JP7534377B2 - 色によるパノラマlidar結果の増強 - Google Patents
色によるパノラマlidar結果の増強 Download PDFInfo
- Publication number
- JP7534377B2 JP7534377B2 JP2022192760A JP2022192760A JP7534377B2 JP 7534377 B2 JP7534377 B2 JP 7534377B2 JP 2022192760 A JP2022192760 A JP 2022192760A JP 2022192760 A JP2022192760 A JP 2022192760A JP 7534377 B2 JP7534377 B2 JP 7534377B2
- Authority
- JP
- Japan
- Prior art keywords
- color
- lidar
- pixels
- pixel
- camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4813—Housing arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/51—Display arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/73—Circuitry for compensating brightness variation in the scene by influencing the exposure time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/698—Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Description
本出願は、2017年5月15日に出願された「Systems and Method for Augmenting 360° Panoramic LIDAR results with Color」と題する米国仮特許出願第62/506,460号に対する優先権を主張し、その内容全体は、あらゆる目的のためにそれらの全体が参照により本明細書に援用される。
図1は、いくつかの実施形態による、自動車用途の状況における360度パノラマカラーLIDARシステム(PCLS)100を示す。PCLSの自動車用途は、ここでは単に例解のために選択したものであり、本明細書に記載のセンサは、例えば、ボート、航空機、列車などの他のタイプの車両において、ならびに医用撮像、測地学、ジオマティクス、考古学、地理学、地質学、地形学、地震学、林業、大気物理学、レーザ誘導、空中レーザスワスマッピング(ALSM)、レーザ高度計などの、LIDAR画像が有用な様々な他の用途において採用され得る。いくつかの実施形態によれば、PCLS100は、図1に示すように車両105の屋根に取り付けることができる。
図2Aは、図1を参照して上述したPCLS100と同様の、特定の実施形態によるPCLS250を示す斜視図である。PCLS250は、スキャンLIDARシステム210を保護するための、光学的に透明な窓260及び蓋270から形成されたエンクロージャを含む。いくつかの実施形態では、システムコントローラ280、及びカメラ220を含むカラーカメラアレイもハウジング内に存在することができる。カラーカメラのアレイは、ベース240の周囲に位置付けることができ、ベース自体は、各カメラがベース240から出る透明な光路を有するように開口部のアレイを含むことができる。いくつかの実施形態では、開口部は、中身のない貫通孔であってもよく、または各カラーカメラの撮像を支援するための1または複数の光学素子を含んでもよい。
一実施形態では、カラーカメラ220は、通常、ローリングシャッタを有する低コストのCMOSセンサであり得る。ローリングシャッタセンサは、一度に1または複数のピクセル列のデータを生成する。グローバルシャッタを有するカメラも使用することができる。いずれの場合でも、PCLS250は、カラーカメラ220の配向及びLIDARシステム210の回転方向を調整して、同じ円方向のピクセルデータを取得することができる。PCLS250はまた、カラーカメラシャッタを制御することができるため、カラーピクセルの取得は、LIDARピクセルの捕捉と同期する(つまり、対応するLIDARピクセルが決定された角度位置の近く及びその位置において捕捉されており、トリガされた画像のカラーピクセルが時間的に近接して位置合わせされるように、時間的に同期する)。他の実施形態は、異なるタイプのカラーカメラを使用してもよい。例えば、PCLSはより高価なCCDカメラを使用することができ、それは通常、画像全体を同時に捕捉する。カラーカメラ220は、RGB、YUV、及びCMYKを含む任意のフォーマットで色情報を提供することができる。一実施形態では、ベース240は成形プラスチックの機械的ハウジングであるが、他の実施形態は、金属または他の材料を使用してもよい。
図3は、特定の実施形態による、スキャンLIDARシステムとカラーカメラシャッタとの間の回転同期の概念を更に詳しく説明するための、PCLS300のブロック図を例解する。回転同期とは、カラーカメラ取得とスキャンLIDAR取得を同期するプロセスを指す。いくつかの実施形態では、後処理でタイムスタンプを使用することなく、例えば、スキャンLIDARシステムの角度位置に基づいて1または複数のカラーカメラ取得をトリガすることにより、同期を達成することができる。
図4は、特定の実施形態による、回転同期プロセスを例解することを目的として、カラーカメラの視野のセットと位置合わせされたパノラマLIDAR画像403を例解する。図4は、特定の実施形態による、システムコントローラが、ロータリエンコーダによって生成された角度位置信号に基づいて、PCLSシステムのカラーカメラのセットからカラー画像405、407、及び409の一連の取得を、どのようにトリガすることができるかを例解する。より具体的には、図4は、図2Bに示されるのと同様の方法でベースの周囲に周方向に配置された3つのカラーカメラを有するPCLSについて、取得されたカラー画像405、407、及び409と重複する全360度パノラマLIDAR画像403を示す。この例では、各カラーカメラは約120度の視野を有している。
上記で説明したように、1または複数のカラーピクセルは、1つのLIDARピクセルに対応することができる。ルックアップテーブルは、かかるマッピングを特定するためのキャリブレーション手順を介して決定されてもよい。
図5は、ピクセルごとのレベルでの、LIDARピクセルとカラーピクセルとの間の対応を例解する。有利なことに、いくつかの実施形態では、カメラの取得は、LIDARシステムの角度位置に基づいて(システムクロックなどを使用するのではなく)、トリガすることができるため、LIDAR画像全体内の各カラー取得の相対位置が固定されており、それにより、キャリブレーション手順を介して、LIDARとカラーピクセルとの間の単一マッピングを工場で決定することが可能になる。このマッピングをPCLSのシステムメモリに記憶することができ、その後、システムが、対応するLIDARピクセルにマップする各カラーピクセルを認識することができるように、ルックアップテーブルとして使用することができる。
図6Aは、1または複数の実施形態に従って、視差に起因するLIDARとカラー画像との間の相違を例解する。より具体的には、図6Aは、近点オブジェクト694及び遠点オブジェクト692の両方を撮像するLIDARシステム610及びカラーカメラ620を示す。視差効果を更に例解するために、図6Bは、LIDARシステム610から取得される画像の例を示し、図6Cは、カラーカメラ620から取得される画像の例を示す。図6B及び図6Cにおいて、近点オブジェクトは木の上部に対応し、遠点オブジェクトは家の上部に対応する。
LIDARピクセルが所与の角度位置で取得された後、LIDARピクセルのセンサアレイ内の所与の角度位置及び場所に関する情報(例えば、実際の角度値、角度エンコーディング位置、または角度/エンコーディング位置によって並べられたバッファ内のメモリ位置)を使用して、所与の角度位置及びセンサ位置に割り当てられた対応するカラーピクセル(複数可)の座標(複数可)を提供するルックアップテーブルにアクセスすることができる。本明細書で説明するように、かかるテーブルは、例えば、異なるカメラ用の異なるテーブル、すべてのカメラ用の1つのテーブル、及び深度の関数によって定義することができる異なる深度用の異なるテーブルなど、様々な方法で構成することができる。
図7は、特定の実施形態による、深度依存ピクセル対応のためのルックアップテーブルの使用を更に例解するためのPCLS710のブロック図を示す。PCLS710は、ユーザインターフェースハードウェア715と相互作用することができる。ユーザインターフェースハードウェア715は、a)モニタ、キーボード、マウス、CPU及びメモリを有するコンピュータシステム、b)自動車のタッチスクリーン、及びc)タッチスクリーン付きのハンドヘルドデバイスを含む多くの形態をとることができる。ユーザインターフェースは、ユーザが、a)PCLSをアクティブにするまたは非アクティブにすること、b)カメラの明るさ、コントラスト、彩度、色相、その他の操作パラメーターを指定すること、c)LIDARピクセルとカラーピクセルとの間の対応を定義するカラーピクセルルックアップテーブルをセットアップすること、及びd)結果を表示するための方法を選択すること、を含め、1または複数のユーザコマンドを介してPCLSを制御することを可能にすることができる。ユーザインターフェースは、a)検出されたオブジェクトの経時的な3次元カラーマップ、及び、b)特定のオブジェクトの特定のビューの特定の時間における距離値を含み得る、PCLS結果を表示することができる。
(1)パノラマLIDAR画像内の各LIDARピクセルについてのエントリと最も近いカラーピクセル座標のリスト。カラーピクセル座標は、特定のカラーカメラのカラー画像、及びそのカラーカメラの画像内のカラーピクセル場所(複数可)を特定することができ、これは、単一のテーブル、または異なるカメラの別個のテーブルで行うことができる。かかる形式では、表示オブジェクトまでの距離を無視することができる。
(2)ルックアップテーブルは、異なる距離のセット(例えば、近距離、中距離、及び遠距離、または数値範囲などのより多くの分類)のサブテーブルを含むことができる。測定距離がサブテーブルに対応する範囲内にあることに基づき、特定のサブテーブルが特定されると、LIDARピクセル座標(例えば、アレイ内の角度位置及びセンサ位置)を使用してサブテーブルにアクセスし、対応するカラー画像のカラーピクセル座標(複数可)を得ることができる。このように、ルックアップテーブルは、テーブル内のフィールドとして、ピクセルID(LIDARセンサのアレイの識別子など)、エンコーダ値(角度位置など)、及び深度値を有し、多次元であり得る。
(3).各プロパティ値エントリ(LIDARピクセル座標に対応)がプロパティフィールド及び対応する値フィールドを有する、プロパティ値エントリのリスト。各プロパティフィールドは、表示オブジェクト距離の異なる範囲(例えば、0~1m、1m~5m、5m~20m、及び20~100mなどの深度値の範囲)のLIDARピクセルに対応するカラーピクセル座標(複数可)を指定する。各値フィールドは、プロパティフィールドに基づいて対応するカラーピクセル場所(複数可)を計算するための式を定義する。式は、異なるカラーピクセルのブレンドを選択可能にするカーブフィット関数として機能することができ、例えば、異なる深度について異なるブレンドウェイトを異なるカラーピクセルに割り当てることができる。かかるウェイトは、所与のLIDARピクセルに対して測定された測定距離に基づいて割り当てることができる。例えば、測定距離は、2つの深度範囲との間の境界近くであることができ(例えば、上記の例では、5mが2つの深度範囲の境界である)、ブレンドウェイトは、2つの深度範囲に対して特定されたカラーピクセル(複数可)の2つのセットについて、約0.5であり得る。各エントリの式は、表示オブジェクト距離の範囲を使用して、視差エラーを補正することができる。
図8は、360度パノラマビューのLIDARシステムを色で増強するための方法800を示すフローチャートを例解する。方法800を使用して、特定の実施形態による、記憶されたカラーピクセルルックアップテーブルを使用して、取得された各LIDARピクセルについて色情報を決定することができる。PCLSは、前もってキャリブレーションすることができ、したがって、LIDARピクセルをカラーピクセルにマッピングするためのルックアップテーブルを記憶することができる。
一般に、PCLSは、本開示の範囲から逸脱することなく、任意のタイプのスキャンLIDARを採用することができる。例えば、LIDARは、図3を参照して上述したように、ベースの周りに周方向に配置されたカラーカメラのアレイを含むことができるベースユニットに回転可能に連結された上部ハウジング内に位置するレーザエミッタ及びフォトダイオード検出器のペア(例えば、32ペア、64ペア、128ペアなど)を含むことができる。いくつかの実施形態では、各エミッタ及び検出器は、独自の別個の基板に取り付けることができ、エミッタ基板及び検出器基板は2つの別個のアセンブリに取り付けられている。別個のアセンブリを、水平に対して異なる角度で上部ハウジング内に位置付けられ、異なる垂直視野を提供することができる。いくつかの実施形態では、ベースは、電気モータ上部ハウジングを可能にする回転カップリングに接続されたモータを含むことができ、それにより、LIDARシステムが全360度の水平視野を捕捉することができるようになる。
1.統合された中心光ダウンリンク
いくつかの実施形態では、中空シャフト1003は、基板アセンブリの各々を支持する中心構造部材として機能することができるだけでなく、データ、例えば、測距及び/または動作データを、タレットアセンブリから、下部回路基板アセンブリ1017(ベースシステムとも称される)に位置する制御及び処理回路に提供するためのダウンリンク光通信チャネル(「ダウンリンクチャネル」)のハウジングとしても機能する。光ダウンリンクチャネルは、光ダウンリンクトランスミッタ1019及び光ダウンリンクレシーバ1021を含むことができる。光ダウンリンクトランスミッタ1019は、上部回路基板アセンブリ1007の回路基板の表面に直接はんだ付けなどで取り付けることができ、中空シャフト1003の中心孔または開口部を通して光を送信することができるように位置付けることができる。同様に、光ダウンリンクレシーバ1021は、下部回路基板アセンブリ1017の回路基板の表面に直接はんだ付けなどで取り付けることができる。光ダウンリンクレシーバ1021は、光ダウンリンクトランスミッタ1019から送信される光を検出することができるように、シャフトの下端に位置付け、光ダウンリンクトランスミッタ1019と位置合わせすることができる。
光アップリンクチャネルは、光アップリンクトランスミッタ1023の周方向配列と光アップリンクレシーバ1025の相補的な周方向配列との間に形成される。有利には、中空シャフト1003の壁は、アップリンクチャネルとダウンリンクチャネルとの間の光分離を提供し、したがって、クロストークを最小限に抑える。周方向配列の個々のエミッタ及びレシーバは、単一の複合レシーバ及び単一の複合トランスミッタとしてともに機能するように一緒に配線される。例えば、システムが全体の光強度を上げて回転すると、個々のエミッタ/検出器が互いに通過するときに、光アップリンクレシーバの全配列によって検出されるアップリンク信号は、わずかにしか変化しない。更に、個々のトランスミッタの数は、個々のレシーバの数と同じでもまたは異なってもよい。
図10Cは、上部回路基板アセンブリと下部回路基板アセンブリとの間の誘導通信システムを採用する実施形態を示す。この例では、データのアップリンクとダウンリンクは、図のように、下部回路基板アセンブリと上部回路基板アセンブリにそれぞれ取り付けられたコイルのペア1061a~e及び1063a~eによって提供される。コイルは、データライン及びクロックラインの両方を含むことができる。各コイルは、それぞれの回路基板の表面に取り付けられたそれら自体である上部コイルハウジング1061及び下部コイルハウジング1063などのハウジングの別のチャネル、例えば円形チャネル内に埋め込むことができる。いくつかの実施形態では、複数の誘導データ線に使用されるいくつかのコイル、例えば、ダウンリンクチャネル1トランスミッタコイル1061b及びダウンリンクチャネル1レシーバコイル1063b、ダウンリンクチャネル2トランスミッタコイル1061c、ならびにダウンリンクチャネル2レシーバコイル1063cがあり得る。いくつかの実施形態において、ダウンリンククロック信号は、別のコイルペア、例えば、ダウンリンククロック送信コイル1061a及びダウンリンククロックレシーバコイル1063aを介して送信され得る。同様に、データアップリンクチャネルは、1または複数のペアのコイルから、例えばアップリンクトランスミッタコイル1063d及びアップリンクレシーバコイル1061dにより、形成することができる。ダウンリンクと同様に、データアップリンククロック信号は、一ペアのコイル、例えば、アップリンククロックトランスミッタコイル1063e及びアップリンククロックレシーバコイル1061eから形成される、専用チャネルを有することもできる。
特定の実施形態によれば、回転アクチュエータ用の電動モータは、対向するステータ基板上の平面ステータアセンブリに対向するロータ基板上の平面ロータアセンブリを有する「パンケーキ」または「アキシャル」設計のものである。電気モータのステータ及びロータアセンブリはまた、回転アクチュエータ1006の基板に統合されている、つまり、電気モータの要素は、プリント回路基板の表面上の多くのコンポーネントの1つであり、したがって、別のモータモジュールはLIDARシステムには必要ではない。例えば、モータステータアセンブリ1027は、ステータ要素、例えば、接着剤を使用して、下部回路基板アセンブリ1017の基板に貼り付けられる、または軟磁性コアに貼り付けられ、次いで、下部回路基板アセンブリ1017に貼り付けられる、垂直に配向されたソレノイド(基板の表面に垂直な長手方向軸を有する)の円形配列を含むことができる。ソレノイド巻線の例は、図10Dの平面図に示される。各ソレノイドコイルは、磁性材料、例えばフェライトなどのコアの周りに巻かれることができる。コイルは、ソレノイドを出る磁場が回路基板の平面に実質的に垂直である方向に実質的に配向されるように配向される。
回転する上部回路基板アセンブリ1007に接続された回路素子に電力を提供するために、回転アクチュエータ1006は、本明細書で回転変圧器とも称される無線電力システムを含み、無線電力トランスミッタ1035を含む無線電力送信サブシステム及び無線電力レシーバ1037を含む無線電力受信サブシステムを含む。無線電力トランスミッタ1035は、円形ループアンテナ形状のトランスミッタコイル、すなわち、シングルターンまたはマルチターンコイルであり得、例えば、図10Dに示すように、下部回路基板アセンブリ1017の回路基板の表面に取り付けられている。同様に、無線電力レシーバ1037は、円形ループアンテナ形状のレシーバコイル、すなわち、シングルターンまたはマルチターンコイルであり得、例えば、図10Eに示すように、上部回路基板アセンブリ1017の回路基板の表面に取り付けられている。無線電力トランスミッタ1035及び無線電力レシーバ1037の両方の中心は、中空シャフト1003の中心に位置付けられ、したがって、光学エンコーダリング、電気モータアセンブリ、及び光学アップリンクレシーバ/トランスミッタと同心である。
回転アクチュエータ1006は、下部回路基板アセンブリ1017に対する上部回路基板アセンブリ1007の角度位置の読み出しを可能にする、統合された光学エンコーダアセンブリを更に含む。光学エンコーダアセンブリは、パターン化された環状光学エンコーダ1031、及び、例えば、システムが回転するときにロータリエンコーダ検出器1031を通過するパターンの数を検出及びカウントすることによりアセンブリの角度位置を読み取るためのロータリエンコーダ検出器1033を含む。特定の実施形態では、ロータリエンコーダ検出器1033は、LEDなどの照明デバイス、ならびに、環状光学エンコーダのパターン化された表面を照射及び検出するためのフォトダイオードまたは撮像検出器などの検出器を含むことができる。いくつかの実施形態では、環状光学エンコーダは、円環上の一意の位置で発生する開始コードを含むことができ、または絶対エンコーディングパターンを提供し、それにより絶対角度配向測定を可能にする。いくつかの実施形態では、エンコーダシステムは、本質的に光学的ではなく磁気的であり、同様に位置付けられた磁気エンコーダストリップ及び磁気エンコーダリーダに依存する。
LIDARシステムの角度位置を使用してカラー画像をトリガすることに加えて、いくつかの実施形態は、共通の内部クロックを使用して、プロセッサにストリームするときに各LIDARピクセル及び各カメラピクセルにタイムスタンプし、それにより、データは共通のタイムベース上にあり、厳密な時間的相関関係が得られる。LIDARピクセルが色付けのために受信されると、その捕捉時間を使用して、時間的に近くにある、例えば、最も近い時間内または指定された時間しきい値内にある、カラーピクセル(複数可)を選択することができる。例えば、選択は、ルックアップテーブルを使用してカラーピクセルの座標を特定することができ、これらの座標(複数可)をLIDARピクセルのタイムスタンプとともに使用して、LIDARピクセルのタイムスタンプに対し所望の時間を有するこれらの座標(複数可)において特定のピクセル値(複数可)を選択することができる。異なる時間におけるカラーピクセルのブレンドを実行することもできる。
本明細書で言及されるコンピュータシステムまたは回路のいずれも、任意の好適な数のサブシステムを利用し得る。サブシステムは、システムバスを介して接続することができる。例として、サブシステムは、コンピュータシステムを他のデバイス(例えば、エンジン制御まで)に接続するために使用されることができる、入力/出力(I/O)デバイス、システムメモリ、記憶デバイス(複数可)、及びネットワークアダプタ(複数可)(例えば、Ethernet、Wi-Fiなど)を含むことができる。システムメモリ及び/または記憶デバイス(複数可)は、コンピュータ可読媒体を統合することができる。
Claims (11)
- パノラマカラー光検出及び測距(LIDAR)システムであって、
固定ベースと、
前記固定ベースに回転可能に連結されており、光を送信する工程と反射光を検出する工程とにより複数の測距測定を実行して、視野角内に分布する複数のLIDARピクセルを含むLIDAR画像を取得するように構成されているLIDARシステムと、
前記固定ベースに固定的に連結され、前記LIDARシステムの周囲に周方向に配置された複数のカラーカメラであって、各カメラは前記視野角の一部分であるそれぞれのカメラ視野を有し、当該複数のカラーカメラは複数のカラーピクセルを含む複数のカラー画像を取得するように構成されている、複数のカラーカメラと、
コントローラであって、
前記複数のLIDARピクセルのそれぞれと前記複数のカラーピクセルのそれぞれとの間の空間的対応を決定する工程と、
前記カラーピクセルを空間的に対応するLIDARピクセルと組み合わせて色付けされたLIDARピクセルを生成する工程と、
前記色付けされたLIDARピクセルをユーザインタフェースに提供する工程と、
を行うように構成されている、コントローラと、
を備え、
前記空間的対応を決定する工程は、前記複数のLIDARピクセルと前記複数のカラーピクセルとの間のマッピングを定義するカラーピクセルルックアップテーブルを使用して、前記カラーピクセルを前記それぞれのLIDARピクセルに関連付ける工程を有している
ことを特徴とするパノラマカラーLIDARシステム。 - 前記カラーピクセルルックアップテーブルは、各回転について360度の角度位置によってインデックス付けされており、
前記カラーピクセルルックアップテーブルの各エントリは、ピクセルアレイ内の特定の角度位置及び特定のセンサに対するそれぞれのカラー画像の1または複数のカラーピクセルを特定する
ことを特徴とする請求項1に記載のパノラマカラーLIDARシステム。 - 前記カラーピクセルルックアップテーブルは、前記LIDARピクセルと前記カラーピクセルとの間のマッピングのための深度値を含み、
前記コントローラは、更に、前記LIDARピクセルの深度値を決定する工程
を行うように構成されており、
前記カラーピクセルは、更に前記深度値に基づいて決定される
ことを特徴とする請求項1に記載のパノラマカラーLIDARシステム。 - 前記色付けされたLIDARピクセルは、検出されたオブジェクトの経時的な3次元カラーマップを介して提供される
ことを特徴とする請求項1に記載のパノラマカラーLIDARシステム。 - 前記3次元カラーマップは、更に、特定のオブジェクトの特定のビューの特定の時間における距離値を含む
ことを特徴とする請求項4に記載のパノラマカラーLIDARシステム。 - 固定ベースに回転可能に連結されたLIDARシステムを用いて、光を送信する工程と反射光を検出する工程とにより複数の測距測定を実行して、視野角内に分布する複数のLIDARピクセルを含むLIDAR画像を取得する工程と、
複数のカメラを用いて、複数のカラーピクセルを含む複数のカラー画像を取得する工程と、
前記複数のLIDARピクセルのそれぞれと前記複数のカラーピクセルのそれぞれとの間の空間的対応を決定する工程と、
前記カラーピクセルを空間的に対応するLIDARピクセルと組み合わせて色付けされたLIDARピクセルを生成する工程と、
前記色付けされたLIDARピクセルをユーザインタフェースに提供する工程と、
を備え、
前記複数のカメラの各カメラは、前記視野角の一部分であるそれぞれのカメラ視野を有しており、
前記空間的対応を決定する工程は、前記複数のLIDARピクセルと前記複数のカラーピクセルとの間のマッピングを定義するカラーピクセルルックアップテーブルを使用して、前記カラーピクセルを前記それぞれのLIDARピクセルに関連付ける工程を有している
ことを特徴とする方法。 - 前記カラーピクセルルックアップテーブルは、各回転について360度の角度位置によってインデックス付けされており、
前記カラーピクセルルックアップテーブルの各エントリは、ピクセルアレイ内の特定の角度位置及び特定のセンサに対するそれぞれのカラー画像の1または複数のカラーピクセルを特定する
ことを特徴とする請求項6に記載の方法。 - 前記カラーピクセルルックアップテーブルは、前記LIDARピクセルと前記カラーピクセルとの間のマッピングのための深度値を含み、
当該方法は、更に、
前記LIDARピクセルの深度値を決定する工程
を備え、
前記カラーピクセルは、更に前記深度値に基づいて決定される
ことを特徴とする請求項6に記載の方法。 - 前記色付けされたLIDARピクセルは、検出されたオブジェクトの経時的な3次元カラーマップを介して提供される
ことを特徴とする請求項6に記載の方法。 - 前記3次元カラーマップは、更に、特定のオブジェクトの特定のビューの特定の時間における距離値を含む
ことを特徴とする請求項9に記載の方法。 - 請求項6乃至10のいずれかに記載の方法を実行するように構成された1または複数のプロセッサ
を備えたことを特徴とするシステム。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762506460P | 2017-05-15 | 2017-05-15 | |
US62/506,460 | 2017-05-15 | ||
JP2019563212A JP7189156B2 (ja) | 2017-05-15 | 2018-05-15 | 色によるパノラマlidar結果の増強 |
PCT/US2018/032811 WO2018213338A1 (en) | 2017-05-15 | 2018-05-15 | Augmenting panoramic lidar results with color |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019563212A Division JP7189156B2 (ja) | 2017-05-15 | 2018-05-15 | 色によるパノラマlidar結果の増強 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023022237A JP2023022237A (ja) | 2023-02-14 |
JP7534377B2 true JP7534377B2 (ja) | 2024-08-14 |
Family
ID=64097862
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019563212A Active JP7189156B2 (ja) | 2017-05-15 | 2018-05-15 | 色によるパノラマlidar結果の増強 |
JP2022192760A Active JP7534377B2 (ja) | 2017-05-15 | 2022-12-01 | 色によるパノラマlidar結果の増強 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019563212A Active JP7189156B2 (ja) | 2017-05-15 | 2018-05-15 | 色によるパノラマlidar結果の増強 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10809380B2 (ja) |
EP (1) | EP3615961B1 (ja) |
JP (2) | JP7189156B2 (ja) |
KR (1) | KR102695911B1 (ja) |
CN (1) | CN110832349B (ja) |
WO (1) | WO2018213338A1 (ja) |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11067385B2 (en) * | 2012-01-04 | 2021-07-20 | Chris Olexa | Laser centering tool |
GB201511551D0 (en) | 2015-07-01 | 2015-08-12 | St Microelectronics Res & Dev | Photonics device |
US9992477B2 (en) | 2015-09-24 | 2018-06-05 | Ouster, Inc. | Optical system for collecting distance information within a field |
US12123950B2 (en) | 2016-02-15 | 2024-10-22 | Red Creamery, LLC | Hybrid LADAR with co-planar scanning and imaging field-of-view |
CA3039666C (en) | 2016-10-28 | 2022-08-23 | Ppg Industries Ohio, Inc. | Coatings for increasing near-infrared detection distances |
DE102017101945A1 (de) * | 2017-02-01 | 2018-08-02 | Osram Opto Semiconductors Gmbh | Messanordnung mit einem optischen Sender und einem optischen Empfänger |
JP7290571B2 (ja) | 2017-03-31 | 2023-06-13 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | 統合化されたlidar照明出力制御 |
CN110832349B (zh) | 2017-05-15 | 2023-10-10 | 奥斯特公司 | 全景彩色lidar系统和用于lidar系统的方法 |
US10861359B2 (en) * | 2017-05-16 | 2020-12-08 | Texas Instruments Incorporated | Surround-view with seamless transition to 3D view system and method |
US10474161B2 (en) * | 2017-07-03 | 2019-11-12 | Baidu Usa Llc | High resolution 3D point clouds generation from upsampled low resolution lidar 3D point clouds and camera images |
US10474160B2 (en) * | 2017-07-03 | 2019-11-12 | Baidu Usa Llc | High resolution 3D point clouds generation from downsampled low resolution LIDAR 3D point clouds and camera images |
EP3438776B1 (en) * | 2017-08-04 | 2022-09-07 | Bayerische Motoren Werke Aktiengesellschaft | Method, apparatus and computer program for a vehicle |
US10447973B2 (en) * | 2017-08-08 | 2019-10-15 | Waymo Llc | Rotating LIDAR with co-aligned imager |
US10523880B2 (en) | 2017-09-28 | 2019-12-31 | Waymo Llc | Synchronized spinning LIDAR and rolling shutter camera system |
US10785400B2 (en) | 2017-10-09 | 2020-09-22 | Stmicroelectronics (Research & Development) Limited | Multiple fields of view time of flight sensor |
US11353556B2 (en) * | 2017-12-07 | 2022-06-07 | Ouster, Inc. | Light ranging device with a multi-element bulk lens system |
JP2020003256A (ja) * | 2018-06-26 | 2020-01-09 | 株式会社デンソー | 距離測定装置 |
US10739189B2 (en) | 2018-08-09 | 2020-08-11 | Ouster, Inc. | Multispectral ranging/imaging sensor arrays and systems |
US11473970B2 (en) | 2018-08-09 | 2022-10-18 | Ouster, Inc. | Subpixel apertures for channels in a scanning sensor array |
DE102018214741A1 (de) * | 2018-08-30 | 2020-03-05 | Robert Bosch Gmbh | Drehtellereinheit und Verfahren zur Herstellung |
US10712434B2 (en) | 2018-09-18 | 2020-07-14 | Velodyne Lidar, Inc. | Multi-channel LIDAR illumination driver |
US10531075B1 (en) * | 2018-09-27 | 2020-01-07 | Honda Motor Co., Ltd. | Synchronization controller unit for sensor node |
KR20240144457A (ko) | 2018-11-13 | 2024-10-02 | 피피지 인더스트리즈 오하이오 인코포레이티드 | 은닉 패턴을 검출하는 방법 |
JP7206855B2 (ja) * | 2018-11-29 | 2023-01-18 | 株式会社リコー | 三次元位置検出装置、三次元位置検出システム、及び三次元位置検出方法 |
DE102018221530A1 (de) * | 2018-12-12 | 2020-06-18 | Robert Bosch Gmbh | LiDAR-System sowie Kraftfahrzeug |
EP3671261A1 (en) | 2018-12-21 | 2020-06-24 | Leica Geosystems AG | 3d surveillance system comprising lidar and multispectral imaging for object classification |
CN109752724A (zh) * | 2018-12-26 | 2019-05-14 | 珠海市众创芯慧科技有限公司 | 一种图像激光一体式导航定位系统 |
US11561329B2 (en) | 2019-01-07 | 2023-01-24 | Ppg Industries Ohio, Inc. | Near infrared control coating, articles formed therefrom, and methods of making the same |
CN109829421B (zh) * | 2019-01-29 | 2020-09-08 | 西安邮电大学 | 车辆检测的方法、装置及计算机可读存储介质 |
WO2020154964A1 (en) | 2019-01-30 | 2020-08-06 | Baidu.Com Times Technology (Beijing) Co., Ltd. | A point clouds registration system for autonomous vehicles |
JP7019731B2 (ja) * | 2019-01-30 | 2022-02-15 | バイドゥ ドットコム タイムス テクノロジー (ベイジン) カンパニー リミテッド | 自動運転車のためのリアルタイム地図生成システム |
KR102265574B1 (ko) * | 2019-02-13 | 2021-06-16 | 주식회사 스프링클라우드 | 자율주행 차량용 통합 센서 장치 |
EP3702802A1 (en) * | 2019-03-01 | 2020-09-02 | Aptiv Technologies Limited | Method of multi-sensor data fusion |
GB2582266B (en) * | 2019-03-05 | 2022-11-30 | Geoslam Ltd | Three-dimensional dataset and two-dimensional image localisation |
CN110082739B (zh) * | 2019-03-20 | 2022-04-12 | 深圳市速腾聚创科技有限公司 | 数据同步方法和设备 |
JP7569334B2 (ja) * | 2019-05-13 | 2024-10-17 | アウスター インコーポレイテッド | 電子走査lidarシステム用同期画像捕捉 |
US10732268B1 (en) * | 2019-05-21 | 2020-08-04 | Pony Ai Inc. | Systems and methods for enclosure alignment |
JP7356286B2 (ja) * | 2019-06-26 | 2023-10-04 | ダイキョーニシカワ株式会社 | 車両用距離センサの取付構造 |
US11222460B2 (en) | 2019-07-22 | 2022-01-11 | Scale AI, Inc. | Visualization techniques for data labeling |
DE102019212021B4 (de) * | 2019-08-09 | 2024-02-08 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zum Feststellen eines Parallaxenproblems in Sensordaten zweier Sensoren |
US11556000B1 (en) | 2019-08-22 | 2023-01-17 | Red Creamery Llc | Distally-actuated scanning mirror |
CN114616489A (zh) * | 2019-09-06 | 2022-06-10 | 奥斯特公司 | Lidar图像处理 |
CN111080519B (zh) * | 2019-11-28 | 2024-08-09 | 常州新途软件有限公司 | 汽车全景环视图像融合方法 |
JPWO2021111747A1 (ja) * | 2019-12-03 | 2021-06-10 | ||
US20210185214A1 (en) * | 2019-12-13 | 2021-06-17 | Sony Corporation | Trans-spectral feature detection for volumetric image alignment and colorization |
EP3842835B1 (en) * | 2019-12-24 | 2025-01-01 | Y. E. Hub Armenia LLC | Methods and systems for online synchronization of sensors of self-driving vehicles (sdv) |
CN113378867B (zh) * | 2020-02-25 | 2023-08-22 | 北京轻舟智航智能技术有限公司 | 一种异步数据融合的方法、装置、存储介质及电子设备 |
EP3876157B1 (de) * | 2020-03-02 | 2022-12-14 | dSPACE GmbH | Computerimplementiertes verfahren und system zum erzeugen synthetischer sensordaten und trainingsverfahren |
KR20210122457A (ko) * | 2020-04-01 | 2021-10-12 | 주식회사 제이캐스트 | 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템 |
US11695911B2 (en) | 2020-04-27 | 2023-07-04 | Ouster, Inc. | Stereoscopic image capturing systems |
WO2021230587A1 (ko) * | 2020-05-11 | 2021-11-18 | 주식회사 라이드로 | 무접점 전력공급 및 데이터통신 장치와 이를 이용하는 회전구동 라이다 시스템 |
KR20220048301A (ko) * | 2020-10-12 | 2022-04-19 | 삼성전자주식회사 | 넓은 시야각을 갖는 라이다 장치 |
US11743564B2 (en) * | 2020-10-22 | 2023-08-29 | Uatc, Llc | Sensor platform for autonomous vehicles |
US11430224B2 (en) | 2020-10-23 | 2022-08-30 | Argo AI, LLC | Systems and methods for camera-LiDAR fused object detection with segment filtering |
US11885886B2 (en) | 2020-10-23 | 2024-01-30 | Ford Global Technologies, Llc | Systems and methods for camera-LiDAR fused object detection with LiDAR-to-image detection matching |
US12122428B2 (en) * | 2020-10-23 | 2024-10-22 | Ford Global Technologies, Llc | Systems and methods for camera-LiDAR fused object detection with segment merging |
US12050273B2 (en) | 2020-10-23 | 2024-07-30 | Ford Global Technologies, Llc | Systems and methods for camera-LiDAR fused object detection with point pruning |
US12135375B2 (en) | 2020-10-23 | 2024-11-05 | Ford Global Technologies, Llc | Systems and methods for camera-LiDAR fused object detection with local variation segmentation |
US12118732B2 (en) | 2020-11-23 | 2024-10-15 | Ford Global Technologies, Llc | Systems and methods for object detection with LiDAR decorrelation |
US20240305739A1 (en) * | 2020-12-21 | 2024-09-12 | Seesafe Innovation Srl | Method for forming panoramic images and related apparatus |
US11706507B2 (en) * | 2020-12-30 | 2023-07-18 | Waymo Llc | Systems, apparatus, and methods for generating enhanced images |
US12014525B2 (en) | 2021-01-07 | 2024-06-18 | Toyota Research Institute, Inc. | Multimodal sensor measurement fusion through a combined geometrical approach of time warping and occlusion surface ray projection |
US20220277193A1 (en) * | 2021-02-26 | 2022-09-01 | Nvidia Corporation | Ground truth data generation for deep neural network perception in autonomous driving applications |
CN112671499B (zh) * | 2021-03-16 | 2022-04-01 | 深圳安途智行科技有限公司 | 多传感器同步方法及系统、以及主控制设备 |
KR102485816B1 (ko) * | 2021-11-03 | 2023-01-09 | 아이티컨버젼스 주식회사 | 이미지 수집장치를 이용한 작물 생육 분석 시스템 |
DE102021006248A1 (de) | 2021-12-17 | 2023-06-22 | Automotive Research & Testing Center | Objekterfassungsverfahren |
US12043269B2 (en) | 2022-02-16 | 2024-07-23 | GM Global Technology Operations LLC | Methods and systems for camera to ground alignment |
US12094169B2 (en) * | 2022-02-16 | 2024-09-17 | GM Global Technology Operations LLC | Methods and systems for camera to ground alignment |
US12094220B2 (en) * | 2022-02-16 | 2024-09-17 | GM Global Technology Operations LLC | Methods and systems for camera to ground alignment |
WO2023174653A1 (en) * | 2022-03-17 | 2023-09-21 | Sony Semiconductor Solutions Corporation | Hybrid image and event sensing with rolling shutter compensation |
IT202200012119A1 (it) * | 2022-06-08 | 2023-12-08 | Ferrari Spa | Apparato attuatore elettrico provvisto di sistema per la rilevazione della posizione e relativo veicolo stradale |
KR102540632B1 (ko) * | 2022-10-27 | 2023-06-13 | 주식회사 모빌테크 | 색상 보정을 적용한 컬러맵 생성 방법 및 이를 실행하기 위하여 기록매체에 기록된 컴퓨터 프로그램 |
EP4384848A1 (en) * | 2022-10-31 | 2024-06-19 | Google Technology Holdings LLC | Image capture system including a lidar device and cameras having a rolling shutter sensor |
US20240192375A1 (en) | 2022-12-08 | 2024-06-13 | Ouster, Inc. | Guided flash lidar |
EP4418002A1 (en) * | 2023-02-16 | 2024-08-21 | Trimble Inc. | 3d scanner-type device and method for generating a colorized point cloud |
KR20240146376A (ko) * | 2023-03-29 | 2024-10-08 | 주식회사 에스오에스랩 | 라이다 장치를 이용하여 칼라 이미지를 생성하는 방법 및 이를 이용하는 라이다 장치 |
TWI834541B (zh) * | 2023-04-17 | 2024-03-01 | 精湛光學科技股份有限公司 | 對物件內表面及外表面取像之裝置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265396A (ja) | 2003-02-13 | 2004-09-24 | Vingo:Kk | 映像生成システム及び映像生成方法 |
JP2008204406A (ja) | 2007-02-22 | 2008-09-04 | Fujitsu Ltd | 背景画像作成装置 |
US7590262B2 (en) | 2003-05-29 | 2009-09-15 | Honda Motor Co., Ltd. | Visual tracking using depth data |
JP2017125790A (ja) | 2016-01-15 | 2017-07-20 | 株式会社Ihi | 計測装置 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2381434A1 (en) * | 2003-12-18 | 2011-10-26 | 1626628 Ontario Limited | Apparatus for mapping |
SE527257C2 (sv) * | 2004-06-21 | 2006-01-31 | Totalfoersvarets Forskningsins | Anordning och metod för att presentera en omvärldsbild |
US8730322B2 (en) * | 2004-07-30 | 2014-05-20 | Eyesee360, Inc. | Telepresence using panoramic imaging and directional sound and motion |
US7701558B2 (en) | 2006-09-22 | 2010-04-20 | Leica Geosystems Ag | LIDAR system |
US20080112610A1 (en) * | 2006-11-14 | 2008-05-15 | S2, Inc. | System and method for 3d model generation |
TWI358606B (en) | 2007-12-28 | 2012-02-21 | Ind Tech Res Inst | Method for three-dimension (3d) measurement and an |
WO2009136969A2 (en) * | 2008-01-22 | 2009-11-12 | Carnegie Mellon University | Apparatuses, systems, and methods for apparatus operation and remote sensing |
US8332134B2 (en) * | 2008-04-24 | 2012-12-11 | GM Global Technology Operations LLC | Three-dimensional LIDAR-based clear path detection |
US9041915B2 (en) | 2008-05-09 | 2015-05-26 | Ball Aerospace & Technologies Corp. | Systems and methods of scene and action capture using imaging system incorporating 3D LIDAR |
US20100157280A1 (en) | 2008-12-19 | 2010-06-24 | Ambercore Software Inc. | Method and system for aligning a line scan camera with a lidar scanner for real time data fusion in three dimensions |
US8675181B2 (en) | 2009-06-02 | 2014-03-18 | Velodyne Acoustics, Inc. | Color LiDAR scanner |
CN102006402B (zh) | 2009-08-28 | 2014-02-19 | 鸿富锦精密工业(深圳)有限公司 | 摄像装置及其身份识别方法 |
US9030469B2 (en) * | 2009-11-18 | 2015-05-12 | Industrial Technology Research Institute | Method for generating depth maps from monocular images and systems using the same |
NL2004996C2 (nl) | 2010-06-29 | 2011-12-30 | Cyclomedia Technology B V | Werkwijze voor het vervaardigen van een digitale foto, waarbij ten minste een deel van de beeldelementen positieinformatie omvatten en een dergelijke digitale foto. |
JP5770486B2 (ja) | 2011-02-21 | 2015-08-26 | 株式会社トプコン | 全周画像計測装置 |
US9529426B2 (en) * | 2012-02-08 | 2016-12-27 | Microsoft Technology Licensing, Llc | Head pose tracking using a depth camera |
US10848731B2 (en) * | 2012-02-24 | 2020-11-24 | Matterport, Inc. | Capturing and aligning panoramic image and depth data |
US9195914B2 (en) | 2012-09-05 | 2015-11-24 | Google Inc. | Construction zone sign detection |
US9111444B2 (en) | 2012-10-31 | 2015-08-18 | Raytheon Company | Video and lidar target detection and tracking system and method for segmenting moving targets |
GB201303076D0 (en) | 2013-02-21 | 2013-04-10 | Isis Innovation | Generation of 3D models of an environment |
NL2010463C2 (nl) * | 2013-03-15 | 2014-09-16 | Cyclomedia Technology B V | Werkwijze voor het genereren van een panoramabeeld. |
CN105359450B (zh) * | 2013-03-27 | 2020-08-07 | 爱迪德技术有限公司 | 防篡改密码算法实现 |
TWI547142B (zh) * | 2013-04-02 | 2016-08-21 | 杜比實驗室特許公司 | 引導的3d顯示器適配 |
US9164511B1 (en) | 2013-04-17 | 2015-10-20 | Google Inc. | Use of detected objects for image processing |
US9563951B2 (en) * | 2013-05-21 | 2017-02-07 | Magna Electronics Inc. | Vehicle vision system with targetless camera calibration |
US20150002636A1 (en) | 2013-06-28 | 2015-01-01 | Cable Television Laboratories, Inc. | Capturing Full Motion Live Events Using Spatially Distributed Depth Sensing Cameras |
US10126412B2 (en) | 2013-08-19 | 2018-11-13 | Quanergy Systems, Inc. | Optical phased array lidar system and method of using same |
GB2520338A (en) | 2013-11-19 | 2015-05-20 | Nokia Corp | Automatic scene parsing |
US20160306824A1 (en) * | 2013-12-04 | 2016-10-20 | Urthecase Corp. | Systems and methods for earth observation |
KR101582572B1 (ko) | 2013-12-24 | 2016-01-11 | 엘지전자 주식회사 | 차량 운전 보조 장치 및 이를 구비한 차량 |
US9098754B1 (en) | 2014-04-25 | 2015-08-04 | Google Inc. | Methods and systems for object detection using laser point clouds |
US9986154B2 (en) | 2014-05-21 | 2018-05-29 | Here Global B.V. | Developing a panoramic image |
US9754192B2 (en) | 2014-06-30 | 2017-09-05 | Microsoft Technology Licensing, Llc | Object detection utilizing geometric information fused with image data |
US9772405B2 (en) | 2014-10-06 | 2017-09-26 | The Boeing Company | Backfilling clouds of 3D coordinates |
US9369689B1 (en) | 2015-02-24 | 2016-06-14 | HypeVR | Lidar stereo fusion live action 3D model video reconstruction for six degrees of freedom 360° volumetric virtual reality video |
CN104836960B (zh) * | 2015-05-29 | 2017-12-08 | 京东方科技集团股份有限公司 | 一种图像采集系统和图像采集方法 |
US9710714B2 (en) | 2015-08-03 | 2017-07-18 | Nokia Technologies Oy | Fusion of RGB images and LiDAR data for lane classification |
US9992477B2 (en) * | 2015-09-24 | 2018-06-05 | Ouster, Inc. | Optical system for collecting distance information within a field |
MX2018009265A (es) | 2016-01-29 | 2019-05-13 | Ouster Inc | Sistemas y metodos para calibrar un sensor de distancia optico. |
US9940696B2 (en) * | 2016-03-24 | 2018-04-10 | GM Global Technology Operations LLC | Dynamic image adjustment to enhance off- axis viewing in a display assembly |
US20180136314A1 (en) * | 2016-11-15 | 2018-05-17 | Wheego Electric Cars, Inc. | Method and system for analyzing the distance to an object in an image |
US10445928B2 (en) * | 2017-02-11 | 2019-10-15 | Vayavision Ltd. | Method and system for generating multidimensional maps of a scene using a plurality of sensors of various types |
CN110832349B (zh) * | 2017-05-15 | 2023-10-10 | 奥斯特公司 | 全景彩色lidar系统和用于lidar系统的方法 |
CN107576960B (zh) | 2017-09-04 | 2021-03-16 | 赵建辉 | 视觉雷达时空信息融合的目标检测方法及系统 |
US10523880B2 (en) | 2017-09-28 | 2019-12-31 | Waymo Llc | Synchronized spinning LIDAR and rolling shutter camera system |
CN113378867B (zh) * | 2020-02-25 | 2023-08-22 | 北京轻舟智航智能技术有限公司 | 一种异步数据融合的方法、装置、存储介质及电子设备 |
US11695911B2 (en) * | 2020-04-27 | 2023-07-04 | Ouster, Inc. | Stereoscopic image capturing systems |
-
2018
- 2018-05-15 CN CN201880039931.9A patent/CN110832349B/zh active Active
- 2018-05-15 KR KR1020197035085A patent/KR102695911B1/ko active Active
- 2018-05-15 US US15/980,509 patent/US10809380B2/en active Active
- 2018-05-15 WO PCT/US2018/032811 patent/WO2018213338A1/en unknown
- 2018-05-15 JP JP2019563212A patent/JP7189156B2/ja active Active
- 2018-05-15 EP EP18802367.5A patent/EP3615961B1/en active Active
-
2020
- 2020-10-09 US US17/067,411 patent/US12061261B2/en active Active
-
2022
- 2022-12-01 JP JP2022192760A patent/JP7534377B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265396A (ja) | 2003-02-13 | 2004-09-24 | Vingo:Kk | 映像生成システム及び映像生成方法 |
US7590262B2 (en) | 2003-05-29 | 2009-09-15 | Honda Motor Co., Ltd. | Visual tracking using depth data |
JP2008204406A (ja) | 2007-02-22 | 2008-09-04 | Fujitsu Ltd | 背景画像作成装置 |
JP2017125790A (ja) | 2016-01-15 | 2017-07-20 | 株式会社Ihi | 計測装置 |
Also Published As
Publication number | Publication date |
---|---|
KR102695911B1 (ko) | 2024-08-14 |
JP2020521955A (ja) | 2020-07-27 |
EP3615961A4 (en) | 2021-01-20 |
WO2018213338A1 (en) | 2018-11-22 |
JP7189156B2 (ja) | 2022-12-13 |
CN110832349A (zh) | 2020-02-21 |
JP2023022237A (ja) | 2023-02-14 |
KR20200004840A (ko) | 2020-01-14 |
US10809380B2 (en) | 2020-10-20 |
US20180329066A1 (en) | 2018-11-15 |
US12061261B2 (en) | 2024-08-13 |
EP3615961B1 (en) | 2024-10-02 |
US20210041570A1 (en) | 2021-02-11 |
EP3615961A1 (en) | 2020-03-04 |
CN110832349B (zh) | 2023-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7534377B2 (ja) | 色によるパノラマlidar結果の増強 | |
US12133005B2 (en) | Synchronized spinning LIDAR and rolling shutter camera system | |
US20240146895A1 (en) | Time-of-flight camera system | |
KR102596831B1 (ko) | 하이브리드 비행-시간 및 이미저 모듈 | |
US20100134596A1 (en) | Apparatus and method for capturing an area in 3d | |
EP2815251A1 (en) | Time of flight camera with stripe illumination | |
CN102685402A (zh) | 对距离改变不敏感的颜色传感器 | |
CN112213730B (zh) | 三维测距方法和装置 | |
US10742881B1 (en) | Combined temporal contrast sensing and line scanning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221205 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231127 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240801 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7534377 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |