23及び負極集電体21がこの順に積層されており、正極集電体11と負極集電体21とを最外層に有する。
正極集電体11、正極活物質層13、セパレータ30、負極活物質層23及び負極集電体21が積層単位50を構成している。
正極集電体11及び負極集電体21の間で、正極活物質層13、セパレータ30及び負極活物質層23の周囲に、環状の枠部材40が配置されている。
The single battery 500 shown in FIG. 3 has a positive electrode current collector 11, a positive electrode active material layer 13, a separator 30, a negative electrode active material layer 23, and a negative electrode current collector 21 laminated in this order, with the positive electrode current collector 11 and the negative electrode current collector 21 as the outermost layers.
The positive electrode current collector 11 , the positive electrode active material layer 13 , the separator 30 , the negative electrode active material layer 23 and the negative electrode current collector 21 constitute a laminate unit 50 .
Between the positive electrode current collector 11 and the negative electrode current collector 21 , an annular frame member 40 is disposed around the positive electrode active material layer 13 , the separator 30 and the negative electrode active material layer 23 .

この単電池500は、枠部材の厚さ(両矢印tで示す厚さ)が薄いことから、枠部材が存在する部位の厚さtが積層単位が存在する部位の厚さtよりも薄くなっている。
また、枠部材と積層単位の間の隙間(両矢印wで示す幅)が大きくなっている。
In this single battery 500, since the thickness of the frame member (thickness indicated by double arrow t3 ) is thin, the thickness t1 of the portion where the frame member exists is thinner than the thickness t2 of the portion where the laminate unit exists.
Furthermore, the gap (the width indicated by the double-headed arrow w) between the frame member and the stack unit is large.

図4は、図3に示す単電池を積層した組電池の一例を模式的に示す断面図である。
図4に示す組電池600は、図3に示す単電池500を5つ積層してなる。
図4には、組電池600に対して高圧の環境下での圧力が加わった状態を模式的に示している。組電池600に圧力が加わると、枠部材と積層単位の間の隙間が大きく凹むことが分かる。そして、このような凹みが生じると、この凹みに応力集中が生じて正極集電体及び/又は負極集電体に亀裂が生じることが懸念される。
FIG. 4 is a cross-sectional view that illustrates an example of a battery pack in which the unit cells shown in FIG. 3 are stacked.
The battery pack 600 shown in FIG. 4 is formed by stacking five of the unit cells 500 shown in FIG.
4 is a schematic diagram showing a state in which pressure is applied to the battery pack 600 in a high-pressure environment. It can be seen that when pressure is applied to the battery pack 600, the gap between the frame member and the stacking unit is significantly recessed. When such a recess occurs, stress is concentrated in the recess, which may cause cracks in the positive electrode current collector and/or the negative electrode current collector.

一方、図1に示すような単電池を2個以上有する組電池は、本発明の組電池の一例である。
図5は、図1に示す単電池を積層した組電池の一例を模式的に示す断面図である。
図5に示す組電池300は、図1に示す単電池100を5つ積層してなる。
図5には、組電池300に対して高圧の環境下での圧力が加わった状態を模式的に示している。
組電池300を構成する単電池100は、枠部材が存在する部位と積層単位が存在する部位の厚さの差が小さいため、単電池を積層した際に枠部材が存在する部位と積層単位が存在する部位の段差が小さくなる。そのため、組電池に圧力が加わった際に枠部材と積層単位の間に応力集中が生じることが防止される。
また、組電池300を構成する単電池100は、枠部材と積層単位の間の隙間が小さいため、単電池を積層した組電池に対して圧力が加わったときに、枠部材と積層単位の間の隙間に凹みが生じる余地が少なく、凹みに応力集中が生じるという問題が生じにくくなる。
On the other hand, a battery pack having two or more unit cells as shown in FIG. 1 is one example of the battery pack of the present invention.
FIG. 5 is a cross-sectional view that illustrates an example of a battery pack in which the unit cells shown in FIG. 1 are stacked.
The battery pack 300 shown in FIG. 5 is formed by stacking five of the unit cells 100 shown in FIG.
FIG. 5 shows a schematic diagram of a state in which pressure is applied to the battery pack 300 in a high-pressure environment.
In the cells 100 constituting the battery pack 300, the difference in thickness between the portion where the frame member is present and the portion where the stack unit is present is small, so that when the cells are stacked, the step between the portion where the frame member is present and the portion where the stack unit is present is small, thereby preventing stress concentration between the frame member and the stack unit when pressure is applied to the battery pack.
In addition, since the gap between the frame member and the stacking unit of the single cells 100 that make up the battery pack 300 is small, when pressure is applied to a battery pack made up of stacked single cells, there is little room for a dent to form in the gap between the frame member and the stacking unit, making it less likely that the problem of stress concentration in the dent will occur.

以下に、単電池を構成する各構成要素の好ましい態様について説明する。
正極活物質層には正極活物質が含まれる。
正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。
なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
A preferred embodiment of each of the components constituting the unit cell will be described below.
The positive electrode active material layer contains a positive electrode active material.
Positive electrode active materials include composite oxides of lithium and transition metals {composite oxides containing one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 , LiMn 2 O 4 , etc.), composite oxides containing two types of transition metal elements ( for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 , and LiNi 0.8 Co 0.15 Al 0.05 O 2 ), and composite oxides containing three or more types of metal elements [for example, LiM a M' b M'' c O 2 (M, M' and M'' are different transition metal elements satisfying a+b+c=1, for example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), etc.}, lithium-containing transition metal phosphates (for example, LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), transition metal oxides (for example, MnO 2 and V 2 O 5 ), transition metal sulfides (for example, MoS 2 and TiS 2 ), and conductive polymers (for example, polyaniline, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene and polyvinylcarbazole), and two or more of them may be used in combination.
The lithium-containing transition metal phosphate may have some of the transition metal sites substituted with other transition metals.

正極活物質は、導電助剤及び被覆用樹脂で被覆された被覆正極活物質であることが好ましい。
正極活物質の周囲が被覆用樹脂で被覆されていると、電極の体積変化が緩和され、電極の膨張を抑制することができる。
The positive electrode active material is preferably a coated positive electrode active material coated with a conductive assistant and a coating resin.
When the positive electrode active material is coated with a coating resin, the volume change of the electrode is mitigated, and the expansion of the electrode can be suppressed.

導電助剤としては、金属系導電助剤[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、炭素系導電助剤[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)等]、及びこれらの混合物等が挙げられる。
これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物として用いられてもよい。
なかでも、電気的安定性の観点から、より好ましくはアルミニウム、ステンレス、銀、金、銅、チタン、炭素系導電助剤及びこれらの混合物であり、さらに好ましくは銀、金、アルミニウム、ステンレス及び炭素系導電助剤であり、特に好ましくは炭素系導電助剤である。
またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料[好ましくは、上記した導電助剤のうち金属のもの]をめっき等でコーティングしたものでもよい。
Examples of the conductive assistant include metal-based conductive assistants [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive assistants [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.)], and mixtures thereof.
These conductive assistants may be used alone or in combination of two or more kinds thereof. They may also be used as alloys or metal oxides.
Among these, from the viewpoint of electrical stability, aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive assistants, and mixtures thereof are more preferable, silver, gold, aluminum, stainless steel, and carbon-based conductive assistants are even more preferable, and carbon-based conductive assistants are particularly preferable.
Furthermore, these conductive assistants may be formed by coating a particulate ceramic material or a resin material with a conductive material (preferably a metal one of the conductive assistants described above) by plating or the like.

導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電助剤として実用化されている形態であってもよい。 The shape (form) of the conductive additive is not limited to a particulate form, and may be a form other than a particulate form, and may be a form that is in practical use as a so-called filler-based conductive additive, such as carbon nanofibers or carbon nanotubes.

被覆用樹脂と導電助剤の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆用樹脂(樹脂固形分重量):導電助剤が1:0.01~1:50であることが好ましく、1:0.2~1:3.0であることがより好ましい。 The ratio of the coating resin to the conductive additive is not particularly limited, but from the viewpoint of the internal resistance of the battery, the weight ratio of the coating resin (resin solids weight):conductive additive is preferably 1:0.01 to 1:50, and more preferably 1:0.2 to 1:3.0.

被覆用樹脂としては、特開2017-054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができる。 As a coating resin, those described in JP 2017-054703 A as a coating resin for non-aqueous secondary battery active materials can be suitably used.

また、正極活物質層は、被覆正極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。
導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
The positive electrode active material layer may contain a conductive assistant other than the conductive assistant contained in the coated positive electrode active material.
As the conductive assistant, the same conductive assistant as that contained in the coated positive electrode active material described above can be suitably used.

正極活物質層は、正極活物質を含み、正極活物質同士を結着する結着材を含まない非結着体であることが好ましい。
ここで、非結着体とは、正極活物質が結着材(バインダともいう)により位置を固定されておらず、正極活物質同士及び正極活物質と集電体が不可逆的に固定されていないことを意味する。
The positive electrode active material layer preferably contains a positive electrode active material and is a non-binding material that does not contain a binder that binds the positive electrode active material together.
Here, non-bound material means that the positive electrode active material is not fixed in position by a binding material (also called a binder), and the positive electrode active materials are not irreversibly fixed to each other or to the current collector.

正極活物質層には、粘着性樹脂が含まれていてもよい。
粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805公報に粘着剤として記載されたもの等を好適に用いることができる。
なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着材として用いられる溶液乾燥型の電極バインダーは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。
従って、溶液乾燥型の電極バインダー(結着材)と粘着性樹脂とは異なる材料である。
The positive electrode active material layer may contain an adhesive resin.
As the adhesive resin, for example, a resin for coating a non-aqueous secondary battery active material described in JP 2017-054703 A in which a small amount of an organic solvent is mixed to adjust the glass transition temperature to room temperature or lower, and a resin described as an adhesive in JP 10-255805 A can be suitably used.
The adhesive resin means a resin that does not solidify even when dried by volatilizing the solvent component and has adhesiveness (the property of adhering by applying slight pressure without using water, solvent, heat, etc.) On the other hand, the solution-drying type electrode binder used as a binding material means a material that dries and solidifies by volatilizing the solvent component, thereby firmly adhering and fixing active materials to each other.
Therefore, the solution drying type electrode binder (binding material) and the adhesive resin are different materials.

正極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the positive electrode active material layer is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, and more preferably 200 to 450 μm.

負極活物質層には負極活物質が含まれる。
負極活物質としては、公知のリチウムイオン電池用負極活物質が使用でき、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
The negative electrode active material layer contains a negative electrode active material.
The negative electrode active material may be a known negative electrode active material for lithium ion batteries, and may be, for example, a carbon-based material [graphite, non-graphitizable carbon, amorphous carbon, resin baked bodies (e.g., phenolic resin, furan resin, etc. baked and carbonized), cokes (e.g., pitch coke, needle coke, petroleum coke, etc.), and carbon fibers, etc.], a silicon-based material [silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles whose surfaces are coated with silicon and/or silicon carbide, silicon particles or silicon oxide particles whose surfaces are coated with carbon and/or silicon carbide, silicon carbide, etc.)], and ... Examples of the conductive material include silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon-iron alloy, silicon-titanium alloy, silicon-manganese alloy, silicon-copper alloy, silicon-tin alloy, etc.), conductive polymers (for example, polyacetylene, polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.), metal oxides (titanium oxide, lithium-titanium oxide, etc.), metal alloys (for example, lithium-tin alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.), and mixtures of these with carbon-based materials.

また、負極活物質は、上述した被覆正極活物質と同様の導電助剤及び被覆用樹脂で被覆された被覆負極活物質であってもよい。
導電助剤及び被覆用樹脂としては、上述した被覆正極活物質と同様の導電助剤及び被覆用樹脂を好適に用いることができる。
The negative electrode active material may be a coated negative electrode active material coated with a conductive assistant and a coating resin similar to the coated positive electrode active material described above.
As the conductive assistant and the coating resin, the same conductive assistant and coating resin as those in the coated positive electrode active material described above can be suitably used.

また、負極活物質層は、被覆負極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。 The negative electrode active material layer may also contain a conductive assistant other than the conductive assistant contained in the coated negative electrode active material. As the conductive assistant, the same conductive assistant as the conductive assistant contained in the coated positive electrode active material described above can be suitably used.

負極活物質層は、正極活物質層と同様に、負極活物質同士を結着する結着材を含まない非結着体であることが好ましい。また、正極活物質層と同様に、粘着性樹脂が含まれていてもよい。 The negative electrode active material layer, like the positive electrode active material layer, is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials together. Also, like the positive electrode active material layer, it may contain an adhesive resin.

負極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the negative electrode active material layer is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, and more preferably 200 to 450 μm.

正極集電体及び負極集電体(以下まとめて単に集電体ともいう)を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。
これらの材料のうち、軽量化、耐食性、高導電性の観点から、正極集電体としてはアルミニウムであることが好ましく、負極集電体としては銅であることが好ましい。
Examples of materials constituting the positive electrode current collector and the negative electrode current collector (hereinafter collectively referred to simply as current collectors) include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, as well as baked carbon, conductive polymer materials, conductive glass, and the like.
Of these materials, from the viewpoints of weight reduction, corrosion resistance, and high electrical conductivity, aluminum is preferred for the positive electrode current collector, and copper is preferred for the negative electrode current collector.

また、集電体は、導電性高分子材料からなる樹脂集電体であることが好ましい。
集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、及び、上記の材料で構成された微粒子からなる堆積層であってもよい。
集電体の厚さは、特に限定されないが、50~500μmであることが好ましい。
The current collector is preferably a resin current collector made of a conductive polymer material.
The shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above-mentioned material, or a deposition layer made of fine particles made of the above-mentioned material.
The thickness of the current collector is not particularly limited, but is preferably 50 to 500 μm.

樹脂集電体を構成する導電性高分子材料としては例えば、導電性高分子や、樹脂に必要に応じて導電剤を添加したものを用いることができる。
導電性高分子材料を構成する導電剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
The conductive polymer material constituting the resin collector may be, for example, a conductive polymer or a resin to which a conductive agent has been added as necessary.
As the conductive agent constituting the conductive polymer material, the same conductive assistant as that contained in the coated positive electrode active material described above can be suitably used.

導電性高分子材料を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
Examples of resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin, and mixtures thereof.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferred, and polyethylene (PE), polypropylene (PP) and polymethylpentene (PMP) are more preferred.

また、集電体として、樹脂集電体の片面又は両面に金属層を設けた集電体を使用してもよい。金属としては、集電体自体を構成する金属として例示した、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等が挙げられる。金属層を設ける方法としては金属蒸着、スパッタリング等の手法が挙げられる。 In addition, a collector having a metal layer provided on one or both sides of a resin collector may be used as the current collector. Examples of metals include copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, which are listed as examples of metals constituting the current collector itself. Methods for providing the metal layer include metal vapor deposition and sputtering.

セパレータとしては、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。 Examples of separators include known separators for lithium ion batteries, such as porous films made of polyethylene or polypropylene, laminated films of porous polyethylene film and porous polypropylene, nonwoven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and those with ceramic particles such as silica, alumina, or titania attached to their surfaces.

正極活物質層及び負極活物質層には電解液が含まれる。
電解液としては、公知のリチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する公知の電解液を使用することができる。
The positive electrode active material layer and the negative electrode active material layer contain an electrolyte.
As the electrolytic solution, a known electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used in the production of known lithium ion batteries, can be used.

電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiN(FSO、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはイミド系電解質[LiN(FSO、LiN(CFSO及びLiN(CSO等]及びLiPFである。 As the electrolyte, those used in known electrolytic solutions can be used, for example, lithium salts of inorganic acids such as LiN( FSO2 ) 2 , LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , and LiClO4 , and lithium salts of organic acids such as LiN( CF3SO2 ) 2 , LiN ( C2F5SO2 ) 2 , and LiC( CF3SO2 ) 3 . Among these, imide-based electrolytes [LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2, LiN(C2F5SO2)2, and LiC(CF3SO2 ) 3 , etc. ] and LiPF6 are preferred from the viewpoint of battery output and charge /discharge cycle characteristics.

非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 The non-aqueous solvent may be any of those used in known electrolytic solutions, such as lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphates, nitrile compounds, amide compounds, sulfones, sulfolane, and mixtures thereof.

電解液の電解質濃度は、1~5mol/Lであることが好ましく、1.5~4mol/Lであることがより好ましく、2~3mol/Lであることがさらに好ましい。
電解液の電解質濃度が1mol/L未満であると、電池の充分な入出力特性が得られないことがあり、5mol/Lを超えると、電解質が析出してしまうことがある。
なお、電解液の電解質濃度は、リチウムイオン電池用電極又はリチウムイオン電池を構成する電解液を、溶媒などを用いずに抽出して、その濃度を測定することで確認することができる。
The electrolyte concentration of the electrolytic solution is preferably 1 to 5 mol/L, more preferably 1.5 to 4 mol/L, and even more preferably 2 to 3 mol/L.
If the electrolyte concentration of the electrolytic solution is less than 1 mol/L, the battery may not exhibit sufficient input/output characteristics, whereas if it exceeds 5 mol/L, the electrolyte may precipitate.
The electrolyte concentration of the electrolytic solution can be confirmed by extracting the electrolytic solution constituting the lithium ion battery electrode or the lithium ion battery without using a solvent or the like and measuring the concentration.

枠部材としては、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。
具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
The material for the frame member is not particularly limited as long as it is durable against the electrolyte, but a polymer material is preferable, and a thermosetting polymer material is more preferable.
Specific examples include epoxy resins, polyolefin resins, polyurethane resins, and polyvinylidene fluoride resins, with epoxy resins being preferred because of their high durability and ease of handling.

(第2実施形態)
本発明の組電池の第2実施形態は、順に積層されたひと組の正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体からなる積層単位と、上記正極集電体及び上記負極集電体の間で、上記正極活物質層、上記セパレータ及び上記負極活物質層の周囲に配置された環状の枠部材とを有する単電池を2個以上有する組電池であって、
上記枠部材上、及び、上記枠部材と上記積層単位の間の隙間上の、正極集電体上及び/又は負極集電体上に段差充填材が設けられており、
上記段差充填材は、
上記枠部材が存在する部位における厚さと、
上記枠部材が存在する部位と上記積層単位が存在する部位の間の部位における厚さと、
上記積層単位が存在する部位における厚さとの差が、0.3mm以下となるように設けられていることを特徴とする。
Second Embodiment
A second embodiment of the battery pack of the present invention is an assembled battery including two or more single cells each having a lamination unit including a set of a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector, which are laminated in order, and an annular frame member disposed around the positive electrode active material layer, the separator, and the negative electrode active material layer between the positive electrode current collector and the negative electrode current collector,
a step filler is provided on the frame member, and on the positive electrode current collector and/or the negative electrode current collector in a gap between the frame member and the stacking unit;
The above-mentioned step filling material is
a thickness at a portion where the frame member is present; and
a thickness at a portion between a portion where the frame member is present and a portion where the laminate unit is present;
The laminated unit is characterized in that the difference in thickness between the laminated unit and the portion where the laminated unit is present is set to 0.3 mm or less.

以下に、組電池を構成する単電池が第2実施形態の単電池である場合について説明する。
第2実施形態の単電池においては、枠部材上、及び、枠部材と積層単位の間の隙間上の、正極集電体上及び/又は負極集電体上に段差充填材が設けられている。
段差充填材は、枠部材が存在する部位における厚さと、枠部材が存在する部位と積層単位が存在する部位の間の部位における厚さと、積層単位が存在する部位における厚さとの差が、0.3mm以下となるように設けられている。
The following describes a case where the unit cells constituting the battery pack are the unit cells of the second embodiment.
In the unit cell of the second embodiment, step fillers are provided on the frame member, and on the gaps between the frame member and the stack units, and on the positive electrode current collector and/or the negative electrode current collector.
The step filler is provided so that the difference between the thickness at the portion where the frame member is present, the thickness at the portion between the portion where the frame member is present and the portion where the laminate unit is present, and the thickness at the portion where the laminate unit is present is 0.3 mm or less.

図6は、本発明の組電池を構成する単電池の別の一例を模式的に示す断面図である。
図6に示す単電池200では、正極集電体11、正極活物質層13、セパレータ30、負極活物質層23及び負極集電体21がこの順に積層されており、正極集電体11と負極集電体21とを最外層に有する。
正極集電体11、正極活物質層13、セパレータ30、負極活物質層23及び負極集電体21が積層単位50を構成している。
正極集電体11及び負極集電体21の間で、正極活物質層13、セパレータ30及び負極活物質層23の周囲に、環状の枠部材40が配置されている。
FIG. 6 is a cross-sectional view that illustrates a schematic diagram of another example of a unit cell that constitutes the battery pack of the present invention.
In the single battery 200 shown in FIG. 6 , a positive electrode current collector 11, a positive electrode active material layer 13, a separator 30, a negative electrode active material layer 23, and a negative electrode current collector 21 are laminated in this order, with the positive electrode current collector 11 and the negative electrode current collector 21 being the outermost layers.
The positive electrode current collector 11 , the positive electrode active material layer 13 , the separator 30 , the negative electrode active material layer 23 and the negative electrode current collector 21 constitute a laminate unit 50 .
Between the positive electrode current collector 11 and the negative electrode current collector 21 , an annular frame member 40 is disposed around the positive electrode active material layer 13 , the separator 30 and the negative electrode active material layer 23 .

さらに、枠部材40上の正極集電体11の上、枠部材40と積層単位50の間の隙間上の正極集電体11の上、枠部材40上の負極集電体21の上、枠部材40と積層単位50の間の隙間上の負極集電体21の上に段差充填材60が設けられている。
段差充填材60は、正極活物質層13と接する正極集電体11の上には設けられておらず、負極活物質層23と接する負極集電体21の上にも設けられていない。
Furthermore, step fillers 60 are provided on the positive electrode current collector 11 on the frame member 40, on the positive electrode current collector 11 in the gap between the frame member 40 and the stacking unit 50, on the negative electrode current collector 21 on the frame member 40, and on the negative electrode current collector 21 in the gap between the frame member 40 and the stacking unit 50.
The step filler 60 is not provided on the positive electrode current collector 11 in contact with the positive electrode active material layer 13 , and is not provided on the negative electrode current collector 21 in contact with the negative electrode active material layer 23 .

段差充填材は、枠部材が存在する部位、枠部材が存在する部位と積層単位が存在する部位の間の部位、積層単位が存在する部位の段差を埋めるように設けられている。
段差充填材を考慮しない状態では、枠部材が存在する部位の厚さtが積層単位が存在する部位の厚さtよりもだいぶ薄くなっている。
段差充填材が枠部材上の集電体の上に設けられることで枠部材が存在する部位の厚さTが厚くなり、枠部材が存在する部位の厚さTと積層単位が存在する部位の厚さtとの差が小さくなる。
また、段差充填材が、枠部材と積層単位の間の隙間上の集電体の上に設けられることで、枠部材が存在する部位と積層単位が存在する部位の間の部位における厚さTが厚くなり、厚さT、枠部材が存在する部位の厚さT、積層単位が存在する部位の厚さtとの差が小さくなる。
具体的には、枠部材が存在する部位の厚さTと、枠部材が存在する部位と積層単位が存在する部位の間の部位における厚さTと、積層単位が存在する部位の厚さtとの差が0.3mm以下となるように段差充填材を設ける。
The gap filling material is provided so as to fill gaps in the area where the frame member is present, the area between the area where the frame member is present and the area where the laminate unit is present, and the area where the laminate unit is present.
When the step filling material is not taken into consideration, the thickness t1 of the portion where the frame member exists is much thinner than the thickness t2 of the portion where the laminate unit exists.
By providing the step filler on the current collector on the frame member, the thickness T1 of the portion where the frame member is present becomes thicker, and the difference between the thickness T1 of the portion where the frame member is present and the thickness t2 of the portion where the laminate unit is present becomes smaller.
Furthermore, by providing the step filler on the current collector above the gap between the frame member and the laminate unit, the thickness T5 at the portion between the portion where the frame member is present and the portion where the laminate unit is present becomes thicker, and the difference between thickness T5 , thickness T1 of the portion where the frame member is present, and thickness t2 of the portion where the laminate unit is present becomes smaller.
Specifically, the step filler is provided so that the difference between the thickness T1 of the portion where the frame member is present, the thickness T5 of the portion between the portion where the frame member is present and the portion where the laminate unit is present, and the thickness t2 of the portion where the laminate unit is present is 0.3 mm or less.

段差充填材が設けられているときの、枠部材が存在する部位における厚さと、枠部材が存在する部位と積層単位が存在する部位の間における厚さと、積層単位が存在する部位における厚さとの差は、各部位における厚さを5点以上測定して平均値を求め、その平均値の最大値と最小値の差として求める。 When a step filler is provided, the difference between the thickness at the area where the frame member is present, the thickness between the area where the frame member is present and the area where the laminate unit is present, and the thickness at the area where the laminate unit is present is calculated by measuring the thickness at five or more points at each area, calculating the average value, and then calculating the difference between the maximum and minimum values of the average values.

なお、図6では、正極側において、枠部材40の外側の正極集電体11の下側に段差充填材60が設けられているが、図面での上下に関係なく集電体の外側に段差充填材が設けられている場合に、「集電体上に段差充填材が設けられている」こととする。 In FIG. 6, on the positive electrode side, a step filler 60 is provided on the lower side of the positive electrode current collector 11 outside the frame member 40. However, when a step filler is provided on the outside of the current collector regardless of the top or bottom in the drawing, it is said that "a step filler is provided on the current collector."

第2実施形態の単電池においても、枠部材と積層単位の間の隙間は0.5mm以下であることが好ましい。
また、第2実施形態の単電池を使用することによって、第1実施形態の単電池を使用した場合と同じ効果が得られる。
すなわち、組電池に圧力が加わった際に枠部材と積層単位の間に応力集中が生じることが防止される。
また、単電池を積層した組電池に対して圧力が加わったときに単電池内に隙間が小さいので、単電池に凹みが生じる余地が少なく、凹みに応力集中が生じるという問題が生じにくくなる。
In the cell of the second embodiment as well, the gap between the frame member and the stack unit is preferably 0.5 mm or less.
Furthermore, by using the unit cell of the second embodiment, the same effects as those obtained by using the unit cell of the first embodiment can be obtained.
That is, when pressure is applied to the battery pack, stress concentration between the frame member and the laminated units is prevented.
Furthermore, since there are small gaps within the cells when pressure is applied to a battery pack made up of stacked cells, there is little room for dents to form in the cells, making it less likely that the problem of stress concentration in the dents will occur.

第2実施形態の単電池を構成する各構成要素については、第1実施形態の単電池を構成する各構成要素と同様にすることができるのでその詳細な説明は省略する。
第2実施形態の単電池において、段差充填材の材質は特に限定されるものではないが、樹脂材料であることが好ましい。集電体上に塗布して硬化させることのできる材料であればよく、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられる。
Each component constituting the unit cell of the second embodiment can be similar to each component constituting the unit cell of the first embodiment, and therefore detailed description thereof will be omitted.
In the battery of the second embodiment, the material of the step filler is not particularly limited, but is preferably a resin material, which may be applied to the current collector and cured, and examples of the material include epoxy resin, polyolefin resin, polyurethane resin, and polyvinylidene fluoride resin.

続いて、単電池及び組電池の製造方法について説明する。
単電池100は以下のように製造することができる。
正極集電体11を環状の枠部材の一方の枠面に接合して枠部材の一端を封止する。続いて、枠部材内に正極活物質層13となる正極活物質を充填する。この際、枠部材内に正極活物質をできるだけ多く充填して枠部材と正極活物質層の間に隙間が生じないようにすることが好ましい。続いて、枠部材の他方の枠面上にセパレータを配置する。
同様に、負極集電体21を環状の枠部材の一方の枠面に接合して枠部材の一端を封止する。続いて、枠部材内に負極活物質層23となる負極活物質を充填する。この際、枠部材内に負極活物質をできるだけ多く充填して枠部材と負極活物質層の間に隙間が生じないようにすることが好ましい。続いて、枠部材の他方の枠面上にセパレータを配置する。
そして、枠部材同士を接着して封止することにより、単電池100を得ることができる。
接着した2つの枠部材が合わさって枠部材40となる。
なお、上記例では正極活物質を充填した枠部材と負極活物質を充填した枠部材の両方にセパレータを配置しており、2枚のセパレータが重なってセパレータ30となるが、セパレータは一方の枠部材だけに配置してもよい。
枠部材の厚さを調整して、正極活物質層の厚さ、セパレータの厚さ及び負極活物質層の厚さの合計厚さと枠部材の厚さとの差が0.3mm以下となるようにすることが好ましい。このようにして製造された単電池は第1実施形態の単電池となる。
Next, a method for manufacturing the unit cell and the battery pack will be described.
The cell 100 can be manufactured as follows.
The positive electrode current collector 11 is joined to one frame surface of the annular frame member, and one end of the frame member is sealed. Then, the frame member is filled with a positive electrode active material that will become the positive electrode active material layer 13. At this time, it is preferable to fill the frame member with as much positive electrode active material as possible so that no gap occurs between the frame member and the positive electrode active material layer. Then, a separator is placed on the other frame surface of the frame member.
Similarly, the negative electrode current collector 21 is joined to one frame surface of the annular frame member, and one end of the frame member is sealed. Next, the frame member is filled with a negative electrode active material that will become the negative electrode active material layer 23. At this time, it is preferable to fill the frame member with as much negative electrode active material as possible so that no gap occurs between the frame member and the negative electrode active material layer. Next, a separator is placed on the other frame surface of the frame member.
The frame members are then bonded together and sealed to obtain the unit cell 100 .
The two bonded frame members are joined together to form the frame member 40.
In the above example, separators are placed in both the frame member filled with the positive electrode active material and the frame member filled with the negative electrode active material, and the two separators are stacked to form separator 30, but the separator may be placed in only one of the frame members.
It is preferable to adjust the thickness of the frame member so that the difference between the total thickness of the positive electrode active material layer, the separator, and the negative electrode active material layer and the thickness of the frame member is 0.3 mm or less. The unit cell manufactured in this manner is the unit cell of the first embodiment.

また、枠部材の厚さを調整することなく単電池を作製した後に、枠部材が存在する部位、枠部材が存在する部位と積層単位が存在する部位の間の部位、積層単位が存在する部位の段差を埋めるように段差充填材を設けることにより、第2実施形態の単電池を製造することができる。
段差充填材は、段差充填材を構成する樹脂材料を塗布し、硬化することにより集電体上に設けることができる。
In addition, after producing a single battery without adjusting the thickness of the frame member, a step filler is provided to fill in the steps at the location where the frame member is present, the location between the location where the frame member is present and the location where the stacking unit is present, and the location where the stacking unit is present, thereby making it possible to manufacture the single battery of the second embodiment.
The step filling material can be provided on the current collector by applying a resin material constituting the step filling material and curing it.

このようにして製造した単電池を複数個積層することにより組電池を製造することができる。
単電池を積層する際には、単電池の正極集電体と隣接する単電池の負極集電体が接触するように、単電池を同じ向きで積層するようにして、単電池が複数個直列に接続された組電池を得ることができる。
A plurality of the thus manufactured single cells are stacked to manufacture a battery pack.
When stacking the single cells, the single cells are stacked in the same orientation so that the positive electrode current collector of one cell is in contact with the negative electrode current collector of an adjacent cell, thereby obtaining a battery pack in which multiple single cells are connected in series.

また、組電池の外側に段差充填材を設けた組電池を作製しても、高圧の環境下での使用に適した組電池を提供することができる。
図7は、組電池の外側に段差充填材を設けた組電池の一例を模式的に示す断面図である。
図7に示す組電池400は、図4に示す組電池600のような、枠部材が存在する部位と積層単位が存在する部位の厚さの差が大きい単電池を積層してなる組電池をベースにしている。組電池400では、図4に示す組電池600を外枠部材410、上枠部材420、下枠部材430で囲む。そして、組電池600と各枠部材の間の隙間に段差充填材60が設けられている。
段差充填材60としては、第2実施形態の単電池を構成する段差充填材を用いることができる。
図7に示す組電池400全体で見ると、外枠部材410と、組電池600の段差が小さくなるので、組電池400に圧力が加わった際に外枠部材410と組電池600の間に応力集中が生じることが防止される。そのため、高圧の環境下での使用に適した組電池とすることができる。
Furthermore, even if a battery pack is manufactured in which a step filler is provided on the outside of the battery pack, a battery pack suitable for use in a high-pressure environment can be provided.
FIG. 7 is a cross-sectional view that shows a schematic example of a battery pack in which a step filler is provided on the outside of the battery pack.
The battery pack 400 shown in Fig. 7 is based on an assembled battery formed by stacking unit cells, such as the battery pack 600 shown in Fig. 4, in which there is a large difference in thickness between the portion where the frame member is present and the portion where the stacking unit is present. In the battery pack 400, the battery pack 600 shown in Fig. 4 is surrounded by an outer frame member 410, an upper frame member 420, and a lower frame member 430. Step fillers 60 are provided in the gaps between the battery pack 600 and each frame member.
As the step filling material 60, the step filling material constituting the unit cell of the second embodiment can be used.
7 as a whole, the step between the outer frame member 410 and the battery assembly 600 is small, which prevents stress concentration between the outer frame member 410 and the battery assembly 600 when pressure is applied to the battery assembly 400. This makes it possible to provide a battery assembly suitable for use in high-pressure environments.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples as long as they do not deviate from the spirit of the present invention. Note that, unless otherwise specified, parts are parts by weight and % is % by weight.

<被覆用樹脂溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコに、酢酸エチル83部とメタノール17部とを仕込み68℃に昇温した。
次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、酢酸エチル52.1部及びメタノール10.7部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.263部を酢酸エチル34.2部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで4時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.583部を酢酸エチル26部に溶解した開始剤溶液を、滴下ロートを用いて2時間かけて連続的に追加した。さらに、沸点で重合を4時間継続した。溶媒を除去し、樹脂582部を得た後、イソプロパノールを1,360部加えて、樹脂濃度30重量%のビニル樹脂からなる被覆用樹脂溶液を得た。
<Preparation of coating resin solution>
Into a four-neck flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas inlet tube, 83 parts of ethyl acetate and 17 parts of methanol were placed and heated to 68°C.
Next, a monomer blend solution containing 242.8 parts of methacrylic acid, 97.1 parts of methyl methacrylate, 242.8 parts of 2-ethylhexyl methacrylate, 52.1 parts of ethyl acetate, and 10.7 parts of methanol was mixed with a four-neck flask and an initiator solution containing 0.263 parts of 2,2'-azobis (2,4-dimethylvaleronitrile) dissolved in 34.2 parts of ethyl acetate was continuously dropped into the flask over 4 hours with a dropping funnel while blowing nitrogen into the flask, and radical polymerization was carried out. After the dropwise addition, an initiator solution containing 0.583 parts of 2,2'-azobis (2,4-dimethylvaleronitrile) dissolved in 26 parts of ethyl acetate was continuously added over 2 hours with a dropping funnel. Furthermore, polymerization was continued at the boiling point for 4 hours. After removing the solvent to obtain 582 parts of resin, 1,360 parts of isopropanol was added to obtain a coating resin solution consisting of a vinyl resin with a resin concentration of 30% by weight.

<正極組成物の作製>
LiNi0.8Co0.15Al0.05粉末94部を万能混合機に入れ、室温(25℃)、150rpmで撹拌した状態で、上記被覆用樹脂溶液(樹脂固形分濃度30質量%)を樹脂固形分として3部になるように60分かけて滴下混合し、さらに30分撹拌した。
次いで、撹拌した状態でアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)](平均粒子径(一次粒子径):0.036μm)3部を3回に分けて混合し、30分撹拌したままで70℃に昇温し、100mmHgまで減圧し30分保持し、被覆正極活物質粒子を得た。
被覆正極活物質粒子100部、カーボンファイバー(大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm)6部をドライブレンドし、正極材料混合物を得た。その後、正極材料混合物に電解液11部を加え、混合機で混合し正極組成物を得た。
<Preparation of Positive Electrode Composition>
94 parts of LiNi0.8Co0.15Al0.05O2 powder was placed in a universal mixer and stirred at room temperature (25°C) and 150 rpm. The above-mentioned coating resin solution (resin solid content concentration: 30% by mass) was added dropwise over 60 minutes to make the resin solid content 3 parts, and then stirred for another 30 minutes.
Next, while stirring, 3 parts of acetylene black [Denka Black (registered trademark) manufactured by Denka Company, Ltd.] (average particle diameter (primary particle diameter): 0.036 μm) was added in three separate batches, and the mixture was heated to 70° C. while stirring for 30 minutes, and then the pressure was reduced to 100 mmHg and maintained for 30 minutes to obtain coated positive electrode active material particles.
100 parts of the coated positive electrode active material particles and 6 parts of carbon fiber (DonaCarbo Milled S-243, manufactured by Osaka Gas Chemicals Co., Ltd.: average fiber length 500 μm, average fiber diameter 13 μm: electrical conductivity 200 mS/cm) were dry-blended to obtain a positive electrode material mixture. Then, 11 parts of the electrolyte were added to the positive electrode material mixture and mixed in a mixer to obtain a positive electrode composition.

<負極組成物の作製>
難黒鉛化性炭素[(株)クレハ・バッテリー・マテリアルズ・ジャパン製 カーボトロン(登録商標)PS(F)]88部を万能混合機に入れ、室温(25℃)、150rpmで撹拌した状態で、被覆用樹脂溶液(樹脂固形分濃度30重量%)を樹脂固形分として6部になるように60分かけて滴下混合し、さらに30分撹拌した。
次いで、撹拌した状態でアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)](平均粒子径(一次粒子径):0.036μm)6部を3回に分けて混合し、30分撹拌したままで70℃に昇温し、0.01MPaまで減圧し30分保持し、被覆負極活物質粒子を得た。
被覆負極活物質粒子100部、カーボンファイバー(大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm)1部をドライブレンドし、負極材料混合物を得た。その後、負極材料混合物に電解液0.11部を加え、混合機で混合し、負極組成物を得た。
<Preparation of negative electrode composition>
88 parts of non-graphitizable carbon [Carbotron (registered trademark) PS (F) manufactured by Kureha Battery Materials Japan Co., Ltd.] was placed in a universal mixer, and while stirring at room temperature (25° C.) and 150 rpm, a coating resin solution (resin solids concentration: 30% by weight) was added dropwise over 60 minutes to make the resin solids 6 parts, and the mixture was further stirred for 30 minutes.
Next, while stirring, 6 parts of acetylene black [Denka Black (registered trademark) manufactured by Denka Co., Ltd.] (average particle diameter (primary particle diameter): 0.036 μm) was mixed in three batches, and the mixture was heated to 70° C. while stirring for 30 minutes, and the pressure was reduced to 0.01 MPa and maintained for 30 minutes to obtain coated negative electrode active material particles.
100 parts of the coated negative electrode active material particles and 1 part of carbon fiber (DonaCarbo Milled S-243, manufactured by Osaka Gas Chemicals Co., Ltd.: average fiber length 500 μm, average fiber diameter 13 μm: electrical conductivity 200 mS/cm) were dry-blended to obtain a negative electrode material mixture. Thereafter, 0.11 parts of an electrolyte was added to the negative electrode material mixture and mixed in a mixer to obtain a negative electrode composition.

<電解液の調製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させて、電解液を得た。
<Preparation of Electrolyte Solution>
LiPF 6 was dissolved at a ratio of 1 mol/L in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1:1) to obtain an electrolyte solution.

<正極集電体の製造>
2軸押出機にて、ポリプロピレン(PP)[商品名「サンアロマーPC630S」、サンアロマー(株)製]69.7部、アセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]25.0部、分散剤[商品名「ユーメックス1001(酸変性ポリプロピレン)」、三洋化成工業(株)製]5.0部を180℃、100rpm、滞留時間5分の条件で溶融混練して正極樹脂集電体用材料を得た。得られた正極樹脂集電体用材料をTダイ押出しフィルム成形機に通して、その後熱プレス機により複数回圧延することで、膜厚42μmの正極集電体を得た。
<Production of Positive Electrode Current Collector>
A positive electrode resin current collector material was obtained by melt-kneading 69.7 parts of polypropylene (PP) [trade name "Sunallomer PC630S", manufactured by Sunallomer Co., Ltd.], 25.0 parts of acetylene black [Denka Black (registered trademark), manufactured by Denka Co., Ltd.], and 5.0 parts of a dispersant [trade name "UMEX 1001 (acid-modified polypropylene)", manufactured by Sanyo Chemical Industries, Ltd.] in a twin-screw extruder at 180°C, 100 rpm, and a residence time of 5 minutes. The obtained positive electrode resin current collector material was passed through a T-die extrusion film molding machine and then rolled multiple times with a hot press machine to obtain a positive electrode current collector with a film thickness of 42 μm.

<負極集電体の製造>
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、ニッケル粒子[Vale社製]25部、及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して負極樹脂集電体用材料を得た。得られた負極樹脂集電体用材料を、Tダイ押出しフィルム成形機に通して、その後熱プレス機により複数回圧延することで膜厚45μmの負極樹脂集電体原反を得た。
この負極樹脂集電体原反の片面に、真空蒸着法により銅の金属層を厚さ5nmで形成して、金属層を片面に設けた負極集電体を得た。
<Production of negative electrode current collector>
A negative electrode resin current collector material was obtained by melt-kneading 70 parts of polypropylene (trade name "SunAllomer PL500A", manufactured by SunAllomer Co., Ltd.), 25 parts of nickel particles (manufactured by Vale Corporation), and 5 parts of a dispersant (trade name "UMEX 1001", manufactured by Sanyo Chemical Industries, Ltd.) in a twin-screw extruder at 200° C. and 200 rpm. The obtained negative electrode resin current collector material was passed through a T-die extrusion film molding machine and then rolled multiple times with a hot press machine to obtain a negative electrode resin current collector roll having a thickness of 45 μm.
A copper metal layer was formed to a thickness of 5 nm on one side of this negative electrode resin current collector raw sheet by vacuum deposition to obtain a negative electrode current collector having a metal layer on one side.

(実施例1)
エポキシ樹脂製の上面視が長方形の環状の枠部材を準備した。
枠部材の一方の枠面に正極集電体の一端を接合した。枠部材内に正極組成物を充填し、枠部材の他方の枠面上にセパレータを配置した。
正極組成物を充填した枠部材とは別の枠部材を準備し、上記手順と同様にして、枠部材の一方の枠面に金属層が負極組成物と触れる向きで負極集電体の一端を接合した。枠部材内に負極組成物を充填し、枠部材の他方の枠面上にセパレータを配置した。
正極組成物を充填した枠部材と負極組成物を充填した枠部材を、セパレータ同士が対向するように貼り合わせて封止し、単電池を得た。
この単電池は、正極活物質層の厚さ、セパレータの厚さ及び負極活物質層の厚さの合計厚さと枠部材の厚さの差が0mmになるように寸法を調整したものである。
また、枠部材と積層単位の間の隙間が0mmになるように電極組成物を充填したものである。
この単電池は、枠部材が存在する部位と、積層単位が存在する部位の厚さの差が0mmである。
Example 1
An annular frame member made of epoxy resin and having a rectangular shape when viewed from above was prepared.
One end of the positive electrode current collector was joined to one of the frame surfaces of the frame member. The frame member was filled with a positive electrode composition, and a separator was placed on the other frame surface of the frame member.
A frame member other than the frame member filled with the positive electrode composition was prepared, and one end of the negative electrode current collector was joined to one frame surface of the frame member in the same manner as above, with the metal layer in a direction in which it contacted the negative electrode composition. The negative electrode composition was filled in the frame member, and a separator was placed on the other frame surface of the frame member.
The frame member filled with the positive electrode composition and the frame member filled with the negative electrode composition were attached to each other with the separators facing each other, and sealed to obtain a unit cell.
The dimensions of this unit cell were adjusted so that the difference between the total thickness of the positive electrode active material layer, the separator and the negative electrode active material layer and the thickness of the frame member was 0 mm.
In addition, the electrode composition was filled so that the gap between the frame member and the laminate unit was 0 mm.
In this unit cell, the difference in thickness between the portion where the frame member is present and the portion where the laminate unit is present is 0 mm.

(実施例2~4、比較例1~3)
枠部材の厚さを変更する、又は、枠部材と積層単位の間の隙間を変更することにより、単電池を作製した。
各単電池における、枠部材が存在する部位と、積層単位が存在する部位の厚さの差等について表1に示した。
(Examples 2 to 4, Comparative Examples 1 to 3)
A single cell was fabricated by changing the thickness of the frame member or by changing the gap between the frame member and the stack unit.
Table 1 shows the difference in thickness between the portion where the frame member is present and the portion where the laminate unit is present in each unit cell.

(組電池の作製及び加圧試験)
各実施例及び各比較例で得た単電池を8枚積層して組電池を得た。そして、組電池全体をアルミラミネートフィルムで覆って真空引き(真空パック)することにより、組電池に対して高圧環境下に置いた場合を模擬した加圧を行った。
(Preparation of assembled battery and pressure test)
Eight of the cells obtained in each of the Examples and Comparative Examples were stacked to obtain a battery pack, and the entire battery pack was covered with an aluminum laminate film and evacuated (vacuum-packed) to simulate a high-pressure environment.

(外観の観察)
加圧試験後のアルミラミネートセルにつき、枠部材と積層単位の間の隙間の凹みの有無について観察した。観察結果を表1に示した。
(Observation of Appearance)
After the pressure test, the aluminum laminate cell was observed for the presence or absence of dents in the gap between the frame member and the laminate unit. The observation results are shown in Table 1.

(集電体の観察)
加圧試験後のアルミラミネートセルを開封し、単電池の集電体の様子を観察した。
集電体の亀裂の有無を観察して観察結果を表1に示した。
(Observation of the current collector)
After the pressure test, the aluminum laminate cell was opened and the state of the current collector of the unit cell was observed.
The current collector was observed for the presence or absence of cracks, and the observation results are shown in Table 1.

Figure 0007553243000001
Figure 0007553243000001

実施例1、2、比較例1、2、3における凹みの有無を示す写真を、それぞれ図面に示した。いずれの図面にも、上面視長方形状の積層単位の頂点近傍の拡大写真を示している。
図8は、実施例1のラミネートセルの上面の一部を拡大して示す写真であり、図9は、実施例2のラミネートセルの上面の一部を拡大して示す写真である。
図8及び図9における黒色の線は顕微鏡で観察する際の目印(長方形状の積層単位の頂点の位置を示す)である。
図10は、比較例1のラミネートセルの上面の一部を拡大して示す写真であり、図11は、比較例2のラミネートセルの上面の一部を拡大して示す写真であり、図12は、比較例3のラミネートセルの上面の一部を拡大して示す写真である。
The drawings show photographs showing the presence or absence of dents in Examples 1 and 2 and Comparative Examples 1, 2, and 3. Each drawing shows an enlarged photograph of the vicinity of a vertex of a laminate unit having a rectangular shape when viewed from above.
FIG. 8 is a photograph showing an enlarged view of a portion of the upper surface of the laminate cell of Example 1, and FIG. 9 is a photograph showing an enlarged view of a portion of the upper surface of the laminate cell of Example 2.
The black lines in Figs. 8 and 9 are marks (indicating the vertices of the rectangular laminate units) for observation under a microscope.
FIG. 10 is a photograph showing an enlarged portion of the upper surface of the laminate cell of Comparative Example 1, FIG. 11 is a photograph showing an enlarged portion of the upper surface of the laminate cell of Comparative Example 2, and FIG. 12 is a photograph showing an enlarged portion of the upper surface of the laminate cell of Comparative Example 3.

図8及び図9に示すように、実施例1及び実施例2では、枠部材と積層部材の間の隙間の凹みが見られない。一方、図10、図11及び図12に示すように、比較例1~3ではいずれも枠部材と積層部材の間の隙間に凹みが見られることが分かる。 As shown in Figures 8 and 9, in Examples 1 and 2, no dents are seen in the gaps between the frame member and the laminated member. On the other hand, as shown in Figures 10, 11, and 12, in Comparative Examples 1 to 3, dents are seen in the gaps between the frame member and the laminated member.

これらの結果から、実施例1~4の組電池では、圧力が加わった際に枠部材と積層単位の間に応力集中が生じることが防止され、集電体に亀裂が生じることが防止されていた。 These results show that in the battery packs of Examples 1 to 4, stress concentration between the frame member and the stacking unit was prevented when pressure was applied, and cracks were prevented from occurring in the current collector.

(実施例5)
比較例3の単電池を作製したのちに、枠部材が存在する部位、枠部材が存在する部位と積層単位が存在する部位の間の部位、積層単位が存在する部位の段差を埋めるように段差充填材としてのエポキシ樹脂を塗布して硬化した。
この単電池は、枠部材が存在する部位における厚さと、枠部材が存在する部位と積層単位が存在する部位の間の部位における厚さと、積層単位が存在する部位における厚さの差が0mmである。
実施例1と同様に組電池を作製し、加圧試験を行ったところ、枠部材と積層単位の間の隙間に凹みは無く、集電体の亀裂も観察されなかった。
図13は、実施例5のラミネートセルの上面の一部を拡大して示す写真である。
図13に示すように、実施例5でも、枠部材と積層部材の間の隙間の凹みが見られない。
Example 5
After producing the single battery of Comparative Example 3, an epoxy resin was applied as a step filler and cured so as to fill in the steps at the area where the frame member was present, the area between the area where the frame member was present and the area where the laminate unit was present, and the area where the laminate unit was present.
In this unit cell, the difference in thickness between the portion where the frame member is present, the portion between the portion where the frame member is present and the portion where the laminate unit is present, and the portion where the laminate unit is present is 0 mm.
A battery pack was fabricated in the same manner as in Example 1, and a pressure test was carried out. As a result, no dents were found in the gaps between the frame members and the stacking units, and no cracks were found in the current collectors.
FIG. 13 is a photograph showing an enlarged view of a part of the upper surface of the laminate cell of Example 5.
As shown in FIG. 13, in Example 5 as well, no depressions were observed in the gaps between the frame member and the laminated members.

本発明の組電池は、特に、高圧の環境下で使用するための電池として有用である。 The battery pack of the present invention is particularly useful as a battery for use in high-pressure environments.

11 正極集電体
13 正極活物質層
21 負極集電体
23 負極活物質層
30 セパレータ
40 枠部材
50 積層単位
60 段差充填材
100、200、500 単電池
300、400、600 組電池
410 外枠部材
420 上枠部材
430 下枠部材
REFERENCE SIGNS LIST 11 Positive electrode current collector 13 Positive electrode active material layer 21 Negative electrode current collector 23 Negative electrode active material layer 30 Separator 40 Frame member 50 Laminate unit 60 Step filler 100, 200, 500 Single cell 300, 400, 600 Assembled battery 410 Outer frame member 420 Upper frame member 430 Lower frame member

Claims (3)

順に積層されたひと組の正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体からなる積層単位と、前記正極集電体及び前記負極集電体の間で、前記正極活物質層、前記セパレータ及び前記負極活物質層の周囲に配置された環状の枠部材とを有する単電池を2個以上有する組電池であって、
組電池を構成する単電池につき、前記枠部材が存在する部位と、前記積層単位が存在する部位の厚さの差が0.3mm以下であり、
組電池を構成する単電池につき、前記枠部材と前記積層単位の間の隙間が0.05mm以上、0.5mm以下であることを特徴とする組電池。
A battery pack including two or more unit cells each having a stacking unit including a set of a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector, which are stacked in order, and an annular frame member disposed around the positive electrode active material layer, the separator, and the negative electrode active material layer between the positive electrode current collector and the negative electrode current collector,
With respect to the unit cells constituting the assembled battery, the difference in thickness between a portion where the frame member is present and a portion where the laminated unit is present is 0.3 mm or less;
A battery pack, wherein a gap between the frame member and the stacking unit of each of the cells constituting the battery pack is 0.05 mm or more and 0.5 mm or less.
前記正極活物質層の厚さ、前記セパレータの厚さ及び前記負極活物質層の厚さの合計厚さと、前記枠部材の厚さとの差が0.3mm以下である請求項1に記載の組電池。 The battery pack according to claim 1, wherein the difference between the total thickness of the positive electrode active material layer, the separator, and the negative electrode active material layer and the thickness of the frame member is 0.3 mm or less. 順に積層されたひと組の正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体からなる積層単位と、前記正極集電体及び前記負極集電体の間で、前記正極活物質層、前記セパレータ及び前記負極活物質層の周囲に配置された環状の枠部材とを有する単電池を2個以上有する組電池であって、
前記枠部材上、及び、前記枠部材と前記積層単位の間の隙間上の、正極集電体上及び/又は負極集電体上に段差充填材が設けられており、
前記段差充填材は、
前記枠部材が存在する部位における厚さと、
前記枠部材が存在する部位と前記積層単位が存在する部位の間の部位における厚さと、
前記積層単位が存在する部位における厚さとの差が、0.3mm以下となるように設けられていることを特徴とする組電池。
A battery pack including two or more unit cells each having a stacking unit including a set of a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector, which are stacked in order, and an annular frame member disposed around the positive electrode active material layer, the separator, and the negative electrode active material layer between the positive electrode current collector and the negative electrode current collector,
a step filler is provided on the frame member, and on a positive electrode current collector and/or a negative electrode current collector in a gap between the frame member and the stacking unit;
The step filling material is
a thickness at a portion where the frame member is present; and
a thickness at a portion between the portion where the frame member is present and the portion where the laminate unit is present;
a difference in thickness between the laminated unit and a portion where the laminated unit is present is set to be 0.3 mm or less.
JP2020011852A 2019-12-12 2020-01-28 Battery pack Active JP7553243B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020011852A JP7553243B2 (en) 2020-01-28 2020-01-28 Battery pack
CN202080085624.1A CN114788072A (en) 2019-12-12 2020-12-14 Battery system
PCT/JP2020/046622 WO2021117908A1 (en) 2019-12-12 2020-12-14 Battery system
US17/289,621 US11637334B2 (en) 2019-12-12 2020-12-14 Cell system
EP20898732.1A EP4074534A1 (en) 2019-12-12 2020-12-14 Battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011852A JP7553243B2 (en) 2020-01-28 2020-01-28 Battery pack

Publications (3)

Publication Number Publication Date
JP2021118132A JP2021118132A (en) 2021-08-10
JP2021118132A5 JP2021118132A5 (en) 2023-02-10
JP7553243B2 true JP7553243B2 (en) 2024-09-18

Family

ID=77175707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011852A Active JP7553243B2 (en) 2019-12-12 2020-01-28 Battery pack

Country Status (1)

Country Link
JP (1) JP7553243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250144A1 (en) * 2021-05-27 2022-12-01 Apb株式会社 Battery pack

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100926A (en) 2003-05-14 2005-04-14 Nec Tokin Corp Electrochemical cell laminate
JP2007194090A (en) 2006-01-19 2007-08-02 Nissan Motor Co Ltd Bipolar type battery, battery module, and battery pack
JP2007242593A (en) 2006-02-13 2007-09-20 Nissan Motor Co Ltd Battery module, battery pack, and vehicle with such batteries mounted thereon
JP2009181898A (en) 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Stacked battery and method for manufacturing the same
WO2013002058A1 (en) 2011-06-28 2013-01-03 株式会社 村田製作所 Power storage device
JP2013531355A (en) 2010-07-20 2013-08-01 エボニック リタリオン ゲゼルシャフト ミット ベシュレンクテル ハフツング A battery pack having a prismatic cell having a bipolar electrode
JP2015076179A (en) 2013-10-07 2015-04-20 古河機械金属株式会社 ALL SOLID TYPE LITHIUM ION BATTERY AND METHOD FOR PRODUCING ALL SOLID TYPE LITHIUM ION BATTERY
JP2016042459A (en) 2014-08-18 2016-03-31 昭和電工パッケージング株式会社 Thin power storage device and method for manufacturing the same
JP2017033937A (en) 2015-08-05 2017-02-09 三洋化成工業株式会社 Battery cell, stacked battery module and battery
JP2017045530A (en) 2015-08-24 2017-03-02 三洋化成工業株式会社 Manufacturing method for lithium ion battery
WO2018016166A1 (en) 2016-07-19 2018-01-25 日本碍子株式会社 Battery
JP2018116917A (en) 2017-01-20 2018-07-26 トヨタ自動車株式会社 All-solid-state battery
JP2019021384A (en) 2017-07-11 2019-02-07 日産自動車株式会社 battery
JP2019201873A (en) 2018-05-23 2019-11-28 株式会社北電子 Game machine
JP2019207750A (en) 2018-05-28 2019-12-05 三洋化成工業株式会社 Lithium ion battery

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100926A (en) 2003-05-14 2005-04-14 Nec Tokin Corp Electrochemical cell laminate
JP2007194090A (en) 2006-01-19 2007-08-02 Nissan Motor Co Ltd Bipolar type battery, battery module, and battery pack
JP2007242593A (en) 2006-02-13 2007-09-20 Nissan Motor Co Ltd Battery module, battery pack, and vehicle with such batteries mounted thereon
JP2009181898A (en) 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Stacked battery and method for manufacturing the same
JP2013531355A (en) 2010-07-20 2013-08-01 エボニック リタリオン ゲゼルシャフト ミット ベシュレンクテル ハフツング A battery pack having a prismatic cell having a bipolar electrode
WO2013002058A1 (en) 2011-06-28 2013-01-03 株式会社 村田製作所 Power storage device
JP2015076179A (en) 2013-10-07 2015-04-20 古河機械金属株式会社 ALL SOLID TYPE LITHIUM ION BATTERY AND METHOD FOR PRODUCING ALL SOLID TYPE LITHIUM ION BATTERY
JP2016042459A (en) 2014-08-18 2016-03-31 昭和電工パッケージング株式会社 Thin power storage device and method for manufacturing the same
JP2017033937A (en) 2015-08-05 2017-02-09 三洋化成工業株式会社 Battery cell, stacked battery module and battery
JP2017045530A (en) 2015-08-24 2017-03-02 三洋化成工業株式会社 Manufacturing method for lithium ion battery
WO2018016166A1 (en) 2016-07-19 2018-01-25 日本碍子株式会社 Battery
JP2018116917A (en) 2017-01-20 2018-07-26 トヨタ自動車株式会社 All-solid-state battery
JP2019021384A (en) 2017-07-11 2019-02-07 日産自動車株式会社 battery
JP2019201873A (en) 2018-05-23 2019-11-28 株式会社北電子 Game machine
JP2019207750A (en) 2018-05-28 2019-12-05 三洋化成工業株式会社 Lithium ion battery

Also Published As

Publication number Publication date
JP2021118132A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
CN102468476B (en) All-solid battery
CN103548196B (en) bipolar all-solid-state battery
KR101302076B1 (en) Electrode for magnesium secondary battery and magnesium secondary battery comprising the same
JP4968183B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN108140830A (en) Lithium rechargeable battery and its manufacturing method
JP7475825B2 (en) Lithium-ion battery module and battery pack
US20150194702A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP5737595B2 (en) Secondary battery
CN110419137B (en) Electrode assembly and lithium battery including same
CN104335397A (en) Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
JP5508349B2 (en) Lithium battery and manufacturing method thereof
CN107644977A (en) The preparation method of lithium ion cell electrode
US20220294037A1 (en) Method for manufacturing secondary battery
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
CN114788072A (en) Battery system
JP6785110B2 (en) Current collectors for lithium-ion batteries and lithium-ion batteries
JP2010287497A (en) Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP2021082391A (en) Lithium-ion battery module and battery pack
KR20190042673A (en) Conductive polymeric binders for novel silicon / graphene anodes in lithium ion batteries
JP7553243B2 (en) Battery pack
JP6843580B2 (en) Lithium-ion battery manufacturing method
CN109983605B (en) Negative active material and preparation method thereof
TW201630236A (en) Electrode for lithium battery, lithium battery, and paste for electrochemical cell
JP7510749B2 (en) How lithium-ion batteries are manufactured
JP7398231B2 (en) All-solid-state battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240905

R150 Certificate of patent or registration of utility model

Ref document number: 7553243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150