[go: up one dir, main page]

JP7549506B2 - Fire detection device, disaster prevention equipment, and fire detection method - Google Patents

Fire detection device, disaster prevention equipment, and fire detection method Download PDF

Info

Publication number
JP7549506B2
JP7549506B2 JP2020173941A JP2020173941A JP7549506B2 JP 7549506 B2 JP7549506 B2 JP 7549506B2 JP 2020173941 A JP2020173941 A JP 2020173941A JP 2020173941 A JP2020173941 A JP 2020173941A JP 7549506 B2 JP7549506 B2 JP 7549506B2
Authority
JP
Japan
Prior art keywords
fire
detection
smoke
light
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020173941A
Other languages
Japanese (ja)
Other versions
JP2022065389A (en
Inventor
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2020173941A priority Critical patent/JP7549506B2/en
Publication of JP2022065389A publication Critical patent/JP2022065389A/en
Application granted granted Critical
Publication of JP7549506B2 publication Critical patent/JP7549506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Description

本発明は、火災による煙を観測して火災を検出する光電式の火災検出装置、防災設備及び火災検出方法に関する。 The present invention relates to a photoelectric fire detection device, disaster prevention equipment, and a fire detection method that detects fires by observing smoke caused by fires.

従来、火災検出装置である光電式の煙感知器は、検煙空間に流入した煙に発光素子から光を照射したときに生ずる散乱光を受光素子で受光して煙濃度を観測し、観測した煙濃度が所定の火災判断条件を充足したときに火災と検出し、例えば受信機で火災警報動作を行わせている。 Conventionally, photoelectric smoke detectors, which are fire detection devices, observe the smoke density by receiving scattered light generated when a light-emitting element shines light on smoke that has flowed into a smoke detection space, and detect a fire when the observed smoke density meets predetermined fire judgment conditions, causing a receiver to, for example, sound a fire alarm.

また、煙感知器は、消費電流を低減するために所定周期ごとに発光素子を発光駆動して煙濃度を観測する間欠発光としている。 In addition, to reduce current consumption, the smoke detector uses intermittent light emission to observe smoke concentration by driving the light-emitting element to emit light at a predetermined interval.

実開平5-30990号公報Japanese Utility Model Application Publication No. 5-30990 特開昭63-167242号公報Japanese Patent Application Laid-Open No. 63-167242

しかしながら、このような従来の煙感知器にあっては、火災により発生した煙による煙濃度の時間的な変化を、間欠発光の周期に対応して離散的に観測しており、間欠発光の周期が長くなると煙濃度の時間変化を正確に観測することができず、火災判断の精度が低下する。 However, in such conventional smoke detectors, the change over time in smoke concentration due to smoke generated by a fire is observed discretely in accordance with the cycle of the intermittent light emission. If the cycle of the intermittent light emission becomes long, the change over time in smoke concentration cannot be observed accurately, and the accuracy of fire detection decreases.

また、観測した煙濃度から高い精度で火災を検出するためには、時間的に連続して変化する複数の煙濃度を含む観測データから、火災に固有な煙の特徴量を算出して判断する必要があるが、間欠発光により離散的に観測される複数の煙濃度では、各煙濃度の時間間隔が離れすぎで、その間における煙濃度の時間的変化が失われており、火災固有の煙の特徴量を捉えることが困難な場合がある。 In addition, to detect fires with high accuracy from observed smoke concentrations, it is necessary to calculate and judge smoke features specific to a fire from observational data that includes multiple smoke concentrations that change continuously over time. However, with multiple smoke concentrations that are observed discretely due to intermittent light emission, the time intervals between each smoke concentration are too far apart, and the temporal changes in smoke concentration during that time are lost, making it difficult to capture smoke features specific to a fire.

本発明は、煙濃度の時間変化を正確に観測することで精度の高い火災検出を可能とする煙検出装置、防災設備及び火災検出方法を提供することを目的とする。 The present invention aims to provide a smoke detection device, disaster prevention equipment, and fire detection method that enable highly accurate fire detection by accurately observing changes in smoke concentration over time.

(火災検出装置1)
本発明は、火災検出装置であって、
所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする。
(Fire detection device 1)
The present invention provides a fire detection device,
an observation unit that irradiates smoke that has flowed into a smoke detection space from a predetermined monitoring area with a detection light and receives scattered light or attenuated light generated to observe smoke concentration;
a processing unit that continuously emits detection light to observe smoke concentration and generates observation data including a plurality of observation values obtained continuously in time series at predetermined intervals;
A detection unit that detects a fire based on the observation data;
The present invention is characterized in that:

(火災検出装置2)
本発明の別形態として、火災検出装置であって、
所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
検出光を間欠発光して観測された煙濃度が所定の閾値条件を充足した場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする。
(Fire detection device 2)
As another aspect of the present invention, there is provided a fire detection device, comprising:
an observation unit that irradiates smoke that has flowed into a smoke detection space from a predetermined monitoring area with a detection light and receives scattered light or attenuated light generated to observe smoke concentration;
a processing unit that, when the smoke density observed by intermittently emitting the detection light satisfies a predetermined threshold condition, continuously emits the detection light to observe the smoke density, and generates observation data including a plurality of observation values obtained continuously in a time series for each predetermined time period;
A detection unit that detects a fire based on the observation data;
The present invention is characterized in that:

(検出部による火災検出)
検出部は、
観測データに含まれる複数の観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出する。
(Fire detection by the detection unit)
The detection unit is
A predetermined feature is detected from a plurality of observation values contained in the observation data, and a fire is detected if the feature satisfies a predetermined fire judgment condition.

(特徴量に基づく火災判断1)
検出部は、所定時間ごとに検出される特徴量が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire Judgment Based on Features 1)
The detection unit determines that a fire has occurred when the feature amount detected at each predetermined time is equal to or exceeds a predetermined threshold value.

(特徴量に基づく火災判断2)
検出部は、所定時間ごとに検出される特徴量が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire detection based on features 2)
The detection unit determines that a fire has occurred when the feature amount detected at each predetermined time is equal to or exceeds a predetermined threshold value a predetermined number of times in succession.

(特徴量に基づく火災判断3)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の比率が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire detection based on features 3)
The detection unit determines that a fire has occurred when a ratio of a current feature amount to a previous feature amount detected at a predetermined time interval is equal to or exceeds a predetermined threshold value.

(特徴量に基づく火災判断4)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の比率が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire detection based on features 4)
The detection unit determines that a fire has occurred when a ratio of a current feature amount to a previous feature amount detected at a predetermined time interval is equal to or exceeds a predetermined threshold value a predetermined number of times in succession.

(特徴量に基づく火災判断5)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の差分が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire Judgment Based on Features 5)
The detection unit determines that a fire has occurred when a difference between a current feature amount and a previous feature amount detected at a predetermined time interval is equal to or exceeds a predetermined threshold value.

(特徴量に基づく火災判断6)
検出部は、所定時間ごとに検出される特徴量について、現在の特徴量と前回の特徴量の差分が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fire Judgment Based on Features 6)
The detection unit determines that a fire has occurred when a difference between a current feature amount and a previous feature amount detected at a predetermined time interval is equal to or exceeds a predetermined threshold value a predetermined number of times in succession.

(特徴量)
検出部は、観測データの特徴量として、観測データに含まれる複数の観測値の積分値、平均値又はピーク値を検出する。
(Features)
The detection unit detects an integral value, an average value, or a peak value of a plurality of observation values included in the observation data as a feature amount of the observation data.

(防災設備1)
前述した火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して受信機に火災信号を送信する感知器とを備え、
感知器に、観測部、処理部及び検出部を設けたことを特徴とする。
(Disaster prevention equipment 1)
In the disaster prevention equipment using the above-mentioned fire detection device,
A fire alarm system includes a receiver and a detector that detects a fire and transmits a fire signal to the receiver.
The sensor is characterized by having an observation section, a processing section, and a detection section.

(防災設備2)
前述した火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して受信機に火災信号を送信する感知器とを備え、
感知器に、観測部及び処理部を設け、
受信機に、検出部を設けたことを特徴とする。
(Disaster prevention equipment 2)
In the disaster prevention equipment using the above-mentioned fire detection device,
A fire alarm system includes a receiver and a detector that detects a fire and transmits a fire signal to the receiver.
The detector is provided with an observation section and a processing section,
The receiver is characterized by having a detection unit.

(火災検出方法1)
本発明は、火災検出方法であって、
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、観測データに基づいて火災を検出する、
ことを特徴とする。
(Fire detection method 1)
The present invention provides a fire detection method, comprising:
The observation unit irradiates the smoke that has flowed into the smoke detection space from the predetermined monitoring area with the detection light, receives the scattered light or attenuated light generated, and observes the smoke concentration;
A processing unit continuously emits detection light to observe smoke concentration, and generates observation data including a plurality of observation values obtained continuously in a time series for each predetermined time period;
A detection unit detects a fire based on the observation data.
It is characterized by:

(火災検出方法2)
本発明は、火災検出方法であって、
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、検出光を間欠発光して観測された煙濃度が所定の閾値条件を充足した場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、観測データに基づいて火災を検出する、
ことを特徴とする。
(Fire detection method 2)
The present invention provides a fire detection method, comprising:
The observation unit irradiates the smoke that has flowed into the smoke detection space from the predetermined monitoring area with the detection light, receives the scattered light or attenuated light generated, and observes the smoke concentration;
a processing unit, when the smoke density observed by intermittently emitting the detection light satisfies a predetermined threshold condition, continuously emitting the detection light to observe the smoke density, and generating observation data including a plurality of observation values obtained continuously in a time series for each predetermined time period;
A detection unit detects a fire based on the observation data.
It is characterized by:

(検出部による火災検出方法)
火災検出方法に於いて、
検出部は、
観測データに含まれる複数の観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足したときに火災と検出する。
(Fire detection method by detection unit)
In a fire detection method,
The detection unit is
A predetermined feature amount is detected from a plurality of observation values contained in the observation data, and a fire is detected when the feature amount satisfies a predetermined fire judgment condition.

(火災検出装置1の基本的な効果)
本発明の火災検出装置によれば、検出光を連続発光して煙濃度を観測することで、時系列に連続する複数の煙濃度を含む観測データを生成し、煙濃度の時間的な変化を正確に示す観測データに基づいて、高い精度で火災を検出すること可能とする。
(Basic Effects of Fire Detection Device 1)
According to the fire detection device of the present invention, by continuously emitting detection light and observing smoke concentration, observation data containing multiple successive smoke concentrations in a time series is generated, and fires can be detected with high accuracy based on the observation data that accurately shows the changes in smoke concentration over time.

