JP7545949B2 - Steel material, steel part, and manufacturing method of steel part - Google Patents
Steel material, steel part, and manufacturing method of steel part Download PDFInfo
- Publication number
- JP7545949B2 JP7545949B2 JP2021204418A JP2021204418A JP7545949B2 JP 7545949 B2 JP7545949 B2 JP 7545949B2 JP 2021204418 A JP2021204418 A JP 2021204418A JP 2021204418 A JP2021204418 A JP 2021204418A JP 7545949 B2 JP7545949 B2 JP 7545949B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- steel
- hours
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 260
- 239000010959 steel Substances 0.000 title claims description 260
- 239000000463 material Substances 0.000 title claims description 148
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 238000005256 carbonitriding Methods 0.000 claims description 68
- 238000001816 cooling Methods 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 46
- 229910001566 austenite Inorganic materials 0.000 claims description 33
- 150000004767 nitrides Chemical class 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 32
- 230000000717 retained effect Effects 0.000 claims description 30
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 150000001247 metal acetylides Chemical class 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 22
- 238000010791 quenching Methods 0.000 claims description 20
- 230000000171 quenching effect Effects 0.000 claims description 20
- 238000005520 cutting process Methods 0.000 claims description 18
- 229910000734 martensite Inorganic materials 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910001562 pearlite Inorganic materials 0.000 claims description 10
- 238000005496 tempering Methods 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 238000002441 X-ray diffraction Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 34
- 206010016256 fatigue Diseases 0.000 description 19
- 238000005096 rolling process Methods 0.000 description 19
- 239000002244 precipitate Substances 0.000 description 17
- 230000007423 decrease Effects 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 229910052804 chromium Inorganic materials 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229910001563 bainite Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000005498 polishing Methods 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 8
- 238000005242 forging Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910000760 Hardened steel Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 238000010273 cold forging Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007730 finishing process Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
本開示は、鋼材、鋼部品、および鋼部品の製造方法に関する。 This disclosure relates to steel materials, steel parts, and methods for manufacturing steel parts.
例えばギアなどの機械構造用の部品の製造方法の一つとして、低炭素鋼(肌焼き鋼)に浸炭処理や浸炭窒化処理などの表面硬化処理を施して表層を硬化する方法がある。浸炭窒化処理を行うと、窒素が侵入した表層部にCrNやMnSiN2などといった窒化物が析出し、表層の硬度や疲労特性が向上する。 One method for manufacturing machine structural parts such as gears is to harden the surface layer of low carbon steel (case hardened steel) by surface hardening treatment such as carburizing or carbonitriding. Carbonitriding causes nitrides such as CrN and MnSiN2 to precipitate in the surface layer where nitrogen has penetrated, improving the hardness and fatigue properties of the surface layer.
例えば特許文献1には、転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、ならびにそれらの製造方法が示されている。前記鋼材は、所定の成分組成を有し、かつ所定の条件で測定して求められるCr偏析率が2.0以下、すなわち、前記鋼材の圧延方向に垂直な任意の切断面において前記鋼材の外周部から中心までの線上で、90°ごとに合計4箇所と、前記鋼材の圧延方向に平行な任意の切断面において前記鋼材の直径の1/4位置の線上で、前記鋼材の中心を起点として90°ごとに長さ5mmに渡って合計4箇所の、各測定位置において、EPMAを用いてCr濃度の線分析を行なってCr濃度の最低値[Cr]min、最大値[Cr]maxを求めて[Cr]max/[Cr]minを算出して求めた、合計8箇所の平均であるCr偏析率が2.0以下であることが示されている。
For example,
特許文献2には、耐摩耗性、スポーリング、ピッティングといった面疲れ特性に優れた浸炭窒化軸受用鋼が示されている。前記浸炭窒化軸受用鋼は、所定の成分組成を有し、かつSi+Cr量が1.8~2.8%の範囲であり、また、浸炭窒化もしくは浸炭浸窒後焼入焼戻しによる表面硬化層を有し、表面から0.1mmまでのC+N量が1.0~2.0%の範囲であることが示されている。
更に特許文献3には、耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼が示されている。前記肌焼用鋼は、所定の成分組成を有し、かつ横断面内におけるビッカース硬さの平均値が180以下で、且つビッカース硬さバラツキの標準偏差の最大値が5以下であることが示されている。 Furthermore, Patent Document 3 discloses a case-hardening steel that has excellent resistance to grain coarsening and cold workability, and does not require softening annealing. The case-hardening steel has a specified composition, and is shown to have an average Vickers hardness of 180 or less in a cross section, and a maximum standard deviation of the Vickers hardness variation of 5 or less.
従来、疲労特性を向上させた鋼部品、加工性を向上させた鋼材について、それぞれ成分組成等を規定することで実現させた技術は示されている。しかし、製造工程において部品形状に容易に加工でき、かつ浸炭窒化後に高い表層硬さを確実に確保できる鋼材と、該鋼材を部品形状に成形した鋼部品は実現しえなかった。本発明は、該事情に鑑みてなされたものであって、部品形状への加工性に優れ、かつ浸炭窒化後に、高い表層硬さを確実に確保できる鋼材と、該鋼材を部品形状に成形した、高い表層硬さを有する鋼部品、および該部品の製造方法を実現することにある。 Conventionally, there have been technologies that have been proposed to achieve steel parts with improved fatigue properties and steel materials with improved workability by specifying the respective component compositions. However, it has not been possible to achieve a steel material that can be easily processed into part shapes in the manufacturing process and that can reliably ensure high surface hardness after carbonitriding, and a steel part formed into the part shape from such a steel material. The present invention has been made in consideration of the above circumstances, and aims to achieve a steel material that is excellent in workability into part shapes and that can reliably ensure high surface hardness after carbonitriding, a steel part having high surface hardness formed from such a steel material into the part shape, and a manufacturing method for such a part.
本発明の態様1は、
C:0.15質量%以上0.30質量%以下、
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼材であって、
最表面から深さ200μmの位置までの範囲において、組織が焼戻しマルテンサイト及び残留オーステナイトからなり、
最表面から、深さ100μm以上200μm以下の位置までの範囲において、残留オーステナイト組織の割合が10体積%以上70体積%以下、かつ(211)面におけるX線回折ピークの半価幅が5.5°以上であり、
最表面から深さ150μmの位置において、硬さがビッカース硬さで600HV以上であり、C濃度が0.5質量%以上0.9質量%以下、かつN濃度が0.4質量%以上1.20質量%以下であり、更に、炭化物、窒化物および炭窒化物の平均円相当直径が0.1μm以上1.0μm以下であり、円相当直径が0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の合計面積率が5%以上かつ個数密度が0.1個/μm2以上10個/μm2以下である鋼材である。
C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel material containing N: more than 0 mass% and 0.050 mass% or less, O: more than 0 mass% and 0.005 mass% or less, with the balance being Fe and unavoidable impurities,
In the range from the outermost surface to a depth of 200 μm, the structure is composed of tempered martensite and retained austenite,
In a range from the outermost surface to a position having a depth of 100 μm or more and 200 μm or less, the ratio of the retained austenite structure is 10 vol% or more and 70 vol% or less, and the half width of the X-ray diffraction peak in the (211) plane is 5.5° or more,
The steel material has, at a position 150 μm deep from the outermost surface, a Vickers hardness of 600 HV or more, a C concentration of 0.5 mass% or more and 0.9 mass% or less, and an N concentration of 0.4 mass% or more and 1.20 mass% or less, and further has an average circular equivalent diameter of carbides, nitrides and carbonitrides of 0.1 μm or more and 1.0 μm or less, a total area ratio of carbides, nitrides and carbonitrides having a circular equivalent diameter of 0.1 μm or more and 1.0 μm or less of 5% or more, and a number density of 0.1 pieces/ μm2 or more and 10 pieces/ μm2 or less.
本発明の態様2は、
C:0.15質量%以上0.30質量%以下、
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼材であって、
組織がフェライトとパーライトの混合組織からなり、内部硬さがビッカース硬さで200HV以下である鋼材である。
C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel material containing N: more than 0 mass% and 0.050 mass% or less, O: more than 0 mass% and 0.005 mass% or less, with the balance being Fe and unavoidable impurities,
The steel has a mixed structure of ferrite and pearlite and has an internal hardness of 200 HV or less in Vickers hardness.
本発明の態様3は、
Cu:0質量%超1.0質量%以下、Ni:0質量%超1.0質量%以下、およびB:0質量%超0.0050質量%以下よりなる群から選ばれる1種以上を、更に含有する態様1又は2に記載の鋼材である。
Aspect 3 of the present invention is
The steel material according to
本発明の態様4は、
V:0質量%超0.50質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選ばれる1種以上を、更に含有する態様1~3のいずれかに記載の鋼材である。
The steel material according to any one of
本発明の態様5は、
C:0.15質量%以上0.30質量%以下、
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼部品であって、
最表面から深さ100μmの位置までの範囲において、組織が焼戻しマルテンサイト及び残留オーステナイトからなり、
最表面において、残留オーステナイト組織の割合が10体積%以上70体積%以下、かつ(211)面におけるX線回折ピークの半価幅が5.5°以上であり、
最表面において、硬さがビッカース硬さで600HV以上であり、C濃度が0.5質量%以上0.9質量%以下、N濃度が0.4質量%以上1.20質量%以下であり、更に、炭化物、窒化物および炭窒化物の平均円相当直径が0.1μm以上1.0μm以下であり、円相当直径が0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の合計面積率が5%以上かつ個数密度が0.1個/μm2以上10個/μm2以下である鋼部品である。
C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel part containing N: more than 0 mass% and not more than 0.050 mass%, O: more than 0 mass% and not more than 0.005 mass%, with the balance being Fe and unavoidable impurities,
In the range from the outermost surface to a depth of 100 μm, the structure is composed of tempered martensite and retained austenite,
At the outermost surface, the proportion of the retained austenite structure is 10 volume % or more and 70 volume % or less, and the half width of the X-ray diffraction peak in the (211) plane is 5.5° or more,
The steel part has, at its outermost surface, a Vickers hardness of 600 HV or more, a C concentration of 0.5 mass% or more and 0.9 mass% or less, an N concentration of 0.4 mass% or more and 1.20 mass% or less, an average equivalent circle diameter of the carbides, nitrides and carbonitrides of 0.1 μm or more and 1.0 μm or less, a total area ratio of the carbides, nitrides and carbonitrides of 0.1 μm or more and 1.0 μm or less in equivalent circle diameter is 5% or more, and a number density of 0.1 pieces/ μm2 or more and 10 pieces/μm2 or less .
本発明の態様6は、
Cu:0質量%超1.0質量%以下、Ni:0質量%超1.0質量%以下、およびB:0質量%超0.0050質量%以下よりなる群から選ばれる1種以上を、更に含有する態様5に記載の鋼部品である。
The steel part according to
本発明の態様7は、
V:0質量%超0.50質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選ばれる1種以上を、更に含有する態様5又は6に記載の鋼部品である。
The steel part according to
本発明の態様8は、
態様5に記載の鋼部品を製造する方法であって、
C:0.15質量%以上0.30質量%以下、
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼片を、
冷却速度測定条件として、900℃以下800℃以上の加熱温度で30分以上1時間以下保持し、その後、大気下で、前記加熱温度から300℃まで空冷したときに、平均冷却速度が0.39℃/s以上となるような形状に、粗成型加工する工程と、
850℃以上950℃以下の第1温度に加熱し、該第1温度で0.5時間以上2時間以下保持し、次いで、650℃以上700℃以下の第2温度まで降温してから、該第2温度で3.5時間以上5時間以下保持し、その後に室温まで空冷または炉冷する2段焼きならし処理工程と、
切削加工工程と、
切削加工後に、900℃以上950℃以下の温度かつ炭素当量Cp:0.5%以上1.2%以下の雰囲気で、2時間以上7時間以下保持する第1工程、第1工程と同じ温度かつ炭素当量Cp:0.5%以上0.7%以下の雰囲気で、2時間以上4時間以下保持する第2工程、および、800℃以上900℃以下の温度かつ第2工程と同じ炭素当量CpであってNH3量が6%以上12%以下の雰囲気で、4時間以上6時間以下保持する第3工程を含む浸炭窒化処理工程と、
浸炭窒化処理後に、油焼入れを行い、その後に焼戻しを行う工程と
を含む、鋼部品の製造方法である。
Aspect 8 of the present invention is
A method for producing a steel part according to
C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel slab containing N: more than 0 mass% and 0.050 mass% or less, O: more than 0 mass% and 0.005 mass% or less, with the balance being Fe and unavoidable impurities,
As a cooling rate measurement condition, a step of roughly forming the material into a shape such that when the material is kept at a heating temperature of 900° C. or less and 800° C. or more for 30 minutes to 1 hour, and then air-cooled from the heating temperature to 300° C. under atmospheric conditions, the material has an average cooling rate of 0.39° C./s or more;
a two-stage normalizing process of heating to a first temperature of 850° C. to 950° C., holding the first temperature for 0.5 hours to 2 hours, then lowering the temperature to a second temperature of 650° C. to 700° C., holding the second temperature for 3.5 hours to 5 hours, and then air-cooling or furnace-cooling to room temperature;
A cutting process;
a carbonitriding process including a first step of holding the material after cutting at a temperature of 900° C. to 950° C. and in an atmosphere having a carbon equivalent Cp of 0.5% to 1.2% for 2 hours to 7 hours, a second step of holding the material at the same temperature as in the first step and in an atmosphere having a carbon equivalent Cp of 0.5% to 0.7% for 2 hours to 4 hours, and a third step of holding the material at a temperature of 800° C. to 900° C. and in an atmosphere having the same carbon equivalent Cp as in the second step and an NH3 content of 6% to 12% for 4 hours to 6 hours;
This is a method for manufacturing a steel part, which includes the steps of performing oil quenching after the carbonitriding treatment and then performing tempering.
本発明の態様9は、
態様6に記載の鋼部品を製造する方法であって、
前記鋼片は、Cu:0質量%超1.0質量%以下、Ni:0質量%超1.0質量%以下、およびB:0質量%超0.0050質量%以下よりなる群から選ばれる1種以上を、更に含有する態様8に記載の鋼部品の製造方法である。
Aspect 9 of the present invention is
A method for producing a steel part according to
9. The method for producing a steel part according to claim 8, wherein the steel billet further contains one or more selected from the group consisting of Cu: more than 0 mass% and 1.0 mass% or less, Ni: more than 0 mass% and 1.0 mass% or less, and B: more than 0 mass% and 0.0050 mass% or less.
本発明の態様10は、
態様7に記載の鋼部品を製造する方法であって、
前記鋼片は、V:0質量%超0.50質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選ばれる1種以上を、更に含有する態様8又は9に記載の鋼部品の製造方法である。
Aspect 10 of the present invention is
A method for producing a steel part according to
10. The method for producing a steel part according to claim 8 or 9, wherein the steel billet further contains one or more elements selected from the group consisting of V: more than 0 mass% and 0.50 mass% or less, and Nb: more than 0 mass% and 0.10 mass% or less.
本発明によれば、部品形状への加工性に優れ、かつ浸炭窒化後に、高い表層硬さを確実に確保できる鋼材と、該鋼材を部品形状に成形した、高い表層硬さを有する鋼部品、および該部品の製造方法を提供できる。 The present invention provides a steel material that is excellent in workability into part shapes and can reliably ensure high surface hardness after carbonitriding, a steel part having high surface hardness formed by forming the steel material into part shapes, and a method for manufacturing the part.
従来、製造工程において部品形状に容易に加工でき、かつ浸炭窒化後に高い表層硬さを確実に確保できる鋼材と、該鋼材を部品形状に成形した鋼部品は実現しえなかった。その理由として例えば、鋼材や鋼部品のサイズが大きく、かつ浸炭窒化処理により母相中のCrやMnの量が低下することで、浸炭窒化後の焼入れ時に焼入れ不良が生じ、高い表層硬さが得られないことが考えられる。焼入れ性を確保するため、合金成分を増量することが考えられるが、鋼材の組織としてベイナイトが生成しやすくなり、また混粒化による結晶粒粗大化が生じ、鋼材の内部硬さが上昇して、切削性などの加工性の低下や焼きならし処理の長時間化などといった製造性の低下が生じうる。 Conventionally, it has not been possible to produce steel materials that can be easily processed into part shapes during manufacturing and that can reliably ensure high surface hardness after carbonitriding, and steel parts formed from such steel materials into part shapes. The reasons for this are, for example, that the size of the steel materials and steel parts is large, and the amount of Cr and Mn in the parent phase is reduced by the carbonitriding process, which leads to poor quenching during quenching after carbonitriding and makes it difficult to obtain high surface hardness. In order to ensure hardenability, it is possible to increase the amount of alloy components, but this makes it easier for bainite to form in the steel structure, and also causes grain coarsening due to mixed grains, which increases the internal hardness of the steel material, which can lead to reduced manufacturability, such as reduced machinability and longer normalizing times.
そこで本発明者らは、加工性や製造性を低下させることなく、高い表層硬さの鋼材と鋼部品を得ること、例えば浸炭窒化後の焼入れで冷却速度が低めであっても浸炭窒化処理後の鋼材または鋼部品の表層部の焼入れ不良(硬度低下)発生が抑制されて、加工性と表層焼入れ性に優れた浸炭窒化処理用鋼材(「肌焼き用鋼材」、「浸炭窒化処理前の鋼材」ともいう)と、表層硬さの高い、浸炭窒化処理鋼材(「肌焼き鋼材」ともいう)および鋼部品(肌焼き鋼部品)とを実現すべく、鋭意検討を重ねた。 The inventors therefore conducted extensive research to obtain steel materials and steel parts with high surface hardness without compromising workability or manufacturability, for example, to realize steel materials for carbonitriding (also called "steel materials for case hardening" or "steel materials before carbonitriding") with excellent workability and surface hardenability, and carbonitriding steel materials (also called "case hardened steel materials") and steel parts (case hardened steel parts) with high surface hardness, by suppressing the occurrence of poor hardening (reduction in hardness) in the surface layer of steel materials or steel parts after carbonitriding even if the cooling rate in quenching after carbonitriding is slow.
その結果、所定の成分組成、特にSi量およびCr量を一定範囲内とすると共に、浸炭窒化後の表層組織の焼入れ性確保には、窒化物として単体では析出しないMnを増量することが有効であることと、一方で、Mnが過剰に含まれるとベイナイト組織の生成量が増え、焼きならし処理の長時間化を招くため、製造可能な範囲でMn量を調整すればよいことをまず見いだした。更に、この様に化学成分組成を調整すると共に、製造工程で、特に2段焼きならしを行うことで、所望の組織を有し、内部硬さがビッカース硬さで200HV以下であって、部品形状への加工性に優れ、かつ浸炭窒化を施した後には、高い表層硬さを確実に確保できる鋼材(浸炭窒化処理用鋼材)が得られること、該鋼材に少なくとも浸炭窒化処理を施すことで、表層硬さの高い浸炭窒化処理後の鋼材(浸炭窒化処理鋼材)と、該浸炭窒化後の鋼材を部品形状に加工して得られる、表層硬さの高い鋼部品が得られることを見出した。更には、該鋼部品を容易に実現することできる製造方法も見出した。 As a result, it was found that while keeping the predetermined composition, particularly the Si and Cr contents within a certain range, and increasing the amount of Mn, which does not precipitate as a nitride by itself, is effective in ensuring the hardenability of the surface structure after carbonitriding, and that, since an excessive amount of Mn increases the amount of bainite structure formed and leads to a longer normalizing time, it is sufficient to adjust the amount of Mn within a manufacturable range. Furthermore, it was found that by adjusting the chemical composition in this way and performing, in particular, two-stage normalizing in the manufacturing process, a steel material (steel material for carbonitriding) having a desired structure, an internal hardness of 200 HV or less in Vickers hardness, excellent workability into part shapes, and capable of reliably ensuring high surface hardness after carbonitriding can be obtained, and that by performing at least carbonitriding on the steel material, a steel material after carbonitriding (carbonitrided steel material) with high surface hardness and a steel part with high surface hardness obtained by processing the steel material after carbonitriding into a part shape can be obtained. Furthermore, they also discovered a manufacturing method that can easily produce these steel parts.
以下では、本実施形態に係る鋼材、鋼部品、および鋼部品の製造方法について順に説明する。 Below, we will explain the steel material, steel parts, and manufacturing method for steel parts according to this embodiment.
[鋼材]
以下、鋼材の化学成分組成について説明するが、該化学成分組成は、鋼部品、鋼部品と鋼材の製造に用いる鋼片の化学成分組成でもある。
(化学成分組成)
C:0.15質量%以上0.30質量%以下
Cは、鋼部品の芯部硬さを確保するために有効な元素である。そのためにC量を0.15質量%以上とする。C量は、好ましくは0.16質量%以上、より好ましくは0.17質量%以上である。しかしながら、C量が0.30質量%を超えると鋼材の被削性、冷間鍛造性が悪化し、更には鋼部品の靱性が劣化する。そのためにC量を0.30質量%以下とする。C量は、好ましくは0.24質量%以下、より好ましくは0.23質量%以下である。
[Steel]
The chemical composition of the steel material will be explained below, but this chemical composition also applies to the chemical composition of the steel part and the steel billet used in the production of the steel part and the steel material.
(Chemical composition)
C: 0.15% by mass or more and 0.30% by mass or less C is an effective element for ensuring the core hardness of steel parts. For this reason, the C content is set to 0.15% by mass or more. The C content is preferably 0.16% by mass or more, more preferably 0.17% by mass or more. However, if the C content exceeds 0.30% by mass, the machinability and cold forgeability of the steel material deteriorate, and further the toughness of the steel part deteriorates. For this reason, the C content is set to 0.30% by mass or less. The C content is preferably 0.24% by mass or less, more preferably 0.23% by mass or less.
Si:0.36質量%以上1.00質量%以下
Siは、マトリックスの固溶強化、焼入れ性および焼戻し軟化抵抗性の向上に有効な元素である。そのためにSi量を0.36質量%以上とする。Si量は、好ましくは0.38質量%以上、より好ましくは0.40質量%以上である。しかしながら、Si量が多くなり過ぎると鋼材の被削性、冷間鍛造性が著しく低下する。そのためにSi量は1.00質量%以下とする。Si量は、好ましくは0.70質量%以下、より好ましくは0.60質量%以下である。
Si: 0.36% by mass or more and 1.00% by mass or less Si is an element effective in improving the solid solution strengthening, hardenability, and temper softening resistance of the matrix. For this reason, the Si content is set to 0.36% by mass or more. The Si content is preferably 0.38% by mass or more, more preferably 0.40% by mass or more. However, if the Si content is too high, the machinability and cold forgeability of the steel material are significantly reduced. For this reason, the Si content is set to 1.00% by mass or less. The Si content is preferably 0.70% by mass or less, more preferably 0.60% by mass or less.
Mn:0.40質量%以上1.50質量%以下
Mnは、マトリックスの固溶強化に有効である他、焼入れ性の向上に大きく寄与する。浸炭窒化時にSiと複合窒化物を形成するが、Crよりも母相に残存する割合が大きいため、焼入れ性に影響する度合いが大きい元素である。そのためにMn量を0.40質量%以上とする。Mn量は、好ましくは0.70質量%以上、より好ましくは1.00質量%以上である。しかしながら、Mn量が多くなり過ぎると、ベイナイト組織の生成や結晶粒粗大化により、鋼材の被削性、冷間鍛造性が低下する。また、浸炭後に残留オーステナイトが過剰に発生し、部品の強度が低下しやすくなる。そのためにMn量を1.50質量%以下とする。
Mn: 0.40% by mass or more and 1.50% by mass or less Mn is effective for solid solution strengthening of the matrix, and also contributes greatly to improving hardenability. Although it forms a composite nitride with Si during carbonitriding, it is an element that has a large degree of influence on hardenability because a larger proportion of it remains in the matrix than Cr. For this reason, the Mn content is set to 0.40% by mass or more. The Mn content is preferably 0.70% by mass or more, more preferably 1.00% by mass or more. However, if the Mn content is too large, the machinability and cold forgeability of the steel material are reduced due to the generation of bainite structure and the coarsening of crystal grains. In addition, residual austenite is generated excessively after carburization, and the strength of the parts is likely to decrease. For this reason, the Mn content is set to 1.50% by mass or less.
Cr:1.20質量%以上1.90質量%以下
Crは、焼入れ性を向上させ、浸炭窒化等の表面硬化処理により表面硬化層内に炭化物、窒化物、炭窒化物などの析出物を形成し、転動疲労寿命の向上に寄与する元素である。更にCrは、転動疲労寿命の安定性に大きく寄与する元素でもある。そのためにCr量を1.20質量%以上とする。Cr量は、好ましくは1.30質量%以上、より好ましくは1.35質量%以上である。しかし、Cr量が多くなり過ぎると、鋼材の被削性や冷間鍛造性が低下し、更に粗大な析出物が析出して転動疲労寿命、および転動疲労寿命の安定性を低下させる。また、浸炭時に表層に酸化層を形成するため、炭素や窒素の侵入を阻害するおそれがある。さらに、焼入れ性の向上のために多量に添加してもほとんどが窒化物となるため、浸炭窒化後の焼入れで必要な焼き入れ性の向上に寄与しにくい。そのためにCr量を1.90質量%以下とする。Cr量は例えば1.70質量%以下、更には1.60質量%以下とすることができる。
Cr: 1.20% by mass or more and 1.90% by mass or less Cr is an element that improves hardenability, forms precipitates such as carbides, nitrides, and carbonitrides in the surface hardened layer by surface hardening treatment such as carbonitriding, and contributes to improving the rolling fatigue life. Furthermore, Cr is also an element that greatly contributes to the stability of the rolling fatigue life. For this reason, the Cr amount is set to 1.20% by mass or more. The Cr amount is preferably 1.30% by mass or more, more preferably 1.35% by mass or more. However, if the Cr amount becomes too large, the machinability and cold forgeability of the steel material decrease, and further coarse precipitates are precipitated, which decreases the rolling fatigue life and the stability of the rolling fatigue life. In addition, since an oxide layer is formed on the surface layer during carburization, there is a risk of inhibiting the penetration of carbon and nitrogen. Furthermore, even if a large amount is added to improve the hardenability, most of it becomes nitride, so it is difficult to contribute to the improvement of the hardenability required for quenching after carbonitriding. For this reason, the Cr amount is set to 1.90% by mass or less. The Cr amount can be, for example, 1.70 mass % or less, or further 1.60 mass % or less.
Mo:0.30質量%以上0.80質量%以下
Moは、焼入れ性を著しく向上させ、衝撃強度の向上に有効な元素である。そのためにMo量を0.30質量%以上とする。Mo量は、好ましくは0.35質量%以上、より好ましくは0.40質量%以上である。しかしながら、Mo量が多くなり過ぎると被削性が低下し、コストが増加する。そのためにMo量を0.80質量%以下とする。Mo量は、好ましくは0.55質量%以下、より好ましくは0.50質量%以下である。
Mo: 0.30% by mass or more and 0.80% by mass or less Mo is an element that significantly improves hardenability and is effective in improving impact strength. For this reason, the Mo content is set to 0.30% by mass or more. The Mo content is preferably 0.35% by mass or more, more preferably 0.40% by mass or more. However, if the Mo content is too high, the machinability decreases and the cost increases. For this reason, the Mo content is set to 0.80% by mass or less. The Mo content is preferably 0.55% by mass or less, more preferably 0.50% by mass or less.
P:0質量%超0.05質量%以下
Pは、不可避的に不純物として含有する元素であり、粒界に偏析し、加工性を低下させる。そのためにP量を0.05質量%以下とする。P量は、好ましくは0.04質量%以下、より好ましくは0.03質量%以下に抑える。しかしながら、P量を0質量%にすることは実質的に困難であり、過度の低減は製鋼コストの増大を招く。よってP量の下限は0.001質量%程度でありうる。
P: more than 0 mass% and 0.05 mass% or less P is an element that is inevitably contained as an impurity, and it segregates at grain boundaries and reduces workability. For this reason, the P content is set to 0.05 mass% or less. The P content is preferably suppressed to 0.04 mass% or less, and more preferably to 0.03 mass% or less. However, it is practically difficult to reduce the P content to 0 mass%, and excessive reduction leads to an increase in steelmaking costs. Therefore, the lower limit of the P content may be about 0.001 mass%.
S:0質量%超0.05質量%以下
Sは、不可避的に不純物として含有する元素であり、S量が多くなり過ぎるとMnSとして析出し、微細なクラックの起点となり耐摩耗性を低下させる。そのためにS量を0.05質量%以下とする。S量は、好ましくは0.04質量%以下、より好ましくは0.03質量%以下に抑える。しかしながら、S量を0質量%にすることは実質的に困難であり、過度の低減は製鋼コストの増大を招く。よってS量の下限は0.001質量%程度でありうる。
S: more than 0 mass% and 0.05 mass% or less S is an element that is inevitably contained as an impurity, and if the amount of S is too large, it precipitates as MnS, which becomes the starting point of fine cracks and reduces wear resistance. For this reason, the amount of S is set to 0.05 mass% or less. The amount of S is preferably kept to 0.04 mass% or less, more preferably 0.03 mass% or less. However, it is practically difficult to make the amount of
Al:0.005質量%以上0.2質量%以下
Alは、鋼材の脱酸作用を有すると共に、Nと結合して窒化物を形成し、結晶粒を微細化して転動疲労寿命の向上に寄与する元素である。そのためにAl量を0.005質量%以上とする。Al量は、好ましくは0.010質量%以上、より好ましくは0.015質量%以上である。しかしながら、0.2質量%を超えるAlが含まれていてもこの効果は飽和するため、Al量を0.2質量%以下とした。Al量は、好ましくは0.1質量%以下、より好ましくは0.050質量%以下である。
Al: 0.005% by mass or more and 0.2% by mass or less Al is an element that has a deoxidizing effect on steel material, and also combines with N to form nitrides, thereby refining crystal grains and contributing to improving rolling fatigue life. For this reason, the Al content is set to 0.005% by mass or more. The Al content is preferably 0.010% by mass or more, more preferably 0.015% by mass or more. However, even if the Al content exceeds 0.2% by mass, this effect is saturated, so the Al content is set to 0.2% by mass or less. The Al content is preferably 0.1% by mass or less, more preferably 0.050% by mass or less.
N:0質量%超0.050質量%以下
Nは、Alと窒化物を形成し、該窒化物によりオーステナイト結晶粒の成長が抑制され、結晶粒が微細化することで、転動疲労寿命の向上に寄与する元素である。そのためにN量は、0質量%超、好ましくは0.0010質量%以上、より好ましくは0.0015質量%以上、更に好ましくは0.0020質量%以上とする。しかしながら、N量が多くなり過ぎると、AlやTiの粗大な窒化物が生成し、微細なクラックの起点となる。そのためにN量を0.050質量%以下とする。N量は、好ましくは0.040質量%以下、より好ましくは0.020質量%以下とする。
N: more than 0 mass% and 0.050 mass% or less N is an element that forms nitrides with Al, which inhibit the growth of austenite grains and refine the grains, thereby contributing to improving the rolling fatigue life. For this reason, the N content is more than 0 mass%, preferably 0.0010 mass% or more, more preferably 0.0015 mass% or more, and even more preferably 0.0020 mass% or more. However, if the N content is too high, coarse nitrides of Al and Ti are generated and become the starting points of fine cracks. For this reason, the N content is 0.050 mass% or less. The N content is preferably 0.040 mass% or less, more preferably 0.020 mass% or less.
O:0質量%超0.005質量%以下
Oは、Al、Siと結合して酸化物系介在物を生成して、転動疲労寿命に悪影響を及ぼし、更には冷間加工性にも悪影響を及ぼす元素である。そのためにO量を0.005質量%以下とする。O量は、好ましくは0.004質量%以下、より好ましくは0.003質量%以下である。しかしながら、O量を0質量%にすることは実質的に困難であり、過度の低減は製鋼コストの増大を招く。そのためにO量の下限は、0.0001質量%程度でありうる。
O: more than 0 mass% and 0.005 mass% or less O is an element that combines with Al and Si to form oxide-based inclusions, adversely affecting the rolling fatigue life and further the cold workability. For this reason, the O content is set to 0.005 mass% or less. The O content is preferably 0.004 mass% or less, more preferably 0.003 mass% or less. However, it is practically difficult to reduce the O content to 0 mass%, and excessive reduction leads to an increase in steelmaking costs. For this reason, the lower limit of the O content may be about 0.0001 mass%.
残部はFe及び不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる微量元素(例えば、As、Sb、Snなど)の混入が許容される。なお、例えば、P、SおよびOのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。 The balance is Fe and unavoidable impurities. As unavoidable impurities, the inclusion of trace elements (e.g., As, Sb, Sn, etc.) that are brought in depending on the conditions of raw materials, materials, manufacturing equipment, etc. is permitted. Note that, for example, there are elements such as P, S, and O, which are generally preferable to have in small amounts and are therefore unavoidable impurities, but whose composition ranges are separately specified as above. For this reason, in this specification, when referring to the "unavoidable impurities" that make up the balance, this is a concept that excludes elements whose composition ranges are separately specified.
本実施形態に係る鋼材、鋼部品、およびこれらの製造に用いる鋼片は、化学成分組成において、以上に述べた元素を含んでいればよい。下記に述べる選択元素は、含まれていなくてもよいが、上記元素と共に必要に応じて含有させることにより、焼入れ性等の更なる向上に寄与する。以下、選択元素について説明する。 The steel material, steel parts, and steel pieces used in the manufacture of these according to this embodiment may contain the elements described above in their chemical composition. The optional elements described below do not have to be included, but including them as necessary together with the above elements will contribute to further improvement of hardenability, etc. The optional elements are described below.
Cu:0質量%超1.0質量%以下、Ni:0質量%超1.0質量%以下、およびB:0質量%超0.0050質量%以下よりなる群から選ばれる1種以上
Cu、NiおよびBは、いずれも母相の焼入れ性向上元素として作用し、硬さを高めて転動疲労特性の更なる向上に寄与する元素である。これらの効果を有効に発揮させるため、Cu、Niはそれぞれ、好ましくは0質量%超、より好ましくは0.01質量%以上、更に好ましくは0.02質量%以上、より更に好ましくは0.03質量%以上含有させる。またB量は、好ましくは0質量%超、より好ましくは0.0001質量%以上、更に好ましくは0.0005質量%以上、より更に好ましくは0.0010質量%以上である。一方、鋼材の製造性の劣化を抑制する観点から、Cu、Niの含有量はそれぞれ、1.0質量%以下であることが好ましく、0.20質量%以下であることがより好ましく、0.15質量%以下であることが更に好ましい。また、上記観点から、Bの含有量は、好ましくは0.0050質量%以下、より好ましくは0.0040質量%以下、さらに好ましくは0.0030質量%以下である。これらの元素は、いずれかが単独で含まれていてもよいし、2種以上が含まれていてもよい。
At least one selected from the group consisting of Cu: more than 0 mass% and not more than 1.0 mass%, Ni: more than 0 mass% and not more than 1.0 mass%, and B: more than 0 mass% and not more than 0.0050 mass%. Cu, Ni, and B all act as elements that improve the hardenability of the parent phase, and contribute to further improvement of rolling fatigue properties by increasing hardness. In order to effectively exert these effects, Cu and Ni are each preferably contained in an amount of more than 0 mass%, more preferably 0.01 mass% or more, even more preferably 0.02 mass% or more, and even more preferably 0.03 mass% or more. The amount of B is preferably more than 0 mass%, more preferably 0.0001 mass% or more, even more preferably 0.0005 mass% or more, and even more preferably 0.0010 mass% or more. On the other hand, from the viewpoint of suppressing deterioration of the manufacturability of the steel material, the contents of Cu and Ni are each preferably 1.0 mass% or less, more preferably 0.20 mass% or less, and even more preferably 0.15 mass% or less. From the above viewpoints, the content of B is preferably 0.0050 mass% or less, more preferably 0.0040 mass% or less, and further preferably 0.0030 mass% or less. Any of these elements may be contained alone, or two or more kinds may be contained.
V:0質量%超0.50質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選ばれる1種以上
VとNbは、CとNの1以上と結合し炭窒化物を形成することで、分散強化や結晶粒微細化といった効果を発揮し、転動疲労寿命を向上させる元素である。これらの効果を有効に発揮させるには、V、Nbはそれぞれ、好ましくは0質量%超含有させるのがよい。ただし、過剰に含まれる場合、析出する炭窒化物が粗大になり破壊の起点となるため、かえって転動疲労寿命を悪化させる。したがって、V量の上限は0.50質量%、Nb量の上限は0.10質量%とする。これらの元素は、いずれかが単独で含まれていてもよいし、2種が含まれていてもよい。
At least one selected from the group consisting of V: more than 0 mass% and 0.50 mass% or less, and Nb: more than 0 mass% and 0.10 mass% or less V and Nb are elements that bond with one or more of C and N to form carbonitrides, thereby exerting effects such as dispersion strengthening and grain refinement, and improving the rolling fatigue life. In order to effectively exert these effects, it is preferable that V and Nb are each contained in an amount of more than 0 mass%. However, if contained in excess, the precipitated carbonitrides become coarse and become the starting point of fracture, which rather worsens the rolling fatigue life. Therefore, the upper limit of the V amount is 0.50 mass%, and the upper limit of the Nb amount is 0.10 mass%. Any one of these elements may be contained alone, or two types may be contained.
(鋼組織と特性)
鋼部品の製造では、切削、圧延、鍛造などの加工が1回以上施されるが、本明細書では、最終回の加工が施される前の鋼を鋼材といい、該鋼材に最終回の加工が施されて、製品の形状となったものを鋼部品という。また前記鋼材には、後述する2段焼きならしを行って得られる浸炭窒化処理前の鋼材(浸炭窒化処理用鋼材)と、該鋼材に浸炭窒化処理を施して得られる浸炭窒化処理鋼材が挙げられ、これらの鋼材は、下記に詳述の通り組織と特性が異なる。鋼部品は、浸炭窒化処理鋼材を加工して得られ、その組織、特性は、下記に説明する通り、測定位置を除き、浸炭窒化処理鋼材の組織、特性と実質同じである。
(Steel structure and properties)
In the manufacture of steel parts, processing such as cutting, rolling, and forging is carried out one or more times, but in this specification, the steel before the final processing is referred to as a steel material, and the steel material after the final processing to obtain the shape of the product is referred to as a steel part. The steel material includes a steel material before carbonitriding treatment (steel material for carbonitriding treatment) obtained by performing a two-stage normalizing process described below, and a carbonitrided steel material obtained by performing a carbonitriding process on the steel material, and these steel materials have different structures and properties as described in detail below. The steel part is obtained by processing the carbonitrided steel material, and its structure and properties are substantially the same as those of the carbonitrided steel material, except for the measurement position, as described below.
以下では、浸炭窒化処理前の鋼材の組織から順に説明する。なお、以下の鋼組織の説明では、そのような組織を有することにより各種の特性を向上できるメカニズムについて説明している場合がある。これらは本発明者らが現時点で得られている知見により考えたメカニズムであるが、本発明の技術的範囲を限定するものではないことに留意されたい。 The following will explain the structure of the steel material before carbonitriding. Note that in the following explanation of the steel structure, the mechanism by which having such a structure can improve various properties may be explained. These are mechanisms that the inventors have devised based on the knowledge currently available, but please note that they do not limit the technical scope of the present invention.
[浸炭窒化処理前の鋼材の鋼組織と特性]
浸炭窒化処理前の鋼材(浸炭窒化処理用鋼材)は、組織がフェライトとパーライトの混合組織からなり、内部硬さがビッカース硬さで200HV以下である。
[Structure and properties of steel before carbonitriding]
The steel material before carbonitriding (steel material for carbonitriding) has a mixed structure of ferrite and pearlite, and has an internal hardness of 200 HV or less in Vickers hardness.
本実施形態では、加工性向上の観点から、MnやMoの含有量を一定以下に抑え、かつ焼きならし時間を一定以上確保することによって、浸炭窒化処理前の鋼材の組織における、ベイナイト組織の割合を抑え、フェライトとパーライトの混合組織とし、内部硬さがビッカース硬さで200HV以下に抑える。これによって、部品形状とするための例えば切削工程において、切削性を高め、切削加工時間の増加や工具摩耗の増加を抑制することができる。上記内部硬さは、好ましくは180HV以下である。なお、内部硬さは鋼材の直径D/4部のビッカース硬さとする。 In this embodiment, from the viewpoint of improving workability, the content of Mn and Mo is kept below a certain level, and the normalizing time is ensured to be at least a certain level, thereby reducing the proportion of bainite in the structure of the steel material before carbonitriding, forming a mixed structure of ferrite and pearlite, and suppressing the internal hardness to 200 HV or less in Vickers hardness. This improves machinability in, for example, a cutting process to form the part shape, and suppresses increases in cutting processing time and tool wear. The internal hardness is preferably 180 HV or less. The internal hardness is the Vickers hardness at a diameter D/4 part of the steel material.
[浸炭窒化処理鋼材の鋼組織と特性]
次に、前記浸炭窒化処理用鋼材に浸炭窒化を施して得られる浸炭窒化処理鋼材の、鋼組織と特性について説明する。浸炭窒化処理鋼材は、最表面から深さ200μmの位置までの範囲において、組織が焼戻しマルテンサイト及び残留オーステナイトからなり、最表面から深さ100μmの位置から200μmの位置までの範囲において、残留オーステナイト組織の割合が10体積%以上70体積%以下、かつ(211)面におけるX線回折ピークの半価幅が5.5°以上であり、最表面から深さ150μmの位置において、硬さがビッカース硬さで600HV以上であり、C濃度が0.5質量%以上0.9質量%以下、かつN濃度が0.4質量%以上1.20質量%以下であり、更に、炭化物、窒化物および炭窒化物の平均円相当直径が0.1μm以上1.0μm以下であり、円相当直径が0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の合計面積率が5%以上かつ個数密度が0.1個/μm2以上10個/μm2以下である。以下、各要件について説明する。
[Structure and properties of carbonitrided steel]
Next, the steel structure and characteristics of the carbonitrided steel material obtained by subjecting the above-mentioned steel material for carbonitriding to carbonitriding will be described. The carbonitrided steel material has a structure consisting of tempered martensite and retained austenite in a range from the outermost surface to a depth of 200 μm, a ratio of the retained austenite structure is 10 volume % or more and 70 volume % or less in a range from a depth of 100 μm to a depth of 200 μm from the outermost surface, a half width of an X-ray diffraction peak in a (211) plane is 5.5° or more, and at a depth of 150 μm from the outermost surface, a Vickers hardness is 600 HV or more, a C concentration is 0.5 mass % or more and 0.9 mass % or less, and an N concentration is 0.4 mass % or more and 1.20 mass % or less, an average circle equivalent diameter of the carbides, nitrides and carbonitrides is 0.1 μm or more and 1.0 μm or less, a total area ratio of the carbides, nitrides and carbonitrides having circle equivalent diameters of 0.1 μm or more and 1.0 μm or less is 5% or more and a number density is 0.1 particles/μm The density is 2 or more and 10 or less per μm2. Each requirement will be described below.
(最表面から深さ200μmの位置までの範囲において、組織が焼戻しマルテンサイト及び残留オーステナイト)
(最表面から、深さ100μm以上200μm以下の位置までの範囲において、残留オーステナイト組織の割合が10体積%以上70体積%以下、かつ(211)面におけるX線回折ピークの半価幅が5.5°以上)
(最表面から深さ150μmの位置において、硬さがビッカース硬さで600HV以上)
部品の転動疲労寿命を長寿命化するには、はく離起点となる異物噛みこみ時の圧痕の発生を抑制する必要があり、そのためには浸炭窒化処理鋼材の組織を、焼戻しマルテンサイト組織とし、製造された鋼部品の最表面となる位置において、硬さを向上させることが重要である。なお本実施形態では、浸炭窒化処理鋼材を鋼部品に加工時に鋼材の表面研磨量が約150μmであると想定、すなわち鋼部品の最表面となる位置が、鋼材の最表面から深さ約150μmの位置であると想定して、上記最表面から一定深さでの組織等を規定している。
(The structure is tempered martensite and retained austenite in the range from the outermost surface to a depth of 200 μm.)
(In the range from the outermost surface to a position having a depth of 100 μm or more and 200 μm or less, the ratio of the retained austenite structure is 10 vol% or more and 70 vol% or less, and the half-width of the X-ray diffraction peak in the (211) plane is 5.5° or more)
(At a depth of 150 μm from the outermost surface, the Vickers hardness is 600 HV or more)
In order to extend the rolling fatigue life of parts, it is necessary to suppress the occurrence of indentations caused by foreign matter getting caught, which is the starting point of flaking, and for this purpose, it is important to make the structure of the carbonitrided steel material a tempered martensite structure and to improve the hardness at the position that will become the outermost surface of the manufactured steel part. Note that in this embodiment, it is assumed that the surface polishing amount of the steel material is about 150 μm when the carbonitrided steel material is processed into a steel part, that is, the position that will become the outermost surface of the steel part is assumed to be a position about 150 μm deep from the outermost surface of the steel material, and the structure etc. at a certain depth from the outermost surface are specified.
本実施形態では、マルテンサイト組織の量の指標となる(211)面におけるX線回折ピークの半価幅を5.5°以上とする。図1は、本発明者らが、後述する実施例の結果を用い、上記半価幅と、浸炭窒化処理鋼材の最表面から深さ150μmの位置におけるビッカース硬さの関係を整理した結果である。図1中の点線は最小二乗法で算出した近似線を示す。この図1から、最表面から深さ150μmの位置におけるビッカース硬さ600HV以上を達成するには、上記半価幅を5.5°以上とする必要があることがわかる。前記半価幅は、例えば6.0°以上であることが好ましい。一方、半価幅の上限は、例えば7.5°程度でありうる。本実施形態は、残留オーステナイト以外の組織が焼戻しマルテンサイトであることが好ましく、焼戻しマルテンサイトは、全組織に占める面積率で30%以上であることが好ましく、より好ましくは50%以上である。なお焼戻しマルテンサイトの面積率は、例えば全組織から残留オーステナイトの割合(体積%)を差し引いて求めることができる。最表面から深さ150μmの位置におけるビッカース硬さは、好ましくは700HV以上である。本実施形態では、最表面から150μm深さ位置の硬さが600HV以上であることを、浸炭窒化処理鋼材の表層硬さが高いと評価する。また、焼入れ処理を行って上記表層硬さを達成した場合、「表層焼入れ性に優れている」ともいえる。 In this embodiment, the half-width of the X-ray diffraction peak in the (211) plane, which is an index of the amount of martensite structure, is set to 5.5° or more. Figure 1 shows the results of the inventors using the results of the examples described later to organize the relationship between the above half-width and the Vickers hardness at a position 150 μm deep from the outermost surface of the carbonitrided steel material. The dotted line in Figure 1 indicates an approximation line calculated by the least squares method. From this Figure 1, it can be seen that in order to achieve a Vickers hardness of 600 HV or more at a position 150 μm deep from the outermost surface, the above half-width needs to be 5.5° or more. The half-width is preferably, for example, 6.0° or more. On the other hand, the upper limit of the half-width can be, for example, about 7.5°. In this embodiment, it is preferable that the structure other than the retained austenite is tempered martensite, and the area ratio of tempered martensite to the entire structure is preferably 30% or more, more preferably 50% or more. The area ratio of tempered martensite can be determined, for example, by subtracting the proportion (volume %) of retained austenite from the entire structure. The Vickers hardness at a depth of 150 μm from the outermost surface is preferably 700 HV or more. In this embodiment, a hardness of 600 HV or more at a depth of 150 μm from the outermost surface is evaluated as a high surface hardness of the carbonitrided steel material. In addition, when the above surface hardness is achieved by performing a quenching process, it can also be said to have "excellent surface hardenability."
浸炭窒化処理鋼材の組織において、残留オーステナイトは、増加するほど疲労進行時に加工誘起変態が起こしマルテンサイト組織の割合を増加させて寿命を向上させるため、一定量以上にする必要がある。よって、最表面から、深さ100μm以上200μm以下の位置までの範囲において、残留オーステナイト組織の割合は10体積%以上とする。前記残留オーステナイト組織の割合は、好ましくは20体積%以上である。ただし、残留オーステナイトの過剰な増加は硬さの低下を招くため、70体積%以下とする。前記残留オーステナイト組織の割合は、好ましくは50体積%以下である。 In the structure of carbonitrided steel, the more retained austenite, the more processing-induced transformation occurs during fatigue progression, increasing the proportion of martensite structure and improving life, so it is necessary to maintain a certain amount or more. Therefore, in the range from the outermost surface to a depth of 100 μm to 200 μm, the proportion of retained austenite structure is 10 volume % or more. The proportion of the retained austenite structure is preferably 20 volume % or more. However, since an excessive increase in retained austenite leads to a decrease in hardness, it is set to 70 volume % or less. The proportion of the retained austenite structure is preferably 50 volume % or less.
(最表面から深さ150μmの位置において、C濃度が0.5~0.9質量%、かつN濃度が0.4~1.20質量%)
焼き入れ後のマルテンサイト組織の硬さの向上や析出物の析出による疲労特性向上のため、浸炭、浸炭窒化処理により、鋼部品の表面部にはある程度以上のC濃度及びN濃度が必要となる。よって上記C濃度は0.5質量%以上とした。上記C濃度は好ましくは0.6質量%以上である。またN濃度は0.4質量%以上とした。上記N濃度は好ましくは0.5質量%以上である。一方、C濃度やN濃度が過剰になると、残留オーステナイト組織が過剰になり、硬さの低下を招く。よって、最表面から深さ150μm位置の鋼材のC濃度を0.9質量%以下、N濃度を1.20質量%以下とした。C濃度は好ましくは0.8質量%以下、N濃度は好ましくは1.0質量%以下である。
(At a depth of 150 μm from the outermost surface, the C concentration is 0.5 to 0.9 mass % and the N concentration is 0.4 to 1.20 mass %)
In order to improve the hardness of the martensite structure after quenching and to improve fatigue properties by precipitation of precipitates, the surface of the steel part requires a certain level of C and N concentration by carburizing and carbonitriding. Therefore, the C concentration is set to 0.5 mass% or more. The C concentration is preferably 0.6 mass% or more. The N concentration is also set to 0.4 mass% or more. The N concentration is preferably 0.5 mass% or more. On the other hand, if the C concentration or N concentration is excessive, the retained austenite structure becomes excessive, which leads to a decrease in hardness. Therefore, the C concentration of the steel material at a depth of 150 μm from the outermost surface is set to 0.9 mass% or less, and the N concentration is set to 1.20 mass% or less. The C concentration is preferably 0.8 mass% or less, and the N concentration is preferably 1.0 mass% or less.
(最表面から深さ150μmの位置において、炭化物、窒化物および炭窒化物の平均円相当直径が0.1μm以上1.0μm以下であり、円相当直径が0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の合計面積率が5%以上かつ個数密度が0.1個/μm2以上10個/μm2以下)
上記炭化物、窒化物、炭窒化物は、以下に示すような炭化物形成元素と炭素が結合した全ての炭化物、窒化物形成元素と窒素が結合した全ての窒化物、これらが複合した炭窒化物を意味する。以下、これらを総称して「析出物」という。
炭化物[(Fe,Cr)3C、(Fe,Cr)7C3、Mo2C、VC等]
窒化物[(Cr,V,Al、Mn、Si)N,等]
炭窒化物[(Fe,Cr)3(C,N)、(Fe,Cr)7(C,N)3、Mo2(C,N)、V(C,N)等]
(At a position 150 μm deep from the outermost surface, the average equivalent circle diameter of the carbides, nitrides and carbonitrides is 0.1 μm or more and 1.0 μm or less, the total area ratio of the carbides, nitrides and carbonitrides having an equivalent circle diameter of 0.1 μm or more and 1.0 μm or less is 5% or more, and the number density is 0.1 pieces/ μm2 or more and 10 pieces/ μm2 or less)
The above carbides, nitrides, and carbonitrides refer to all carbides in which a carbide-forming element is bonded to carbon, all nitrides in which a nitride-forming element is bonded to nitrogen, and carbonitrides in which these are combined, as shown below. Hereinafter, these will be collectively referred to as "precipitates."
Carbide [(Fe, Cr) 3 C, (Fe, Cr) 7 C 3 , Mo 2 C, VC, etc.]
Nitrides [(Cr, V, Al, Mn, Si)N, etc.]
Carbonitrides [(Fe,Cr) 3 (C,N), (Fe,Cr) 7 (C,N) 3 , Mo 2 (C,N), V(C,N), etc.]
転動疲労特性の向上の観点から、鋼材の表層部には一定以上の析出物を析出させる必要がある。ただし、粗大な析出物が生成すると、き裂発生の起点となることや、CrやMnなどの合金成分が過剰に析出した場合に母相の合金量が低下して焼入れ性が低下し、硬さの低下を招くおそれがある。よって、炭化物、窒化物および炭窒化物の平均円相当直径を0.1μm以上1.0μm以下、円相当直径が0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の合計面積率を5%以上かつ個数密度を0.1個/μm2以上10個/μm2以下とする。前記析出物の合計面積率は好ましくは10%以上である。前記析出物の合計面積率の上限は、例えば、過剰な析出により焼き入れ性が低下することを抑制する観点から15%程度である。 From the viewpoint of improving rolling fatigue properties, it is necessary to precipitate a certain amount of precipitates in the surface layer of the steel material. However, if coarse precipitates are generated, they may become the starting point of crack generation, or if alloy components such as Cr and Mn are excessively precipitated, the alloy amount of the parent phase may decrease, leading to a decrease in hardenability and a decrease in hardness. Therefore, the average circle equivalent diameter of carbides, nitrides, and carbonitrides is 0.1 μm or more and 1.0 μm or less, the total area ratio of carbides, nitrides, and carbonitrides having circle equivalent diameters of 0.1 μm or more and 1.0 μm or less is 5% or more, and the number density is 0.1 pieces/μm2 or more and 10 pieces/ μm2 or less. The total area ratio of the precipitates is preferably 10% or more. The upper limit of the total area ratio of the precipitates is, for example, about 15% from the viewpoint of suppressing a decrease in hardenability due to excessive precipitation.
[鋼部品の鋼組織と特性]
鋼部品の鋼組織と特性は、
最表面から深さ100μmの位置までの範囲において、組織が焼戻しマルテンサイト及び残留オーステナイトからなり、
最表面において、残留オーステナイト組織の割合が10体積%以上70体積%以下、かつ(211)面におけるX線回折ピークの半価幅が5.5°以上であり、
最表面において、硬さがビッカース硬さで600HV以上であり、C濃度が0.5質量%以上0.9質量%以下、N濃度が0.4質量%以上1.20質量%以下であり、更に、炭化物、窒化物および炭窒化物の平均円相当直径が0.1μm以上1.0μm以下であり、円相当直径0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の面積率が5%以上かつ個数密度が0.1個/μm2以上10個/μm2以下である。
[Structure and properties of steel parts]
The steel structure and properties of steel parts are
In the range from the outermost surface to a depth of 100 μm, the structure is composed of tempered martensite and retained austenite,
At the outermost surface, the proportion of the retained austenite structure is 10 volume % or more and 70 volume % or less, and the half width of the X-ray diffraction peak in the (211) plane is 5.5° or more,
At the outermost surface, the hardness is 600 HV or more in Vickers hardness, the C concentration is 0.5 mass% or more and 0.9 mass% or less, the N concentration is 0.4 mass% or more and 1.20 mass% or less, the average circular equivalent diameter of the carbides, nitrides and carbonitrides is 0.1 μm or more and 1.0 μm or less, the area ratio of the carbides, nitrides and carbonitrides having a circular equivalent diameter of 0.1 μm or more and 1.0 μm or less is 5% or more, and the number density is 0.1 pieces/ μm2 or more and 10 pieces/ μm2 or less.
本実施形態では、上述の通り、鋼部品の最表面となる位置が、鋼材の最表面から深さ約150μmの位置であると想定する。浸炭窒化処理鋼材と鋼部品は、製造工程において、切削加工等の部品形状の加工の有無で異なるが、該加工が鋼組織と特性に及ぼす影響は小さい。よって、鋼部品の鋼組織と特性は、鋼組織と特性の測定箇所が浸炭窒化処理鋼材と異なるのみで、鋼組織と特性の規定、好ましい範囲などは、上述の浸炭窒化処理鋼材と同じである。 In this embodiment, as described above, it is assumed that the position that will be the outermost surface of the steel part is a position approximately 150 μm deep from the outermost surface of the steel material. Carbonitrided steel material and steel parts differ in the manufacturing process in terms of whether or not the part shape is processed, such as by cutting, but the effect of such processing is small on the steel structure and characteristics. Therefore, the steel structure and characteristics of steel parts differ from those of carbonitrided steel material only in the locations where the steel structure and characteristics are measured, and the specifications and preferred ranges of the steel structure and characteristics are the same as those of the above-mentioned carbonitrided steel material.
本発明では、大型の鋼部品を製造する場合であっても、高い表層硬さと製造時の優れた加工性とを兼備できる。前記「大型」とは、例えば棒鋼などの円柱状鋼材の場合に、直径が20mm以上であることをいう。また本発明において、鋼部品は、例えばギア等の部品形状に加工されている点で浸炭窒化処理鋼材と異なる。部品形状への加工では、浸炭窒化処理鋼材の表面が切削されて、例えば、浸炭窒化処理鋼材の最表面から深さ約150μm位置が、鋼部品の最表面となりうる。 In the present invention, even when manufacturing large steel parts, it is possible to achieve both high surface hardness and excellent workability during manufacturing. The term "large" refers to a diameter of 20 mm or more in the case of cylindrical steel material such as steel bars. In addition, in the present invention, steel parts differ from carbonitrided steel materials in that they are machined into the shape of parts such as gears. When machined into the shape of parts, the surface of the carbonitrided steel material is cut, and for example, a position about 150 μm deep from the outermost surface of the carbonitrided steel material can become the outermost surface of the steel part.
[鋼部品の製造方法]
本発明で規定する鋼部品の製造方法は、前記化学成分組成を有する鋼片を、
冷却速度測定条件として、900℃以下800℃以上の加熱温度で30分以上1時間以下保持し、その後、大気下で、前記加熱温度から300℃まで空冷したときに、平均冷却速度が0.39℃/s以上となるような形状に、粗成型加工する工程と、
850℃以上950℃以下の第1温度に加熱し、該第1温度で0.5時間以上2時間以下保持し、次いで、650℃以上700℃以下の第2温度まで降温してから、該第2温度で3.5時間以上5時間以下保持し、その後に室温まで空冷または炉冷する2段焼きならし処理工程と、
切削加工工程と、
切削加工後に、900℃以上950℃以下の温度かつCp:0.5%以上1.2%以下の雰囲気で、2時間以上7時間以下保持する第1工程、第1工程と同じ温度かつCp:0.5%以上0.7%以下の雰囲気で、2時間以上4時間以下保持する第2工程、および、800℃以上900℃以下の温度かつ第2工程と同じCpであってNH3量が6%以上12%以下の雰囲気で、4時間以上6時間以下保持する第3工程を含む浸炭窒化処理工程と、
浸炭窒化処理後に、油焼入れを行い、その後に焼戻しを行う工程と
を含む。以下、各工程について説明する。
[Method of manufacturing steel parts]
The method for producing a steel part according to the present invention comprises the steps of:
As a cooling rate measurement condition, a step of roughly forming the material into a shape such that when the material is kept at a heating temperature of 900° C. or less and 800° C. or more for 30 minutes to 1 hour, and then air-cooled from the heating temperature to 300° C. under atmospheric conditions, the material has an average cooling rate of 0.39° C./s or more;
a two-stage normalizing process of heating to a first temperature of 850° C. to 950° C., holding the first temperature for 0.5 hours to 2 hours, then lowering the temperature to a second temperature of 650° C. to 700° C., holding the second temperature for 3.5 hours to 5 hours, and then air-cooling or furnace-cooling to room temperature;
A cutting process;
a carbonitriding process including a first step of holding the material after cutting at a temperature of 900° C. to 950° C. in an atmosphere of Cp: 0.5% to 1.2% for 2 hours to 7 hours, a second step of holding the material at the same temperature as in the first step in an atmosphere of Cp: 0.5% to 0.7% for 2 hours to 4 hours, and a third step of holding the material at a temperature of 800° C. to 900° C. in an atmosphere of Cp the same as in the second step and with an NH3 content of 6% to 12% for 4 hours to 6 hours;
The method includes a process of performing oil quenching after the carbonitriding process, and then performing tempering. Each process will be described below.
[粗成型加工工程]
前記化学成分組成を有する鋼片を、冷却速度測定条件として、900℃以下800℃以上の加熱温度で30分以上1時間以下保持し、その後、大気下で、前記加熱温度から300℃まで空冷したときに、平均冷却速度が0.39℃/s以上となるような形状に、粗成型加工する。本実施形態では、上記測定条件により求めた平均冷却速度が0.39℃/s以上となるような形状に粗成型加工した粗成型加工材を用いれば、後述する浸炭窒化処理と油焼入れを行ったときの表層硬さの低下を抑制することができる。
[Rough molding process]
A steel slab having the above-mentioned chemical composition is held at a heating temperature of 900° C. or lower and 800° C. or higher for 30 minutes to 1 hour as cooling rate measurement conditions, and then roughly formed into a shape such that the average cooling rate is 0.39° C./s or higher when air-cooled in the atmosphere from the heating temperature to 300° C. In this embodiment, by using a roughly formed material roughly formed into a shape such that the average cooling rate determined under the above measurement conditions is 0.39° C./s or higher, it is possible to suppress a decrease in surface hardness when carbonitriding and oil quenching, which will be described later, are performed.
前記平均冷却速度を達成するような形状に粗成型加工するとは、前記平均冷却速度が0.39℃/s以上となるように、粗成型加工材の厚さや直径などを調整して加工、例えば、熱間、冷間での、圧延、鍛造等を行うことが挙げられる。加工を行うにあたり、例えば、後述する実施例に示す表3と図2の様な、鋼材のサイズと上記測定条件での平均冷却速度の関係をあらかじめ把握しておくことが挙げられる。図2中の点線は最小二乗法で算出した近似線を示す。 Rough forming into a shape that achieves the average cooling rate refers to adjusting the thickness and diameter of the roughly formed material and processing it, for example, hot or cold rolling or forging, so that the average cooling rate is 0.39°C/s or more. When processing, it is necessary to understand in advance the relationship between the size of the steel material and the average cooling rate under the above measurement conditions, for example, as shown in Table 3 and Figure 2 in the examples described later. The dotted line in Figure 2 indicates an approximation line calculated by the least squares method.
前記平均冷却速度は、加熱炉から取り出した時の温度から300℃までの温度の低下度合いを平均して求められる。後述する実施例に記載の方法で測定してもよいし、平均冷却速度=(冷却開始温度-冷却終了温度)/冷却時間の式(ただし、冷却開始温度は900℃以下800℃以上の加熱温度、冷却終了温度は300℃)から求めてもよい。 The average cooling rate is determined by averaging the degree of temperature drop from the temperature at the time of removal from the heating furnace to 300°C. It may be measured by the method described in the examples below, or it may be determined from the formula: average cooling rate = (cooling start temperature - cooling end temperature) / cooling time (where the cooling start temperature is a heating temperature of 900°C or less and 800°C or more, and the cooling end temperature is 300°C).
上記冷却速度測定条件での平均冷却速度が0.39℃/sを下回る場合、上述の通り、成分組成を制御した場合であっても、浸炭窒化処理と油焼入れを行った後の表層硬さが低下しうる。本実施形態の製造方法では、上記平均冷却速度を確保できるサイズの粗成型加工材を、浸炭窒化処理等に供する必要がある。 If the average cooling rate under the above cooling rate measurement conditions is below 0.39°C/s, the surface hardness after carbonitriding and oil quenching may decrease, even if the component composition is controlled as described above. In the manufacturing method of this embodiment, it is necessary to subject a roughly formed material of a size that can ensure the above average cooling rate to carbonitriding or the like.
前記鋼片の製造条件は特に問わず、通常行われる条件で製造すればよい。例えば、転炉等で溶製し鋳造して、上記化学成分組成の鋳片を得た後、例えば分塊圧延、棒鋼圧延などの圧延を行って得ることができる。 There are no particular restrictions on the manufacturing conditions for the steel slab, and it may be manufactured under conditions that are normally used. For example, it can be obtained by melting and casting in a converter or the like to obtain a slab having the above-mentioned chemical composition, and then performing rolling such as blooming and bar rolling.
必要に応じて、上記粗成型加工後であって、下記の2段焼きならし前に、例えば1200~1300℃で1~2時間加熱後に空冷する溶体化処理と、900~1000℃で1~2時間加熱後に空冷する焼きなましを行ってもよい。 If necessary, after the above-mentioned rough forming process and before the two-stage normalizing process described below, a solution treatment may be performed in which the material is heated at 1200 to 1300°C for 1 to 2 hours and then air-cooled, and annealing may be performed in which the material is heated at 900 to 1000°C for 1 to 2 hours and then air-cooled.
[2段焼きならし工程]
粗成型加工材に対して、1段目の加熱として850℃以上950℃以下の温度(第1温度)で0.5時間以上2時間以下保持し、次いで、650℃以上700℃以下の温度(第2温度)まで降温し、2段目の加熱として、前記第2温度で3.5時間以上5時間以下保持し、その後に、室温まで空冷または炉冷する、2段焼きならしを行う。
[Two-stage baking process]
The roughly formed material is subjected to a two-stage normalization in which the material is heated at a temperature (first temperature) of 850° C. or more and 950° C. or less for 0.5 hours or less and 2 hours or less as a first stage, then cooled to a temperature (second temperature) of 650° C. or more and 700° C. or less, and then heated at the second temperature for 3.5 hours or more and 5 hours or less as a second stage, and then air-cooled or furnace-cooled to room temperature.
上記1段目の加熱では、鋼材全体がオーステナイト領域(A3点)以上となり、かつ結晶粒が粗大化しないような温度、時間で保持する必要があり、その観点から、温度を850℃以上950℃以下とし、保持時間を0.5時間以上2時間以下とする。また、上記2段目の加熱では、組織をフェライト+パーライト化しながら均質化させるために、A1点直下の温度域で保持する必要があり、その観点から、650℃以上700℃以下の温度で3.5時間以上5時間以下保持する。前記2段目の加熱における焼きならし時間が短すぎると、ベイナイト組織の割合が増加し硬さが上昇して切削加工時間の増加や工具摩耗の増加を招く。2段目の加熱における保持時間は、好ましくは4.0時間以上である。 In the first heating stage, the steel must be held at a temperature and time such that the entire steel is in the austenite region (A3 point) or higher and the crystal grains do not become coarse. From this viewpoint, the temperature is set to 850°C or higher and 950°C or lower, and the holding time is set to 0.5 hours or higher and 2 hours or lower. In the second heating stage, the steel must be held in a temperature range just below the A1 point in order to homogenize the structure while converting it to ferrite + pearlite. From this viewpoint, the steel is held at a temperature of 650°C or higher and 700°C or lower for 3.5 hours or higher and 5 hours or lower. If the normalizing time in the second heating stage is too short, the proportion of bainite structure increases and the hardness increases, leading to increased cutting time and increased tool wear. The holding time in the second heating stage is preferably 4.0 hours or higher.
本実施形態では、上記2段焼きならし工程を経ることで、粗成型加工材の組織中のベイナイト組織を低減して硬さを低下させ、鍛造性や切削性の低下を抑制し、この工程後に行われる加工を容易に行うことができる。部品形成への加工のための粗成型を行った後に、この焼きならし処理を実施することによって、硬さを低減でき、その後、例えば切削加工を容易に行うことができる。なお、製造コストの観点から各段階の保持時間は上記範囲で少ないほど望ましい。なお本明細書において、「保持」とは、温度、雰囲気の条件が一定である他、温度、雰囲気の条件の少なくとも一つが、規定する範囲内で変動する場合も含まれる。 In this embodiment, the two-stage normalizing process reduces the bainite structure in the structure of the roughly formed material, lowering hardness and suppressing deterioration in forgeability and machinability, making it easier to perform processing after this process. By performing this normalizing process after rough forming for processing into part formation, the hardness can be reduced, making it easier to perform cutting processing, for example. From the viewpoint of manufacturing costs, it is desirable to have the holding time for each stage as short as possible within the above range. In this specification, "holding" includes cases where the temperature and atmosphere conditions are constant, as well as cases where at least one of the temperature and atmosphere conditions varies within the specified range.
本実施形態に係る浸炭窒化処理用鋼材は、この2段焼きならし工程を行って得られる鋼材である。 The steel material for carbonitriding treatment according to this embodiment is obtained by carrying out this two-stage normalizing process.
必要に応じて、前記2段焼きならし後であって、下記の切削加工工程の前に、冷間鍛造、温間鍛造、熱間鍛造などの、鍛造加工工程を設けてもよい。本実施形態に係る浸炭窒化処理用鋼材は、加工性に優れているため、この鍛造加工工程において良好に鍛造することができる。 If necessary, after the two-stage normalizing and before the cutting process described below, a forging process such as cold forging, warm forging, or hot forging may be performed. The steel material for carbonitriding according to this embodiment has excellent workability, so it can be forged well in this forging process.
[切削加工工程]
上記2段焼きならしを行った後に、部品形状とするために、切削加工を行う。切削加工は一般に行われている方法で行うことができる。本実施形態の製造方法によれば、上記2段焼きならしを行うことによって、粗成型加工材の組織中のベイナイト組織が低減され、所望のフェライトとパーライトの混合組織が得られて、内部硬さが抑制されているため、良好に切削することができる。すなわち、上記2段焼きならし工程を行って得られる浸炭窒化処理用鋼材は、この切削加工工程で良好に切削することができる。
[Cutting process]
After the two-stage normalizing, cutting is performed to obtain the part shape. The cutting can be performed by a commonly used method. According to the manufacturing method of this embodiment, the two-stage normalizing reduces the bainite structure in the structure of the roughly formed material, and a desired mixed structure of ferrite and pearlite is obtained, suppressing the internal hardness, allowing the material to be cut well. In other words, the steel material for carbonitriding obtained by carrying out the two-stage normalizing process can be cut well in this cutting process.
[浸炭窒化処理工程]
切削加工後に、900℃以上950℃以下の温度かつ炭素当量Cp:0.5%以上1.2%以下の雰囲気で、2時間以上7時間以下保持する第1工程、第1工程と同じ温度かつ炭素当量Cp:0.5%以上0.7%以下の雰囲気で、2時間以上4時間以下保持する第2工程、および、800℃以上900℃以下の温度かつ第2工程と同じ炭素当量CpであってNH3量が6%以上12%以下の雰囲気で、4時間以上6時間以下保持する第3工程を含む浸炭窒化処理を行う。
[Carbonitriding process]
After cutting, a carbonitriding treatment is performed including a first step of holding the material at a temperature of 900° C. to 950° C. and in an atmosphere with a carbon equivalent Cp of 0.5% to 1.2% for 2 hours to 7 hours, a second step of holding the material at the same temperature as in the first step and in an atmosphere with a carbon equivalent Cp of 0.5% to 0.7% for 2 hours to 4 hours, and a third step of holding the material at a temperature of 800° C. to 900° C. and in an atmosphere with the same carbon equivalent Cp as in the second step and an NH3 content of 6% to 12% for 4 hours to 6 hours.
なお、上記炭素当量Cp(%)は以下の式で導出することができる。
Cp=(熱処理炉内中の一酸化炭素の存在割合)2×(鋼片の表面炭素量)/{(各温度における平衡定数)×(熱処理炉内中の二酸化炭素の存在割合)}
上記式において、熱処理炉内中の一酸化炭素と熱処理炉内中の二酸化炭素の各存在割合の単位は体積%、鋼片の表面炭素量の単位は質量%である。
The carbon equivalent Cp (%) can be calculated by the following formula.
Cp = (proportion of carbon monoxide in the heat treatment furnace) 2 × (amount of carbon on the surface of the steel piece)/{(equilibrium constant at each temperature) × (proportion of carbon dioxide in the heat treatment furnace)}
In the above formula, the units of the proportions of carbon monoxide and carbon dioxide in the heat treatment furnace are volume %, and the unit of the surface carbon amount of the steel slab is mass %.
上記条件で浸炭窒化を行い、かつ後述の通り焼入れを行うことにより、鋼部品で規定する量の残留オーステナイト(残留γ)と析出物の形態の両方を実現でき、その結果、硬さを保持しつつ転動疲労特性に優れる鋼部品を提供することができる。なお、上記「NH3量」とは、炉内に導入しているベースガス(RXガス)の量に対する割合を示しており、流量計にて調整することができる。 By performing carbonitriding under the above conditions and quenching as described below, it is possible to realize both the amount of retained austenite (residual γ) and the form of precipitates specified for the steel part, and as a result, it is possible to provide a steel part that has excellent rolling fatigue properties while maintaining hardness. Note that the above " NH3 amount" indicates the ratio to the amount of base gas (RX gas) introduced into the furnace, and can be adjusted with a flow meter.
[焼入れ・焼戻し工程]
浸炭窒化処理後に、例えば100~140℃で油焼入れを行い、その後に焼戻しを行う。焼戻しは、例えば150~200℃で行えばよい。前記油焼入れと焼戻しを行って、本実施形態に係る浸炭窒化処理鋼材が得られる。
[Quenching and tempering process]
After the carbonitriding treatment, oil quenching is performed at, for example, 100 to 140° C., and then tempering is performed. The tempering may be performed at, for example, 150 to 200° C. By performing the oil quenching and tempering, the carbonitrided steel material according to this embodiment is obtained.
本実施形態の鋼部品の製造方法では、上記工程以外に、仕上げ加工工程、部品成型のための冷間鍛造や熱間鍛造うちの1以上の工程が含まれうる。上記仕上げ加工等により、製品の形状に加工されて、鋼部品が得られる。 In addition to the above steps, the manufacturing method of the steel part of this embodiment may include one or more of a finishing process and cold forging and hot forging for part molding. The above finishing process, etc., process the steel part into the shape of the product.
以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described in more detail below with reference to examples. The present invention is not limited to the following examples, and can be modified as appropriate within the scope of the above and below-described aims, and all such modifications are within the technical scope of the present invention.
〔鋼材の製造〕
表1に示す成分組成の鋼を、VIF炉または転炉により溶製し、鋼塊法によりインゴットを得た。なお、表1および表2において、下線を付した数値は、本発明の範囲から外れていることを示している。
[Steel manufacturing]
Steels having the chemical compositions shown in Table 1 were melted in a VIF furnace or a converter, and ingots were obtained by the steel ingot process. In Tables 1 and 2, underlined values indicate values outside the range of the present invention.
得られたインゴットを1200℃以上1300℃以下で60分以上加熱した後、熱間圧延または熱間鍛造を施し、その後放冷した。次いで、800℃以上1000℃以下に加熱してから、熱間圧延または熱間鍛造を施し、鋼材として、直径45mmの棒鋼を作製した。 The obtained ingot was heated to 1200°C to 1300°C for 60 minutes or more, then hot-rolled or hot-forged, and then allowed to cool. It was then heated to 800°C to 1000°C, and hot-rolled or hot-forged to produce a steel bar with a diameter of 45 mm.
上記棒鋼の長さ方向に、厚さ10mm程度切断し、円盤状サンプルを得た。該円盤状サンプルを、電気炉にて850℃~950℃の温度域で0.5時間~2時間加熱保持(1段目の加熱保持)した後、650℃~700℃の温度域まで降温し、該温度域で3.5時間~5時間加熱保持(2段目の加熱保持)する、2段焼きならし処理を行って、浸炭窒化処理前の円盤状鋼材を得た。 The steel bar was cut lengthwise to a thickness of approximately 10 mm to obtain a disk-shaped sample. The disk-shaped sample was heated and held in an electric furnace at a temperature range of 850°C to 950°C for 0.5 to 2 hours (first heating and holding stage), then cooled to a temperature range of 650°C to 700°C and held at that temperature range for 3.5 to 5 hours (second heating and holding stage), in a two-stage normalizing process, to obtain a disk-shaped steel material before carbonitriding.
〔浸炭窒化処理前の鋼材の評価〕
(浸炭窒化処理前の鋼材の組織の観察)
前記円盤状鋼材を埋め込んで研磨した後、ナイタール液で腐食を行い、円盤状鋼材の側面(曲面)の最表面と円盤状鋼材の直径/4部の組織をそれぞれ倍率100倍と400倍で観察し、ベイナイト組織となっているか、フェライト+パーライト組織となっているかを判別した。その結果、No.1と2の、円盤状鋼材の側面(曲面)の最表面と円盤状鋼材の直径/4部の組織はいずれも、フェライト+パーライト組織であった。なお、No.4とNo.7については、Mnの含有量及び他の合金元素量が同等以下であることから、No.1~2と同様に、フェライト+パーライト組織であると考えられる。一方、No.3とNo.5~6については、MoもしくはCrの含有量がNo.1および2より多いため、フェライト+パーライト組織とするためには2段焼きならしにおける2段目の加熱保持時間を、規定する範囲内で、上記No.1および2よりも長くしなければならない可能性がある。
[Evaluation of steel before carbonitriding treatment]
(Observation of the structure of steel before carbonitriding treatment)
The disk-shaped steel material was embedded and polished, and then etched with a nital solution. The outermost surface of the side (curved surface) of the disk-shaped steel material and the structure of the diameter/4 part of the disk-shaped steel material were observed at magnifications of 100 times and 400 times, respectively, to determine whether the structure was a bainite structure or a ferrite + pearlite structure. As a result, the outermost surface of the side (curved surface) of the disk-shaped steel material and the structure of the diameter/4 part of the disk-shaped steel material of No. 1 and 2 were both ferrite + pearlite structures. Note that, since the Mn content and the amount of other alloy elements of No. 4 and No. 7 are equal to or less than the same, they are considered to be ferrite + pearlite structures like No. 1 to 2. On the other hand, since the Mo or Cr content of No. 3 and No. 5 to 6 is higher than that of No. 1 and 2, it is possible that the second heating holding time in the two-stage normalizing process must be longer than that of No. 1 and 2, within the specified range, in order to obtain a ferrite + pearlite structure.
(浸炭窒化処理前の鋼材の硬さ(内部硬さ)の測定)
前記鋼材を埋め込んで研磨した後、JIS Z 2244に準拠して、内部硬さとして、鋼材の直径(D)/4部のビッカース硬さを測定した。そして内部硬さが200HV以下の場合を、加工性に優れると評価した。その結果、No.1と2の、鋼材の直径(D)/4部のビッカース硬さはいずれも176HVであった。
(Measurement of the hardness (internal hardness) of steel before carbonitriding treatment)
After embedding and polishing the steel material, the Vickers hardness of the steel material at the diameter (D)/4 portion was measured as the internal hardness in accordance with JIS Z 2244. The internal hardness of 200 HV or less was evaluated as excellent in workability. As a result, the Vickers hardness of the steel material at the diameter (D)/4 portion of No. 1 and No. 2 was both 176 HV.
2段焼きならしの条件とMn量が、2段焼きならし後の内部硬さに及ぼす影響について評価した。No.1とNo.2のそれぞれの鋼片を用い、上記2段焼きならし処理における2段目の650℃での保持時間を変更し、得られた浸炭窒化処理前の鋼材の、組織と内部硬さを上記の通り求めた。その結果を、No.2(Mn量1.20%)については図3、No.1(Mn量1.45%)については図4に示す。図3、図4の結果から、No.2(Mn量1.20%)では、200HV以下とするための2段焼きならしの2段目の最低保持時間は2.5時間であり、No.1(Mn量1.45%)では、200HV以下とするための2段焼きならしの2段目の最低保持時間は3.5時間であることがわかる。またこれら図3と図4の結果から、Mn量が増えるほど、ベイナイトが生成しやすくなり、焼きならし時の保持時間を長くする必要があり、Mn量が0.40質量%以上1.50質量%以下の範囲で、かつ他の成分がNo.1~2もしくはNo.7と同等である場合、ビッカース硬さで200HV以下の内部硬さを達成し、加工性に優れた鋼材を確実に得るには、2段焼きならしの2段目の保持時間を3.5時間(hr)以上とするのがよいことがわかる。なお、No.4とNo.7の鋼材はいずれもNo.1および2よりもMn量が少なく、他の合金成分も同等以下であるため、内部硬さを抑えるための2段焼きならしの2段目の保持時間は、2時間(hr)以下で足りると推定される。一方、No.3とNo.5~6については、MoもしくはCrの含有量がNo.1~2より多いため、内部硬さを抑えるためには2段焼きならしの2段目の保持時間を、規定する範囲内で、上記No.1および2よりも長くしなければならない可能性がある。 The effect of the two-stage normalizing conditions and Mn content on the internal hardness after two-stage normalizing was evaluated. Using each of the steel pieces No. 1 and No. 2, the holding time at 650°C in the second stage of the above-mentioned two-stage normalizing process was changed, and the structure and internal hardness of the resulting steel material before carbonitriding treatment were determined as described above. The results are shown in Figure 3 for No. 2 (Mn content 1.20%) and Figure 4 for No. 1 (Mn content 1.45%). From the results in Figures 3 and 4, it can be seen that the minimum holding time in the second stage of two-stage normalizing to achieve 200HV or less in No. 2 (Mn content 1.20%) is 2.5 hours, and that the minimum holding time in the second stage of two-stage normalizing to achieve 200HV or less in No. 1 (Mn content 1.45%) is 3.5 hours. From the results of Fig. 3 and Fig. 4, it can be seen that the more the Mn content, the easier it is for bainite to form, and therefore the holding time during normalizing must be longer. When the Mn content is in the range of 0.40 mass% to 1.50 mass%, and the other components are equivalent to those of No. 1-2 or No. 7, in order to reliably obtain a steel material with excellent workability and an internal hardness of 200 HV or less in Vickers hardness, it is preferable to hold the second stage of the two-stage normalizing for 3.5 hours (hr) or more. Note that, since the Mn content of steels No. 4 and No. 7 is less than that of No. 1 and 2, and the other alloy components are equivalent or less, it is estimated that the holding time of the second stage of the two-stage normalizing to suppress the internal hardness is sufficient for 2 hours (hr) or less. On the other hand, in the case of steels No. 3 and No. 4, the holding time of the second stage of the two-stage normalizing to suppress the internal hardness is sufficient for 2 hours (hr) or less. For Nos. 5 and 6, the Mo or Cr content is higher than Nos. 1 and 2, so in order to suppress the internal hardness, it may be necessary to make the holding time for the second stage of the two-stage normalizing longer than Nos. 1 and 2 above, within the specified range.
〔浸炭窒化処理鋼材の製造〕
上記棒鋼から、直径12mm×長さ36mmの円柱型試験片と、直径26mm×長さ52mmの円柱型試験片のそれぞれを、加工により得た。本実施例では、部品が大型化することで冷却速度が遅くなり、焼入れ性が悪くなる状態を模擬するため、直径が12mmの円柱型試験片と、この試験片よりも直径の大きい直径26mmの円柱型試験片を用意した。
[Manufacturing of carbonitrided steel]
From the above steel bar, cylindrical test pieces with a diameter of 12 mm and a length of 36 mm and a length of 26 mm and a length of 52 mm were obtained by machining. In this example, in order to simulate a state in which the cooling rate slows down due to the increase in size of the part and the hardenability deteriorates, cylindrical test pieces with a diameter of 12 mm and a cylindrical test piece with a diameter of 26 mm, which is larger than the diameter of the test pieces, were prepared.
上記各円柱型試験片を用いて、第1工程で、900℃以上950℃以下の温度かつ炭素当量Cp:0.5%以上1.2%以下の雰囲気にて、2時間以上7時間以下保持し、第2工程で、第1工程と同じ温度かつ炭素当量Cp:0.5%以上0.7%以下の雰囲気で、2時間以上4時間以下保持した後、第3工程で、800℃以上880℃以下の温度かつ第2工程と同濃度の炭素当量Cpであって、NH3量が6%以上12%以下の雰囲気で、4時間以上6時間以下保持して浸炭窒化処理を行った。その後、140℃で油焼入れを行い、160℃で2時間保持する焼戻しを行い、浸炭窒化処理鋼材を得た。なお、上記Cp値は前述した式で導出することができるが、実操業上では一酸化炭素分圧は常に一定となるように調整し、二酸化炭素分圧を変動させることで炭素当量Cpの値を狙いの値となるように制御した。また、上記NH3量は、炉内に導入しているベースガス(RXガス)の量に対する割合を示しており、流量計にて調整した。 Using each of the cylindrical test pieces, in the first step, the specimens were held at a temperature of 900°C to 950°C and an atmosphere of carbon equivalent Cp: 0.5% to 1.2% for 2 to 7 hours, and in the second step, the specimens were held at the same temperature as in the first step and an atmosphere of carbon equivalent Cp: 0.5% to 0.7% for 2 to 4 hours, and then in the third step, the specimens were held at a temperature of 800°C to 880°C and an atmosphere of the same carbon equivalent Cp concentration as in the second step and an NH 3 content of 6% to 12% for 4 to 6 hours to perform carbonitriding. Thereafter, the specimens were oil quenched at 140°C and tempered at 160°C for 2 hours to obtain a carbonitrided steel material. The Cp value can be derived by the above-mentioned formula, but in actual operation, the carbon monoxide partial pressure was always adjusted to be constant, and the carbon dioxide partial pressure was varied to control the carbon equivalent Cp value to a target value. The amount of NH 3 mentioned above indicates the ratio to the amount of base gas (RX gas) introduced into the furnace, and was adjusted by a flow meter.
〔浸炭窒化処理鋼材の評価〕
(表層領域の炭素量と窒素量の測定)
日本電子データム製の電子線マイクロプローブX線分析計(Electron Probe X-ray Micro Analyzer:EPMA 商品名「JXA-8500F」)を用いて、円柱型試験片の側面の最表面から中心軸の方向へ深さ3.0mm程度までを10μmピッチで線分析を行って、炭素量と窒素量を測定した。そして、最表面から深さ130μmの位置から170μmの位置までの計5点の濃度の平均値を、最表面から深さ150μmの位置の濃度とした。なお本実施形態では前述の通り、浸炭窒化処理鋼材を鋼部品に加工時、鋼材の表面研磨量が約150μmであると想定している。よって、上記測定した炭素量と窒素量は、鋼部品の最表面の炭素量と窒素量でもある。
[Evaluation of carbonitrided steel]
(Measurement of carbon and nitrogen content in the surface layer)
Using an electron beam microprobe X-ray analyzer (Electron Probe X-ray Micro Analyzer: EPMA, product name "JXA-8500F") manufactured by JEOL Datum, a line analysis was performed at a pitch of 10 μm from the outermost surface of the side surface of the cylindrical test piece to a depth of about 3.0 mm in the direction of the central axis, to measure the carbon content and nitrogen content. The average value of the concentrations at a total of five points from the position of 130 μm to the position of 170 μm deep from the outermost surface was taken as the concentration at a position of 150 μm deep from the outermost surface. As described above, in this embodiment, it is assumed that the surface polishing amount of the steel is about 150 μm when the carbonitrided steel material is processed into a steel part. Therefore, the carbon content and nitrogen content measured above are also the carbon content and nitrogen content of the outermost surface of the steel part.
(表層領域の析出物の形態の評価)
直径12mmの円柱型試験片の側面の最表面から中心軸の方向へ深さ150μmの位置を観察できるように、前記鋼材を樹脂に埋め込んだ埋め込み材を、ピクラル液で腐食した後、走査型電子顕微鏡(SEM)で、倍率10000倍にて上記位置を観察した。観察は、3視野(1視野サイズは12.0μm×8.6μm)で行った。そして、そのうちの1視野の顕微鏡写真1枚を使用し、粒子解析ソフト(SUMITOMO METAL TECHNOLOGY製、商品名:「粒子解析III for Windows. Version3.00」)を用いて、炭化物、窒化物、および炭窒化物の平均円相当直径(「平均粒径」ともいう)(μm)、円相当直径が0.1~1.0μmの炭化物、窒化物、および炭窒化物の、全組織に占める割合である合計面積率(%)、円相当直径が0.1~1.0μmの炭化物、窒化物、および炭窒化物の個数密度(個/μm2)を測定した。平均円相当直径を求めるにあたり、円相当直径が0.01μm以上の炭化物、窒化物、および炭窒化物を対象とした。
(Evaluation of the morphology of precipitates in the surface region)
In order to observe a position 150 μm deep from the outermost surface of the side surface of a cylindrical test piece having a diameter of 12 mm in the direction of the central axis, the embedding material in which the steel material is embedded in resin was corroded with picral liquid, and the above position was observed with a scanning electron microscope (SEM) at a magnification of 10,000 times. Observation was performed in three fields of view (one field size was 12.0 μm × 8.6 μm). Then, one micrograph of one of the visual fields was used to measure the average equivalent circle diameter (also referred to as "average particle size") (μm) of the carbides, nitrides and carbonitrides, the total area ratio (%) of carbides, nitrides and carbonitrides having an equivalent circle diameter of 0.1 to 1.0 μm, which is the ratio of the total structure to the total area ratio, and the number density (pieces/μm 2 ) of carbides, nitrides and carbonitrides having an equivalent circle diameter of 0.1 to 1.0 μm, using particle analysis software (manufactured by SUMITOMO METAL TECHNOLOGY, product name: "Particle Analysis III for Windows. Version 3.00 "). In determining the average equivalent circle diameter, carbides, nitrides and carbonitrides having an equivalent circle diameter of 0.01 μm or more were targeted.
規定する浸炭窒化条件では、炭化物はほぼ析出せず窒化物が主となるため、析出物量はN量に比例する。N量は、異なるサイズの鋼材間で大きな違いはなく、また析出物のサイズは、浸炭窒化処理の段階で決まり、冷却速度の違い、すなわち鋼材のサイズにより、上記析出物の測定値に大きな相違が生じるとも考えられないため、析出物の形態に関しては直径12mmの試験片のデータのみ採取した。なお前述の通り、浸炭窒化処理鋼材を鋼部品に加工時、鋼材の表面研磨量が約150μmであると想定している。よって、上記測定した析出物の平均円相当直径、合計面積率および個数密度はそれぞれ、鋼部品の最表面の平均円相当直径、合計面積率および個数密度でもある。 Under the specified carbonitriding conditions, carbides are hardly precipitated and nitrides are predominant, so the amount of precipitates is proportional to the amount of N. There is no significant difference in the amount of N between steels of different sizes, and the size of the precipitates is determined at the carbonitriding stage. Since it is not thought that differences in cooling rate, i.e., the size of the steel, will cause significant differences in the measured values of the precipitates, data was only collected for test pieces with a diameter of 12 mm regarding the morphology of the precipitates. As mentioned above, it is assumed that the surface polishing amount of the steel is approximately 150 μm when the carbonitrided steel is processed into a steel part. Therefore, the average circle equivalent diameter, total area ratio, and number density of the precipitates measured above are also the average circle equivalent diameter, total area ratio, and number density of the outermost surface of the steel part, respectively.
(表層領域の組織の観察)
前記円柱型試験片の直径方向が観察できるように埋め込んで研磨した後、ナイタール液で腐食してから、鋼材の最表面部と直径/4部の組織を、それぞれ倍率100倍と400倍で観察した。その結果を、焼戻しマルテンサイトをM、残留オーステナイトをγ、フェライトをFとして表2に示す。前述の通り、浸炭窒化処理鋼材を鋼部品に加工時、鋼材の表面研磨量が約150μmであると想定している。よって、上記組織の観察結果は、鋼部品の最表面から深さ100μmの位置までの範囲における組織の観察結果でもある。最表面部と直径/4部の組織がいずれも表2に示す通りの組織であったことから、最表面から深さ200μmの位置までの範囲においても、表2に示す組織であるといえる。
(Observation of the structure of the surface region)
The cylindrical test piece was embedded and polished so that the diameter direction of the test piece could be observed, and then etched with a nital solution. The structures of the outermost surface and diameter/4 part of the steel were observed at magnifications of 100x and 400x, respectively. The results are shown in Table 2, with tempered martensite as M, retained austenite as γ, and ferrite as F. As mentioned above, it is assumed that the surface polishing amount of the steel is about 150 μm when the carbonitrided steel is processed into a steel part. Therefore, the observation results of the above structure are also the observation results of the structure in the range from the outermost surface to a depth of 100 μm of the steel part. Since the structures of the outermost surface and diameter/4 part were both as shown in Table 2, it can be said that the structure shown in Table 2 is also in the range from the outermost surface to a depth of 200 μm.
(表層領域の残留オーステナイト量、半価幅の測定)
前記円柱型試験片の側面の最表面から中心軸の方向へ深さ0μm(最表面)、10μm、25μm、50μm、100μmの各5点について、電解研磨を行い、X線測定装置(株式会社リガク製、製品名「AutoMATE」)を用いて、残留オーステナイト量と半価幅の測定を行った。測定条件はスリット径がφ1.0、電圧40kV、電流40mA、測定角度119~138°、照射時間180秒とし、上記各5点の平均値を、浸炭窒化処理鋼材の最表面から深さ100μmまでの値として算出した。なお前述の通り、浸炭窒化処理鋼材を鋼部品に加工時、鋼材の表面研磨量が約150μmであると想定して、最表面から、深さ100μm以上200μm以下の位置までの範囲の残留オーステナイト量、半価幅の値を求めることとし、本実施例では、浸炭窒化処理鋼材の最表面から深さ100μmまでの範囲の残留オーステナイト量と半価幅を求めている。よって、上記測定した残留オーステナイト量と半価幅は、鋼部品の最表面の残留オーステナイト量と半価幅の値でもある。
(Measurement of the amount of retained austenite in the surface layer and the half-value width)
Electrolytic polishing was performed on five points at depths of 0 μm (outermost surface), 10 μm, 25 μm, 50 μm, and 100 μm from the outermost surface of the side surface of the cylindrical test piece toward the central axis, and the amount of retained austenite and the half-value width were measured using an X-ray measuring device (manufactured by Rigaku Corporation, product name "AutoMATE"). The measurement conditions were a slit diameter of φ1.0, a voltage of 40 kV, a current of 40 mA, a measurement angle of 119 to 138°, and an irradiation time of 180 seconds, and the average value of each of the five points was calculated as the value from the outermost surface of the carbonitrided steel material to a depth of 100 μm. As described above, when the carbonitrided steel is processed into a steel part, the amount of surface polishing of the steel is assumed to be about 150 μm, and the amount of retained austenite and the half width are obtained in the range from the outermost surface to a position having a depth of 100 μm to 200 μm. In this embodiment, the amount of retained austenite and the half width are obtained in the range from the outermost surface of the carbonitrided steel to a depth of 100 μm. Therefore, the amount of retained austenite and the half width measured above are also the amount of retained austenite and the half width of the outermost surface of the steel part.
(表層硬さの測定)
表層浸炭窒化層の観察が行えるように浸炭窒化処理鋼材を切断して得られた試験片を、樹脂に埋め込み研磨を行った。そして、JIS Z 2244に準拠して、試験片の最表面から深さ150μm位置のビッカース硬さと、最表面から3.0mm深さまでの0.1mmごとの硬さ分布を測定した。前述の通り、浸炭窒化処理鋼材を鋼部品に加工時、鋼材の表面研磨量が約150μmであると想定しており、上記測定した硬さの値は、鋼部品の最表面の硬さでもある。
(Measurement of surface hardness)
The carbonitrided steel was cut into test pieces so that the surface carbonitrided layer could be observed, and the test pieces were embedded in resin and polished. Then, in accordance with JIS Z 2244, the Vickers hardness at a depth of 150 μm from the outermost surface of the test pieces and the hardness distribution at 0.1 mm intervals up to a depth of 3.0 mm from the outermost surface were measured. As described above, it is assumed that the surface polishing amount of the steel is about 150 μm when the carbonitrided steel is processed into a steel part, and the hardness value measured above is also the hardness of the outermost surface of the steel part.
本発明では、部品での実用に供する鋼材として、表層硬さ600HV以上及び半価幅5.5°以上を満たすものを合格とする。なお、これらの特性は、浸炭窒化条件、特に浸炭窒化のC量やN量の影響を特に受けるため、浸炭窒化処理を行い更に焼入れ・焼戻しを行った後の表面性状の影響はほとんど受けない。本実施例では、直径12mmの円柱型試験片と、直径26mmの円柱型試験片の双方の測定結果を対比し、鋼材が大型化して冷却速度が遅くなる例として、直径26mmの円柱型試験片が、所望の表層硬さを達成している場合、表層硬さが高いと評価した。これらの結果を表2に示す。 In the present invention, steel materials for practical use in parts are deemed to pass if they have a surface hardness of 600HV or more and a half-value width of 5.5° or more. These characteristics are particularly affected by the carbonitriding conditions, especially the C and N amounts in carbonitriding, and are therefore hardly affected by the surface properties after carbonitriding and subsequent quenching and tempering. In this example, the measurement results of both a cylindrical test piece with a diameter of 12 mm and a cylindrical test piece with a diameter of 26 mm were compared, and the cylindrical test piece with a diameter of 26 mm was evaluated as having a high surface hardness when it achieved the desired surface hardness, as an example of a steel material with a large size and a slower cooling rate. These results are shown in Table 2.
これらの結果を考察する。No.1~4は、本実施形態に係るMnを含む化学成分組成を満たしており、サイズが大きく冷却速度が比較的遅い試験片(直径26mmの円柱型試験片であって、所定の冷却速度測定条件で冷却時の平均冷却速度が0.39℃/s)の場合でも、表層硬さは600HV以上、かつ半価幅5.5°以上を達成できた。これに対して、No.5は、Mn量は規定する範囲内にあるが、Cr量が過剰であるため、目標とする表層硬さと半価幅に至らなかった。またNo.6およびNo.7はMn量が不足して、目標とする表層硬さと半価幅に至らなかった。 These results are considered. Nos. 1 to 4 satisfy the chemical composition including Mn according to this embodiment, and even in the case of a test piece with a large size and a relatively slow cooling rate (a cylindrical test piece with a diameter of 26 mm, with an average cooling rate of 0.39°C/s during cooling under the specified cooling rate measurement conditions), a surface hardness of 600 HV or more and a half-width of 5.5° or more were achieved. In contrast, No. 5 had an Mn content within the specified range, but did not achieve the target surface hardness and half-width because of an excessive Cr content. Also, Nos. 6 and 7 did not achieve the target surface hardness and half-width because of an insufficient Mn content.
〔平均冷却速度の測定〕
上記棒鋼から直径6mm×18mm、直径12mm×36mm、直径18mm×45mm、直径26mm×52mmの各円柱型試験片を加工して得た。そして各円柱型試験片において、熱電対挿入用の直径5mmの穴を試験片中心に開け、試験片に銀メッキ加工を施した。熱電対先端をかしめて、加工穴に挿入して固定した後、大気炉に試験片を投入し、冷却速度測定条件として、840℃×30minで保持した。保持後に炉から取り出し、300℃まで大気中で放冷(空冷)したときの試験片の温度を区間:0.1秒ごとに測定し、840℃から300℃まで降温した時の平均冷却速度を算出した。その結果を図2と表3に示す。
[Measurement of average cooling rate]
From the above steel bars, cylindrical test pieces of 6 mm diameter x 18 mm diameter, 12 mm diameter x 36 mm diameter, 18 mm diameter x 45 mm diameter, and 26 mm diameter x 52 mm diameter were obtained. In each cylindrical test piece, a hole of 5 mm diameter for inserting a thermocouple was drilled in the center of the test piece, and the test piece was silver-plated. After the tip of the thermocouple was crimped and inserted into the processed hole and fixed, the test piece was placed in an atmospheric furnace and held at 840 ° C x 30 min as the cooling rate measurement condition. After holding, the test piece was removed from the furnace and cooled (air-cooled) in the air to 300 ° C. The temperature of the test piece was measured every 0.1 seconds, and the average cooling rate when the temperature was lowered from 840 ° C. to 300 ° C. was calculated. The results are shown in Figure 2 and Table 3.
上記表3と図2に示す通り、鋼材のサイズが大きくなるほど平均冷却速度は低下している。このことは、サイズの大きい鋼材では、平均冷却速度が遅く、焼入不良になりやすいことを示している。 As shown in Table 3 and Figure 2 above, the average cooling rate decreases as the size of the steel increases. This indicates that larger steel has a slow average cooling rate and is more susceptible to poor hardening.
本実施形態では、規定の成分組成を満たす鋼片を、冷却速度測定条件として、900℃以下800℃以上の加熱温度で30分以上1時間以下保持し、その後、大気下で、前記加熱温度から300℃まで空冷したときに、平均冷却速度が0.39℃/s以上となるような形状に粗成型加工すれば、浸炭窒化し、油焼入れ・焼戻しを行った後の表層硬さの低下を抑制できることが分かった。なお本発明者らが別途検討を行ったところ、本実施形態に係る成分組成を満たす、直径40mm×80mm(推定冷却速度:0.09℃/s)の鋼材を用いて、浸炭窒化焼入れ後に表層硬さを測定したが、目標の表層硬さを達成できなかった。このことから、本実施形態では、鋼部品の製造において、本実施形態に係る成分組成を満たし、上記冷却速度測定条件で求めた平均冷却速度が0.39℃/s以上を達成できる粗成型加工材を対象に、その後の工程を実施する必要があるといえる。なお、上記実施例では、前記表3に示す通り冷却速度測定条件で冷却時の平均冷却速度が規定範囲内にある、直径12mmと直径26mmの円柱型試験片を用いている。 In this embodiment, it was found that if a steel piece satisfying the specified composition is roughly molded into a shape in which the average cooling rate is 0.39°C/s or more when the steel piece is cooled in air from the heating temperature to 300°C under the cooling rate measurement conditions of 900°C or less, the decrease in surface hardness after carbonitriding, oil quenching and tempering can be suppressed. In addition, the inventors conducted a separate study and measured the surface hardness after carbonitriding and quenching using a steel material with a diameter of 40 mm x 80 mm (estimated cooling rate: 0.09°C/s) that satisfies the composition according to this embodiment, but the target surface hardness could not be achieved. From this, in the manufacturing of steel parts in this embodiment, it can be said that the subsequent process needs to be carried out on the roughly molded material that satisfies the composition according to this embodiment and can achieve an average cooling rate of 0.39°C/s or more as determined under the above cooling rate measurement conditions. In the above examples, cylindrical test pieces with diameters of 12 mm and 26 mm were used, and the average cooling rate during cooling was within the specified range under the cooling rate measurement conditions as shown in Table 3.
Mn以外の成分組成範囲がほぼ同じであるNo.1,2,4とNo.7を用いて、Mn含有量と、浸炭窒化処理後の直径26mmの円柱型試験片の表層硬さとの関係を整理した。その結果を図5に示す。図5中の点線は最小二乗法で算出した近似線を示す。図5の結果から、Mn含有量が高いほど、サイズが大きく冷却速度の比較的遅い鋼材で発生する浸炭窒化後の表層硬さの低下、即ち、焼入不良が改善される。例えば、No.7のサンプルは直径12mmの試験片ではビッカース硬さが780HVであり、表層硬さが高かったが、直径26mmに大型化した鋼材の場合、ビッカース硬さが542HVに低下した。一方、規定する成分組成、特にMn量が一定以上であるNo.1~4の何れのサンプルも、直径12mmの試験片に加えて、直径26mmの試験片でもビッカース硬さは600HV以上であり、鋼材のサイズに関係なく高い表層硬さを達成できた。なお、表層硬さには、Mn量の他に、浸炭窒化後の侵入N量と残留γ量が影響すると考えられるが、本実施形態で求める600HV以上の表層硬さのレベルでは、本実施形態に係る範囲であれば、それらの影響は、Mnよりも影響は小さいと思われる。
Using No. 1, 2, 4 and No. 7, which have almost the same composition range of components other than Mn, the relationship between the Mn content and the surface hardness of cylindrical test pieces with a diameter of 26 mm after carbonitriding treatment was summarized. The results are shown in Figure 5. The dotted line in Figure 5 shows an approximation line calculated by the least squares method. From the results in Figure 5, the higher the Mn content, the more the decrease in surface hardness after carbonitriding, that is, the poor quenching, which occurs in steel materials with large sizes and relatively slow cooling rates, is improved. For example, the Vickers hardness of the No. 7 sample was 780 HV for a test piece with a diameter of 12 mm, and the surface hardness was high, but in the case of a steel material enlarged to a diameter of 26 mm, the Vickers hardness decreased to 542 HV. On the other hand, in No. 7, which has the specified composition, especially the Mn content, which is above a certain level, the Vickers hardness of the test piece was 780 HV for a test piece with a diameter of 12 mm, and the surface hardness was improved. For all
本実施形態に係る鋼材と鋼部品は、例えば、各種産業用機械に使用される歯車部品やシャフトなどの転動部品と該部品用の鋼材、特に浸炭窒化処理を施して用いられる、転がり接触型のギア等を含む機械構造用部品と該部品用の鋼材として利用可能であるが、これに限定されない。 The steel material and steel parts according to this embodiment can be used, for example, as rolling parts such as gear parts and shafts used in various industrial machines and the steel material for said parts, particularly as machine structural parts including rolling contact type gears and the like that are used after carbonitriding treatment and the steel material for said parts, but are not limited to this.
Claims (10)
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼材であって、
最表面から深さ200μmの位置までの範囲において、組織が焼戻しマルテンサイト及び残留オーステナイトからなり、
最表面から、深さ100μm以上200μm以下の位置までの範囲において、残留オーステナイト組織の割合が10体積%以上70体積%以下、かつ(211)面におけるX線回折ピークの半価幅が5.5°以上であり、
最表面から深さ150μmの位置において、硬さがビッカース硬さで600HV以上であり、C濃度が0.5質量%以上0.9質量%以下、かつN濃度が0.4質量%以上1.20質量%以下であり、更に、炭化物、窒化物および炭窒化物の平均円相当直径が0.1μm以上1.0μm以下であり、円相当直径が0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の合計面積率が5%以上かつ個数密度が0.1個/μm2以上10個/μm2以下である鋼材。 C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel material containing N: more than 0 mass% and 0.050 mass% or less, O: more than 0 mass% and 0.005 mass% or less, with the balance being Fe and unavoidable impurities,
In the range from the outermost surface to a depth of 200 μm, the structure is composed of tempered martensite and retained austenite,
In the range from the outermost surface to a depth of 100 μm or more and 200 μm or less, the ratio of the retained austenite structure is 10 vol % or more and 70 vol % or less, and the half width of the X-ray diffraction peak in the (211) plane is 5.5 ° or more,
At a position 150 μm deep from the outermost surface, the Vickers hardness is 600 HV or more, the C concentration is 0.5 mass % or more and 0.9 mass % or less, and the N concentration is 0.4 mass % or more.1. 20 mass% or less, and further, the average equivalent circle diameter of the carbides, nitrides and carbonitrides is 0.1 μm or more and 1.0 μm or less, and the average equivalent circle diameter of the carbides, nitrides and carbonitrides is 0.1 μm or more and 1.0 μm or less. A steel material having a total area ratio of nitrides, carbides, and carbonitrides of 5% or more and a number density of 0.1 particles/ μm2 or more and 10 particles/ μm2 or less.
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼材であって、
組織がフェライトとパーライトの混合組織からなり、内部硬さがビッカース硬さで200HV以下である鋼材。 C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel material containing N: more than 0 mass% and 0.050 mass% or less, O: more than 0 mass% and 0.005 mass% or less, with the balance being Fe and unavoidable impurities,
A steel material whose structure is a mixture of ferrite and pearlite and whose internal hardness is 200HV or less in Vickers hardness.
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼部品であって、
最表面から深さ100μmの位置までの範囲において、組織が焼戻しマルテンサイト及び残留オーステナイトからなり、
最表面において、残留オーステナイト組織の割合が10体積%以上70体積%以下、かつ(211)面におけるX線回折ピークの半価幅が5.5°以上であり、
最表面において、硬さがビッカース硬さで600HV以上であり、C濃度が0.5質量%以上0.9質量%以下、N濃度が0.4質量%以上1.20質量%以下であり、更に、炭化物、窒化物および炭窒化物の平均円相当直径が0.1μm以上1.0μm以下であり、円相当直径が0.1μm以上1.0μm以下の炭化物、窒化物、および炭窒化物の合計面積率が5%以上かつ個数密度が0.1個/μm2以上10個/μm2以下である鋼部品。 C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel part containing N: more than 0 mass% and not more than 0.050 mass%, O: more than 0 mass% and not more than 0.005 mass%, with the balance being Fe and unavoidable impurities,
In the range from the outermost surface to a depth of 100 μm, the structure is composed of tempered martensite and retained austenite,
At the outermost surface, the proportion of the retained austenite structure is 10 volume % or more and 70 volume % or less, and the half width of the X-ray diffraction peak in the (211) plane is 5.5° or more,
At the outermost surface, the hardness is 600 HV or more in Vickers hardness, the C concentration is 0.5 mass% or more and 0.9 mass% or less, and the N concentration is 0.4 mass% or more and 1.20 mass% or less, Furthermore, the average equivalent circle diameter of the carbides, nitrides and carbonitrides is 0.1 μm or more and 1.0 μm or less, and the average equivalent circle diameter of the carbides, nitrides and carbonitrides is 0.1 μm or more and 1.0 μm or less. A steel part having a total area ratio of 5% or more and a number density of 0.1 pieces/ μm2 or more and 10 pieces/ μm2 or less.
C:0.15質量%以上0.30質量%以下、
Si:0.36質量%以上1.00質量%以下、
Mn:0.40質量%以上1.50質量%以下、
Cr:1.20質量%以上1.90質量%以下、
Mo:0.30質量%以上0.80質量%以下、
P:0質量%超0.05質量%以下、
S:0質量%超0.05質量%以下、
Al:0.005質量%以上0.2質量%以下、
N:0質量%超0.050質量%以下、および
O:0質量%超0.005質量%以下
を含有し、残部はFe及び不可避不純物からなる鋼片を、
冷却速度測定条件として、900℃以下800℃以上の加熱温度で30分以上1時間以下保持し、その後、大気下で、前記加熱温度から300℃まで空冷したときに、平均冷却速度が0.39℃/s以上となるような形状に、粗成型加工する工程と、
850℃以上950℃以下の第1温度に加熱し、該第1温度で0.5時間以上2時間以下保持し、次いで、650℃以上700℃以下の第2温度まで降温してから、該第2温度で3.5時間以上5時間以下保持し、その後に室温まで空冷または炉冷する2段焼きならし処理工程と、
切削加工工程と、
切削加工後に、900℃以上950℃以下の温度かつ炭素当量Cp:0.5%以上1.2%以下の雰囲気で、2時間以上7時間以下保持する第1工程、第1工程と同じ温度かつ炭素当量Cp:0.5%以上0.7%以下の雰囲気で、2時間以上4時間以下保持する第2工程、および、800℃以上900℃以下の温度かつ第2工程と同じ炭素当量CpであってNH3量が6%以上12%以下の雰囲気で、4時間以上6時間以下保持する第3工程を含む浸炭窒化処理工程と、
浸炭窒化処理後に、油焼入れを行い、その後に焼戻しを行う工程と
を含む、鋼部品の製造方法。 A method for manufacturing a steel part according to claim 5, comprising the steps of:
C: 0.15% by mass or more and 0.30% by mass or less,
Si: 0.36% by mass or more and 1.00% by mass or less,
Mn: 0.40% by mass or more and 1.50% by mass or less,
Cr: 1.20% by mass or more and 1.90% by mass or less,
Mo: 0.30% by mass or more and 0.80% by mass or less,
P: more than 0% by mass and not more than 0.05% by mass,
S: more than 0% by mass and not more than 0.05% by mass,
Al: 0.005% by mass or more and 0.2% by mass or less,
A steel slab containing N: more than 0 mass% and 0.050 mass% or less, O: more than 0 mass% and 0.005 mass% or less, with the balance being Fe and unavoidable impurities,
As a cooling rate measurement condition, a step of roughly forming the material into a shape such that when the material is kept at a heating temperature of 900° C. or less and 800° C. or more for 30 minutes to 1 hour, and then air-cooled from the heating temperature to 300° C. under atmospheric conditions, the material has an average cooling rate of 0.39° C./s or more;
a two-stage normalizing process in which the steel sheet is heated to a first temperature of 850° C. or more and 950° C. or less, held at the first temperature for 0.5 hours or more and 2 hours or less, then cooled to a second temperature of 650° C. or more and 700° C. or less, held at the second temperature for 3.5 hours or more and 5 hours or less, and then air-cooled or furnace-cooled to room temperature;
A cutting process;
a carbonitriding process including a first step of holding the material after cutting at a temperature of 900° C. to 950° C. and in an atmosphere having a carbon equivalent Cp of 0.5% to 1.2% for 2 hours to 7 hours, a second step of holding the material at the same temperature as in the first step and in an atmosphere having a carbon equivalent Cp of 0.5% to 0.7% for 2 hours to 4 hours, and a third step of holding the material at a temperature of 800° C. to 900° C. and in an atmosphere having the same carbon equivalent Cp as in the second step and an NH3 content of 6% to 12% for 4 hours to 6 hours;
A method for manufacturing a steel part, comprising the steps of performing oil quenching after carbonitriding and then performing tempering.
前記鋼片は、Cu:0質量%超1.0質量%以下、Ni:0質量%超1.0質量%以下、およびB:0質量%超0.0050質量%以下よりなる群から選ばれる1種以上を、更に含有する請求項8に記載の鋼部品の製造方法。 A method for manufacturing a steel part according to claim 6, comprising the steps of:
9. The method for producing a steel part according to claim 8, wherein the steel billet further contains one or more selected from the group consisting of Cu: more than 0 mass% and 1.0 mass% or less, Ni: more than 0 mass% and 1.0 mass% or less, and B: more than 0 mass% and 0.0050 mass% or less.
前記鋼片は、V:0質量%超0.50質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選ばれる1種以上を、更に含有する請求項8又は9に記載の鋼部品の製造方法。 A method for manufacturing a steel part according to claim 7, comprising the steps of:
The method for producing a steel part according to claim 8 or 9, wherein the steel slab further contains one or more elements selected from the group consisting of V: more than 0 mass% and 0.50 mass% or less, and Nb: more than 0 mass% and 0.10 mass% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021204418A JP7545949B2 (en) | 2021-12-16 | 2021-12-16 | Steel material, steel part, and manufacturing method of steel part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021204418A JP7545949B2 (en) | 2021-12-16 | 2021-12-16 | Steel material, steel part, and manufacturing method of steel part |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023089730A JP2023089730A (en) | 2023-06-28 |
JP7545949B2 true JP7545949B2 (en) | 2024-09-05 |
Family
ID=86936526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021204418A Active JP7545949B2 (en) | 2021-12-16 | 2021-12-16 | Steel material, steel part, and manufacturing method of steel part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7545949B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073072A (en) | 1999-08-30 | 2001-03-21 | Kobe Steel Ltd | Carbo-nitrided parts excellent in pitching resistance |
JP2001330062A (en) | 2000-05-22 | 2001-11-30 | Ntn Corp | One-way clutch and pulley with built-in clutch |
JP2010185123A (en) | 2009-02-13 | 2010-08-26 | Kobe Steel Ltd | Steel for gear excellent in resistance to exfoliation, and gear |
JP2012201933A (en) | 2011-03-25 | 2012-10-22 | Nsk Ltd | Planetary gear device |
WO2013065718A1 (en) | 2011-11-01 | 2013-05-10 | 新日鐵住金株式会社 | Method for producing steel part |
JP2013112827A (en) | 2011-11-25 | 2013-06-10 | Jfe Bars & Shapes Corp | Gear excellent in pitching resistance and manufacturing method therefor |
JP2014198877A (en) | 2013-03-29 | 2014-10-23 | 株式会社神戸製鋼所 | Carburized component excellent in surface fatigue strength and method of manufacturing the same |
JP2015189987A (en) | 2014-03-27 | 2015-11-02 | 株式会社神戸製鋼所 | Case hardening steel having excellent cold forgeability with suppressable abnormal grain growth upon carburizing |
JP2015218359A (en) | 2014-05-16 | 2015-12-07 | 新日鐵住金株式会社 | Surface-hardened component, steel for surface-hardened component, and method for producing the surface-hardened component |
CN108866311A (en) | 2018-08-07 | 2018-11-23 | 湖北威能达传动有限责任公司 | A kind of heat treatment process of 20CrMnMoA steel pricker gear |
WO2020138458A1 (en) | 2018-12-27 | 2020-07-02 | 日本製鉄株式会社 | Carbonitrided bearing component |
CN111850412A (en) | 2020-08-03 | 2020-10-30 | 苏州亚太金属有限公司 | Steel material for carburized gear and preparation method thereof |
-
2021
- 2021-12-16 JP JP2021204418A patent/JP7545949B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073072A (en) | 1999-08-30 | 2001-03-21 | Kobe Steel Ltd | Carbo-nitrided parts excellent in pitching resistance |
JP2001330062A (en) | 2000-05-22 | 2001-11-30 | Ntn Corp | One-way clutch and pulley with built-in clutch |
JP2010185123A (en) | 2009-02-13 | 2010-08-26 | Kobe Steel Ltd | Steel for gear excellent in resistance to exfoliation, and gear |
JP2012201933A (en) | 2011-03-25 | 2012-10-22 | Nsk Ltd | Planetary gear device |
WO2013065718A1 (en) | 2011-11-01 | 2013-05-10 | 新日鐵住金株式会社 | Method for producing steel part |
JP2013112827A (en) | 2011-11-25 | 2013-06-10 | Jfe Bars & Shapes Corp | Gear excellent in pitching resistance and manufacturing method therefor |
JP2014198877A (en) | 2013-03-29 | 2014-10-23 | 株式会社神戸製鋼所 | Carburized component excellent in surface fatigue strength and method of manufacturing the same |
JP2015189987A (en) | 2014-03-27 | 2015-11-02 | 株式会社神戸製鋼所 | Case hardening steel having excellent cold forgeability with suppressable abnormal grain growth upon carburizing |
JP2015218359A (en) | 2014-05-16 | 2015-12-07 | 新日鐵住金株式会社 | Surface-hardened component, steel for surface-hardened component, and method for producing the surface-hardened component |
CN108866311A (en) | 2018-08-07 | 2018-11-23 | 湖北威能达传动有限责任公司 | A kind of heat treatment process of 20CrMnMoA steel pricker gear |
WO2020138458A1 (en) | 2018-12-27 | 2020-07-02 | 日本製鉄株式会社 | Carbonitrided bearing component |
CN111850412A (en) | 2020-08-03 | 2020-10-30 | 苏州亚太金属有限公司 | Steel material for carburized gear and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2023089730A (en) | 2023-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2058411B1 (en) | High strength heat-treated steel wire for spring | |
US10370747B2 (en) | Nitrided component | |
JP6737387B2 (en) | Soft nitriding steel and parts | |
JP5333682B2 (en) | Rolled steel bar or wire rod for hot forging | |
JP3614113B2 (en) | Steel material for bearing element parts with excellent machinability | |
JP4941252B2 (en) | Case-hardened steel for power transmission parts | |
JP2020180313A (en) | High hardness member and its manufacturing method | |
EP3173500B1 (en) | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool | |
EP3467133B1 (en) | Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method | |
WO2016152167A1 (en) | Steel for soft nitriding, components, and method for manufacturing same | |
EP3115477B1 (en) | Age hardening non-heat treated bainitic steel | |
US20180094345A1 (en) | Case-hardened steel component | |
JP2017133052A (en) | Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor | |
JP7464822B2 (en) | Steel for bearing raceways and bearing raceways | |
JP2006307271A (en) | Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same | |
JP2009263767A (en) | Method for manufacturing high-strength case hardened steel part | |
JP7545949B2 (en) | Steel material, steel part, and manufacturing method of steel part | |
CN107429359B (en) | Hot-rolled rod and wire material, component, and method for producing hot-rolled rod and wire material | |
JP6721141B1 (en) | Steel for soft nitriding, soft nitriding component, and manufacturing method thereof | |
JP4464861B2 (en) | Case hardening steel with excellent grain coarsening resistance and cold workability | |
WO2017146057A1 (en) | Cement steel component and steel material having excellent stability of rolling fatigue life, and method for manufacturing same | |
JP7436826B2 (en) | Nitrided parts and manufacturing method of nitrided parts | |
JP2007107046A (en) | Induction hardening steel | |
JP7360060B2 (en) | steel and bearings | |
JP2017150066A (en) | Steel material and carburized steel component excellent in stability of rolling motion fatigue life and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7545949 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |