[go: up one dir, main page]

JP7553036B2 - Cancer growth inhibitor containing snoRNA expression inhibitor as an active ingredient - Google Patents

Cancer growth inhibitor containing snoRNA expression inhibitor as an active ingredient Download PDF

Info

Publication number
JP7553036B2
JP7553036B2 JP2023065316A JP2023065316A JP7553036B2 JP 7553036 B2 JP7553036 B2 JP 7553036B2 JP 2023065316 A JP2023065316 A JP 2023065316A JP 2023065316 A JP2023065316 A JP 2023065316A JP 7553036 B2 JP7553036 B2 JP 7553036B2
Authority
JP
Japan
Prior art keywords
cancer
snorna
expression
sirna
snord99
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023065316A
Other languages
Japanese (ja)
Other versions
JP2023085547A (en
Inventor
政一 親泊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ER STRESS RESEARCH INSTITUTE, INC.
Original Assignee
ER STRESS RESEARCH INSTITUTE, INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ER STRESS RESEARCH INSTITUTE, INC. filed Critical ER STRESS RESEARCH INSTITUTE, INC.
Publication of JP2023085547A publication Critical patent/JP2023085547A/en
Application granted granted Critical
Publication of JP7553036B2 publication Critical patent/JP7553036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、核小体低分子RNA(small nucleolar RNA:snoRNA)の発現抑制作用を有する化合物を有効成分とする新規ながん増殖抑制剤、更にはがんの治療剤に関する。 The present invention relates to a novel cancer growth inhibitor and cancer treatment agent that contains as an active ingredient a compound that has the effect of inhibiting the expression of small nuclear RNA (snoRNA).

snoRNAは、核小体(nucleolus)に存在するRNAのことであり、図1に示すように、ノンコーディングRNA(non-cording RNA)の1つである。リボゾームRNA(rRNA)及びその他のRNA遺伝子のメチル化やシュードウリジン化の化学修飾を導く小さなRNA分子の一群である(非特許文献1)。
snoRNAは、リボゾーム遺伝子のイントロンの中にコードされていて、RNAポリメラーゼIIによって合成される。そして、snoRNAは、蛋白質と結合して核小体低分子リボ核酸蛋白質(snoRNP)に変化する。snoRNP複合体は、rRNA等の化学修飾の標的部位に相補的に結合し、rRNA等の化学修飾を触媒する。
rRNA等の結合を誘導するのは、snoRNAの塩基配列であり、その塩基配列に対して相補的なrRNAの塩基配列部分に結合する。
snoRNAはその配列によって主にboxC/dとboxH/ACAの二種に分けられており、その相補的塩基配列により、RNA修飾酵素を正しい位置に並べる機能を有しているとされている。
snoRNA is an RNA present in the nucleolus, and is a type of non-coding RNA, as shown in Figure 1. It is a group of small RNA molecules that guide chemical modifications such as methylation and pseudouridylation of ribosomal RNA (rRNA) and other RNA genes (Non-Patent Document 1).
snoRNA is encoded in the intron of ribosomal genes and synthesized by RNA polymerase II. Then, snoRNA binds to proteins and changes into small nucleolar ribonucleoproteins (snoRNPs). The snoRNP complex binds to the target site of chemical modification of rRNA etc. in a complementary manner and catalyzes the chemical modification of rRNA etc.
It is the base sequence of snoRNA that induces the binding of rRNA etc., and it binds to the base sequence portion of rRNA that is complementary to its base sequence.
snoRNAs are mainly divided into two types, box C/d and box H/ACA, depending on their sequences, and are believed to have the function of arranging RNA modifying enzymes in the correct positions based on their complementary base sequences.

従って、snoRNAが変異を起こす場合や、異常に高発現する場合には、核小体の中でリボソームを適切に構築することが出来難くなる。即ち、リボソームが異常を起こすので、タンパク質の合成が正しく行われなくなり、そのため細胞は正常に機能できなくなり、異常に増殖したり、死滅したりするようになる。snoRNA等の異常により、リボソーム異常を起こし、その結果引き起こされる疾患群は「リボソーム病」と呼ばれている。代表的な疾患は、ダイアモンド・ブラックファン貧血(DBA)という先天性の赤芽球形成不全症であり、リボソームタンパク質(RP)をコードする遺伝子の異常と深く関連している。造血異常の他にも、角化不全、骨格異常、脾臓や肝臓の異常を示す疾患もリボソーム病に含まれている。
現在では、snoRNAが、疾患のバイオマーカーとして使用される多いが(特許文献1)、snoRNAを疾患の治療剤として使用されることは未だ知られていない。snoRNAの用途としては、老化の進行を阻止するために、ある特定のsnoRNAを補充療法として投与することが知られている状況である(特許文献2)。
Therefore, when snoRNA mutates or is abnormally highly expressed, it becomes difficult to properly construct ribosomes in the nucleolus. In other words, because ribosomes become abnormal, protein synthesis is not performed correctly, and cells cannot function normally, and they grow abnormally or die. The group of diseases caused by ribosome abnormalities due to abnormalities in snoRNA, etc., is called "ribosomal diseases." A typical disease is Diamond-Blackfan anemia (DBA), a congenital erythroblast hypoplasia, which is closely related to abnormalities in the genes that code for ribosomal proteins (RP). In addition to hematopoietic abnormalities, diseases showing keratinization failure, skeletal abnormalities, and abnormalities in the spleen and liver are also included in ribosomal diseases.
Currently, snoRNA is often used as a biomarker for disease (Patent Document 1), but it is not yet known that snoRNA is used as a therapeutic agent for disease. As for the use of snoRNA, it is known that a certain snoRNA is administered as a supplement therapy to prevent the progression of aging (Patent Document 2).

公表2014-526032号公報Publication No. 2014-526032 公表2017-502650号公報Publication No. 2017-502650

生化学第85巻第10号,861-870(2013年)Biochemistry Vol. 85, No. 10, 861-870 (2013)

本発明は、がん細胞の生体内での定着、増殖を抑制する、新たな作用機序のがんの治療剤を提供することを目的とする。 The present invention aims to provide a cancer treatment with a new mechanism of action that inhibits the establishment and proliferation of cancer cells in the body.

本発明者は、小胞体ストレス応答に関与するnon-cording RNAの研究を進める中で、タンパク合成に係る核小体のストレス応答に着目し、ストレス応答を制御するsnoRNAとがんとの関係を検討した。
がん細胞では、増殖が盛んなために、タンパク合成が異常に亢進しており、がん細胞自体は常に飢餓状態にある。そのため、がん細胞では、増殖に必要なタンパクの合成に特化したリボソーム構築が行われている。それをコントロールしているのが図1に示すようにsnoRNAと考えられる。即ち、がん細胞に特有の高発現snoRNAは、がんの生存と増殖に必要なタンパクを供給するためのリボソーム構築に大きく寄与していると考えられた。
そこで、本発明者は、がん細胞に特異的高発現のsnoRNAをピックアップし、そのsnoRNAの発現を抑制すれば、がんの生存と増殖に必要なタンパクを供給するリボソーム構築が困難になると考えた。リボソーム構築が困難になれば、がんの生存と増殖に必要なタンパクが供給できず、がん細胞は生存と増殖が困難になり、死滅して行くと考えた。
本発明者は、上記のコンセプトに基づいて、多くのがん細胞で特異的に高発現のsnoRNAを選択した。そして、選択した高発現のsnoRNAの発現を抑制することによって、がんの増殖が抑制できることを見出した。即ち、がんの増殖抑制は、がんのアポトーシスと生体の免疫反応により、がんの死滅を誘導することになる。このように、本発明者は、snoRNAの発現抑制に基づく新たな作用機序のがんの増殖抑制剤、あるいはがんの治療剤を見出すことができた。
また、本発明者は、がん細胞に特異的に高発現するsnoRNAとして、SNORA50C、SNORA56、SNORD42B、SNORA69、SNORD111、SNORD99、SNORA74A、SNORD105B、SNORD37、SNORD54を特定することができ、これらのsnoRNAのいずれか一つ以上を発現抑制することによって、がん細胞を増殖抑制できることを見出した。
本発明者は、以上の知見に基づいて本発明を完成した。
While conducting research into non-coding RNAs involved in endoplasmic reticulum stress response, the present inventors focused on the stress response of nucleoli involved in protein synthesis and investigated the relationship between snoRNAs that control the stress response and cancer.
In cancer cells, protein synthesis is abnormally accelerated due to vigorous proliferation, and the cancer cells themselves are constantly in a state of starvation. Therefore, in cancer cells, ribosome construction is carried out that is specialized for the synthesis of proteins necessary for proliferation. It is thought that snoRNA, as shown in Figure 1, controls this. In other words, it is thought that the highly expressed snoRNA specific to cancer cells contributes greatly to ribosome construction to supply proteins necessary for the survival and proliferation of cancer.
Therefore, the inventors thought that by picking up snoRNAs that are specifically and highly expressed in cancer cells and suppressing the expression of those snoRNAs, it would become difficult to construct ribosomes that supply proteins necessary for the survival and proliferation of cancer. If it becomes difficult to construct ribosomes, the proteins necessary for the survival and proliferation of cancer cannot be supplied, and the survival and proliferation of cancer cells becomes difficult, leading to their death.
Based on the above concept, the present inventor selected snoRNAs that are specifically highly expressed in many cancer cells. Then, it was found that cancer growth can be suppressed by suppressing the expression of the selected highly expressed snoRNAs. In other words, the suppression of cancer growth induces the death of cancer through cancer apoptosis and the immune response of the body. In this way, the present inventor was able to find a cancer growth inhibitor or cancer therapeutic agent with a new mechanism of action based on the suppression of snoRNA expression.
Furthermore, the present inventors have identified SNORA50C, SNORA56, SNORD42B, SNORA69, SNORD111, SNORD99, SNORA74A, SNORD105B, SNORD37, and SNORD54 as snoRNAs that are specifically highly expressed in cancer cells, and have found that the proliferation of cancer cells can be inhibited by suppressing the expression of any one or more of these snoRNAs.
The present inventors have completed the present invention based on the above findings.

即ち、本発明の要旨は以下の通りである。
(1)がん細胞で特異的に高発現するsnoRNAの発現抑制剤を有効成分とする、がんの増殖抑制剤。
(2)上記がん細胞が、乳癌、結腸癌、腎癌、肝癌、肺癌(肺腺癌、肺扁平上皮癌)、胃癌のいずれかである、上記(1)に記載のがんの増殖抑制剤。
(3)上記snoRNAが、SNORA50C、SNORA56、SNORD42B、SNORA69、SNORD111、SNORD99、SNORA74A、SNORD105B、SNORD37、SNORD54の中から一つ以上が選択されるものである、上記(1)又は(2)に記載のがんの増殖抑制剤。
(4)上記がん細胞が、乳癌(例えば、浸潤性乳癌)の細胞であり、上記snoRNAがSNORA50C、SNORA56、SNORD42Bの中から一つ以上選択されるものである、上記(1)又は(2)に記載の乳癌(例えば、浸潤性乳癌)の増殖抑制剤。
(5)上記がん細胞が、結腸癌の細胞であり、上記snoRNAがSNORA56及び/又はSNORA69である、上記(1)又は(2)に記載の結腸癌の増殖抑制剤。
(6)上記がん細胞が、腎癌(例えば、腎淡明細胞癌)の細胞であり、上記snoRNAがSNORD111及び/又はSNORD99である、上記(1)又は(2)に記載の腎癌(例えば、腎淡明細胞癌)の増殖抑制剤。
(7)上記がん細胞が、肝癌(例えば、肝細胞癌)の細胞であり、上記snoRNAがSNORA74A及び/又はSNORD99である、上記(1)又は(2)に記載の肝癌(例えば、肝細胞癌)の増殖抑制剤。
(8)上記がん細胞が、肺癌(例えば、肺腺癌)の細胞であり、上記snoRNAがSNORD105B及び/又はSNORD37である、上記(1)又は(2)に記載の肺癌(例えば、肺腺癌)の増殖抑制剤。
(9)上記がん細胞が、肺癌(例えば、肺扁平上皮癌)の細胞であり、上記snoRNAがSNORA74A及び/又はSNORD54である、上記(1)又は(2)に記載の肺癌(例えば、肺扁平上皮癌)癌の増殖抑制剤。
(10)上記がん細胞が、胃癌の細胞であり、上記snoRNAがSNORA69である、上記(1)又は(2)に記載の胃癌の増殖抑制剤。
That is, the gist of the present invention is as follows.
(1) A cancer proliferation inhibitor having as an active ingredient an expression inhibitor of snoRNA that is specifically and highly expressed in cancer cells.
(2) The cancer proliferation inhibitor according to (1) above, wherein the cancer cells are any of breast cancer, colon cancer, renal cancer, liver cancer, lung cancer (pulmonary adenocarcinoma, pulmonary squamous cell carcinoma), and gastric cancer.
(3) The cancer proliferation inhibitor according to (1) or (2) above, wherein the snoRNA is one or more selected from the group consisting of SNORA50C, SNORA56, SNORD42B, SNORA69, SNORD111, SNORD99, SNORA74A, SNORD105B, SNORD37, and SNORD54.
(4) The proliferation inhibitor of breast cancer (e.g., invasive breast cancer) described in (1) or (2) above, wherein the cancer cells are breast cancer (e.g., invasive breast cancer) cells, and the snoRNA is one or more selected from SNORA50C, SNORA56, and SNORD42B.
(5) The colon cancer proliferation inhibitor according to (1) or (2) above, wherein the cancer cells are colon cancer cells and the snoRNA is SNORA56 and/or SNORA69.
(6) The proliferation inhibitor of renal cancer (e.g., renal clear cell carcinoma) described in (1) or (2) above, wherein the cancer cells are renal cancer (e.g., renal clear cell carcinoma) cells and the snoRNA is SNORD111 and/or SNORD99.
(7) The proliferation inhibitor of liver cancer (e.g., hepatocellular carcinoma) described in (1) or (2) above, wherein the cancer cells are liver cancer (e.g., hepatocellular carcinoma) cells and the snoRNA is SNORA74A and/or SNORD99.
(8) The proliferation inhibitor of lung cancer (e.g., lung adenocarcinoma) according to (1) or (2) above, wherein the cancer cells are lung cancer (e.g., lung adenocarcinoma) cells and the snoRNA is SNORD105B and/or SNORD37.
(9) The proliferation inhibitor of lung cancer (e.g., lung squamous cell carcinoma) described in (1) or (2) above, wherein the cancer cells are lung cancer (e.g., lung squamous cell carcinoma) cells and the snoRNA is SNORA74A and/or SNORD54.
(10) The gastric cancer proliferation inhibitor according to (1) or (2) above, wherein the cancer cells are gastric cancer cells and the snoRNA is SNORA69.

(11)snoRNAの発現抑制剤が、配列番号1のsiRNA、配列番号1のsiRNA、配列番号2のsiRNA、配列番号3のsiRNA、配列番号4のsiRNA、配列番号5のsiRNA、配列番号6のsiRNA、配列番号7のsiRNA、配列番号8のsiRNA、配列番号9のsiRNA、配列番号10のsiRNAの中から、一つ以上が選択されるものである、上記(1)に記載のがんの増殖抑制剤。
(12)snoRNAの発現抑制剤が、配列番号1のsiRNA、配列番号1のsiRNA、配列番号2のsiRNA、配列番号3のsiRNAの中から、一つ以上が選択されるものである、上記(1)又は(2)に記載の乳癌(例えば、浸潤性乳癌)の増殖抑制剤。
(13)snoRNAの発現抑制剤が、配列番号2のsiRNA、配列番号4のsiRNAの中から、一つ以上が選択されるものである、上記(1)又は(2)に記載の結腸癌の増殖抑制剤。
(14)snoRNAの発現抑制剤が、配列番号5のsiRNA、配列番号10のsiRNAの中から、一つ以上が選択されるものである、上記(1)又は(2)に記載の腎癌(例えば、腎淡明細胞癌)の増殖抑制剤。
(15)snoRNAの発現抑制剤が、配列番号6のsiRNA、配列番号10のsiRNAの中から、一つ以上が選択されるものである、上記(1)又は(2)に記載の肝癌(例えば、肝細胞癌)の増殖抑制剤。
(16)snoRNAの発現抑制剤が、配列番号7のsiRNA、配列番号8のsiRNAの中から、一つ以上が選択されるものである、上記(1)又は(2)に記載の肺癌(例えば、肺腺癌)の増殖抑制剤。
(17)snoRNAの発現抑制剤が、配列番号6のsiRNA、配列番号9のsiRNAの中から、一つ以上が選択されるものである、上記(1)又は(2)に記載の肺癌(例えば、肺扁平上皮癌)の増殖抑制剤。
(18)snoRNAの発現抑制剤が、配列番号4のsiRNAである、上記(1)又は(2)に記載の胃癌の増殖抑制剤。
(19)上記(1)~(18)のいずれかに記載のがんの増殖抑制剤を有効成分とする、がん治療剤。
(20) 配列番号1~10の何れかの塩基配列からなるRNA。
(21) RNAがsiRNAである(20)に記載のRNA。
(11) The cancer proliferation inhibitor described in (1) above, wherein the snoRNA expression inhibitor is one or more selected from siRNA of SEQ ID NO: 1, siRNA of SEQ ID NO: 2, siRNA of SEQ ID NO: 3, siRNA of SEQ ID NO: 4, siRNA of SEQ ID NO: 5, siRNA of SEQ ID NO: 6, siRNA of SEQ ID NO: 7, siRNA of SEQ ID NO: 8, siRNA of SEQ ID NO: 9, and siRNA of SEQ ID NO: 10.
(12) A proliferation inhibitor for breast cancer (e.g., invasive breast cancer) described in (1) or (2) above, wherein the snoRNA expression inhibitor is one or more selected from siRNA of sequence number 1, siRNA of sequence number 1, siRNA of sequence number 2, and siRNA of sequence number 3.
(13) The colon cancer proliferation inhibitor according to (1) or (2) above, wherein the snoRNA expression inhibitor is one or more selected from the group consisting of siRNA of SEQ ID NO: 2 and siRNA of SEQ ID NO: 4.
(14) A proliferation inhibitor for renal cancer (e.g., renal clear cell carcinoma) described in (1) or (2) above, wherein the snoRNA expression inhibitor is one or more selected from siRNA of sequence number 5 and siRNA of sequence number 10.
(15) A growth inhibitor for liver cancer (e.g., hepatocellular carcinoma) described in (1) or (2) above, in which the expression inhibitor of snoRNA is one or more selected from siRNA of sequence number 6 and siRNA of sequence number 10.
(16) The proliferation inhibitor of lung cancer (e.g., lung adenocarcinoma) described in (1) or (2) above, wherein the snoRNA expression inhibitor is one or more selected from siRNA of sequence number 7 and siRNA of sequence number 8.
(17) The proliferation inhibitor of lung cancer (e.g., lung squamous cell carcinoma) described in (1) or (2) above, wherein the snoRNA expression inhibitor is one or more selected from siRNA of SEQ ID NO: 6 and siRNA of SEQ ID NO: 9.
(18) The gastric cancer proliferation inhibitor according to (1) or (2) above, wherein the snoRNA expression inhibitor is an siRNA of SEQ ID NO: 4.
(19) A cancer therapeutic agent comprising, as an active ingredient, the cancer proliferation inhibitor according to any one of (1) to (18) above.
(20) RNA consisting of any of the base sequences set forth in SEQ ID NOs: 1 to 10.
(21) The RNA according to (20), which is an siRNA.

本発明のがん治療剤は、がん細胞に特異的に高発現するsnoRNAを抑制又は発現させないようにすることによって、がん細胞の増殖を抑制し、がんの治療を行うものである。がん細胞に高発現するsnoRNAを抑制又は発現させないために使用される発現抑制剤としては、siRNA、shRNA、dsRNAのようなRNA干渉を利用するもの、アンチセンスオリゴヌクレオチド、デコイ等の公知の手段を使用することが出来る。
がん細胞に特異的に高発現するsnoRNAとしては、SNORA50C、SNORA56、SNORD42B、SNORA69、SNORD111、SNORD99、SNORA74A、SNORD105B、SNORD37、SNORD54を特定することができ、これらの中から一つ以上のsnoRNAを発現抑制できる剤を使用することによって、乳癌、結腸癌、腎癌、肝癌、肺腺癌、肺扁平上皮癌、胃癌の増殖を抑制できることを見出している。それ故、本発明のがん増殖抑制剤は、これらのがんの有効な治療薬となる。
The cancer therapeutic agent of the present invention suppresses or inhibits the expression of snoRNA that is specifically and highly expressed in cancer cells, thereby suppressing the proliferation of cancer cells and treating cancer. As expression inhibitors used to suppress or inhibit the expression of snoRNA that is specifically and highly expressed in cancer cells, known means such as those that utilize RNA interference such as siRNA, shRNA, and dsRNA, antisense oligonucleotides, and decoys can be used.
As snoRNAs that are specifically highly expressed in cancer cells, SNORA50C, SNORA56, SNORD42B, SNORA69, SNORD111, SNORD99, SNORA74A, SNORD105B, SNORD37, and SNORD54 can be specified, and it has been found that by using an agent that can suppress the expression of one or more snoRNAs from among these, the proliferation of breast cancer, colon cancer, kidney cancer, liver cancer, lung adenocarcinoma, lung squamous cell carcinoma, and gastric cancer can be suppressed.Therefore, the cancer proliferation inhibitor of the present invention is an effective therapeutic agent for these cancers.

snoRNAを含む多くのRNAの種類とその機能をまとめた図である。FIG. 1 is a diagram summarizing many types of RNA, including snoRNA, and their functions. 腎癌に特異的に高発現するsnoRNAとして、SNODR99が同定されており、このSNODR99を高発現する腎癌患者では予後が悪いことを表した図である。SNODR99 has been identified as a snoRNA that is specifically and highly expressed in renal cancer, and this figure shows that renal cancer patients who highly express SNODR99 have a poor prognosis. SNORD99が欠損したヒト腎癌細胞株(786O99KO)とポジテイブ・コントロールのヒト腎癌細胞株(786O mock)をヌードマウスに他家移植し、6週間後の移植腎癌の生着・増殖状態を比較して表した図(写真)である。SNORD99が欠損したヒト腎癌細胞株(786O99KO)では、腎癌の増殖が抑制されていることが明らかとなった。A human renal cancer cell line lacking SNORD99 (786O99KO) and a positive control human renal cancer cell line (786O mock) were allografted into nude mice, and the engraftment and growth of the transplanted renal cancer cells were compared 6 weeks later (photograph). It was revealed that renal cancer growth was suppressed in the human renal cancer cell line lacking SNORD99 (786O99KO).

本発明のがんの増殖抑制剤は、がん細胞で特異的に高発現するsnoRNAの発現抑制剤を含む剤であり、特に、この発現抑制剤を有効成分として含む剤である。
本発明の「がん細胞」とは、特に限定されるものではないが、snoRNAを高発現するがん細胞として、乳癌(浸潤性乳癌、非浸潤性乳癌)、結腸癌、腎癌(淡明細胞癌、乳頭状腎癌、嫌色素性腎癌、多房嚢胞性腎癌、紡錘細胞癌、集合管癌)、肝癌(肝細胞癌、肝内胆管癌)、肺癌(小細胞肺癌(肺腺癌、肺扁平上皮癌、肺大細胞癌がん)、非小細胞肺癌)、胃癌のいずれかのがん細胞を挙げることができる。
The cancer proliferation inhibitor of the present invention is an agent containing an expression inhibitor of snoRNA that is specifically and highly expressed in cancer cells, and in particular, is an agent containing this expression inhibitor as an active ingredient.
The "cancer cells" of the present invention are not particularly limited, but examples of cancer cells that highly express snoRNA include any of the following cancer cells: breast cancer (invasive breast cancer, non-invasive breast cancer), colon cancer, renal cancer (clear cell carcinoma, papillary renal carcinoma, chromophobe renal carcinoma, multilocular cystic renal carcinoma, spindle cell carcinoma, collecting duct carcinoma), liver cancer (hepatocellular carcinoma, intrahepatic cholangiocarcinoma), lung cancer (small cell lung cancer (lung adenocarcinoma, lung squamous cell carcinoma, large cell lung carcinoma), non-small cell lung cancer), and gastric cancer.

本発明の「特異的に高発現するsnoRNA」とは、健常人と比較して、がん細胞において顕著に又は有意に発現しているsnoRNAのことを言う。好ましくは、健常人の発現量の約4倍以上のsnoRNAの発現量を示すがん細胞のことを言う。より好ましくは約5倍以上のsnoRNAの発現量を持つがん細胞を挙げることができる。
がん特有の高発現snoRNAとしては、例えばSNORA50C、SNORA56、SNORD42B、SNORA69、SNORD111、SNORD99、SNORA74A、SNORD105B、SNORD37、SNORD54を挙げることができる。
このうち、乳癌(例えば、浸潤性乳癌)細胞特有の高発現snoRNAとして、snoRNAがSNORA50C、SNORA56、SNORD42Bを挙げることができ、結腸癌細胞特有の高発現snoRNAとして、SNORA56、SNORA69を挙げることができ、腎癌(例えば、腎淡明細胞癌)細胞特有の高発現snoRNAとして、SNORD111、SNORD99を挙げることができ、肝癌(例えば、肝細胞癌)細胞特有の高発現snoRNAとして、SNORA74A、SNORD99を挙げることができ、肺癌細胞、例えば、肺腺癌細胞特有の高発現snoRNAとして、SNORD105B、SNORD37を挙げることができ、また例えば、肺扁平上皮癌細胞特有の高発現snoRNAとして、SNORA74A、SNORD54を挙げることができ、胃癌細胞特有の高発現snoRNAとして、SNORA69を挙げることができる。
The "specifically highly expressed snoRNA" of the present invention refers to a snoRNA that is significantly or remarkably expressed in cancer cells compared to healthy individuals. Preferably, it refers to a cancer cell that expresses snoRNA at about 4 times or more the amount expressed in healthy individuals. More preferably, it refers to a cancer cell that expresses snoRNA at about 5 times or more the amount expressed in healthy individuals.
Examples of cancer-specific highly expressed snoRNAs include SNORA50C, SNORA56, SNORD42B, SNORA69, SNORD111, SNORD99, SNORA74A, SNORD105B, SNORD37, and SNORD54.
Among these, examples of snoRNAs highly expressed in breast cancer (e.g., invasive breast cancer) cells include snoRNAs SNORA50C, SNORA56, and SNORD42B, examples of snoRNAs highly expressed in colon cancer cells include SNORA56 and SNORA69, examples of snoRNAs highly expressed in kidney cancer (e.g., renal clear cell carcinoma) cells include SNORD111 and SNORD99, and examples of snoRNAs highly expressed in liver cancer (e.g., hepatocellular carcinoma) cells include SNORA50C, SNORA56, and SNORD42B. Examples of highly expressed snoRNAs specific to cells include SNORA74A and SNORD99, examples of highly expressed snoRNAs specific to lung cancer cells, for example, lung adenocarcinoma cells, include SNORD105B and SNORD37, examples of highly expressed snoRNAs specific to lung squamous cell carcinoma cells include SNORA74A and SNORD54, and an example of highly expressed snoRNA specific to gastric cancer cells is SNORA69.

本発明の「発現抑制剤」とは、特異的に高発現するsnoRNAの発現を抑制する剤であれば特に限定はされない。標的となるsnoRNAの発現を抑制する剤は、標的snoRNAをコードしている遺伝子の転写、転写後調節等のいずれかの段階で標的snoRNAの発現に対する抑制作用を発揮するものであってよい。また、標的snoRNAを分解するもの、標的snoRNAの機能発現を抑制するものであってもよい。
標的snoRNAの発現を抑制する剤として、具体的には、標的snoRNAをコードする遺伝子の転写を抑制する核酸分子としてデコイ核酸等が挙げられ、標的snoRNAをRNA干渉作用により分解するRNA分子又はその前駆体としてsiRNA、shRNA、dsRNA等が挙げられ、標的snoRNAにハイブリダイズしてその機能の発現を抑制したり、分解したりする核酸分子としてアンチセンス核酸等が挙げられる。これらの核酸医薬は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。また、これらの核酸医薬の塩基配列は、標的分子をコードする遺伝子の塩基配列の情報に基づいて、当業者が公知の手法により適宜設計することができる。これらの核酸医薬の中でも、臨床応用への容易性等の観点から、好ましくは、siRNA、shRNA、dsRNAが挙げられ、更に好ましくはsiRNAが挙げられる。
好ましいsiRNAとして、表2、表3に記載の配列番号1~10の何れかの塩基配列を含むsiRNAを挙げることができる。これらのsiRNAの長さの上限は、30塩基程度であり、特に27塩基程度とすることができる。中でも、表2、表3に記載の配列番号1~10の何れかの塩基配列からなるsiRNAが好ましい。
The "expression inhibitor" of the present invention is not particularly limited as long as it is an agent that inhibits the expression of a specifically highly expressed snoRNA. The agent that inhibits the expression of the target snoRNA may be one that exerts an inhibitory effect on the expression of the target snoRNA at any stage of transcription, post-transcriptional regulation, etc. of the gene encoding the target snoRNA. In addition, it may be one that degrades the target snoRNA or one that inhibits the functional expression of the target snoRNA.
Specifically, the agent for suppressing the expression of the target snoRNA includes a decoy nucleic acid as a nucleic acid molecule that suppresses the transcription of a gene encoding the target snoRNA, an siRNA, a shRNA, a dsRNA as an RNA molecule or a precursor thereof that degrades the target snoRNA by RNA interference, and an antisense nucleic acid as a nucleic acid molecule that hybridizes to the target snoRNA to suppress the expression of its function or degrade it. These nucleic acid drugs may be used alone or in combination of two or more. In addition, the base sequence of these nucleic acid drugs can be appropriately designed by a person skilled in the art using a known method based on the information on the base sequence of the gene encoding the target molecule. Among these nucleic acid drugs, from the viewpoint of ease of clinical application, etc., preferably includes siRNA, shRNA, and dsRNA, and more preferably includes siRNA.
Preferred siRNAs include siRNAs containing any of the base sequences of SEQ ID NOs: 1 to 10 in Tables 2 and 3. The upper limit of the length of these siRNAs is about 30 bases, and in particular about 27 bases. Among these, siRNAs consisting of any of the base sequences of SEQ ID NOs: 1 to 10 in Tables 2 and 3 are preferred.

また、前記発現抑制剤がRNA分子である場合は、生体内で生成し得るようにデザインされたものであってもよい。具体的には、当該RNA分子をコードしているDNAを哺乳動物細胞用の発現ベクターに挿入したものであってもよい。このような発現ベクターとしては、例えば、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、センダイウイルス等のウイルスベクターや、動物細胞発現プラスミド等が挙げられる。
また、前記発現抑制剤がRNA分子である場合は、安定性改善のために化学修飾が施されたものであってもよい。化学修飾RNAとして、例えば、ホスホロチオエート、モルフォリノホスホロジアミデート、ボラノホスフェート、LNA(Locked Nucleic Acid)のような核酸アナログを含むRNAや、2’-O-メチル化RNA、2’-O-メトキシエチル化RNA等が挙げられる。
In addition, when the expression inhibitor is an RNA molecule, it may be designed to be produced in vivo. Specifically, it may be a vector in which DNA encoding the RNA molecule is inserted into an expression vector for mammalian cells. Examples of such expression vectors include virus vectors such as retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus, and Sendai virus, and animal cell expression plasmids.
In addition, when the expression inhibitor is an RNA molecule, it may be chemically modified to improve stability. Examples of chemically modified RNA include RNA containing nucleic acid analogs such as phosphorothioate, morpholinophosphorodiamidate, boranophosphate, and LNA (Locked Nucleic Acid), 2'-O-methylated RNA, and 2'-O-methoxyethylated RNA.

本発明の「がんの増殖抑制剤」とは、がんの増殖を抑制できる剤のことであり、snoRNAの発現を抑制する剤を有効成分として使用することによって達成することができるものを言う。
本発明の「がん治療剤」とは、がんの増殖を抑制することにより、がん細胞のアポトーシスを完全に又は不完全に惹起するか、あるいは増殖が止まったがん細胞を生体の免疫反応によって完全に又は不完全に死滅させる治療剤のことを言う。
本発明の増殖抑制剤及び治療剤は、担癌患者の治療に使用されるだけでなく、担癌患者から癌を摘出した後に、再発や転移を予防する目的で投与してもよく、癌の切除後の患者における予後の改善剤又は癌の転移予防剤としても使用することもできる。
The "cancer proliferation inhibitor" of the present invention refers to an agent capable of suppressing cancer proliferation, which can be achieved by using an agent that suppresses the expression of snoRNA as an active ingredient.
The "cancer therapeutic agent" of the present invention refers to a therapeutic agent that suppresses cancer proliferation, thereby completely or incompletely inducing apoptosis in cancer cells, or completely or incompletely killing cancer cells whose proliferation has stopped through the body's immune response.
The proliferation inhibitors and therapeutic agents of the present invention are not only used to treat cancer patients, but may also be administered to cancer patients after removal of the cancer for the purpose of preventing recurrence or metastasis, and can also be used as agents for improving the prognosis of patients after cancer resection or for preventing cancer metastasis.

また、本発明の増殖抑制剤及び治療剤は、以下のように使用される。
(用量、用法)
投与方法としては、本発明の増殖抑制剤及び治療剤を生体内で癌にデリバリーできることを限度として特に制限されないが、例えば、血管内(動脈内又は静脈内)注射、持続点滴、皮下投与、局所投与、筋肉内投与等が挙げられる。これらの中でも、好ましくは動静脈内投与が挙げられる。
投与量は、使用する有効成分の種類、患者の症状の程度、患者の性別、年齢等に応じて、標的分子の発現抑制(機能阻害を含む)が可能な範囲で適宜設定すればよい。
本発明の増殖抑制剤及び治療剤は、単独で使用してもよいが、抗腫瘍作用を有する1種又は2種以上の他の薬剤及び/又は放射線療法と併用してもよい。
(製剤形態)
本発明の増殖抑制剤及び治療剤は、その製剤形態に応じて、薬学的に許容される担体や添加剤を加えて製剤化される。例えば、固形製剤の場合であれば、賦形剤、結合剤、崩壊剤、滑沢剤等を用いて製剤化することができる。また、液状製剤の場合であれば、生理食塩水、緩衝液等を用いて製剤化することができる。
また、本発明の増殖抑制剤及び治療剤において、有効成分として核酸分子を使用する場合であれば、当該核酸分子が癌細胞内に移行され易いように、核酸導入補助剤と共に製剤化されていることが望ましい。核酸導入補助剤としては、具体的には、リポフェクタミン、オリゴフェクタミン、RNAiフェクト、リポソーム、ポリアミン、DEAEデキストラン、リン酸カルシウム、デンドリマー等が挙げられる。
The proliferation inhibitor and therapeutic agent of the present invention are used as follows.
(Dosage and Administration)
The administration method is not particularly limited as long as the proliferation inhibitor and therapeutic agent of the present invention can be delivered to cancer in the body, and examples of the administration method include intravascular (intraarterial or intravenous) injection, continuous infusion, subcutaneous administration, local administration, intramuscular administration, etc. Among these, intraarterial and intravenous administration is preferable.
The dosage may be appropriately determined within a range that allows suppression of the expression (including functional inhibition) of the target molecule depending on the type of active ingredient used, the severity of the patient's symptoms, the patient's sex, age, etc.
The proliferation inhibitor and therapeutic agent of the present invention may be used alone, but may also be used in combination with one or more other agents having antitumor activity and/or radiation therapy.
(Form of preparation)
The proliferation inhibitor and therapeutic agent of the present invention are formulated by adding pharma- ceutically acceptable carriers and additives according to the formulation form. For example, in the case of a solid formulation, it can be formulated using an excipient, binder, disintegrant, lubricant, etc. In addition, in the case of a liquid formulation, it can be formulated using physiological saline, buffer, etc.
In the case where the proliferation inhibitor and therapeutic agent of the present invention use a nucleic acid molecule as an active ingredient, it is desirable to formulate the nucleic acid molecule together with a nucleic acid transfer aid so that the nucleic acid molecule can be easily transferred into cancer cells. Specific examples of the nucleic acid transfer aid include lipofectamine, oligofectamine, RNAifect, liposome, polyamine, DEAE dextran, calcium phosphate, and dendrimer.

以下、実施例および試験例に基づいて本発明をより具体的に説明するが、本発明はこれによって限定されるものではない。 The present invention will be described in more detail below based on examples and test examples, but the present invention is not limited thereto.

(実施例1)がん細胞に特有の高発現のsnoRNAの同定
(1)方法:
a)データベース:
National Canser Institute(NCI)(米国国立がん研究所) とNational Human Genome Research Institute(NHGRI)(米国国立ヒトゲノム研究所)によるプロジェクトで収集したさまざまな組織におけるがんのゲノムやエピゲノム、トランスクリプトーム、変異情報などのデータがThe Canser Genome Atlas(TCGA)に集約されている。
b)同定方法:
TCGAの収載データから、正常検体と癌検体の比較が可能であり、かつsnoRNA発現情報を含むデータの抽出を行った。そして、正常検体に比べて癌検体で発現が有意に増加しているsnoRNAを抽出し、さらにCox比例ハザードモデルにてsnoRNAの高発現癌患者群の生命予後が低発現癌患者群の生命予後と比べて不良をしめすsnoRNAを、発癌snoRNAとして同定した。
(Example 1) Identification of highly expressed snoRNA specific to cancer cells (1) Method:
a) Database:
Data on cancer genomes, epigenomes, transcriptomes, mutation information, and other information from various tissues collected through projects by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) are being compiled into The Cancer Genome Atlas (TCGA).
b) Identification method:
From the data included in TCGA, data that allows comparison between normal specimens and cancer specimens and includes snoRNA expression information was extracted. Then, snoRNAs whose expression is significantly increased in cancer specimens compared to normal specimens were extracted, and snoRNAs that show poorer life prognosis in cancer patients with high snoRNA expression compared to those with low snoRNA expression in the Cox proportional hazards model were identified as carcinogenic snoRNAs.

(2)結果:
上記検討の結果、がん細胞に特有の高発現のsnoRNAとして、表1に示される発癌snoRNAを同定することが出来た。例えば、表1の腎癌の場合、SNORD99が健常人の13倍も高発現していた。そして、図2に示されるように、SNORD99が高発現している癌患者の予後が悪かった。
(2) Results:
As a result of the above investigation, we were able to identify the oncogenic snoRNAs shown in Table 1 as snoRNAs that are highly expressed specifically in cancer cells. For example, in the case of renal cancer shown in Table 1, SNORD99 was expressed at a level 13 times higher than in healthy individuals. As shown in Figure 2, cancer patients with high expression of SNORD99 had a poor prognosis.

Figure 0007553036000001
[注記]
浸潤性乳癌(breast invasive carcinoma)
結腸癌(colon adenocarcinoma)
腎淡明細胞癌(kidney renal clear cell carcinoma)
肝細胞癌(liver hepatocellular carcinoma)
肺腺癌(lung adenocarcinoma)
肺扁平上皮癌(lung squamous cell carcinoma)
胃癌(stomach adenocarcinoma)
Figure 0007553036000001
[Notes]
invasive breast cancer
colon cancer
kidney clear cell carcinoma
liver hepatocellular carcinoma
lung adenocarcinoma
Lung squamous cell carcinoma
Stomach adenocarcinoma

上記表1に示されるように、浸潤性乳癌では、SNORA50Cが健常人と比べて発現量が4.6倍で発現量と生命予後とのCox比例ハザード解析でp値が0.05以下と有意差があった。SNORA56が健常人と比べて発現量が5.7倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。SNORD42Bが健常人と比べて発現量が7.0倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。
結腸癌では、SNORA56が健常人と比べて発現量が5.9倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。SNORA69が健常人と比べて発現量が3.7倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。
腎淡明細胞癌では、SNORD111が健常人と比べて発現量が4.0倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。SNORD99が健常人と比べて発現量が13.0倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。
As shown in Table 1 above, in invasive breast cancer, SNORA50C was expressed 4.6 times more than healthy individuals, and the Cox proportional hazards analysis of expression and life prognosis showed a significant difference of p-value 0.05 or less. SNORA56 was expressed 5.7 times more than healthy individuals, and the Cox proportional hazards analysis of expression and life prognosis showed a significant difference of p-value 0.01 or less. SNORD42B was expressed 7.0 times more than healthy individuals, and the Cox proportional hazards analysis of expression and life prognosis showed a significant difference of p-value 0.01 or less.
In colon cancer, SNORA56 was expressed 5.9 times more than in healthy subjects, and a Cox proportional hazards analysis of the expression level and life prognosis showed a significant difference of p-value of 0.01 or less. SNORA69 was expressed 3.7 times more than in healthy subjects, and a Cox proportional hazards analysis of the expression level and life prognosis showed a significant difference of p-value of 0.01 or less.
In renal clear cell carcinoma, SNORD111 was expressed 4.0 times more than in healthy subjects, and a Cox proportional hazards analysis of the relationship between expression level and life prognosis showed a significant difference of p-value of 0.01 or less. SNORD99 was expressed 13.0 times more than in healthy subjects, and a Cox proportional hazards analysis of the relationship between expression level and life prognosis showed a significant difference of p-value of 0.01 or less.

肝細胞癌では、SNORA74Aが健常人と比べて発現量が5.7倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。SNORD99が健常人と比べて発現量が4.6倍で発現量と生命予後とのCox比例ハザード解析でp値が0.05以下と有意差があった。
肺腺癌では、SNORD105Bが健常人と比べて発現量が5.3倍で発現量と生命予後とのCox比例ハザード解析でp値が0.05以下と有意差があった。SNORD37が健常人と比べて発現量が8.6倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。
肺扁平上皮癌では、SNORA74Aが健常人と比べて発現量が4.3倍で発現量と生命予後とのCox比例ハザード解析でp値が0.05以下と有意差があった。SNORD54が健常人と比べて発現量が5.7倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。
胃癌では、SNORA69が健常人と比べて発現量が13.0倍で発現量と生命予後とのCox比例ハザード解析でp値が0.01以下と有意差があった。
In hepatocellular carcinoma, SNORA74A was expressed 5.7 times more than healthy subjects, and a Cox proportional hazards analysis of the expression level and life prognosis showed a significant difference of p-value of 0.01 or less. SNORD99 was expressed 4.6 times more than healthy subjects, and a Cox proportional hazards analysis of the expression level and life prognosis showed a significant difference of p-value of 0.05 or less.
In lung adenocarcinoma, SNORD105B was expressed 5.3 times more than healthy individuals, and a Cox proportional hazards analysis of the relationship between expression level and life prognosis showed a significant difference of p-value of 0.05 or less. SNORD37 was expressed 8.6 times more than healthy individuals, and a Cox proportional hazards analysis of the relationship between expression level and life prognosis showed a significant difference of p-value of 0.01 or less.
In lung squamous cell carcinoma, SNORA74A was expressed 4.3 times more than healthy individuals, and a Cox proportional hazards analysis of the relationship between expression level and life prognosis showed a significant difference of p-value of 0.05 or less. SNORD54 was expressed 5.7 times more than healthy individuals, and a Cox proportional hazards analysis of the relationship between expression level and life prognosis showed a significant difference of p-value of 0.01 or less.
In gastric cancer, the expression level of SNORA69 was 13.0 times that of healthy individuals, and a Cox proportional hazards analysis between the expression level and life prognosis showed a significant difference with a p value of 0.01 or less.

同定された発癌snoRNAの塩基配列と、その発現を抑制するsiRNAの塩基配列の一例を、表2、表3に示す。 Tables 2 and 3 show examples of the base sequences of the identified oncogenic snoRNAs and the base sequences of siRNAs that suppress their expression.

Figure 0007553036000002
Figure 0007553036000002
Figure 0007553036000003
Figure 0007553036000003

ヒトsnoRNAの配列は、米国のNCBIで構築しているデータベースより抽出した。なお、snoRNAに対するsiRNAは、snoRNA配列に基づき、そのsiRNAを設計し、50%以上の発現抑制効果がある配列を、上記表2、表3に示した。なお、上記siRNAはアンチセンスRNAとしても機能し得る。また、デコイ様に機能してもよい。 The sequences of human snoRNA were extracted from a database constructed by NCBI in the United States. siRNA against snoRNA was designed based on the snoRNA sequence, and the sequences with an expression suppression effect of 50% or more are shown in Tables 2 and 3 above. The above siRNA can also function as an antisense RNA. It may also function like a decoy.

(実施例2)腎淡明細胞癌で高発現(正常細胞の13.0倍)のSNORD99が欠損したヒト腎癌細胞株と欠損の無いヒト腎癌細胞株の増殖性の比較評価
腎癌(腎淡明細胞癌:kidney renal clear cell carcinoma)患者では、図2に示すようにsnoRNAとして、SNORD99が特に顕著に発現しており、その腎癌患者の予後が悪いことを見出している。そこで、腎癌で高発現しているSNORD99のがんにおける機能を明らかにするため、SNORD99が欠損したヒト腎がん細胞株と、ポジティブ・コントロールのヒト腎がん細胞株を用いて、ヌードマウスの皮下に他家移植を行った。
(1)材料・試薬
・ポジテイブ・コントロールのヒト腎癌細胞株786O mock
・SNORD99が欠損したヒト腎癌細胞株786O99KO
上記ポジテイブ・コントロール細胞株およびSNORD99欠損細胞株の作成方法は、次の通りである。
786O mockおよび786O99KOは、Crispr-Cas9法により作成した。ヒト腎癌細胞株786O細胞にCas9を安定過剰発現させた後、guide RNA(gccgggccttccaacccggt)をレンチウイルスにより導入しピューロマイシン耐性選択を行い786O99KOを作成した。SNORD99遺伝子欠損は定量PCRおよびゲノムDNA配列決定により確認した。786O mockは786OにCas9を安定過剰発現させた後、guide RNAなしレンチウイルスを導入し薬剤耐性選択を行い作成した。
(2)方法
ヌードマウス(雄性、4週令)の皮下に、SNORD99が欠損したヒト腎癌細胞株(786O99KO)とポジテイブ・コントロールのヒト腎癌細胞株(786O mock)を、5x10個注入した。6週後の腎癌形成の様子を目視で観察し、移植腎癌細胞の直径を計測した。
(3)結果
図3に示されるように、6週後に、SNORD99が欠損したヒト腎癌細胞株では、ポジテイブ・コントロールのヒト腎癌細胞株に比べて、腎癌形成が抑制されていた。移植腎癌の直径を、以下の表4に示す。
Example 2 Comparative evaluation of proliferation between human renal cancer cell lines lacking SNORD99, which is highly expressed in renal clear cell carcinoma (13.0 times that of normal cells) and human renal cancer cell lines without SNORD99 deficiency In renal cancer (renal clear cell carcinoma) patients, as shown in Figure 2, SNORD99 is particularly significantly expressed as a snoRNA, and it has been found that the prognosis of such patients is poor. Therefore, in order to clarify the function of SNORD99, which is highly expressed in renal cancer, a human renal cancer cell line lacking SNORD99 and a positive control human renal cancer cell line were subcutaneously transplanted into nude mice.
(1) Materials and Reagents Positive control human renal cell line 786O mock
- SNORD99-deficient human renal cancer cell line 786O99KO
The above positive control cell line and SNORD99-deficient cell line were prepared as follows.
786O mock and 786O99KO were created by the Crispr-Cas9 method. After stably overexpressing Cas9 in human renal cancer cell line 786O cells, guide RNA (gccgggccttccaacccggt) was introduced by lentivirus and puromycin resistance selection was performed to create 786O99KO. SNORD99 gene deletion was confirmed by quantitative PCR and genomic DNA sequencing. 786O mock was created by stably overexpressing Cas9 in 786O, then introducing a lentivirus without guide RNA and performing drug resistance selection.
(2) Method Nude mice (male, 4 weeks old) were subcutaneously injected with 5 x 106 cells of a human renal cancer cell line lacking SNORD99 (786O99KO) and a positive control human renal cancer cell line (786O mock). After 6 weeks, the state of renal cancer formation was visually observed, and the diameter of the transplanted renal cancer cells was measured.
(3) Results As shown in Figure 3, after 6 weeks, renal cancer formation was suppressed in the SNORD99-deficient human renal cancer cell line compared to the positive control human renal cancer cell line. The diameters of the transplanted renal cancers are shown in Table 4 below.

Figure 0007553036000004
Figure 0007553036000004

上記表4に示すように、6週間後の移植腎癌の体積は、SNORD99が欠損したヒト腎がん細胞株(786O99KO)では21mmであり、ポジテイブ・コントロール(786Omock)では、436mm(p<0.01)であった。
以上のように、SNORD99が欠損したヒト腎がん細胞株では、ヌードマウスに対するがん細胞の生着・増殖が顕著に抑制されることを見出した。このことは、腎癌で高発現のSNORD99を抑制すると、腎癌の増殖が抑制できることを示しており、SNORD99の発現を抑制すれば、がん治療が可能であることを示している。
As shown in Table 4 above, the volume of the transplanted renal cancer after 6 weeks was 21 mm 3 in the SNORD99-deficient human renal cancer cell line (786O99KO) and 436 mm 3 in the positive control (786Omock) (p<0.01).
As described above, we found that the engraftment and proliferation of cancer cells in nude mice was significantly suppressed in human renal cancer cell lines lacking SNORD99, indicating that suppression of SNORD99, which is highly expressed in renal cancer, can suppress renal cancer proliferation, and that suppression of SNORD99 expression can be used to treat cancer.

本発明のがん治療剤は、がん細胞で特異的に高発現するsnoRNAを発現抑制することによって、効果的にがん細胞の増殖を抑制し、新たな作用機序でがん治療を行うことが出来る。本発明のがん増殖抑制剤は、単剤で使用することができ、更には免疫賦活化のがん治療剤と併用して、その効果を高めることが出来る。それ故、本発明のがん増殖抑制剤としては、snoRNAを発現抑制ができるものとして、siRNAやデコイ等の核酸医薬を使用することができ、新たながんの増殖抑制剤、更にはがんの治療剤として利用できる。 The cancer treatment agent of the present invention can effectively suppress the proliferation of cancer cells by suppressing the expression of snoRNA that is specifically and highly expressed in cancer cells, and can treat cancer with a new mechanism of action. The cancer growth inhibitor of the present invention can be used as a single agent, and can also be used in combination with an immunostimulating cancer treatment agent to enhance its effectiveness. Therefore, the cancer growth inhibitor of the present invention can be a nucleic acid drug such as siRNA or a decoy that can suppress the expression of snoRNA, and can be used as a new cancer growth inhibitor and further a cancer treatment agent.

Claims (8)

SNORD99に特異的にハイブリダイズすることによりSNORD99の発現を抑制するsiRNA又はアンチセンスRNAを有効成分とする、がんの増殖抑制剤。 A cancer proliferation inhibitor comprising as an active ingredient an siRNA or antisense RNA which specifically hybridizes to SNORD99 and thereby inhibits the expression of SNORD99. 上記がんが、乳癌、結腸癌、腎癌、肝癌、肺癌、胃癌のいずれかである、請求項1に記載のがんの増殖抑制剤。 The cancer growth inhibitor according to claim 1, wherein the cancer is any one of breast cancer, colon cancer, renal cancer, liver cancer, lung cancer, and gastric cancer. SNORD99に特異的にハイブリダイズすることによりSNORD99の発現を抑制するsiRNA又はアンチセンスRNAが配列番号10のsiRNA又はアンチセンスRNAである、請求項1又は2に記載のがんの増殖抑制剤。 The cancer proliferation inhibitor according to claim 1 or 2, wherein the siRNA or antisense RNA that specifically hybridizes to SNORD99 to suppress the expression of SNORD99 is the siRNA or antisense RNA of SEQ ID NO: 10 . SNORD99に特異的にハイブリダイズすることによりSNORD99の発現を抑制するsiRNA又はアンチセンスRNAを有効成分とする、がん治療剤。 A cancer therapeutic agent comprising as an active ingredient an siRNA or antisense RNA which specifically hybridizes to SNORD99 and thereby inhibits the expression of SNORD99. 上記がんが、乳癌、結腸癌、腎癌、肝癌、肺癌、胃癌のいずれかである、請求項4に記載のがん治療剤。 The cancer therapeutic agent according to claim 4, wherein the cancer is any one of breast cancer, colon cancer, renal cancer, liver cancer, lung cancer, and gastric cancer. SNORD99に特異的にハイブリダイズすることによりSNORD99の発現を抑制するsiRNA又はアンチセンスRNAが配列番号10のsiRNA又はアンチセンスRNAである、請求項4又は5に記載のがん治療剤The cancer therapeutic agent according to claim 4 or 5, wherein the siRNA or antisense RNA which specifically hybridizes to SNORD99 and thereby suppresses the expression of SNORD99 is the siRNA or antisense RNA of SEQ ID NO: 10 . 配列番号10の塩基配列からなるRNA。 RNA consisting of the base sequence of SEQ ID NO:10. RNAがsiRNA又はアンチセンスRNAである、請求項7に記載のRNA。 The RNA according to claim 7, wherein the RNA is siRNA or antisense RNA.
JP2023065316A 2018-03-22 2023-04-13 Cancer growth inhibitor containing snoRNA expression inhibitor as an active ingredient Active JP7553036B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018075735 2018-03-22
JP2018075735 2018-03-22
PCT/JP2019/005580 WO2019181305A1 (en) 2018-03-22 2019-02-15 CANCER PROLIFERATION INHIBITOR COMPRISING snoRNA EXPRESSION INHIBITOR AS ACTIVE INGREDIENT
JP2020507435A JP7385847B2 (en) 2018-03-22 2019-02-15 Cancer growth inhibitor containing a snoRNA expression inhibitor as an active ingredient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020507435A Division JP7385847B2 (en) 2018-03-22 2019-02-15 Cancer growth inhibitor containing a snoRNA expression inhibitor as an active ingredient

Publications (2)

Publication Number Publication Date
JP2023085547A JP2023085547A (en) 2023-06-20
JP7553036B2 true JP7553036B2 (en) 2024-09-18

Family

ID=67986955

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020507435A Active JP7385847B2 (en) 2018-03-22 2019-02-15 Cancer growth inhibitor containing a snoRNA expression inhibitor as an active ingredient
JP2023065316A Active JP7553036B2 (en) 2018-03-22 2023-04-13 Cancer growth inhibitor containing snoRNA expression inhibitor as an active ingredient

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020507435A Active JP7385847B2 (en) 2018-03-22 2019-02-15 Cancer growth inhibitor containing a snoRNA expression inhibitor as an active ingredient

Country Status (2)

Country Link
JP (2) JP7385847B2 (en)
WO (1) WO2019181305A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908161B (en) * 2021-02-08 2025-02-07 广州医科大学附属第三医院(广州重症孕产妇救治中心、广州柔济医院) SNORD99 as a marker for the diagnosis of endometrial cancer and its application
WO2024186926A1 (en) * 2023-03-06 2024-09-12 The Regents Of The University Of California Strategies to prevent the evolution of lethal, multi-therapy-resistant, widely metastatic cutaneous melanoma

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008956A2 (en) 2009-07-15 2011-01-20 Zirus, Inc. Mammalian genes involved in infection
JP2020055750A (en) * 2017-01-30 2020-04-09 賢二 中野 Nucleic acid drugs that inhibit cancer invasion or metastasis
CN108619530B (en) * 2018-04-12 2019-12-24 中国人民解放军军事科学院军事医学研究院 Application of SNORA18L5 in early warning of liver cancer risk and siRNA for inhibiting SNORA18L5 in inhibiting liver cancer growth

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biomed. Pharmacother., (2017), 90, p.705-702
Gastroenterolgy, (2017), 153, [1], p.292-306

Also Published As

Publication number Publication date
WO2019181305A1 (en) 2019-09-26
JP7385847B2 (en) 2023-11-24
JP2023085547A (en) 2023-06-20
JPWO2019181305A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7553036B2 (en) Cancer growth inhibitor containing snoRNA expression inhibitor as an active ingredient
AU2014351482A1 (en) C/EBP alpha short activating RNA compositions and methods of use
CN105008533A (en) Chimeric single-stranded antisense polynucleotides and double-stranded antisense agent
CN102719432B (en) Double-stranded asymmetric small nucleic acid interference molecule asiRNA specifically inhibiting tumor apoptosis suppressing gene Bcl2 and its application
KR101142080B1 (en) Compositions and Methods for Treatment of Prostate and Other Cancers
TW200908998A (en) Compositions and methods of treating cancer
JP7406278B2 (en) Long non-coding RNA LETN as a tumor marker and therapeutic target
WO2017068791A1 (en) Nucleic acid complex having at least one bulge structure
WO2013056670A1 (en) Small interference rnas, uses thereof and method for inhibiting the expression of plk1 gene
US20240167022A1 (en) Template directed immunomodulation for cancer therapy
JP2022541212A (en) SiRNA sequences targeting the expression of the human genes JAK1 or JAK3 for therapeutic use
CA2932910A1 (en) Methods for diagnosing and treating metastatic cancer
CN107709561B (en) Modified siRNA and pharmaceutical composition containing same
JP2024529930A (en) Modified small interfering RNA molecules with reduced off-target effects
CN115317610A (en) Application of ASO (angiotensin converting enzyme) medicine based on VPS9D1-AS1 target spot in tumor treatment
CN1948483B (en) SiRNA for inhibiting human Rabj gene expression and its application
Prins et al. Antisense of oligonucleotides and the inhibition of oncogene expression
CN101590243A (en) Application of microRNA in preparation of medicine for treating and/or preventing lymphoma
JP7498448B2 (en) Cancer growth inhibitor containing as an active ingredient an inhibitor of ncRNA expression derived from the SNHG12 gene
Goodin et al. Identification of differentially expressed genes during cyclic adenosine monophosphate–induced neuroendocrine differentiation in the human prostatic adenocarcinoma cell line LNCaP
CN1948482B (en) Antisensedigonucleotides sequence for inhibiting human Rabj gene expression and its application
JP5781732B2 (en) Cancer suppression miRNA
CN102451473B (en) The antitumor action of miRNA, implementation method and purposes
CN109913455B (en) Small interfering RNA capable of treating cancer
CN107828787A (en) Suppress Antisensedigonucleotsequence sequence and its application of people&#39;s SRSF3 gene expressions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240503

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240827

R150 Certificate of patent or registration of utility model

Ref document number: 7553036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150