(火災検出装置2の基本的な効果)
本発明の火災検出装置によれば、検出光の間欠発光して観測された煙濃度が所定の閾値条件を充足した場合、例えば、火災予兆といえるような所定の閾値以上の煙濃度に増加した場合に、検出光を連続発光して煙濃度を観測することで、時系列に連続する複数の煙濃度を含む観測データを生成し、煙濃度の時間的な変化を正確に示す観測データに基づいて、高い精度で火災を検出すること可能とする。
(Basic Effects of Fire Detection Device 2)
According to the fire detection device of the present invention, when the smoke density observed by intermittent emission of detection light satisfies a predetermined threshold condition, for example, when the smoke density increases to above a predetermined threshold that can be considered a sign of a fire, the detection light is continuously emitted to observe the smoke density, thereby generating observation data including multiple successive smoke densities in a time series, and making it possible to detect fires with high accuracy based on the observation data that accurately shows the changes in smoke density over time.

また、煙濃度が閾値を下回っている通常監視状態では検出光を間欠発光しており、検出光を連続光する煙濃度が所定の閾値条件を充足した状態の発生頻度は極めて少なく例外的なものであることから、運用期間を全体的にみると、検出光の発光に必要な消費電流を、検出光の間欠発光のみの場合と略同等に低減できる。 In addition, during normal monitoring conditions when the smoke density is below the threshold, the detection light is emitted intermittently, and the occurrence frequency of a state in which the smoke density satisfies the specified threshold condition and the detection light is emitted continuously is extremely low and exceptional. Therefore, when considering the overall operating period, the current consumption required to emit the detection light can be reduced to approximately the same as when only the detection light is emitted intermittently.

(検出部による火災検出の効果)
また、検出部は、観測データに含まれる時系列に連続する複数の煙濃度を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出することで、より精度の高い火災検出を可能とする。
(Effect of fire detection by the detection unit)
In addition, the detection unit detects specified features from multiple consecutive smoke densities in a time series contained in the observation data, and detects a fire if the features satisfy specified fire judgment conditions, thereby enabling more accurate fire detection.

(特徴量に基づく火災判断の効果)
検出部は、観測データに基づき所定時間ごとに検出される特徴量、現在の特徴量と前回の特徴量の比率、或いは、現在の特徴量と前回の特徴量の差分が、それぞれ、所定の火災判断条件を充足した場合、例えば、所定の閾値以上又は閾値を超えた場合、もしくは、所定回数連続して所定の閾値以上又は閾値を超えた場合に、火災と判断することで、火災に固有な煙濃度の時間的変化の特徴量を捉えた判断により、より精度の高い火災検出を可能とする。
(Effect of fire detection based on features)
The detection unit determines that there is a fire when the feature quantity detected at predetermined time intervals based on the observation data, the ratio between the current feature quantity and the previous feature quantity, or the difference between the current feature quantity and the previous feature quantity each satisfy a predetermined fire determination condition, for example, when it is above or exceeds a predetermined threshold value, or when it is above or exceeds a predetermined threshold value a predetermined number of times consecutively, thereby enabling more accurate fire detection by making a judgment that captures the feature quantity of the temporal change in smoke concentration that is specific to a fire.

(特徴量の効果)
また、検出部は、観測データに含まれる時系列に連続する複数の煙濃度から積分値、平均値又はピーク値を検出して一つの特徴量を求めることで、簡単な処理により精度の高い火災検出を可能とする。
(Effect of features)
In addition, the detection unit detects integral values, average values or peak values from multiple consecutive smoke concentrations in a time series contained in the observation data to obtain a single feature, enabling highly accurate fire detection through simple processing.

(防災設備1の効果)
本発明は、前述した火災検出装置を用いた防災設備であって、感知器に、観測部、処理部及び検出部の全てを設けることで、感知器側の変更のみで対処でき、既設の設備であっても、ベースに装着している感知器を外し、観測部、処理部及び検出部の全てを設けた感知器に交換することで、簡単に対処できる。
(Effects of Disaster Prevention Equipment 1)
The present invention is a disaster prevention equipment that uses the above-mentioned fire detection device, and by providing the sensor with all of the observation section, processing section, and detection section, it is possible to deal with the problem by simply making changes to the sensor.Even in the case of existing equipment, it can be easily dealt with by removing the sensor mounted on the base and replacing it with a sensor equipped with all of the observation section, processing section, and detection section.

(防災設備2の効果)
本発明は、前述した火災検出装置を用いた防災設備であって、感知器に観測部と処理部を設け、受信機に検出部を設けることで、感知器側の変更を少なくし、設備全体としてのコストを低減可能とする。
(Effects of Disaster Prevention Equipment 2)
The present invention is a disaster prevention equipment that uses the above-mentioned fire detection device, and by providing an observation unit and a processing unit in the sensor and a detection unit in the receiver, it is possible to reduce the number of modifications required on the sensor side and to reduce the cost of the equipment as a whole.

(火災検出方法1及び2の効果)
本発明は、火災検出方法であっては、前述した火災検出装置1及び2と同様の効果が得られる。
(Effects of Fire Detection Methods 1 and 2)
The present invention, as a fire detection method, provides the same effects as those of the fire detection devices 1 and 2 described above.

本発明の火災検出装置、防災設備及び火災検出方法の基本的な概念を示した説明図である。1 is an explanatory diagram showing the basic concept of a fire detection device, a disaster prevention equipment, and a fire detection method according to the present invention. 図1に対応するP型の防災設備を対象とした本発明の具体的な実施形態を示した防災設備の説明図である。FIG. 2 is an explanatory diagram of a disaster prevention facility showing a specific embodiment of the present invention targeted at a P-type disaster prevention facility corresponding to FIG. 1. 図2の感知器の実施形態による制御動作を示したフローチャートである。3 is a flow chart illustrating a control operation according to an embodiment of the sensor of FIG. 2 . 受信機側で火災を判断する本発明の火災検出装置、防災設備及び火災検出方法の他の基本的な概念を示した説明図である。1 is an explanatory diagram showing another basic concept of the fire detection device, disaster prevention equipment, and fire detection method of the present invention, which judges a fire on the receiver side. 図4に対応するR型の防災設備を対象とした本発明の具体的な実施形態を示した防災設備の説明図である。FIG. 5 is an explanatory diagram of a disaster prevention facility showing a specific embodiment of the present invention targeted at an R-type disaster prevention facility corresponding to FIG. 4. 図5のR型の防災設備の実施形態による制御動作をタイムチャート形式で示したフローチャートである。6 is a flowchart showing a control operation according to the embodiment of the R-type disaster prevention equipment of FIG. 5 in the form of a time chart.

以下に、本発明に係る火災検出装置、防災設備及び火災検出方法の実施形態を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。 Below, embodiments of a fire detection device, disaster prevention equipment, and fire detection method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to these embodiments.

[実施形態の基本的な概念]
図1は防災設備1に対応した本発明による実施形態の基本的な概念を示した説明図であり、図1を参照して実施形態の基本的な概念について説明する。本実施形態は、概略的に、火災検出装置、防災設備、及び火災検出方法に関するものである。尚、防災設備2に対応した実施形態については別途説明する。
[Basic Concept of the Embodiment]
Fig. 1 is an explanatory diagram showing the basic concept of an embodiment of the present invention corresponding to a disaster prevention facility 1, and the basic concept of the embodiment will be described with reference to Fig. 1. This embodiment generally relates to a fire detection device, a disaster prevention facility, and a fire detection method. Note that an embodiment corresponding to a disaster prevention facility 2 will be described separately.

「火災検出装置」とは、監視領域の火災を検出する手段であり、例えば、煙感知器、火災感知器、火災警報器等を含む概念である。 A "fire detection device" is a means for detecting fires in a monitored area, and is a concept that includes, for example, smoke detectors, fire detectors, fire alarms, etc.

ここで、「監視領域」とは、火災検出装置により監視の対象となる領域であり、一定の広がりをもった屋外或いは屋内の空間であり、例えば、建物の部屋、廊下、階段等の空間を含む概念である。 Here, the "monitored area" refers to the area that is monitored by the fire detection device, and is an outdoor or indoor space with a certain extent, and is a concept that includes spaces such as rooms, corridors, and staircases of a building.

火災検出装置は、一例として受信機10と感知器12で構成される防災設備の感知器12であり、観測部16、処理部18及び検出部20を備える。 The fire detection device is, as an example, a disaster prevention equipment sensor 12 that is composed of a receiver 10 and a sensor 12, and has an observation unit 16, a processing unit 18, and a detection unit 20.

「観測部16」とは、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測するものである。ここで「検煙空間」とは、外部からの煙は流入するが光の入射は遮られた煙を検出するための空間であり、発光素子と受光素子が設置され、流入した煙に発光素子からの検出光を照射したときに生ずる散乱光又は減衰光を受光素子で受光して煙濃度を観測するものであり、散乱式検煙部又は減光式検煙部を含む概念である。 The "observation unit 16" observes smoke density by receiving scattered or attenuated light generated by irradiating smoke that has flowed into the smoke detection space from a specified monitoring area with detection light. Here, the "smoke detection space" refers to a space for detecting smoke in which smoke from the outside flows in but the incidence of light is blocked, in which a light-emitting element and a light-receiving element are installed, and the smoke density is observed by receiving the scattered or attenuated light generated when the detection light from the light-emitting element is irradiated onto the flowing smoke, and is a concept that includes a scattering type smoke detection unit or a light-reducing type smoke detection unit.

また、「処理部18」とは、検出光を間欠発光することにより観測された煙濃度が所定の閾値条件を充足した場合、一例として、煙濃度が閾値以上又は閾値を超えた場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成するものである。ここで、「間欠発光」とは、発光素子を所定周期ごとに所定時間のあいだ発光駆動することで検出光を間欠的に発光することを意味する。また、「連続発光」とは、発光素子を駆動し続けることで検出光を連続的に発光することを意味する。また、「所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データ」とは、検出光を連続発光したときに、所定時間のあいだに連続して観測されるアナログ観測値(アナログ煙濃度)を所定周波数でサンプリングしてA/D変換した複数のデジタル観測値(デジタル煙濃度)を含む時系列データを含む概念である。また、処理部18は間欠発光から連続発光に切り替えを行わず、常に検出光を連続発光としても良い。 The "processing unit 18" is a unit that, when the smoke density observed by intermittently emitting the detection light satisfies a predetermined threshold condition, for example, when the smoke density is equal to or exceeds the threshold, continuously emits the detection light to observe the smoke density, and generates observation data including a plurality of observation values obtained continuously in a time series for each predetermined time. Here, "intermittent emission" means that the detection light is intermittently emitted by driving the light-emitting element to emit light for a predetermined time at a predetermined cycle. Furthermore, "continuous emission" means that the detection light is continuously emitted by continuing to drive the light-emitting element. Furthermore, "observation data including a plurality of observation values obtained continuously in a time series for each predetermined time" is a concept including time series data including a plurality of digital observation values (digital smoke density) obtained by sampling analog observation values (analog smoke density) continuously observed for a predetermined time at a predetermined frequency and A/D converting the analog observation values (analog smoke density) when the detection light is continuously emitted. Furthermore, the processing unit 18 may always emit the detection light continuously without switching from intermittent emission to continuous emission.

また、「検出部20」とは、処理部18で生成された観測データに基づいて火災を検出する処理を行うものであり、例えば、観測データに含まれる複数の観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出するものである。 The "detection unit 20" performs processing to detect fires based on the observation data generated by the processing unit 18, for example by detecting a predetermined feature value from multiple observation values included in the observation data, and detecting a fire when the feature value satisfies a predetermined fire judgment condition.

ここで「特徴量」とは、観測データに含まれる複数の観測値から算出される例えば積分値、平均値又はピーク値等を含む概念である。また「特徴量が所定の火災判断条件を充足する」とは、例えば、観測データに基づき所定時間ごとに検出される特徴量、現在の特徴量と前回の特徴量の比率、或いは、現在の特徴量と前回の特徴量の差分が、それぞれ、所定の閾値以上又は閾値を超えた場合、もしくは、所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断することを含む概念である。 Here, "feature amount" is a concept that includes, for example, an integral value, an average value, or a peak value calculated from multiple observation values included in the observation data. Also, "the feature amount satisfies a specified fire determination condition" is a concept that includes, for example, determining that a fire has occurred when a feature amount detected at a specified time interval based on the observation data, the ratio between the current feature amount and the previous feature amount, or the difference between the current feature amount and the previous feature amount, is equal to or exceeds a specified threshold value, or is equal to or exceeds a specified threshold value a specified number of times in succession.

以下の説明では、「監視領域」が「建物の部屋」であり、「観測部」が「散乱光式煙検出部を備えた観測部」であり、「煙の観測値」が「煙濃度」であり、「観測データの特徴量」が「複数の煙濃度の積分値」である場合について説明する。 In the following explanation, we will explain the case where the "monitoring area" is a "room in a building," the "observation unit" is an "observation unit equipped with a scattered light smoke detection unit," the "smoke observation value" is "smoke concentration," and the "feature value of the observation data" is the "integral value of multiple smoke concentrations."

[実施形態の具体的内容]
火災検出装置、防災設備及び火災検出方法の実施形態の具体的内容について、より詳細に説明する。その内容については以下のように分けて説明する。
a. P型の防災設備
b. 受信機
c. 感知器
c1. 観測部
c2. 処理部
c3. 検出部
c4. 感知器の制御動作
d. 他の実施形態の基本的な概念
e. R型の防災設備
e1. 感知器
e2. 受信機
e3. 伝送制御
e4. R型防災設備の制御動作
f. 本発明の変形例
[Specific Contents of the Embodiment]
The specific contents of the embodiments of the fire detection device, the disaster prevention equipment, and the fire detection method will be described in more detail below. The contents will be described separately as follows.
a. P-type disaster prevention equipment b. Receiver c. Sensor c1. Observation unit c2. Processing unit c3. Detection unit c4. Control operation of the sensor d. Basic concept of other embodiments e. R-type disaster prevention equipment e1. Sensor e2. Receiver e3. Transmission control e4. Control operation of the R-type disaster prevention equipment f. Modification of the present invention

[a.P型の防災設備]
図2は図1に対応するP型(Proprietary-type)の防災設備を対象とした本発明の具体的な実施形態を示した説明図である。ここで、「P型の防災設備」とは、受信機10が感知器12を接続した信号線ごと(信号線単位に)に火災を監視する設備である。
[a. P-type disaster prevention equipment]
Fig. 2 is an explanatory diagram showing a specific embodiment of the present invention targeted at a proprietary-type (P-type) disaster prevention facility corresponding to Fig. 1. Here, the "P-type disaster prevention facility" is a facility in which a receiver 10 monitors fires for each signal line (for each signal line) to which a detector 12 is connected.

図2に示すように、本実施形態のP型の防災設備は、受信機10と複数の感知器12を備える。なお、図2では1台の感知器12を代表して示している。受信機10は管理人室や防災センター等に設置され、受信機10から建物の部屋等の監視領域に引き出された信号線14に、複数の感知器12を接続している。受信機10から引き出された信号線14はプラス信号線14aとマイナス信号線(コモン信号線)14bを備え、受信機10から感知器12へ電源を供給すると共に感知器12から受信機10へ火災発報信号を送信する。 As shown in FIG. 2, the P-type disaster prevention equipment of this embodiment includes a receiver 10 and multiple sensors 12. Note that FIG. 2 shows one sensor 12 as a representative. The receiver 10 is installed in a manager's office, a disaster prevention center, etc., and multiple sensors 12 are connected to a signal line 14 that is drawn from the receiver 10 to a monitoring area such as a room in a building. The signal line 14 drawn from the receiver 10 includes a positive signal line 14a and a negative signal line (common signal line) 14b, and supplies power from the receiver 10 to the sensors 12 and transmits a fire alert signal from the sensor 12 to the receiver 10.

[b.受信機]
受信機10は、受信機制御部40、回線受信部42、表示部44、操作部46、警報部48及び移報部50を備える。回線受信部42は監視領域、例えば建物の階別に分けて引き出された信号線14毎に設けられ、感知器12からの火災発報信号を受信して受信機制御部40に出力する。
[b. Receiver]
The receiver 10 comprises a receiver control unit 40, a line receiving unit 42, a display unit 44, an operation unit 46, an alarm unit 48, and a report transmission unit 50. The line receiving units 42 are provided for each signal line 14 drawn out in a monitored area, for example, for each floor of a building, and receive fire alert signals from the detectors 12 and output them to the receiver control unit 40.

受信機制御部40は、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路で構成され、回線受信部42の何れかによる火災発報信号(火災信号)の受信を検出すると火災警報動作を行う。受信機制御部40の火災警報動作は、表示部44の火災代表灯を作動すると共に火災発生地区を示す地区表示灯を作動し、また、警報部48により警報音声メッセージを含む主音響警報を出力すると共に火災が発生した監視領域に設置している地区音響装置の作動による地区音響警報を行い、また、移報部50に指示して防排煙機器の連動制御等を行う。 The receiver control unit 40 is composed of a computer circuit equipped with a CPU, memory, and various input/output ports, and performs a fire alarm operation when it detects the reception of a fire alert signal (fire signal) by any of the line receiving units 42. The fire alarm operation of the receiver control unit 40 activates the fire representative light on the display unit 44 and the district indicator light indicating the district where the fire occurred, outputs a main sound alarm including an alarm voice message by the alarm unit 48, and performs a district sound alarm by activating a district sounding device installed in the monitoring area where the fire occurred, and also instructs the reporting unit 50 to perform interlocking control of smoke control equipment, etc.

[c.感知器]
火災検出装置として機能する感知器12の構成を、より詳細に説明する。感知器12は、火災検出装置の構成要素となる観測部16、感知器制御部24、発報回路部26、電源部28を備える。観測部16には、検煙部25、発光駆動部34、受光増幅部36が設けられる。また、感知器制御部24は、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路で構成され、プログラムの実行により実現される機能として、火災検出装置の構成要素となる処理部18と検出部20の機能が設けられる。
[c. Sensor]
The configuration of the sensor 12 that functions as a fire detection device will be described in more detail. The sensor 12 includes an observation section 16, a sensor control section 24, an alarm circuit section 26, and a power supply section 28, which are components of the fire detection device. The observation section 16 includes a smoke detection section 25, a light emission drive section 34, and a light receiving amplifier section 36. The sensor control section 24 is formed of a computer circuit including a CPU, memory, and various input/output ports, and is provided with the functions of a processing section 18 and a detection section 20, which are components of the fire detection device, as functions realized by executing a program.

(c1.観測部)
観測部16に設けられた検煙部25は散乱光式検煙部を構成するものであり、外部からの煙が流入する遮光された感知器内の検煙空間に、発光素子30と受光素子32がそれぞれの光軸が所定の鋭角となる散乱角で交差するように配置され、光軸の交点を含む領域を検煙領域とし、検煙領域に流入した煙に発光素子30から検出光を照射したときに散乱する光、所謂前方散乱光を受光素子32で受光するように構成している。なお、散乱角は任意であり、また、散乱角を、直角を超える所定の鈍角とすることで後方散乱光を受光することも可能である。
(c1. Observation section)
The smoke detection section 25 provided in the observation section 16 constitutes a scattered light type smoke detection section, in which a light emitting element 30 and a light receiving element 32 are arranged in a smoke detection space inside the light-shielded sensor into which smoke from the outside flows in, so that their optical axes intersect at a scattering angle that is a predetermined acute angle, the area including the intersection of the optical axes is the smoke detection area, and the light receiving element 32 receives so-called forward scattered light, which is scattered when detection light is irradiated from the light emitting element 30 to smoke that has flowed into the smoke detection area. The scattering angle is arbitrary, and it is also possible to receive backward scattered light by setting the scattering angle to a predetermined obtuse angle exceeding a right angle.

発光素子30は例えば発光ダイオードであるが任意の発光素子としても良く、また、受光素子32は例えばフォトダイオードであるが任意の受光素子としても良い。発光素子30は発光駆動部34により発光駆動され、検出光を検煙領域に照射する。受光素子32は検出光による煙の散乱光を受光し、散乱光の受光量に応じて例えば1~10μAの受光電流を出力する。受光増幅部36は受光素子32からの受光電流を入力して増幅し、例えば1~5mVの受光電圧を出力し、この受光電圧が煙濃度に対応している。 The light-emitting element 30 is, for example, a light-emitting diode, but may be any light-emitting element, and the light-receiving element 32 is, for example, a photodiode, but may be any light-receiving element. The light-emitting element 30 is driven to emit light by the light-emitting drive unit 34, and irradiates the smoke detection area with detection light. The light-receiving element 32 receives the scattered light of smoke caused by the detection light, and outputs a light-receiving current of, for example, 1 to 10 μA depending on the amount of scattered light received. The light-receiving amplifier unit 36 inputs and amplifies the light-receiving current from the light-receiving element 32, and outputs a light-receiving voltage of, for example, 1 to 5 mV, and this light-receiving voltage corresponds to the smoke concentration.

(c2.処理部)
処理部18は、観測部16の検出光を所定周期で間欠発光して観測された所定の閾値条件を充足した場合、例えば煙濃度が所定の閾値以上又は閾値を超えた場合に、検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成するものであり、具体的には、次の手順となる。
(c2. Processing section)
The processing unit 18 emits the detection light of the observation unit 16 intermittently at a predetermined cycle, and when a predetermined threshold condition observed is satisfied, for example when the smoke density is equal to or exceeds a predetermined threshold, the processing unit 18 continuously emits the detection light to observe the smoke density, and generates observation data including a plurality of observation values obtained continuously in a time series at predetermined time intervals, specifically, in the following procedure.

第1に、処理部18は、煙濃度が所定の閾値となる火災予兆レベル(予備的な火災の判断レベル)、例えば3(%/m)未満の場合、検出光を間欠発光して煙濃度を観測している。この場合の間欠発光の周期は、感知器12の消費電流を低減するために例えば1分周期とする。即ち、処理部18は、1分周期ごとに、発光駆動部34からマイクロ秒オーダーの周期となる数パルス程度のパルス駆動信号を発光素子30へ出力してパルス的に発光駆動する検出光の間欠発光を行い、この間欠発光に伴い受光増幅部36から出力された煙濃度検出信号(アナログ信号)をパルス発光に同期したA/D変換により読み込み、平均した煙濃度を観測値として取得する。 First, when the smoke density is less than a predetermined threshold fire warning level (preliminary fire judgment level), for example 3 (%/m), the processing unit 18 emits detection light intermittently to observe the smoke density. In this case, the period of the intermittent emission is set to, for example, a one-minute period in order to reduce the current consumption of the detector 12. That is, the processing unit 18 outputs a pulse drive signal of about several pulses with a period on the order of microseconds from the light emission drive unit 34 to the light emitting element 30 every one minute period to perform intermittent emission of detection light that drives the light emission in a pulsed manner, and reads the smoke density detection signal (analog signal) output from the light receiving amplifier unit 36 in association with this intermittent emission by A/D conversion synchronized with the pulse emission, and obtains the average smoke density as the observed value.

第2に、処理部18は、検出光の間欠発光で観測された煙濃度が所定の閾値となる火災予兆レベル、例えば3(%/m)以上となった場合、発光駆動部34に一定レベルの駆動信号を連続して入力し、発光素子30を常時オン状態に駆動して検出光を連続的に出力し、受光増幅部36から出力されている煙濃度検出信号(アナログ信号)を、所定のサンプリング周波数でサンプリングしてA/D変換し、所定時間のあいだごとに、例えば2秒間のあいだごとに、時系列に連続する複数の観測値、即ち複数の煙濃度を含む観測データを生成し、メモリに記憶保持する。 Secondly, when the smoke density observed by the intermittent emission of the detection light reaches a fire warning level that is a predetermined threshold, for example, 3 (%/m) or more, the processing unit 18 continuously inputs a drive signal of a constant level to the light emission driving unit 34, drives the light emitting element 30 to a constantly on state to continuously output the detection light, samples the smoke density detection signal (analog signal) output from the light receiving amplifier unit 36 at a predetermined sampling frequency and performs A/D conversion, and generates multiple observation values that are consecutive in time series, i.e., observation data including multiple smoke densities, every predetermined time, for example every 2 seconds, and stores and holds them in memory.

A/D変換のサンプリング周波数を例えば16Hzとすると、2秒間では32点の煙濃度を含む観測データが生成される。ここで、観測データを生成する所定時間およびサンプリング周波数は任意であり、観測データを生成する所定時間は、火災に固有な煙の時間的変化を捉えるに十分な時間とし、また、サンプリング周波数は、火災による煙濃度の時間変化が失われることのない時間間隔(サンプリング周期)となるようにする。 If the sampling frequency of the A/D conversion is, for example, 16 Hz, observation data containing 32 points of smoke concentration are generated in 2 seconds. Here, the predetermined time for generating the observation data and the sampling frequency are arbitrary, and the predetermined time for generating the observation data is a time sufficient to capture the temporal changes in smoke specific to a fire, and the sampling frequency is set to a time interval (sampling period) that does not lose any changes in smoke concentration due to a fire.

なお、検出光の連続発光は、観測データのA/D変換に用いられるサンプリング周波数の連続パルス信号を発光駆動部34に入力して発光素子30を連続的にパルス駆動してもよい。 The continuous emission of detection light may be achieved by inputting a continuous pulse signal at the sampling frequency used for A/D conversion of the observation data to the light emission driver 34 to continuously pulse drive the light emitting element 30.

(c3.検出部)
感知器制御部24に設けられた検出部20は、処理部18で生成された観測データに基づいて火災を検出するものであり、その機能や構成は任意であるが、例えば、観測データに含まれる時系列に連続する複数の煙濃度を対象に、所定の特徴量、例えば複数の煙濃度の積分値を検出し、この積分値が所定の火災判断条件を充足したときに火災と検出するものである。ここで、複数の煙濃度の積分値とは、複数の煙濃度を積算した値を意味する。検出部20により火災と検出するための火災判断条件は任意であるが、その例を次に列挙する。
(c3. Detection unit)
The detection unit 20 provided in the sensor control unit 24 detects a fire based on the observation data generated by the processing unit 18, and may have any function or configuration, but may, for example, detect a predetermined feature, such as an integral value of multiple smoke densities that are consecutive in time series contained in the observation data, and detect a fire when this integral value satisfies a predetermined fire judgment condition. Here, the integral value of multiple smoke densities means a value obtained by accumulating multiple smoke densities. The fire judgment conditions for detecting a fire by the detection unit 20 are arbitrary, and examples are listed below.

(第1火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(First fire judgment condition)
The detection unit 20 determines that a fire has occurred when an integrated value of the smoke density detected at each predetermined time interval is equal to or exceeds a predetermined threshold value.

(第2火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。これは第1火災判断条件に蓄積条件を加えたものである。
(Second fire judgment condition)
The detection unit 20 judges that a fire has occurred when the integrated value of the smoke density detected at each predetermined time interval is equal to or exceeds a predetermined threshold value a predetermined number of times in succession. It is an addition.

(第3火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の比率が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Third fire judgment condition)
The detection unit 20 determines that a fire has occurred when the ratio of the current integrated value of the smoke density to the previous integrated value of the smoke density detected at each predetermined time is equal to or exceeds a predetermined threshold value. Judge.

(第4火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の比率が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。これは第3火災判断条件に蓄積条件を加えたものである。
(Fourth fire judgment condition)
The detection unit 20 detects whether a ratio of an integrated value of a current smoke density to an integrated value of a previous smoke density is equal to or greater than a predetermined threshold value a predetermined number of times in succession, for an integrated value of a smoke density detected at a predetermined time interval. This is the third fire detection condition plus an accumulation condition.

(第5火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の差分が所定の閾値以上又は閾値を超えた場合に火災と判断する。
(Fifth fire judgment condition)
The detection unit 20 determines that a fire has occurred when the difference between the current integrated value of the smoke density and the previous integrated value of the smoke density detected at each predetermined time is equal to or exceeds a predetermined threshold value. Judge.

(第6火災判断条件)
検出部20は、所定時間ごとに検出される煙濃度の積分値について、現在の煙濃度の積分値と前回の煙濃度の積分値の差分が所定回数連続して所定の閾値以上又は閾値を超えた場合に火災と判断する。これは第5火災判断条件に蓄積条件を加えたものである。
(6th fire judgment condition)
The detection unit 20 detects whether a difference between a current integrated value of the smoke density and a previous integrated value of the smoke density detected at every predetermined time is equal to or greater than a predetermined threshold value a predetermined number of times in succession. This is the fifth fire detection criterion plus an accumulation condition.

このような第1乃至第6火災判断条件について、検出部20は、観測データの特徴量として検出した煙濃度の積分値が、いずれかの火災判断条件又は複数の火災判条件の組み合わせを充足したときに火災と判断する。 For these first to sixth fire judgment conditions, the detection unit 20 judges that a fire has occurred when the integrated value of the smoke concentration detected as a feature of the observation data satisfies any one of the fire judgment conditions or a combination of multiple fire judgment conditions.

また、検出部20は、観測データの特徴量として、煙濃度の積分値以外に、例えば、煙濃度の平均値やピーク値を特徴量として検出し、前述した第1乃至第6火災判断条件と同様にして火災と判断しても良い。 In addition, the detection unit 20 may detect, as a feature of the observation data, for example, the average value or peak value of the smoke density in addition to the integrated value of the smoke density, and may determine that a fire has occurred in the same manner as the first to sixth fire determination conditions described above.

ここで、第1乃至第6火災判断条件における特徴量の閾値は、感知器12として1種感度、2種感度、又は3種感度が法的に定められていることから、各感度における作動試験及び不作動試験を充足するように、所定の閾値を決めればよい。 Here, since the detector 12 is legally required to have a class 1, class 2, or class 3 sensitivity, the thresholds of the features in the first to sixth fire judgment conditions can be determined to satisfy the operation test and the deactivation test at each sensitivity.

例えば、「2種感度の感知器」とは、法令で定められた公称作動濃度Kを10(%/m)の感知器のことであり、作動試験として、(公称作動濃度K)×1.5=10(%/m)×1.5=15(%/m)の濃度の煙を含む風速20cm~40cm/secの気流に投入したとき、30秒以内に作動し、且つ、不作動試験として、(公称作動濃度)×0.5=10(%/m)×0.5=5(%/m)の濃度の煙を含む風速20cm~40cm/secの気流に投入したとき、例えば非蓄積型の場合、5分以内に作動しない感知器を意味する。従って、作動試験及び不作動試験を満足するように、第1乃至第6火災判断条件における特徴量の閾値を設定することで、本実施形態の火災検出装置を備えた感知器12を、2種感度の検定品として実現することができる。 For example, a "class 2 sensitivity detector" refers to a detector with a legally stipulated nominal activation concentration K of 10 (%/m), which activates within 30 seconds when placed in an airflow with a wind speed of 20 cm to 40 cm/sec containing smoke with a concentration of (nominal activation concentration K) x 1.5 = 10 (%/m) x 1.5 = 15 (%/m) as an activation test, and does not activate within 5 minutes, for example in the case of a non-accumulation type, when placed in an airflow with a wind speed of 20 cm to 40 cm/sec containing smoke with a concentration of (nominal activation concentration) x 0.5 = 10 (%/m) x 0.5 = 5 (%/m) as a non-activation test. Therefore, by setting the thresholds of the feature quantities in the first to sixth fire judgment conditions so as to satisfy the activation test and the non-activation test, the detector 12 equipped with the fire detection device of this embodiment can be realized as a certified product with class 2 sensitivity.

このような公称作動濃度K=10(%/m)とする2種感度の感知器以外に、公称作動濃度K=5(%/m)の「1種感度の感知器」、或いは、公称作動感度K=15(%/m)の「3種感度の感知器」の場合も同様となる。 In addition to these second-sensitivity detectors with a nominal operating concentration K = 10 (%/m), the same applies to "first-sensitivity detectors" with a nominal operating concentration K = 5 (%/m) and "third-sensitivity detectors" with a nominal operating sensitivity K = 15 (%/m).

(c4.感知器の制御動作)
図3は図2の感知器の実施形態による制御動作を示したフローチャートであり、感知器制御部24に設けた処理部18と検出部20による制御動作となる。
(c4. Sensor control operation)
FIG. 3 is a flow chart showing the control operation according to the embodiment of the sensor of FIG. 2, which is controlled by the processing unit 18 and the detection unit 20 provided in the sensor control unit 24.

図3に示すように、処理部18は、ステップS1で所定周期、例えば1分周期ごとに検出光を間欠発光し、ステップS2で散乱光の受光に基づき煙濃度を観測している。即ち、発光駆動部34で発光素子30を間欠的に発光駆動した検出光による煙等による散乱光を受光素子32で受光し、受光増幅部36で増幅された煙濃度検出信号を間欠発光に同期したA/D変換により読み込んで煙濃度を観測している。 As shown in FIG. 3, the processing unit 18 emits detection light intermittently at a predetermined cycle, for example, every minute, in step S1, and observes the smoke concentration based on the reception of scattered light in step S2. That is, the light-emitting element 30 is driven to emit detection light intermittently by the light-emitting drive unit 34, and scattered light caused by smoke or the like is received by the light-receiving element 32. The smoke concentration detection signal amplified by the light-receiving amplifier unit 36 is read in by A/D conversion synchronized with the intermittent emission to observe the smoke concentration.

続いて、処理部18は、ステップS3で観測した間欠発光による煙濃度を所定の閾値となる火災予兆レベルと比較しており、火災予兆レベルを超えるとステップS4に進み、検出光の連続発光に切り替え、ステップS5で所定時間ごとの観測データを生成する。即ち、発光駆動部34で発光素子30を連続的に発光駆動した検出光による煙等による散乱光を受光素子32で受光し、受光増幅部36で増幅された煙濃度検出信号を、所定のサンプリング周波数、例えば16Hzのサンプリング周波数でサンプリングしてA/D変換し、所定時間のあいだごと、例えば2秒間のあいだごとに時系列に連続するに例えば32点の煙濃度を読み込んで観測データを生成し、メモリに記憶保持する。 Then, the processing unit 18 compares the smoke density due to the intermittent light emission observed in step S3 with a fire warning level, which is a predetermined threshold. If the fire warning level is exceeded, the processing proceeds to step S4, switches to continuous emission of detection light, and generates observation data for each predetermined time in step S5. That is, the light-emitting element 30 is continuously driven to emit detection light by the light-emitting element driving unit 34, and scattered light due to smoke or the like is received by the light-receiving element 32. The smoke density detection signal amplified by the light-receiving amplifier unit 36 is sampled at a predetermined sampling frequency, for example, a sampling frequency of 16 Hz, and A/D converted. Smoke density at successive points in time series, for example, 32 points, is read every predetermined time, for example, every 2 seconds, to generate observation data, which is then stored and held in memory.

続いて、検出部20はステップS6に進み、ステップS5で生成された観測データに含まれる32点の煙濃度を対象に所定の特徴量、例えば32点の煙濃度の積分値(積算値)を検出する。続いて、検出部20はステップS7に進み、ステップS6で検出した特徴量、例えば32点の煙濃度の積分値が所定の火災判断条件を充足するか否か判別し、火災条件の充足を判別するとステップS8に進み、発報回路部26を作動して受信機10に火災発報信号を送信する。 Then, the detection unit 20 proceeds to step S6, where it detects a predetermined feature, for example, an integrated value (cumulative value) of the 32 smoke densities included in the observation data generated in step S5. The detection unit 20 then proceeds to step S7, where it determines whether the feature detected in step S6, for example, the integrated value of the 32 smoke densities, satisfies a predetermined fire judgment condition, and if it determines that the fire condition is satisfied, it proceeds to step S8, where it activates the alarm circuit unit 26 to transmit a fire alarm signal to the receiver 10.

続いて、感知器制御部24はステップS9で受信機10での復旧操作に伴う信号線14に対する電源供給の遮断等から復旧を判別し、ステップS1の最初の感知器制御に戻る。 Next, in step S9, the sensor control unit 24 determines whether recovery has occurred based on the interruption of the power supply to the signal line 14 associated with the recovery operation on the receiver 10, and returns to the initial sensor control in step S1.

一方、検出部20は、ステップS7で特徴量が火災判断条件を充足しない場合はステップS10に進み、例えば、そのときの観測データ中の煙濃度のピーク値を抽出し、ピーク値が火災予兆レベルを超えていればステップS4からの処理を繰り返すが、火災予兆レベル以下の場合は、火災の可能性がなくなったことからステップS1に戻り、検出光の間欠発光により煙濃度を観測する通常監視状態に戻る。なお、ステップS10では、観測データの平均値を求めて火災予兆レベルと比較しても良い。 On the other hand, if the feature does not satisfy the fire judgment condition in step S7, the detection unit 20 proceeds to step S10, for example, extracts the peak value of the smoke density in the observation data at that time, and if the peak value exceeds the fire warning level, repeats the processing from step S4, but if it is below the fire warning level, the possibility of a fire has disappeared, so the process returns to step S1 and returns to the normal monitoring state in which the smoke density is observed by the intermittent emission of the detection light. Note that in step S10, the average value of the observation data may be calculated and compared with the fire warning level.

[d.他の実施形態の基本的な概念]
図4は防災設備2に対応した火災検出装置、防災設備及び火災検出方法の実施形態の他の基本的な概念を示した説明図であり、受信機10と感知器12を備えた防災設備の一例としての火災報知設備において、感知器12に火災検出装置の構成要素となる観測部16と処理部18を設け、受信機10に火災検出装置の構成要素となる検出部20を設けたことを特徴とする。
[d. Basic Concept of Other Embodiments]
Figure 4 is an explanatory diagram showing another basic concept of an embodiment of a fire detection device, disaster prevention equipment, and fire detection method corresponding to the disaster prevention equipment 2, and is a fire alarm system as an example of disaster prevention equipment equipped with a receiver 10 and a sensor 12, characterized in that the sensor 12 is provided with an observation unit 16 and a processing unit 18 which are components of the fire detection device, and the receiver 10 is provided with a detection unit 20 which is a component of the fire detection device.

感知器12に設けた観測部16と処理部18、及び、受信機10に設けた検出部20は、図1の感知器12に設けた観測部16、処理部18及び検出部20と基本的に同じであるが、感知器12の処理部18で生成した観測部16の連続発光で観測した所定時間のあいだごとの複数の観測値を含む観測データを信号線14により受信機10に送信し、受信機10の検出部20で、観測データに含まれる複数の煙濃度の特徴量を検出し、検出した特徴量が所定の火災判断条件を充足したときに火災と検出して火災警報を出力する点で相違する。 The observation unit 16 and processing unit 18 provided in the detector 12, and the detection unit 20 provided in the receiver 10 are basically the same as the observation unit 16, processing unit 18, and detection unit 20 provided in the detector 12 in FIG. 1, but differ in that observation data including multiple observation values for a predetermined time period observed by the continuous light emission of the observation unit 16 generated by the processing unit 18 of the detector 12 is transmitted to the receiver 10 via the signal line 14, the detection unit 20 of the receiver 10 detects multiple smoke concentration features included in the observation data, and when the detected features satisfy predetermined fire judgment conditions, a fire is detected and a fire alarm is output.

次に図4に対応する実施形態の具体的内容について、より詳細に説明する。 Next, we will explain in more detail the specific content of the embodiment corresponding to Figure 4.

[e.R型の防災設備]
図5は図4に対応する実施形態の具体的内容を示したR型(Record-type)の防災設備の説明図である。ここで、「R型の防災設備」とは、受信機10と感知器12の間で伝送を行うことにより、感知器12毎に(感知器単位に)火災を監視する設備である。
[e. R-type disaster prevention equipment]
Fig. 5 is an explanatory diagram of an R-type (Record-type) disaster prevention system showing specific details of an embodiment corresponding to Fig. 4. Here, the "R-type disaster prevention system" is a system that monitors fires for each sensor 12 (sensor unit) by transmitting between a receiver 10 and a sensor 12.

図5に示すように、本実施形態のR型の防災設備は、受信機10と感知器12を備え、受信機10から建物の部屋等の監視領域に引き出された伝送線114に、複数の感知器12を接続している。受信機10から引き出された伝送線114はプラス伝送線114aとマイナス伝送線(コモン伝送線)114bを備え、受信機10から感知器12へ電源を供給すると共に受信機10と感知器12の間で所定の伝送方式により信号を送受信する。なお、専用の電源供給線を設けても良い。 As shown in FIG. 5, the R-type disaster prevention equipment of this embodiment includes a receiver 10 and sensors 12, with multiple sensors 12 connected to a transmission line 114 drawn from the receiver 10 to a monitoring area such as a room in a building. The transmission line 114 drawn from the receiver 10 includes a positive transmission line 114a and a negative transmission line (common transmission line) 114b, and supplies power from the receiver 10 to the sensors 12, as well as transmitting and receiving signals between the receiver 10 and the sensors 12 using a specified transmission method. A dedicated power supply line may also be provided.

(e1.感知器)
感知器12は、図2の実施形態と同様に、火災検出装置の構成要素となる観測部16、感知器制御部24、電源部28を備えるが、受信機10との間で所定の伝送方式により信号を送受信することから伝送部60を設けた点で相違する。また、感知器12の感知器制御部24には、本発明の火災検出装置の構成要素となる処理部18の機能が設けられるが、検出部20の機能は設けられておらず、これは受信機10側に設けられている。
(e1. Sensor)
2, the sensor 12 includes an observation unit 16, a sensor control unit 24, and a power supply unit 28, which are components of a fire detection device, but differs in that a transmission unit 60 is provided to transmit and receive signals to and from the receiver 10 using a predetermined transmission method. Also, the sensor control unit 24 of the sensor 12 is provided with the functions of the processing unit 18, which are components of the fire detection device of the present invention, but is not provided with the functions of the detection unit 20, which are provided on the receiver 10 side.

(e2.受信機)
受信機10は、図2の実施形態と同様に、受信機制御部40、表示部44、操作部46、警報部48及び移報部50を備えるが、感知器12との間で所定の伝送方式により信号を送受信することから伝送部62が設けられた点で相違し、また、受信機制御部40に、プログラムの実行により実現される機能として、本発明の火災検出装置の構成要素となる検出部20の機能を設けた点で相違する。受信機10に設けた検出部20は、図2の実施形態で感知器12に設けた場合と基本的に同様となる。
(e2. Receiver)
2, the receiver 10 includes a receiver control unit 40, a display unit 44, an operation unit 46, an alarm unit 48, and a reporting unit 50, but differs in that a transmission unit 62 is provided to transmit and receive signals to and from the detector 12 using a predetermined transmission method, and in that the receiver control unit 40 is provided with the function of a detection unit 20, which is a component of the fire detection device of the present invention, as a function realized by executing a program. The detection unit 20 provided in the receiver 10 is basically the same as that provided in the detector 12 in the embodiment of FIG. 2.

(e3.伝送制御)
R型の防災設備では、感知器12に固有のアドレスが設定され、受信機10は所定周期、例えば1分周期で一括A/D変換コマンド信号を送信する。全ての感知器12は、受信機12からの一括A/D変換コマンド信号を受信すると、処理部18が観測部16での間欠発光により煙濃度を観測する処理を行い、間欠発光により観測した煙濃度をA/D変換して記憶保持する。受信機10は、一括A/Dコマンド信号に続いて感知器アドレスを順次指定した呼出信号を送信し、各感知器12で観測した煙濃度を含む応答信号を返送させるポーリングを行う。
(e3. Transmission Control)
In the R-type disaster prevention equipment, a unique address is set for each detector 12, and the receiver 10 transmits a batch A/D conversion command signal at a predetermined cycle, for example, at one-minute cycles. When all detectors 12 receive the batch A/D conversion command signal from the receiver 12, the processing unit 18 performs processing to observe the smoke density by intermittent light emission in the observation unit 16, A/D converts the smoke density observed by the intermittent light emission, and stores it. Following the batch A/D command signal, the receiver 10 transmits a call signal that sequentially specifies the detector addresses, and performs polling to have each detector 12 return a response signal including the smoke density observed.

感知器12の処理部18は間欠発光により観測している煙濃度が、所定の閾値となる火災予兆レベル、例えば3(%/m)に達したときに火災予兆と判断し、火災割込信号を受信機10に送信する。また、感知器12は、火災予兆と判断すると、観測部16を連続発光による煙濃度の観測に切替え、これに伴い処理部18は、所定時間のあいだごと、例えば2秒間のあいだごとに、所定のサンプリング周波数によるA/D変換で、時系列に連続する複数の観測値を含む観測データを生成して記憶保持する処理を行う。 When the smoke density observed by the intermittent light emission reaches a predetermined threshold fire warning level, for example 3 (%/m), the processing unit 18 of the detector 12 determines that there is a fire warning and transmits a fire interrupt signal to the receiver 10. Also, when the detector 12 determines that there is a fire warning, it switches the observation unit 16 to observing the smoke density by continuous light emission, and accordingly the processing unit 18 performs A/D conversion at a predetermined sampling frequency every predetermined time, for example every 2 seconds, to generate and store observation data including multiple observation values that are consecutive in time series.

感知器12からの火災割込信号を受信した受信機10は、グループアドレスを指定したグループ検索コマンド信号を送信し、これに対し火災割込信号を応答した感知器12の属するグループアドレスを特定するグループ検索を行い、続いて、検索したグループアドレス内の感知器アドレスを順次指定したグループ内検索コマンド信号を送信し、これに対し火災割込信号を応答した感知器12、即ち火災予兆と判断した感知器12のアドレスを特定する。 When the receiver 10 receives a fire interrupt signal from a detector 12, it transmits a group search command signal specifying a group address, performs a group search to identify the group address to which the detector 12 that responded with the fire interrupt signal belongs, and then transmits an intra-group search command signal sequentially specifying the detector addresses within the searched group address, to identify the address of the detector 12 that responded with the fire interrupt signal, i.e., the detector 12 that has been determined to be a fire precursor.

続いて、受信機10は、1分周期のA/D変換コマンド信号の送信を基準に、例えば2秒周期で、火災予兆と判断した感知器12のアドレスを指定した呼出信号を送信し、火災予兆と判断した感知器12から観測データを取得し、受信機制御部40に設けた検出部20により観測データから特徴量を検出し、検出した特徴量が所定の火災判断条件を充足したときに火災と検出し、火災警報を出力する処理を行う。 Then, the receiver 10 transmits a call signal specifying the address of the detector 12 that has been determined to be a fire warning signal, for example at a 2-second interval based on the transmission of the A/D conversion command signal at a 1-minute interval, acquires observation data from the detector 12 that has been determined to be a fire warning signal, detects features from the observation data using the detection unit 20 provided in the receiver control unit 40, and detects a fire if the detected features satisfy a predetermined fire judgment condition, and outputs a fire alarm.

(e4.R型の防災設備の制御動作)
図6は図5のR型の防災設備の実施形態による制御動作をタイムチャート形式で示したフローチャートである。
(e4. Control operation of R-type disaster prevention equipment)
FIG. 6 is a flow chart showing, in the form of a time chart, the control operation of the embodiment of the R-type disaster prevention equipment of FIG.

図6に示すように、受信機10は、ステップS11で火災監視伝送処理として、所定周期例えば1分周期で一括A/D変換コマンド信号を送信し、続いて感知器アドレスを指定した呼出信号を送信し、感知器12から観測された煙濃度を含む応答信号を受信している。一方、感知器12はステップS12で火災監視応答処理として、受信機10からの一括A/D変換コマンド信号を受信すると、処理部18が観測部16の間欠発光によりそのときの煙濃度を観測して記憶保持し、続いて受信する自己アドレスを指定した呼出信号を受信し、煙濃度を含む応答信号を送信している。 As shown in FIG. 6, in step S11, the receiver 10 transmits a batch A/D conversion command signal at a predetermined cycle, for example, one minute, as a fire monitoring transmission process, then transmits a call signal specifying the detector address, and receives a response signal including the smoke density observed from the detector 12. Meanwhile, when the detector 12 receives the batch A/D conversion command signal from the receiver 10 as a fire monitoring response process in step S12, the processing unit 18 observes and stores the smoke density at that time by the intermittent light emission of the observation unit 16, then receives a call signal specifying its own address to be received, and transmits a response signal including the smoke density.

続いて、ステップ13で感知器12は間欠発光により観測している煙濃度が所定の閾値となる火災予兆レベル、例えば3(%/m)以上となったことを判別するとステップS14に進み、火災予兆送信処理として火災割込信号を受信機10に送信する。受信機10はステップS15で火災予兆受信処理として、感知器12からの火災割込信号の受信に基づき、火災割込信号を送信した感知器アドレスを検索して特定する。 Next, in step S13, if the detector 12 determines that the smoke concentration observed by the intermittent emission has reached a predetermined threshold fire warning level, for example 3 (%/m), the process proceeds to step S14, where the detector 12 transmits a fire interrupt signal to the receiver 10 as a fire warning transmission process. In step S15, the receiver 10 searches for and identifies the address of the detector that transmitted the fire interrupt signal based on the reception of the fire interrupt signal from the detector 12 as a fire warning reception process.

続いて、感知器12は、ステップS16で処理部18により観測部16を連続発光に切替えで煙濃度を観測し、ステップS17で所定時間のあいだごと、例えば2秒間のあいだごとに、所定のサンプリング周波数によるA/D変換で、時系列に連続する複数の煙濃度を含む観測データを生成して記憶保持する。 Then, in step S16, the processing unit 18 of the detector 12 switches the observation unit 16 to continuous light emission to observe the smoke concentration, and in step S17, every predetermined time period, for example every 2 seconds, the detector 12 generates and stores observation data containing multiple consecutive smoke concentrations in a time series by A/D conversion at a predetermined sampling frequency.

続いて、受信機10は、ステップS19で観測データ受信処理として、火災割込信号を送信した感知器12のアドレスを指定した呼出信号を、一括A/Dコマンド信号の送信周期より短い例えば2秒周期で繰り返し送信し、感知器12にステップS18で記憶保持している観測データを送信する観測データ送信処理を行わせ、火災予兆と判断した感知器12から集中的に観測データを受信する。 Then, in step S19, the receiver 10 performs an observation data reception process in which it repeatedly transmits a call signal specifying the address of the detector 12 that transmitted the fire interrupt signal, at a cycle of, for example, 2 seconds, which is shorter than the transmission cycle of the batch A/D command signal, and causes the detector 12 to perform an observation data transmission process in which it transmits the observation data stored in memory in step S18, thereby intensively receiving observation data from the detectors 12 that it has determined to be a sign of a fire.

続いて、受信機10はステップS20に進んで観測データの受信を判別するとステップS21に進み、観測データに含まれる複数の煙濃度から特徴量を検出し、ステップS22で特徴量が所定の火災判断条件を充足した場合に火災と検出し、ステップS23で主音響警報および地区音響警報の鳴動、火災と判断した感知器アドレスに基づく火災発生場所の表示、防排煙機器の連動制御等を含む火災警報処理を行う。 Then, the receiver 10 proceeds to step S20, and if it determines that observation data has been received, it proceeds to step S21, where it detects features from the multiple smoke densities contained in the observation data, and in step S22 detects a fire if the features satisfy a predetermined fire judgment condition, and in step S23 performs fire alarm processing including sounding a main acoustic alarm and a district acoustic alarm, displaying the location of the fire based on the address of the detector that has judged it to be a fire, and controlling the linkage of smoke control and exhaust equipment.

続いて、受信機10はステップS24で火災の鎮火に伴う復旧操作による復旧を判別するとステップS25で感知器12に復旧信号を送信し、ステップS11の火災監視伝送処理に戻る。また、感知器12はステップS27で復旧信号の受信を判別するとステップS12の火災監視応答処理に戻る。 Next, if the receiver 10 determines in step S24 that recovery has been performed as a result of a recovery operation following the extinguishing of the fire, it transmits a recovery signal to the detector 12 in step S25 and returns to the fire monitoring transmission process in step S11. Also, if the detector 12 determines in step S27 that it has received a recovery signal, it returns to the fire monitoring response process in step S12.

一方、感知器12は、ステップS18で観測データ送信処理を行った後にステップS26に進み、観測部16の連続発光により観測している煙濃度が所定の閾値となる火災予兆レベル以上であれば、ステップS27を経由したステップS17からの処理を繰りし返しているが、煙濃度が火災予兆レベル未満となった場合には、ステップS12に戻り、受信機10からの一括A/D変換コマンド信号の受信により間欠発光して煙濃度を観測する通常監視状態の動作に戻る。なお、ステップS26にあっては、例えば、ステップS17で生成された観測データに含まれる複数の煙濃度の中からピーク値を抽出するか、又は、平均値を求めて、火災予兆レベル未満か否か判別する。 Meanwhile, the detector 12 proceeds to step S26 after performing the observation data transmission process in step S18, and if the smoke density observed by the continuous light emission of the observation unit 16 is equal to or higher than the fire warning level, which is a predetermined threshold, the process repeats from step S17 via step S27. However, if the smoke density falls below the fire warning level, the process returns to step S12, and returns to the normal monitoring state in which the smoke density is observed by intermittently emitting light upon receiving a batch A/D conversion command signal from the receiver 10. In step S26, for example, a peak value is extracted from the multiple smoke densities included in the observation data generated in step S17, or an average value is calculated, and it is determined whether or not the smoke density is below the fire warning level.

なお、上述したR型の防災設備では、受信機10に検出部20を設け、感知器12から受信した観測データに含まれる複数の煙濃度から特徴量を検出し、特徴量が所定の火災判断条件を充足したときに火災と検出しているが、検出部20における観測データから特徴量を検出する機能を感知器12側に設け、感知器12側で観測データから特徴量を検出して受信機10へ送信し、受信機10側で受信した特徴量が火災判断条件を充足したときに火災と検出しても良い。これにより感知器12から受信器10へ送信するデータ量を低減できる。 In the R-type disaster prevention equipment described above, a detection unit 20 is provided in the receiver 10, which detects features from multiple smoke densities contained in the observation data received from the detector 12, and detects a fire when the features satisfy a specified fire judgment condition; however, a function for detecting features from the observation data in the detection unit 20 may be provided on the detector 12 side, and the detector 12 may detect features from the observation data and transmit them to the receiver 10, and a fire may be detected when the features received on the receiver 10 satisfy the fire judgment condition. This can reduce the amount of data transmitted from the detector 12 to the receiver 10.

[f.本発明の変形例]
本発明の変形例となる実施形態について、より詳細に説明する。
[f. Modifications of the present invention]
An alternative embodiment of the invention will now be described in more detail.

(間欠発光と連続発光の切替え)
上記の実施形態は、煙濃度が所定の閾値となる火災予兆レベル以上又は超えたときに、間欠発光から連続発光に切り替えているが、間欠発光と連続発光の間の切替条件や切替タイミングは任意であり、例えば、受信機からの切替コマンド信号により、必要に応じて間欠発光から連続発光に切替え、また、連続発光から間欠発光に切替えるようにしても良い。
(Switching between intermittent and continuous lighting)
In the above embodiment, intermittent emission is switched to continuous emission when the smoke density reaches or exceeds a predetermined threshold fire warning level; however, the conditions and timing for switching between intermittent emission and continuous emission are arbitrary, and for example, a switching command signal from the receiver may be used to switch from intermittent emission to continuous emission as necessary, or from continuous emission to intermittent emission.

(常に連続発光とする火災検出装置)
上記の実施形態は、煙濃度が所定の閾値となる火災予兆レベル以上又は超えたときに、間欠発光から連続発光に切り替えているが、間欠発光と連続発光の間での切替えを行わず、常に検出光を連続発光して煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、当該観測データに基づいて火災を検出する火災検出装置としても良い。
(Fire detection device that emits continuous light at all times)
In the above embodiment, when the smoke density reaches or exceeds a predetermined threshold fire warning level, intermittent emission is switched to continuous emission, but the fire detection device may also be configured not to switch between intermittent and continuous emission, but to always emit detection light continuously to observe the smoke density, generate observation data including multiple observation values obtained continuously in a time series at predetermined time intervals, and detect fires based on the observation data.

(減光式の煙感知器)
上記の実施形態は、散乱光式の煙感知器を例にとっているが、これに限定されない。例えば、減光式の煙感知器としてもよい。減光式の煙感知器は、発光部からの光を検煙空間に円環状に配置した複数のミラーで反射して受光部までの光路長を煙による減光が十分に得られる程度に長くした公知の減光式検煙構造を備える。また、散乱光式の検煙構造と減光式の検煙構造を一体に備える公知の複合検煙構造とした煙感知器としてもよい。
(Dimmable smoke detector)
The above embodiment is an example of a light scattering type smoke detector, but is not limited thereto. For example, a light-dimming type smoke detector may be used. The light-dimming type smoke detector is provided with a known light-dimming type smoke detector structure in which light from a light-emitting unit is reflected by a plurality of mirrors arranged in a circular ring shape in a smoke detection space, and the optical path length to the light-receiving unit is made long enough to obtain sufficient light dimming due to smoke. In addition, the smoke detector may be provided with a known composite smoke detector structure that is provided with a light-scattering type smoke detector structure and a light-dimming type smoke detector structure in one body.

(2波長式の煙感知器)
また、上記の実施形態の散乱光式煙感知器としては、異なる波長の光の散乱特性の相違による散乱光を受光して煙の種類を識別する2波長式の煙感知器としてもよい。2波長式の煙感知器は、例えば、白色発光ダイオードを用いた発光素子又は発光波長の異なる第1及び第2発光素子から、検煙空間に向けて、第1波長と第2波長の光を発し、発光素子から発せられる光を直接受光しない異なる交差角の位置に、第1波長の光に感度をもつ第1受光素子と第2波長の光に感度を持つ第2受光素子を設け、第1受光素子で受光された第1波長の光による小さい錯乱角による煙散乱光の受光出力と、第2受光素子で受光された大きい散乱角による煙散乱光の受光出力とを比較することにより、煙の種類を識別し、煙の種類に応じた判断基準により火災判断を行う。
(Two-wavelength smoke detector)
The scattered light smoke detector of the above embodiment may be a two-wavelength smoke detector that receives scattered light due to differences in scattering characteristics of light of different wavelengths to identify the type of smoke. The two-wavelength smoke detector emits light of a first wavelength and a second wavelength toward a smoke detection space from a light-emitting element using a white light-emitting diode or from first and second light-emitting elements with different emission wavelengths, and provides a first light-receiving element sensitive to light of the first wavelength and a second light-receiving element sensitive to light of the second wavelength at positions of different crossing angles that do not directly receive the light emitted from the light-emitting element, and identifies the type of smoke by comparing the light-receiving output of the smoke scattered light due to a small confusion angle caused by the light of the first wavelength received by the first light-receiving element with the light-receiving output of the smoke scattered light due to a large scattering angle received by the second light-receiving element, and performs a fire judgment according to a judgment criterion according to the type of smoke.

この場合にも、通常監視状態では、間欠発光による煙濃度の観測で消費電流を低減し、一方、間欠発光により観測している煙濃度が所定閾値以上となったときに連続発光による煙濃度の観測に切替え、所定時間のあいだごとに時系列に連続する複数の煙濃度を含む観測データを生成し、観測データに含まれる複数の煙濃度から特徴量を検出し、特徴量が火災判断条件を充足したときに火災と検出する。 In this case, too, in the normal monitoring state, current consumption is reduced by observing smoke density through intermittent light emission, but when the smoke density observed through intermittent light emission exceeds a predetermined threshold, the system switches to observing smoke density through continuous light emission, generating observation data containing multiple smoke densities that are consecutive in time series for a predetermined period of time, detecting features from the multiple smoke densities contained in the observation data, and detecting a fire when the features satisfy the fire judgment conditions.

(火災警報器)
上記の実施形態は、受信機と感知器を備えた防災設備を対象とした火災検出装置の構成を例にとっているが、煙濃度を観測して火災を判断する手段と火災を警報する手段を備えた例えば住宅用の火災警報器を火災検出装置として構成しても良い。火災警報器の場合には、図1及び図2に示した防災設備の感知器12と同様に、火災警報器に本発明の火災検出装置を構成する観測部16、処理部18及び検出部20の機能を設ける。
(Fire alarm)
The above embodiment has been described as an example of a fire detection device for disaster prevention equipment equipped with a receiver and a sensor, but a fire detection device may also be configured as, for example, a residential fire alarm equipped with a means for observing smoke density to determine whether a fire has occurred and a means for issuing a fire alarm. In the case of a fire alarm, the functions of the observation unit 16, processing unit 18, and detection unit 20 constituting the fire detection device of the present invention are provided in the fire alarm, similar to the sensor 12 of the disaster prevention equipment shown in Figures 1 and 2.

(その他)
また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。
(others)
Furthermore, the present invention includes appropriate modifications that do not impair the objects and advantages of the present invention, and is not limited to the numerical values shown in the above embodiment.

10:受信機
12:感知器
14:信号線
16:観測部
18:処理部
20:検出部
24:感知器制御部
25:検煙部
26:発報回路部
28:電源部
30:発光素子
32:受光素子
34:発光駆動部
36:受光増幅部
40:受信機制御部
42:回線受信部
44:表示部
46:操作部
48:警報部
50:移報部
60,62:伝送部
114:伝送線
10: Receiver 12: Sensor 14: Signal line 16: Observation section 18: Processing section 20: Detection section 24: Sensor control section 25: Smoke detection section 26: Alarm circuit section 28: Power supply section 30: Light emitting element 32: Light receiving element 34: Light emitting drive section 36: Light receiving amplifier section 40: Receiver control section 42: Line receiving section 44: Display section 46: Operation section 48: Alarm section 50: Reporting section 60, 62: Transmission section 114: Transmission line

Claims (15)

所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
前記観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする火災検出装置。
an observation unit that irradiates smoke that has flowed into a smoke detection space from a predetermined monitoring area with a detection light and receives scattered light or attenuated light generated to observe smoke concentration;
a processing unit that continuously emits the detection light to observe the smoke concentration and generates observation data including a plurality of observation values obtained continuously in a time series at predetermined intervals;
A detection unit that detects a fire based on the observation data;
A fire detection device comprising:
所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測する観測部と、
前記検出光を所定周期で間欠発光して観測された前記煙濃度が所定の閾値条件を充足した場合に、前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成する処理部と、
前記観測データに基づいて火災を検出する検出部と、
を設けたことを特徴とする火災検出装置。
an observation unit that irradiates smoke that has flowed into a smoke detection space from a predetermined monitoring area with a detection light and receives scattered light or attenuated light generated to observe smoke concentration;
a processing unit that, when the smoke density observed by intermittently emitting the detection light at a predetermined cycle satisfies a predetermined threshold condition, continuously emits the detection light to observe the smoke density, and generates observation data including a plurality of observation values obtained continuously in a time series for each predetermined time period;
A detection unit that detects a fire based on the observation data;
A fire detection device comprising:
請求項1又は2記載の火災検出装置に於いて、
前記検出部は、
前記観測データに含まれる複数の前記観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出する、
ことを特徴とする火災検出装置。
The fire detection device according to claim 1 or 2,
The detection unit is
detecting a predetermined feature value from a plurality of the observation values included in the observation data, and detecting a fire when the feature value satisfies a predetermined fire determination condition;
A fire detection device comprising:
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量が所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
The fire detection device according to claim 3,
The detection unit determines that a fire has occurred when the feature amount detected at each predetermined time is equal to or exceeds a predetermined threshold value.
A fire detection device comprising:
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量が所定回数連続して所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
The fire detection device according to claim 3,
The detection unit determines that a fire has occurred when the feature amount detected at each predetermined time interval is equal to or exceeds a predetermined threshold value a predetermined number of times in succession.
A fire detection device comprising:
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の比率が所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
The fire detection device according to claim 3,
The detection unit determines that a fire has occurred when a ratio of a current feature amount to a previous feature amount detected at each predetermined time interval is equal to or exceeds a predetermined threshold value.
A fire detection device comprising:
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の比率が所定回数連続して所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
The fire detection device according to claim 3,
the detection unit determines that a fire has occurred when a ratio of a current feature amount to a previous feature amount detected at each predetermined time interval is equal to or exceeds a predetermined threshold value for a predetermined number of consecutive times;
A fire detection device comprising:
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の差分が所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
The fire detection device according to claim 3,
The detection unit determines that a fire has occurred when a difference between a current feature amount and a previous feature amount detected at each predetermined time interval is equal to or greater than a predetermined threshold value.
A fire detection device comprising:
請求項3記載の火災検出装置に於いて、
前記検出部は、前記所定時間ごとに検出される前記特徴量について、現在の特徴量と前回の特徴量の差分が所定回数連続して所定の閾値以上又は前記閾値を超えた場合に火災と判断する、
ことを特徴とする火災検出装置。
The fire detection device according to claim 3,
the detection unit determines that a fire has occurred when a difference between a current feature amount and a previous feature amount detected at each predetermined time interval is equal to or exceeds a predetermined threshold value a predetermined number of times in succession,
A fire detection device comprising:
請求項1乃至9の何れかに記載の火災検出装置に於いて、
前記検出部は、前記観測データの特徴量として、前記観測データに含まれる複数の観測値の積分値、平均値又はピーク値を検出することを特徴とする火災検出装置。
The fire detection device according to any one of claims 1 to 9,
The fire detection device is characterized in that the detection unit detects an integral value, an average value, or a peak value of a plurality of observation values contained in the observation data as a feature of the observation data.
請求項1乃至10の何れかに記載の火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して前記受信機に火災信号を送信する感知器とを備え、
前記感知器に、前記観測部、前記処理部及び前記検出部を設けたことを特徴とする防災設備。
A disaster prevention facility using the fire detection device according to any one of claims 1 to 10,
a receiver and a detector that detects a fire and transmits a fire signal to the receiver;
A disaster prevention system comprising the sensor, the observation unit, the processing unit, and the detection unit.
請求項1乃至10の何れかに記載の火災検出装置を用いた防災設備に於いて、
受信機と、火災を検出して前記受信機に火災信号を送信する感知器とを備え、
前記感知器に、前記観測部及び前記処理部を設け、
前記受信機に、前記検出部を設けたことを特徴とする防災設備。
A disaster prevention facility using the fire detection device according to any one of claims 1 to 10,
a receiver and a detector that detects a fire and transmits a fire signal to the receiver;
The sensor is provided with the observation unit and the processing unit,
A disaster prevention system comprising the receiver and the detection unit.
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、前記観測データに基づいて火災を検出する、
ことを特徴とする火災検出方法。
The observation unit irradiates the smoke that has flowed into the smoke detection space from the predetermined monitoring area with the detection light, receives the scattered light or attenuated light generated, and observes the smoke concentration;
A processing unit continuously emits the detection light to observe the smoke concentration, and generates observation data including a plurality of observation values obtained continuously in a time series for each predetermined time period;
A detection unit detects a fire based on the observation data.
A fire detection method comprising:
観測部により、所定の監視領域から検煙空間に流入した煙に検出光を照射して生ずる散乱光又は減衰光を受光して煙濃度を観測し、
処理部により、前記検出光を所定周期で間欠発光して観測された前記煙濃度が所定の閾値条件を充足した場合に、前記検出光を連続発光して前記煙濃度を観測し、所定時間のあいだごとに、連続して時系列に得られた複数の観測値を含む観測データを生成し、
検出部により、前記観測データに基づいて火災を検出する、
ことを特徴とする火災検出方法。
The observation unit irradiates the smoke that has flowed into the smoke detection space from the predetermined monitoring area with the detection light, receives the scattered light or attenuated light generated, and observes the smoke concentration;
a processing unit that, when the smoke density observed by intermittently emitting the detection light at a predetermined cycle satisfies a predetermined threshold condition, continuously emits the detection light to observe the smoke density, and generates observation data including a plurality of observation values obtained continuously in a time series for each predetermined time period;
A detection unit detects a fire based on the observation data.
A fire detection method comprising:
請求項13又は14記載の火災検出方法に於いて、
前記検出部は、
前記観測データに含まれる複数の前記観測値を対象に所定の特徴量を検出し、当該特徴量が所定の火災判断条件を充足した場合に火災と検出する、
ことを特徴とする火災検出方法。
The fire detection method according to claim 13 or 14, further comprising:
The detection unit is
detecting a predetermined feature value from a plurality of the observation values included in the observation data, and detecting a fire when the feature value satisfies a predetermined fire determination condition;
A fire detection method comprising:
JP2020173941A 2020-10-15 2020-10-15 Fire detection device, disaster prevention equipment, and fire detection method Active JP7549506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020173941A JP7549506B2 (en) 2020-10-15 2020-10-15 Fire detection device, disaster prevention equipment, and fire detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173941A JP7549506B2 (en) 2020-10-15 2020-10-15 Fire detection device, disaster prevention equipment, and fire detection method

Publications (2)

Publication Number Publication Date
JP2022065389A JP2022065389A (en) 2022-04-27
JP7549506B2 true JP7549506B2 (en) 2024-09-11

Family

ID=81386328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173941A Active JP7549506B2 (en) 2020-10-15 2020-10-15 Fire detection device, disaster prevention equipment, and fire detection method

Country Status (1)

Country Link
JP (1) JP7549506B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288896A (en) 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Fire alarm system
JP6282776B1 (en) 2017-12-01 2018-02-21 株式会社スイレイ Wastewater treatment facility and wastewater treatment method
JP7151680B2 (en) 2019-09-27 2022-10-12 トヨタ自動車株式会社 painting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288896A (en) 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Fire alarm system
JP6282776B1 (en) 2017-12-01 2018-02-21 株式会社スイレイ Wastewater treatment facility and wastewater treatment method
JP7151680B2 (en) 2019-09-27 2022-10-12 トヨタ自動車株式会社 painting system

Also Published As

Publication number Publication date
JP2022065389A (en) 2022-04-27

Similar Documents

Publication Publication Date Title
EP1540615B1 (en) Detector with ambient photon sensor and other sensors
US5012223A (en) Sound activated device and method
CN1325133C (en) Method for controlling fixed extinguisher
JP7132714B2 (en) Fire alarm equipment
US6353395B1 (en) Interconnectable detector with local alarm indicator
CN102054322A (en) Fire sensor and method for detecting fire
JPS6325398B2 (en)
KR20110004395A (en) alarm
GB2370903A (en) A fire detector
JP2002074535A (en) Fire alarm equipment and fire alarm used therefor
JP7549506B2 (en) Fire detection device, disaster prevention equipment, and fire detection method
US6229449B1 (en) Detector apparatus
CN102016948B (en) Alarm
JPS63314697A (en) Fire alarm system
JP2023126834A (en) Fire warning facility and receiver
JPH02121098A (en) fire alarm device
JP2021128715A (en) Fire detection means, anti-disaster facility, and fire detection method
JP7613875B2 (en) Fire detection device, disaster prevention equipment, and fire detection method
JP2001331878A (en) Smoke sensor and monitoring and control system
RU68158U1 (en) FIRE DETECTION DEVICE
JP2025060864A (en) Fire detection equipment
JP2007299103A (en) Fire alarm system and fire sensor
JP7332754B2 (en) Fire alarm equipment
JP3945756B2 (en) Fire detector
RU105052U1 (en) ALARM DETECTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240830

R150 Certificate of patent or registration of utility model

Ref document number: 7549506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150