JP7548688B2 - RTB based sintered magnet - Google Patents
RTB based sintered magnet Download PDFInfo
- Publication number
- JP7548688B2 JP7548688B2 JP2019174671A JP2019174671A JP7548688B2 JP 7548688 B2 JP7548688 B2 JP 7548688B2 JP 2019174671 A JP2019174671 A JP 2019174671A JP 2019174671 A JP2019174671 A JP 2019174671A JP 7548688 B2 JP7548688 B2 JP 7548688B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- content
- sintered magnet
- based sintered
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 description 20
- 239000000956 alloy Substances 0.000 description 20
- 239000000843 powder Substances 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 12
- 230000007423 decrease Effects 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- JGHZJRVDZXSNKQ-UHFFFAOYSA-N methyl octanoate Chemical compound CCCCCCCC(=O)OC JGHZJRVDZXSNKQ-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000722 Didymium Inorganic materials 0.000 description 1
- 241000224487 Didymium Species 0.000 description 1
- 241000150258 Prospect Hill orthohantavirus Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
本開示は、R-T-B系焼結磁石に関する。 This disclosure relates to R-T-B based sintered magnets.
R-T-B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、NdおよびPrの少なくとも一種を含む、TはFeまたはFeとCoであり、Tの90質量%以上がFeである)は、R2T14B型結晶構造を有する化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されており、永久磁石の中で最も高性能な磁石として知られている。 R-T-B based sintered magnets (R is at least one rare earth element including at least one of Nd and Pr, T is Fe or Fe and Co, and 90% or more by mass of T is Fe) are composed of a main phase made of a compound having an R 2 T 14 B crystal structure and a grain boundary phase located at the grain boundaries of this main phase, and are known as the magnets with the highest performance among permanent magnets.
このため、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途に用いられている。 For this reason, they are used in a wide variety of applications, including voice coil motors (VCMs) in hard disk drives, motors for electric vehicles (EVs, HVs, PHVs), motors for industrial equipment, and various motors in home appliances.
このように用途が広がるにつれ、例えば電気自動車用モータは、例えば100℃程度の高温下に曝される場合があり、高温下においても安定した動作が要求されている。 As applications expand in this way, motors for electric vehicles, for example, may be exposed to high temperatures of around 100°C, and stable operation even at high temperatures is required.
しかし、R-T-B系焼結磁石は、高温になると保磁力HcJ(以下、単に「HcJ」と記載する場合がある)が低下し、不可逆熱減磁が起こるという問題がある。例えば電気自動車用モータにR-T-B系焼結磁石が使用される場合、高温下での使用によりHcJが低下し、モータの安定した動作が得られない恐れがある。そのため、高温下においても高いHcJを有するR-T-B系焼結磁石が求められている。 However, R-T-B based sintered magnets have a problem in that their coercive force H cJ (hereinafter sometimes simply referred to as "H cJ ") decreases at high temperatures, causing irreversible thermal demagnetization. For example, when an R-T-B based sintered magnet is used in an electric vehicle motor, H cJ decreases when used at high temperatures, and there is a risk that the motor will not operate stably. For this reason, there is a demand for R-T-B based sintered magnets that have a high H cJ even at high temperatures.
従来HcJ向上のために、R-T-B系焼結磁石に重希土類元素RH(主としてDy)を添加していたが、残留磁束密度Br(以下、単に「Br」と記載する場合がある)が低下するという問題があった。さらに、Dyは、産出地が限定されている等の理由から、供給が不安定であり、また価格が大きく変動することがあるなどの問題を有している。そのため、Dyなどの重希土類元素RHをできるだけ使用せずにR-T-B系焼結磁石のHcJを向上させる技術が求められている。 Conventionally, heavy rare earth elements RH (mainly Dy) have been added to R-T-B based sintered magnets to improve H cJ , but this has the problem of reducing the remanence B r (hereinafter sometimes simply referred to as "B r "). Furthermore, Dy has problems such as an unstable supply due to limited production areas, and its price can fluctuate greatly. Therefore, there is a demand for technology that can improve the H cJ of R-T-B based sintered magnets while using as little heavy rare earth elements RH as possible, such as Dy.
このような技術として、例えば特許文献1は、通常のR-T-B系合金よりもBの含有量を低くするとともに、Al、GaおよびCuのうちから選ばれる1種以上である金属元素Mを含有させることによりR2T17相を生成させ、該R2T17相を原料として生成させた遷移金属リッチ相(R-T-Ga相)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR-T-B系焼結磁石が得られることを開示している。 As an example of such a technique, Patent Document 1 discloses that an R-T-B based sintered magnet with high coercivity can be obtained while suppressing the Dy content by forming an R 2 T 17 phase by lowering the B content compared to normal R-T- B based alloys and adding one or more metal elements M selected from Al, Ga, and Cu, and by sufficiently ensuring the volume fraction of the transition metal-rich phase (R-T-Ga phase) formed using the R 2 T 17 phase as a raw material.
しかし、特許文献1に記載されるR-T-B系焼結磁石はHcJが向上しているものの、近年の要求を満足するには不十分である。 Although the RTB based sintered magnet described in Patent Document 1 has an improved HcJ , it is still insufficient to satisfy recent demands.
そこで本開示は、重希土類元素RHをできるだけ使用せず、高温(例えば100℃)下で高い保磁力HcJを有するR-T-B系焼結磁石を提供する。 Therefore, the present disclosure provides an RTB based sintered magnet that uses as little heavy rare earth element RH as possible and has a high coercive force H cJ at high temperatures (eg, 100° C.).
本開示のR-T-B系焼結磁石は、例示的な実施形態において、R:28.5質量%以上33.0質量%以下(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、B:0.85質量%以上0.91質量%以下、Ga:0.35質量%以上0.75質量%以下、Cu:0.05質量%以上0.50質量%以下、Mn:0.03質量%以上0.15質量%以下、T:61.5質量%以上70.0質量%以下(TはFeまたはFeとCoであり、Tの90質量%以上がFeである)、を含み、下記式(1)を満足するR-T-B系焼結磁石。
14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)
In an exemplary embodiment, the R-T-B based sintered magnet of the present disclosure contains R: 28.5 mass % or more and 33.0 mass % or less (R is at least one rare earth element and includes at least one of Nd and Pr), B: 0.85 mass % or more and 0.91 mass % or less, Ga: 0.35 mass % or more and 0.75 mass % or less, Cu: 0.05 mass % or more and 0.50 mass % or less, Mn: 0.03 mass % or more and 0.15 mass % or less, and T: 61.5 mass % or more and 70.0 mass % or less (T is Fe or Fe and Co, and 90 mass % or more of T is Fe), and satisfies the following formula (1):
14[B]/10.8<[T]/55.85 (1)
([B] is the content of B in mass%, and [T] is the content of T in mass%)
ある実施形態において、前記R-T-B系焼結磁石は、重希土類元素を含有せず(不可避的不純物は除く)、100℃においてはHcJ≧880kA/mであり、かつ、22.5℃においてはBr≧1.32Tである。
ある実施形態において、前記R-T-B系焼結磁石は、Tbを1.0質量%以下含有し、100℃においてはHcJ≧880+168[Tb]kA/mであり、かつ、22.5℃においてはBr≧1.32-0.024[Tb]Tである。
([Tb]は質量%で示すTbの含有量である)
In one embodiment, the RTB based sintered magnet does not contain a heavy rare earth element (except for unavoidable impurities), and has H cJ ≧880 kA/m at 100° C. and Br ≧1.32 T at 22.5° C.
In one embodiment, the RTB based sintered magnet contains 1.0 mass % or less of Tb, and at 100° C., H cJ ≧880+168 [Tb] kA/m, and at 22.5° C., B r ≧1.32−0.024 [Tb]T.
([Tb] is the Tb content in mass%)
本開示の実施形態により、重希土類元素RHをできるだけ使用せず、高温(例えば100℃)下で高い保磁力HcJを有するR-T-B系焼結磁石を提供することができる。 According to the embodiments of the present disclosure, it is possible to provide an RTB based sintered magnet that has a high coercive force H cJ at high temperatures (eg, 100° C.) while using as little heavy rare earth element RH as possible.
本発明者らは鋭意検討した結果、本開示の特定のR、B、Ga、Cuの含有量、特に極めて狭い特定範囲のB含有量を有するR-T-B系焼結磁石に、更に特定範囲のMnを含有させることで、高温下でも高いHcJが得られることを見出した。これは、B量が本開示の特定の組成範囲であるR-T-B系焼結磁石が、さらにMnを含有することにより、温度係数が改善されるからであると考えられる。 As a result of extensive investigations, the present inventors have found that a high HcJ can be obtained even at high temperatures by further adding a specific range of Mn to an R-T-B based sintered magnet having the specific R, B, Ga, and Cu contents of the present disclosure, in particular an extremely narrow specific range of B content. This is believed to be because the temperature coefficient is improved by further adding Mn to an R-T-B based sintered magnet having a B content within the specific composition range of the present disclosure.
[R-T-B系焼結磁石]
本開示のR-T-B系焼結磁石は、
R:28.5質量%以上33.0質量%以下(Rは希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む)、
B:0.85質量%以上0.91質量%以下、
Ga:0.35質量%以上0.75質量%以下、
Cu:0.05質量%以上0.50質量%以下、
Mn:0.03質量%以上0.15質量%以下、
T:61.5質量%以上70.0質量%以下(TはFeまたはFeとCoであり、Tの90質量%以上がFeである)、を含み、
下記式(1)を満足する。
14[B]/10.8<[T]/55.85 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である)
以下に、各組成について詳述する。
[RTB-based sintered magnet]
The R-T-B based sintered magnet of the present disclosure is
R: 28.5% by mass or more and 33.0% by mass or less (R is at least one rare earth element, including at least one of Nd and Pr);
B: 0.85% by mass or more and 0.91% by mass or less,
Ga: 0.35% by mass or more and 0.75% by mass or less,
Cu: 0.05% by mass or more and 0.50% by mass or less,
Mn: 0.03% by mass or more and 0.15% by mass or less,
T: 61.5 mass% or more and 70.0 mass% or less (T is Fe or Fe and Co, and 90 mass% or more of T is Fe);
The following formula (1) is satisfied.
14[B]/10.8<[T]/55.85 (1)
([B] is the content of B in mass%, and [T] is the content of T in mass%)
Each composition will be described in detail below.
(R:28.5~33.0質量%)
Rは、希土類元素のうち少なくとも1種であり、NdおよびPrの少なくとも1種を含む。Rの含有量は、28.5~33.0質量%である。Rの含有量が28.5質量%未満であると焼結時の緻密化が困難となる可能性があり、33.0質量%を超えると主相比率が低下してBrが低下する可能性がある。Rの含有量は、好ましくは29.5~32.5質量%である。Rがこのような範囲であれば、より高いBrを得ることができる。
(R: 28.5-33.0% by mass)
R is at least one rare earth element, including at least one of Nd and Pr. The content of R is 28.5 to 33.0 mass%. If the content of R is less than 33.0 mass%, it may be difficult to achieve densification during sintering, and if it exceeds 33.0 mass%, the main phase ratio may decrease, resulting in a decrease in Br . %, preferably 29.5 to 32.5 mass %. When R is in this range, a higher B r can be obtained.
(B:0.85~0.91質量%)
Bの含有量は、0.85~0.91質量%である。R-T-B系焼結磁石がBを本開示の範囲内で含有した上で、さらにMnを後述する特定範囲で含有することにより、温度係数が改善し、高温下においても高いHcJが得られる。そのため、Bの含有量が0.85質量%未満であったり、また、0.91質量%を超えると、高温下において高いHcJを得ることができない。なお、Bの一部はCと置換することができる。
更に、Bの含有量は下記式(1)を満たす。
14[B]/10.8<[T]/55.85 (1)
式(1)を満足することにより、Bの含有量が一般的なR-T-B系焼結磁石よりも少なくなる。一般的なR-T-B系焼結磁石は、主相であるR2T14B相以外に軟磁性相であるR2T17相が生成しないように、[T]/55.85(Feの原子量)は14[B]/10.8(Bの原子量)よりも少ない組成となっている([T]は、質量%で示すTの含有量である)。本発明のR-T-B系焼結磁石は、一般的なR-T-B系焼結磁石と異なり、[T]/55.85が14[B]/10.8よりも多くなるように式(1)で規定している。なお、本発明のR-T-B系焼結磁石におけるTの主成分はFeであるため、Feの原子量を用いた。
(B: 0.85-0.91% by mass)
The content of B is 0.85 to 0.91 mass %. The RTB based sintered magnet contains B within the range of the present disclosure and further contains Mn within a specific range described below. By doing so, the temperature coefficient is improved, and a high HcJ can be obtained even at high temperatures. In addition, a part of B can be replaced with C.
Furthermore, the content of B satisfies the following formula (1).
14[B]/10.8<[T]/55.85 (1)
By satisfying formula (1), the content of B becomes smaller than that of a typical R-T-B based sintered magnet. In order to prevent the formation of the soft magnetic phase R2T17 phase other than the R2T14B phase , [T]/55.85 (atomic weight of Fe) is set to 14[B]/10.8 (atomic weight of B). ([T] is the content of T in mass %) The R-T-B system sintered magnet of the present invention is different from the general R-T-B system sintered magnet. Unlike the sintered magnet, the formula (1) specifies that [T]/55.85 is greater than 14[B]/10.8. Since the main component of T in the magnet is Fe, the atomic weight of Fe was used.
(Ga:0.35~0.75質量%)
Gaの含有量は、0.35~0.75質量%である。Gaの含有量が0.35質量%未満であると、温度係数が改善されず、高温において高いHcJを得ることが出来ない。さらに、R-T-Ga相の生成量が少なくなり、R2T17相を消失させることができず、室温において高いHcJを得ることができない可能性がある。Gaの含有量が0.75質量%を超えると不要なGaが存在することになり、主相比率が低下してBrが低下する可能性がある。
(Ga: 0.35 to 0.75% by mass)
The Ga content is 0.35 to 0.75 mass %. If the Ga content is less than 0.35 mass %, the temperature coefficient is not improved and a high HcJ cannot be obtained at high temperatures. Furthermore, the amount of the RT-Ga phase produced is small, and the R 2 T 17 phase cannot be eliminated, so that a high H cJ value cannot be obtained at room temperature. If it exceeds 0.75 mass %, unnecessary Ga will be present, and there is a possibility that the main phase ratio will decrease and Br will decrease.
(Cu:0.05~0.50質量%)
Cuの含有量は、0.05~0.50質量%である。Cuの含有量が0.05質量%未満であると室温および高温において高いHcJを得ることができない可能性があり、0.50質量%を超えると焼結性が悪化して室温および高温において高いHcJが得られない可能性がある。
(Cu: 0.05-0.50% by mass)
The Cu content is 0.05 to 0.50 mass %. If the Cu content is less than 0.05 mass %, it may be impossible to obtain a high HcJ at room temperature and at high temperatures. If it exceeds 50 mass %, the sinterability may deteriorate, making it difficult to obtain a high HcJ at room temperature and at high temperatures.
(Mn:0.03~0.15質量%)
Mnの含有量は、0.03~0.15質量%である。Bの含有量を上述した範囲内に制限した上で、さらにMnを0.03~0.15質量%含有することにより、温度係数が改善されて、高温で高いHcJを得ることができる。Mnの含有量が0.03質量%未満であると温度係数が改善されず、高温において高いHcJが得られない。また、0.15質量を超えるとBrが低下する可能性がある。
(Mn: 0.03 to 0.15% by mass)
The Mn content is 0.03 to 0.15 mass%. By limiting the B content to the above range and further including 0.03 to 0.15 mass% of Mn, The temperature coefficient is improved, and a high HcJ can be obtained at high temperatures. If the Mn content is less than 0.03 mass %, the temperature coefficient is not improved, and a high HcJ cannot be obtained at high temperatures. If the mass ratio exceeds 0.15, the B r may decrease.
(T:61.5質量%~70.0質量%)
Tは、Fe又はFeとCoであり、Tの90質量%以上がFeである。Coを含有することにより耐食性を向上させることができるが、Coの置換量がTの10質量%を超えると、高いBrが得られない可能性がある。Tの含有量は、61.5質量%以上70.0質量%以下であり、且つ、上述した式(1)を満足する。Tの含有量が61.5質量%未満であると、大幅にBrが低下する可能性ある。好ましくは、Tが残部である。
(T: 61.5% by mass to 70.0% by mass)
T is Fe or Fe and Co, and 90 mass % or more of T is Fe. By containing Co, the corrosion resistance can be improved, but if the amount of Co substituted exceeds 10 mass % of T, If the content of T is less than 61.5 mass %, a high B r may not be obtained. The content of T is 61.5 mass % or more and 70.0 mass % or less, and satisfies the above formula (1). When the content is less than 61.5 mass %, the B r may be significantly decreased. Preferably, T is the remainder.
さらに、本開示のR-T-B系焼結磁石は、ジジム合金(Nd-Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物としてCr、Mn、Si、La、Ce、Sm、Ca、Mgなどを含有することができる。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)およびC(炭素)、Alなどを例示できる。また、本開示のR-T-B系焼結磁石は、1種以上の他の元素(不可避的不純物以外の意図的に加えた元素)を含んでもよい。例えば、このような元素として、少量(各々0.1質量%程度)のAg、Zn、In、Sn、Ti、Ge、Y、H、F、P、S、V、Ni、Mo、Hf、Ta、W、Nb、Zrなどを含有してもよい。また、上述した不可避的不純物として挙げた元素を意図的に加えてもよい。このような元素は、合計で例えば1.0質量%程度含まれてもよい。この程度であれば、高温において高いHcJを有するR-T-B系焼結磁石を得ることが十分に可能である。 Furthermore, the R-T-B system sintered magnet of the present disclosure may contain Cr, Mn, Si, La, Ce, Sm, Ca, Mg, etc. as inevitable impurities that are usually contained in didymium alloys (Nd-Pr), electrolytic iron, ferroboron, etc. Furthermore, examples of inevitable impurities during the manufacturing process include O (oxygen), N (nitrogen), C (carbon), Al, etc. Furthermore, the R-T-B system sintered magnet of the present disclosure may contain one or more other elements (elements added intentionally other than inevitable impurities). For example, such elements may contain small amounts (about 0.1 mass% each) of Ag, Zn, In, Sn, Ti, Ge, Y, H, F, P, S, V, Ni, Mo, Hf, Ta, W, Nb, Zr, etc. Furthermore, the elements listed above as inevitable impurities may be intentionally added. Such elements may be contained in a total amount of, for example, about 1.0 mass%. If the temperature is within this range, it is quite possible to obtain an RTB based sintered magnet that has a high HcJ at high temperatures.
上述した本実施形態に係る組成を有するR-T-B系焼結磁石は、例えば、合金粉末を作製する工程、前記合金粉末を成形して成形体を得る成形工程、成形体を焼結し焼結体を得る焼結工程、焼結体に熱処理を施す熱処理工程を含んで製造される。 The R-T-B based sintered magnet having the composition according to the present embodiment described above is manufactured by, for example, a process of preparing an alloy powder, a molding process of molding the alloy powder to obtain a compact, a sintering process of sintering the compact to obtain a sintered body, and a heat treatment process of subjecting the sintered body to a heat treatment.
[R-T-B系焼結磁石の製造方法]
以下、各工程について説明する。
[Method of manufacturing R-T-B based sintered magnets]
Each step will be described below.
(合金粉末を作製する工程)
R-T-B系焼結磁石が上述した特定組成となるようにそれぞれの元素の金属又は合金(溶解原料)を準備し、ストリップキャスティング法等によりフレーク状の原料合金を作製する。次に、フレーク状の原料合金を水素粉砕等によって粗粉砕し、平均粒度が1.0mm以下の粗粉砕粉末を準備する。次に、粗粉砕粉末を不活性ガス中でジェットミル等により微粉砕し、例えば粒径D50が3~5μmの微粉砕粉末(原料合金粉末)を得る。ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として既知の潤滑剤を添加してもよい。
(Step of producing alloy powder)
Metals or alloys (molten raw materials) of the respective elements are prepared so that the R-T-B based sintered magnet has the above-mentioned specific composition, and flake-shaped raw alloy is produced by strip casting or the like. The flake-shaped raw alloy is then coarsely pulverized by hydrogen pulverization or the like to prepare coarsely pulverized powder with an average particle size of 1.0 mm or less. The coarsely pulverized powder is then finely pulverized by a jet mill or the like in an inert gas to obtain a finely pulverized powder (raw alloy powder) with a particle size D 50 of, for example, 3 to 5 μm. A known lubricant may be added as an auxiliary agent to the coarsely pulverized powder before the jet mill pulverization, and to the alloy powder during and after the jet mill pulverization.
(成形工程)
得られた原料合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内にスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
(Molding process)
The obtained raw alloy powder is subjected to compaction in a magnetic field to obtain a compact. The compaction in a magnetic field may be performed by any known method including a dry compaction method in which a dried alloy powder is inserted into a cavity of a die and compacted while a magnetic field is applied, and a wet compaction method in which a slurry is injected into a cavity of a die and compacted while the dispersion medium of the slurry is discharged.
(焼結工程)
成形体を焼結することにより焼結体(焼結磁石)を得る。成形体の焼結は既知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中または不活性ガス中で行うことが好ましい。不活性ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
(Sintering process)
The compact is sintered to obtain a sintered body (sintered magnet). A known method can be used for sintering the compact. In order to prevent oxidation due to the atmosphere during sintering, sintering is preferably carried out in a vacuum atmosphere or in an inert gas. The inert gas used is preferably an inert gas such as helium or argon.
(熱処理工程)
得られた焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などは既知の条件を用いることができる。例えば、比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)をしてもよく、あるいは比較的高い温度(700℃以上焼結温度以下(例えば1050℃以下))で熱処理を行った後、比較的低い温度(400℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。好ましい条件は、730℃以上1020℃以下で5分から500分程度の熱処理を施し、冷却後(室温まで冷却後、または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理をすることが挙げられる。熱処理雰囲気は、真空雰囲気あるいは不活性ガス(ヘリウムやアルゴンなど)で行うことが好ましい。
(Heat treatment process)
The obtained sintered magnet is preferably subjected to a heat treatment for the purpose of improving the magnetic properties. The heat treatment temperature, heat treatment time, and the like can be known conditions. For example, heat treatment (one-stage heat treatment) may be performed only at a relatively low temperature (400°C or more and 600°C or less), or heat treatment at a relatively high temperature (700°C or more and sintering temperature or less (e.g., 1050°C or less)) may be performed, followed by heat treatment (two-stage heat treatment) at a relatively low temperature (400°C or more and 600°C or less). Preferred conditions include a heat treatment at 730°C or more and 1020°C or less for about 5 to 500 minutes, cooling (to room temperature or to 440°C or more and 550°C or less), and then a further heat treatment at 440°C or more and 550°C or less for about 5 to 500 minutes. The heat treatment atmosphere is preferably a vacuum atmosphere or an inert gas (helium, argon, etc.).
最終的な製品形状にするなどの目的で、得られた焼結磁石に研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、既知の表面処理であってもよく、例えばAl蒸着や電気Niめっきや樹脂塗料などの表面処理を行うことができる。 The obtained sintered magnet may be subjected to machining such as grinding in order to obtain the final product shape. In this case, the heat treatment may be performed before or after the machining. Furthermore, the obtained sintered magnet may be subjected to a surface treatment. The surface treatment may be a known surface treatment, such as Al vapor deposition, Ni electric plating, or resin paint.
本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。 The present disclosure will be described in more detail with reference to examples, but is not limited thereto.
R-T-B系焼結磁石の組成がおよそ表1のNo.1~No.12の組成になるように各元素を秤量し、ストリップキャスト法により鋳造して、急冷合金を作製した。得られた急冷合金に水素加圧雰囲気で水素脆化させた後、550Cまで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、粗粉砕粉100質量%に対して、潤滑剤として0.04質量%のステアリン酸亜鉛を添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50(メジアン径)が4μmの微粉砕粉(合金粉末)を得た。 Each element was weighed so that the composition of the R-T-B based sintered magnet was approximately the composition of No. 1 to No. 12 in Table 1, and the alloy was cast by strip casting to prepare a quenched alloy. The quenched alloy thus obtained was subjected to hydrogen embrittlement in a pressurized hydrogen atmosphere, and then to a dehydrogenation treatment in which the alloy was heated to 550C in a vacuum and cooled, to obtain a coarsely pulverized powder. Next, 0.04 mass% of zinc stearate was added to the coarsely pulverized powder thus obtained as a lubricant relative to 100 mass% of the coarsely pulverized powder, and the mixture was mixed and dry-pulverized in a nitrogen gas stream using an airflow pulverizer (jet mill device) to obtain a finely pulverized powder (alloy powder) with a particle size D50 (median diameter) of 4 μm.
得られた合金粉末を分散媒と混合しスラリーを作製した。溶媒にはノルマルドデカンを用い、潤滑剤としてカプリル酸メチルを混合した。スラリーの濃度は合金粉末70質量%、分散媒30質量%とし、潤滑剤は合金粉末100質量%に対して0.16質量%とした。前記スラリーを磁界中で成形して成形体を得た。成形時の磁界は0.8MA/mの静磁界で、加圧力は5MPaとした。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。 The obtained alloy powder was mixed with a dispersion medium to prepare a slurry. Normal dodecane was used as the solvent, and methyl caprylate was mixed as the lubricant. The concentration of the slurry was 70% by mass of alloy powder, 30% by mass of dispersion medium, and 0.16% by mass of lubricant relative to 100% by mass of alloy powder. The slurry was molded in a magnetic field to obtain a compact. The magnetic field during molding was a static magnetic field of 0.8 MA/m, and the pressure was 5 MPa. The molding device used was a so-called perpendicular magnetic field molding device (horizontal magnetic field molding device), in which the magnetic field application direction and pressure direction are perpendicular to each other.
得られた成形体を、真空中、1000℃以上1090℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後、急冷し焼結体を得た。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体に対し真空中、800℃で2時間保持した後、室温まで急冷し、次いで真空中で430℃以上530℃以下(サンプル毎に良好な保磁力が得られる温度を選定)で2時間保持した後、室温まで冷却する熱処理を施してR-T-B系焼結磁石を得た。 The obtained compact was sintered in a vacuum at 1000°C to 1090°C (a temperature at which densification by sintering is sufficient was selected for each sample) for 4 hours, and then quenched to obtain a sintered body. The density of the obtained sintered body was 7.5 Mg/ m3 or more. The obtained sintered body was held in a vacuum at 800°C for 2 hours, quenched to room temperature, and then held in a vacuum at 430°C to 530°C (a temperature at which good coercivity is obtained was selected for each sample) for 2 hours, and then cooled to room temperature, to obtain a R-T-B based sintered magnet.
得られたR-T-B系焼結磁石の成分を表1に示す。なお、表1における各成分(O、NおよびC以外)は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。また、O(酸素)含有量は、ガス融解-赤外線吸収法、N(窒素)含有量は、ガス融解-熱伝導法、C(炭素)含有量は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した。
式(1)の充足性を表1に示した。ここで「○」は式(1)を満たしていることを意味し、「×」は式(1)を満たしていないことを意味している。
得られたR-T-B系焼結磁石の磁気特性測定結果を表2に示す。表2における「22.5℃ Br」および「22.5℃ HcJ」は、室温(22.5℃)におけるBrおよびHcJの値であり、「100℃ Br」および「100℃ HcJ」は、高温(100℃)におけるBrおよびHcJの値である。これらBr、HcJの値は、R-T-B系焼結磁石に機械加工を施し、サンプルを7mm×7mm×7mmに加工し、BHトレーサにより測定した。さらに、温度係数(β:22.5~100℃)を以下のようにして求めた。
温度係数=(100℃のHcJ-22.5℃のHcJ)/22.5℃のHcJ/(100℃-22.5℃)×100%
温度係数の絶対値が小さいほど温度係数が改善されていることを示している。
The components of the obtained R-T-B based sintered magnet are shown in Table 1. Note that each component in Table 1 (other than O, N, and C) was measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). The O (oxygen) content was measured using a gas fusion-infrared absorption method, the N (nitrogen) content was measured using a gas fusion-thermal conduction method, and the C (carbon) content was measured using a gas analyzer using the combustion-infrared absorption method.
The degree of satisfaction of formula (1) is shown in Table 1. Here, "◯" means that formula (1) is satisfied, and "×" means that formula (1) is not satisfied.
The results of measuring the magnetic properties of the obtained R-T-B based sintered magnets are shown in Table 2. In Table 2, "22.5°C B r " and "22.5°C H cJ " are the values of B r and H cJ at room temperature (22.5°C), and "100°C B r " and "100°C H cJ " are the values of B r and H cJ at high temperature (100°C). These B r and H cJ values were measured by machining the R-T-B based sintered magnets to produce samples of 7 mm x 7 mm x 7 mm using a BH tracer. Furthermore, the temperature coefficient (β: 22.5 to 100°C) was determined as follows.
Temperature coefficient=( HcJ at 100° C.− HcJ at 22.5° C.)/ HcJ at 22.5° C./(100° C.−22.5° C.)×100%
The smaller the absolute value of the temperature coefficient, the more improved the temperature coefficient is.
表2に示すように、本開示のR-T-B系焼結磁石の組成を満たしている本発明例(No.7、8、9、12)は、比較例(本開示の組成範囲をはずれている比較例)と比べていずれも高温(100℃)において高いHcJが得られている。また、実施例1では、いずれの本発明例も、重希土類元素を含有せず(不可避的不純物は除く)、100℃においてはHcJ≧880kA/mであり、かつ、22.5℃においてはBr≧1.32Tであり、比較例と比べて高い磁気特性が得られている。また、表2の温度係数にしめすように、本発明例は、比較例と比べていずれも温度係数の絶対値が小さい。
図1にNo.1~10におけるMnの含有量と100℃のHcJの関係を示す。図1における四角(■)が本発明例であり、三角(▲)が比較例である。図1のNo.1~5に示すようにR-T-B系焼結磁石のBの含有量が本開示の範囲外(No.1~3および5はBの含有量が範囲外、No.4は式(1)が範囲外)であると、Mnの含有量を増加させても高温におけるHcJはほとんど向上しない。一方、No.6~No.10に示すようにR-T-B系焼結磁石のBの含有量が本開示の範囲内であると、Mnの含有量が0.02質量%(No.6)を超えると高温におけるHcJが大きく向上している。なお、No.10(Mn:0.20質量%)は、高温において高いHcJが得られているが、表2に示すようにBrが低下している。
As shown in Table 2, the invention examples (Nos. 7, 8, 9, and 12) that satisfy the composition of the R-T-B based sintered magnets of the present disclosure all have a higher H cJ at high temperatures (100°C) than the comparative examples (which are outside the composition range of the present disclosure). Furthermore, in Example 1, none of the invention examples contain a heavy rare earth element (excluding unavoidable impurities), and at 100°C, H cJ ≧880 kA/m and at 22.5°C, Br ≧1.32 T, providing better magnetic properties than the comparative examples. Furthermore, as shown by the temperature coefficients in Table 2, the invention examples all have smaller absolute values of temperature coefficients than the comparative examples.
FIG. 1 shows the relationship between the Mn content and H cJ at 100°C for Nos. 1 to 10. In FIG. 1, squares (■) are examples of the present invention, and triangles (▲) are comparative examples. As shown in Nos. 1 to 5 in FIG. 1, when the B content of the R-T-B based sintered magnet is outside the range of the present disclosure (Nos. 1 to 3 and 5 have B contents outside the range, and No. 4 has formula (1) outside the range), the H cJ at high temperatures is hardly improved even if the Mn content is increased. On the other hand, as shown in Nos. 6 to 10, when the B content of the R-T-B based sintered magnet is within the range of the present disclosure, the H cJ at high temperatures is greatly improved when the Mn content exceeds 0.02 mass% (No. 6). Note that No. 10 (Mn: 0.20 mass%) has a high H cJ at high temperatures, but as shown in Table 2, B r is reduced.
R-T-B系焼結磁石の組成がおよそ表3のNo.13~No.15の組成になるように各元素を秤量する以外は、実施例1と同様にしてR-T-B系焼結磁石を作製した。得られたR-T-B系焼結磁石の成分および磁気特性を実施例1と同様に測定した。それぞれの結果を表3および表4に示す。 The R-T-B based sintered magnets were produced in the same manner as in Example 1, except that each element was weighed so that the composition of the R-T-B based sintered magnets would be approximately the composition of No. 13 to No. 15 in Table 3. The composition and magnetic properties of the obtained R-T-B based sintered magnets were measured in the same manner as in Example 1. The respective results are shown in Tables 3 and 4.
R-T-B系焼結磁石にTbを含有する場合は、Tbの含有量に応じてBrが低下してHcJが向上する。この場合、22.5℃においてBrは、Tbを1質量%含有すると0.024T程度減少する。また、100℃においてHcJは、Tbを1質量%含有すると168kA/m程度増大する。そのため、本開示は、上述したように重希土類元素を含有しない場合は、100℃においてはHcJ≧880kA/mであり、かつ、22.5℃においてはBr≧1.32Tを有しているので、Tbを含有する場合は、100℃においてはHcJ≧880+168[Tb]kA/mであり、かつ、22.5℃においてはBr≧1.32-0.024[Tb]Tを有することになる。 When Tb is contained in an R-T-B based sintered magnet, B r decreases and H cJ improves according to the Tb content. In this case, B r decreases by about 0.024 T at 22.5° C. when 1 mass % of Tb is contained. Also, H cJ increases by about 168 kA/m at 100° C. when 1 mass % of Tb is contained. Therefore, in the present disclosure, when no heavy rare earth element is contained as described above, H cJ ≧880 kA/m at 100° C. and B r ≧1.32 T at 22.5° C. is satisfied, and when Tb is contained, H cJ ≧880+168 [Tb] kA/m at 100° C. and B r ≧1.32-0.024 [Tb] T at 22.5° C. is satisfied.
表3および表4に示すように、本発明例であるNo.13~14は、Tbを1.0質量%以下含有し、100℃においてはHcJ≧880+168[Tb]kA/mであり、かつ、22.5℃においてはBr≧1.32-0.024[Tb]Tであり、いずれも高い磁気特性を有している。さらに、本発明例は、実施例1の本発明例と同様にいずれも温度係数の絶対値が小さい。 As shown in Tables 3 and 4, Nos. 13 and 14, which are invention examples, contain 1.0 mass % or less of Tb, and have high magnetic properties, with H cJ ≧880+168 [Tb] kA/m at 100° C. and B r ≧1.32−0.024 [Tb] T at 22.5° C. Furthermore, the invention examples all have small absolute values of the temperature coefficients, similar to the invention example of Example 1.
Claims (8)
B:0.85質量%以上0.91質量%以下、
Ga:0.35質量%以上0.75質量%以下、
Cu:0.05質量%以上0.50質量%以下、
Mn:0.03質量%以上0.15質量%以下、
T:61.5質量%以上70.0質量%以下(TはFeまたはFeとCoであり、Tの90質量%以上がFeである)、を含み、
Ga含有量はCu含有量より多く、
下記式(1)を満足するR-T-B系焼結磁石。
[T]/55.85-14[B]/10.8≧0.063 (1)
([B]は質量%で示すBの含有量であり、[T]は質量%で示すTの含有量である) R: 28.5% by mass or more and 33.0% by mass or less (R is at least one rare earth element, including at least one of Nd and Pr);
B: 0.85% by mass or more and 0.91% by mass or less,
Ga: 0.35% by mass or more and 0.75% by mass or less,
Cu: 0.05% by mass or more and 0.50% by mass or less,
Mn: 0.03% by mass or more and 0.15% by mass or less,
T: 61.5 mass% or more and 70.0 mass% or less (T is Fe or Fe and Co, and 90 mass% or more of T is Fe);
The Ga content is greater than the Cu content,
An RTB based sintered magnet satisfying the following formula (1):
[T]/55.85-14[B]/10.8≧0.063 (1)
([B] is the content of B in mass%, and [T] is the content of T in mass%)
請求項1~6のいずれか1項に記載のR-T-B系焼結磁石。 It does not contain heavy rare earth elements (except for unavoidable impurities), and has HcJ ≧880 kA/m at 100° C. and Br≧1.32 T at 22.5° C.;
The RTB based sintered magnet according to any one of claims 1 to 6.
([Tb]は質量%で示すTbの含有量である) 7. The R-T-B system sintered magnet according to claim 1, containing 1.0 mass % or less of Tb, having H cJ ≧880+168 [Tb]kA/m at 100° C. and B r ≧1.32-0.024 [Tb]T at 22.5° C.
([Tb] is the Tb content in mass%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010169539.5A CN111724957B (en) | 2019-03-19 | 2020-03-12 | R-T-B series sintered magnets |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019051246 | 2019-03-19 | ||
JP2019051246 | 2019-03-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020161788A JP2020161788A (en) | 2020-10-01 |
JP7548688B2 true JP7548688B2 (en) | 2024-09-10 |
Family
ID=72639978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019174671A Active JP7548688B2 (en) | 2019-03-19 | 2019-09-25 | RTB based sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7548688B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115083714B (en) * | 2022-07-06 | 2025-03-25 | 烟台正海磁性材料股份有限公司 | A high coercive force Nd-Fe-B system sintered magnet and its preparation method and application |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003243210A (en) * | 2001-06-29 | 2003-08-29 | Tdk Corp | Rare earth permanent magnet |
JP4103938B1 (en) * | 2007-05-02 | 2008-06-18 | 日立金属株式会社 | R-T-B sintered magnet |
KR101378090B1 (en) * | 2007-05-02 | 2014-03-27 | 히다찌긴조꾸가부시끼가이사 | R-t-b sintered magnet |
EP2273513B1 (en) * | 2008-03-31 | 2019-10-16 | Hitachi Metals, Ltd. | R-t-b-type sintered magnet and method for production thereof |
EP2302646B1 (en) * | 2008-06-13 | 2018-10-31 | Hitachi Metals, Ltd. | R-t-cu-mn-b type sintered magnet |
JP6493138B2 (en) * | 2015-10-07 | 2019-04-03 | Tdk株式会社 | R-T-B sintered magnet |
JP6860808B2 (en) * | 2016-08-17 | 2021-04-21 | 日立金属株式会社 | Manufacturing method of RTB-based sintered magnet |
-
2019
- 2019-09-25 JP JP2019174671A patent/JP7548688B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020161788A (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6090550B1 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP6108029B2 (en) | Method for producing RTB-based sintered magnet | |
JP6798546B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP6432718B1 (en) | Method for producing RTB-based sintered magnet | |
WO2019181249A1 (en) | Method for producing r-t-b system sintered magnet | |
JP6443757B2 (en) | Method for producing RTB-based sintered magnet | |
JP6541038B2 (en) | RTB based sintered magnet | |
JP7021577B2 (en) | Manufacturing method of RTB-based sintered magnet | |
CN106024235B (en) | R-T-B series sintered magnet | |
JP6213697B1 (en) | Method for producing RTB-based sintered magnet | |
JP7021578B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP6702215B2 (en) | R-T-B system sintered magnet | |
JP6474043B2 (en) | R-T-B sintered magnet | |
JP7548688B2 (en) | RTB based sintered magnet | |
JP7215044B2 (en) | Method for producing RTB based sintered magnet | |
JP6623998B2 (en) | Method for producing RTB based sintered magnet | |
JP6760160B2 (en) | Manufacturing method of RTB-based sintered magnet | |
CN111724957B (en) | R-T-B series sintered magnets | |
JP7228097B2 (en) | Method for producing RTB based sintered magnet | |
JP7572775B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP7596644B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP6627555B2 (en) | RTB based sintered magnet | |
JP2019149525A (en) | Method for manufacturing r-t-b-based sintered magnet | |
CN111696777A (en) | Method for producing R-T-B sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230721 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231107 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20231222 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20240112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240829 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7548688 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |