[go: up one dir, main page]

JP7531273B2 - How to treat by-products - Google Patents

How to treat by-products Download PDF

Info

Publication number
JP7531273B2
JP7531273B2 JP2019216819A JP2019216819A JP7531273B2 JP 7531273 B2 JP7531273 B2 JP 7531273B2 JP 2019216819 A JP2019216819 A JP 2019216819A JP 2019216819 A JP2019216819 A JP 2019216819A JP 7531273 B2 JP7531273 B2 JP 7531273B2
Authority
JP
Japan
Prior art keywords
mass
oxide
product
treating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019216819A
Other languages
Japanese (ja)
Other versions
JP2021084091A (en
Inventor
建 星野
久宏 松永
陽太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019216819A priority Critical patent/JP7531273B2/en
Publication of JP2021084091A publication Critical patent/JP2021084091A/en
Application granted granted Critical
Publication of JP7531273B2 publication Critical patent/JP7531273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、金属製造工程で発生する副生成物の処理方法に関する。 The present invention relates to a method for treating by-products generated during metal manufacturing processes.

鉄鋼精錬や、銅、クロム、ニッケル、亜鉛等の非鉄金属精錬工程では、原料中の不純物を高温で金属分と分離するため、大量のスラグ、ダストが発生する。これら精錬工程では高温の金属、スラグを保持する容器が必要であり、これら容器に使用される耐火物は経時劣化に伴い廃棄され使用済み耐火物となる。また精錬工程で製造された鉄鋼スラブや各種金属のインゴットを、製品へ加工するに当り、適宜圧延、加工、表面処理等が行われるが、その際に使用された水、油には金属酸化物が含まれこれを分離したスラッジが発生する。その他に、石炭火力発電所等では燃料中の灰分が燃焼後に残り、フライアッシュとして回収されている。 In the refining of steel and non-ferrous metals such as copper, chromium, nickel, and zinc, large amounts of slag and dust are generated because impurities in the raw materials are separated from the metals at high temperatures. These refining processes require containers to hold the hot metal and slag, and the refractories used in these containers deteriorate over time and are discarded, becoming used refractories. In addition, when the steel slabs and ingots of various metals produced in the refining process are processed into products, they are rolled, processed, surface treated, etc. as appropriate, but the water and oil used in this process contain metal oxides, which separate out and produce sludge. In addition, at coal-fired power plants, etc., the ash in the fuel remains after combustion and is collected as fly ash.

金属製造工程で発生するスラグ、ダスト、使用済み耐火物、スラッジ等は、いずれもSiO,Al、CaO、MgO等の金属酸化物を主成分としており、砕石やコンクリート原料として利用することが期待される。しかしながら、これらの副生成物は、その組成に応じて、例えば、CaOやMgOが多いものは経時的に膨張や粉化が生じたり、微小ながら金属成分が溶出する可能性のあるものがあり、有効利用できていないものも少なくなかった。 Slag, dust, used refractories, sludge , etc. generated in metal manufacturing processes are all mainly composed of metal oxides such as SiO2, Al2O3 , CaO , MgO, etc., and are expected to be used as crushed stone or concrete raw materials. However, depending on the composition of these by-products, for example, those with a high content of CaO or MgO may expand or powder over time, or may leach minute amounts of metal components, and many of them have not been effectively used.

このような問題に対し、特許文献1には、溶融状態の製鋼スラグにSiO含有物質と還元材とを添加し、還元材の一部または全部として、特殊な条件に適合した廃プラスチックを使用して溶融改質する技術が開示されている。特許文献1には、具体的な手段として、溶滓鍋中に保持された溶融転炉スラグに、浸漬ランスからSiO含有物質と酸素を吹き込むと共に、還元用物質を吹き込むことが開示されている。 To address these problems, Patent Document 1 discloses a technology for melting and reforming molten steelmaking slag by adding a SiO2- containing substance and a reducing agent to the molten steelmaking slag and using waste plastics that meet special conditions as part or all of the reducing agent. Patent Document 1 discloses, as a specific method, blowing a reducing substance into molten converter slag held in a slag ladle together with blowing a SiO2- containing substance and oxygen from an immersion lance.

特開2009-114023号公報JP 2009-114023 A

特許文献1に開示された技術は、溶融製鋼スラグに適用されるものであるが、金属精錬工程において発生するスラグは、生成直後は溶融しているものの経時的に冷却されて固体状態になっているものがほとんどである。このため、特許文献1に開示される技術を有効に実施できる機会はあまりない。さらには、金属精錬工程において発生するダストは、固体状態で生成されるので、特許文献1に開示される技術では処理できない。 The technology disclosed in Patent Document 1 is applied to molten steelmaking slag, but most slag generated in metal refining processes is molten immediately after production, but cools over time and becomes solid. For this reason, there are few opportunities to effectively implement the technology disclosed in Patent Document 1. Furthermore, dust generated in metal refining processes is generated in a solid state, so it cannot be treated using the technology disclosed in Patent Document 1.

本発明は、このような従来技術の問題点を鑑みてなされたものであり、その目的は、常温のスラグやダスト、スラッジおよび使用後耐火物から金属分と酸化物成分とを有用な材料として分離できる副生成物の処理方法を提供することである。 The present invention was made in consideration of the problems of the conventional technology, and its purpose is to provide a method for treating by-products that can separate metal and oxide components as useful materials from room temperature slag, dust, sludge, and used refractories.

上記課題を解決するための手段は、以下の通りである。
(1)金属製造工程で発生する副生成物を処理するにあたり、前記副生成物を加熱して前記副生成物を金属と酸化物とに分離する副生成物の処理方法であって、前記副生成物は、スラグ、ダスト、スラッジおよび使用後耐火物から選ばれる1種以上であり、前記副生成物は、電気炉を用いて1300℃以上に加熱され、前記酸化物の化学組成は、CaO:17質量%以上59質量%以下、SiO:17質量%以上53質量%以下、Al:5質量%以上45質量%以下MgO:2質量%以上20質量%以下、塩基度(CaO/SiO):0.7以上2.0以下である、副生成物の処理方法。
(2)前記副生成物は、金属および遊離炭素から選ばれる1種以上を合計で1質量%以上含有し、前記電気炉は抵抗加熱式電気炉である、(1)に記載の副生成物の処理方法。
(3)前記塩基度(CaO/SiO)は0.7以上1.6以下である、(1)または(2)に記載の副生成物の処理方法。
(4)前記スラグは還元材を含有する、(1)から(3)のいずれか1つに記載の副生成物の処理方法。
(5)前記使用後耐火物は還元材を含有する、(1)から(4)のいずれか1つに記載の副生成物の処理方法。
(6)前記副生成物に、還元材を含有する原料をさらに加えて処理を行う、(1)から(5)のいずれか1つに記載の副生成物の処理方法。
(7)前記還元材を含有する原料は、石炭、コークス、製紙スラッジ、廃タイヤおよび廃プラスチックから選ばれる1種以上である、(6)に記載の副生成物の処理方法。
(8)前記副生成物に、酸化物の化学組成を調整する原料をさらに加えて処理を行う、(1)から(7)のいずれか1つに記載の副生成物の処理方法。
(9)前記酸化物の化学組成を調整する原料は、フライアッシュ、砂および砂利から選ばれる1種以上である、(8)に記載の副生成物の処理方法。
The means for solving the above problems are as follows.
(1) A method for treating by-products generated in a metal production process, comprising heating the by-products to separate them into metal and oxide, the by-products being one or more selected from slag, dust, sludge and used refractories, the by-products being heated to 1,300°C or higher using an electric furnace, and the oxides having a chemical composition of CaO: 17% by mass or more and 59% by mass or less, SiO2 : 17% by mass or more and 53% by mass or less, Al2O3 : 5 % by mass or more and 45% by mass or less , MgO: 2% by mass or more and 20% by mass or less, and basicity (CaO/ SiO2 ): 0.7 to 2.0.
(2) The method for treating by-products according to (1), wherein the by-products contain at least one type selected from metals and free carbon in a total amount of at least 1 mass%, and the electric furnace is a resistance heating electric furnace.
(3) The method for treating by-products according to (1) or (2), wherein the basicity (CaO/SiO 2 ) is 0.7 or more and 1.6 or less.
(4) The method for treating by-products described in any one of (1) to (3), wherein the slag contains a reducing agent.
(5) The method for treating by-products according to any one of (1) to (4), wherein the used refractory contains a reducing material.
(6) The method for treating a by-product according to any one of (1) to (5), further comprising adding a raw material containing a reducing agent to the by-product for treatment.
(7) The method for treating by-products according to (6), wherein the raw material containing the reducing agent is one or more selected from the group consisting of coal, coke, paper sludge, waste tires, and waste plastics.
(8) The method for treating a by-product according to any one of (1) to (7), further comprising adding a raw material for adjusting a chemical composition of an oxide to the by-product for treatment.
(9) The method for treating by-products according to (8), wherein the raw material for adjusting the chemical composition of the oxide is one or more selected from fly ash, sand, and gravel.

本発明に係る副生成物の処理方法の実施により、常温のスラグやダスト等の副生成物を、路盤材やコンクリート等の骨材に利用できる有用な酸化物と、製鉄原料に利用できる有用な金属とに分離できる。 By implementing the by-product processing method of the present invention, by-products such as slag and dust at room temperature can be separated into useful oxides that can be used as aggregates for roadbed materials and concrete, etc., and useful metals that can be used as raw materials for steelmaking.

本発明者らは、金属製造工程において発生する副生成物であるスラグ、ダスト、スラッジまたは使用後耐火物には、金属または遊離炭素の何れかあるいは両方を含むものがあることに着目した。副生成物に金属または遊離炭素が含まれていれば、例えば、抵抗加熱式電気炉を用いて副生成物に通電することで発熱させ、常温の副生物であっても部分的に溶融させ、さらに通電することでこれらを溶融させ、スラグやダスト等からなる副生成物を金属と酸化物とに分離できると考えた。あるいは、アーク炉であればアーク熱により副生成物を溶融させることでも金属と酸化物とに分離できると考えて本発明に想到した。以下、発明の実施形態を通じて、本発明を説明する。 The inventors have noticed that some of the by-products generated in the metal manufacturing process, such as slag, dust, sludge, or used refractories, contain either metal or free carbon, or both. If the by-products contain metal or free carbon, they can be generated by passing electricity through the by-products using, for example, a resistance heating electric furnace, partially melting the by-products even at room temperature, and then melting them further by passing electricity through them, thereby separating the by-products, such as slag and dust, into metal and oxide. Alternatively, they came up with the idea that if an arc furnace is used, the by-products can be separated into metal and oxide by melting them with arc heat. The present invention will be described below through the embodiments of the invention.

本実施形態に係る副生成物の処理方法では、電気炉を用いて、副生成物を1300℃以上に加熱する。副生成物を1300℃以上に加熱することで、副生成物を溶融させ、副生成物を金属と酸化物とに分離できる。一方、加熱温度が1300℃未満であると、副生成物を溶融できず、副生成物を酸化物と金属とに分離できなかったり、溶融できたとしても粘度が高く、副生成物を酸化物と金属とに十分に分離できず、酸化物に残留する金属が多くなる。 In the by-product processing method according to this embodiment, the by-product is heated to 1300°C or higher using an electric furnace. By heating the by-product to 1300°C or higher, the by-product can be melted and separated into metal and oxide. On the other hand, if the heating temperature is less than 1300°C, the by-product cannot be melted and cannot be separated into oxide and metal, or even if it can be melted, the viscosity is high and the by-product cannot be sufficiently separated into oxide and metal, resulting in a large amount of metal remaining in the oxide.

溶融状態の酸化物の温度が高いほど粘度が低減し、酸化物と金属との分離が容易となるので、副生成物の加熱温度の上限は特に定めなくてよいが、2000℃程度まで上げても問題はない。副生成物の加熱には投入できるエネルギーが大きく、温度制御が容易である電気炉を用いることが好ましい。電気炉としては、抵抗加熱式電気炉、アーク炉、誘導加熱式電気炉等種々のものが使用できる。アーク炉や誘導加熱式電気炉を用いる場合は、副生成物に溶銑等の溶融金属や金属スクラップ等を加えて処理することもできる。 The higher the temperature of the molten oxide, the lower the viscosity and the easier it is to separate the oxide from the metal, so there is no need to set an upper limit for the heating temperature of the by-products, but there is no problem even if it is raised to about 2000°C. It is preferable to use an electric furnace for heating the by-products, which has a large amount of energy that can be input and is easy to control the temperature. As the electric furnace, various types such as a resistance heating electric furnace, an arc furnace, and an induction heating electric furnace can be used. When using an arc furnace or an induction heating electric furnace, molten metal such as hot metal or metal scrap can be added to the by-products for processing.

これら電気炉の中でも抵抗加熱式電気炉を用いることが好ましい。例えば、アーク炉を用いた場合、電極間でアーク放電を行い、そのアーク放電により生じる熱を副生物へ伝熱させて溶融させる必要がある。これに対して、副生成物であるスラグ、ダスト等に金属または遊離炭素が合計で1質量%以上含まれていれば、抵抗加熱式電気炉を用いることで、この金属や遊離炭素中を電気が流れて抵抗発熱し、この熱が直接副生成物に伝熱するので副生成物への伝熱が効率的に行われる。このため、アーク炉で加熱する場合に比べて、五分の一程度の時間で所定温度まで副生成物を昇温させることができる。実施形態における副生成物は、金属製造工程で発生するスラグ、ダスト、スラッジおよび使用後耐火物から選ばれる1種以上である。以後の説明では、電気炉として抵抗加熱式電気炉を用い、副生成物としてスラグおよびダストを用いたとして説明する。 Among these electric furnaces, it is preferable to use a resistance heating electric furnace. For example, when an arc furnace is used, it is necessary to conduct an arc discharge between electrodes and transfer the heat generated by the arc discharge to the by-products to melt them. On the other hand, if the by-products, such as slag and dust, contain a total of 1 mass% or more of metal or free carbon, by using a resistance heating electric furnace, electricity flows through the metal or free carbon to generate resistance heat, and this heat is transferred directly to the by-products, so that heat transfer to the by-products is efficient. Therefore, the by-products can be heated to a predetermined temperature in about one-fifth the time required when heated in an arc furnace. The by-products in the embodiment are one or more selected from slag, dust, sludge, and used refractories generated in the metal manufacturing process. In the following explanation, a resistance heating electric furnace is used as the electric furnace, and slag and dust are used as the by-products.

副生成物であるスラグやダストを抵抗加熱式電気炉内に装入する。スラグおよびダストが堆積した炉内に電極を差し込み、電圧を印加する。このとき、スラグおよびダストに金属および遊離炭素が合計で1質量%以上存在することでスラグやダストに部分的に電流が流れ、これにより抵抗熱が発生してスラグやダストが昇温する。 The by-products, slag and dust, are loaded into a resistance-heated electric furnace. Electrodes are inserted into the furnace where the slag and dust have accumulated, and a voltage is applied. At this time, since the slag and dust contain a total of 1% by mass or more of metal and free carbon, current flows partially through the slag and dust, which generates resistance heat and raises the temperature of the slag and dust.

スラグやダストの主成分は金属酸化物なので、溶融状態では電気伝導性を有する。このため、昇温によりスラグやダスト自体が溶融するようになると、流れる電流の量も増加する。これにより発熱量も増加していき、1300℃以上にすることで炉内に装入したスラグやダストを全体的に溶融させることができる。スラグやダストを全体的に溶融させることができれば、スラグやダストに含まれる鉄や銅、ニッケル等の金属分は溶融して凝集するので、金属と酸化物とを分離できる。 The main components of slag and dust are metal oxides, so they are electrically conductive when molten. For this reason, when the slag or dust itself begins to melt due to an increase in temperature, the amount of current flowing also increases. This causes the amount of heat generated to increase, and by raising the temperature to 1,300°C or higher, the slag and dust charged into the furnace can be completely melted. If the slag and dust can be completely melted, the metals contained in the slag and dust, such as iron, copper, and nickel, will melt and coagulate, making it possible to separate the metals from the oxides.

本実施形態に係る副生成物の処理方法では、酸化物の化学組成をCaO:17質量%以上59質量%以下、SiO:17質量%以上53質量%以下、Al:5質量%以上45質量%以下MgO:2質量%以上20質量%以下、塩基度(CaO/SiO):0.7以上2.0以下にしている。酸化物の化学組成を上記範囲とすることで、溶融酸化物の粘性が溶融金属と分離するのに好ましい範囲となり、副生成物に含まれる金属と酸化物との分離が容易となる。さらに、酸化物の化学組成を上記範囲とすることで、酸化物の水和膨張も抑制され、路盤材やコンクリート等の骨材にも利用できる有用な材料となる。一方、酸化物の塩基度(CaO/SiO)が2.0より高くなると、溶融酸化物の粘度が高くなって金属と酸化物とが分離しづらくなり、分離後に酸化物に混入する金属が多くなる。また、酸化物の塩基度(CaO/SiO)が2.0より高くなったり、MgOが20質量%より多くなると、酸化物からf-CaOやf-MgOが析出しやすくなり、水和膨張が生じる。 In the by-product processing method according to the present embodiment, the chemical composition of the oxide is CaO: 17% by mass to 59% by mass, SiO 2 : 17% by mass to 53% by mass, Al 2 O 3 : 5% by mass to 45% by mass , MgO: 2% by mass to 20% by mass, and basicity (CaO/SiO 2 ): 0.7 to 2.0. By setting the chemical composition of the oxide in the above range, the viscosity of the molten oxide is in a range that is favorable for separation from the molten metal, and separation of the metal and oxide contained in the by-product is facilitated. Furthermore, by setting the chemical composition of the oxide in the above range, the hydration expansion of the oxide is also suppressed, making it a useful material that can also be used as an aggregate for roadbed materials and concrete. On the other hand, if the basicity (CaO/SiO 2 ) of the oxide is higher than 2.0, the viscosity of the molten oxide increases, making it difficult to separate the metal and the oxide, and more metal is mixed into the oxide after separation. Furthermore, if the basicity (CaO/SiO 2 ) of the oxide exceeds 2.0 or if the MgO content exceeds 20 mass %, f-CaO and f-MgO tend to precipitate from the oxide, causing hydration expansion.

酸化物の塩基度(CaO/SiO)は、0.7以上1.6以下であることが好ましい。酸化物の塩基度度(CaO/SiO)を、0.7以上1.6以下にすることで金、溶融酸化物の粘度が低くなり、金属と酸化物とがさらに分離し易くなる。さらに、酸化物の冷却過程における酸化物の体積変化や、酸化物からのf-CaOおよびf-MgOの析出が抑制され、これにより、酸化物の粉化を抑制でき、水和膨張をさらに抑制できる。 The oxide basicity (CaO/SiO 2 ) is preferably 0.7 or more and 1.6 or less. By making the oxide basicity (CaO/SiO 2 ) 0.7 or more and 1.6 or less, the viscosity of the gold and molten oxide is lowered, and the metal and the oxide are more easily separated. Furthermore, the volume change of the oxide during the cooling process and the precipitation of f-CaO and f-MgO from the oxide are suppressed, thereby suppressing the powdering of the oxide and further suppressing hydration expansion.

一方、酸化物の塩基度(CaO/SiO)が1.6より高くなると、酸化物の冷却過程での2CaO・SiOの結晶転移(α’型またはβ型からγ型への転移)によって体積が変化しはじめ、これにより、酸化物が粉化するので好ましくない。 On the other hand, if the basicity (CaO/SiO 2 ) of the oxide becomes higher than 1.6, the volume starts to change due to the crystal transition of 2CaO.SiO 2 (transition from α' type or β type to γ type) during the cooling process of the oxide, which causes the oxide to be powdered, which is not preferable.

さらに、酸化物の化学組成はCaO、SiO、Al、MgOの合計が80質量%以上であることが好ましい。CaO、SiO、Al、MgOの合計が80質量%以上であることは、酸化物に含まれるFeO、FeおよびCrが少ないことを意味する。上記化学組成を満足することで、副生成物に含まれる金属分の多くを金属として分離・回収できることがわかる。 Furthermore, the chemical composition of the oxide is preferably such that the total of CaO, SiO2 , Al2O3 , and MgO is 80 mass% or more. The total of CaO, SiO2 , Al2O3 , and MgO being 80 mass% or more means that the oxide contains small amounts of FeO, Fe2O3 , and Cr2O3 . It can be seen that by satisfying the above chemical composition, most of the metals contained in the by-products can be separated and recovered as metals.

酸化物の化学組成は、抵抗加熱式電気炉に装入するスラグ、ダスト、スラッジおよび使用後耐火物の化学組成を予め確認しておき、装入するスラグ、ダスト、スラッジおよび使用後耐火物の割合を調整することで制御できる。また、酸化物の化学組成を調整する原料として、フライアッシュ、砂および砂利から選ばれる1種以上を更に加えてもよく、これらを加えることで酸化物の化学組成が目標の範囲になるように制御してもよい。 The chemical composition of the oxides can be controlled by checking in advance the chemical compositions of the slag, dust, sludge, and used refractories to be charged into the resistance-heated electric furnace, and adjusting the ratio of the slag, dust, sludge, and used refractories to be charged. In addition, one or more types selected from fly ash, sand, and gravel may be further added as raw materials to adjust the chemical composition of the oxides, and the chemical composition of the oxides may be controlled to be within a target range by adding these.

ここで、ダストには、酸化物の塩基度をあげつつ回収する粒径を大きくして回収し易くする効果があるものがある。スラッジには、酸化物の塩基後を上げつつ還元を行う効果があるものがある。使用後耐火物には、酸化物の塩基度を下げつつ還元を行う効果があるものがある。フライアッシュ、砂、砂利は酸化物の塩基度を下げる効果があるものがある。これらの効果を考慮しながら、各原料の配合割合を調整して酸化物の化学組成を上記範囲内に制御することで、ガラス化や膨張源を無くし、当該酸化物を路盤材やコンクリート等の骨材に利用できる有用な材料にできる。 Here, some dust has the effect of increasing the oxide basicity while increasing the particle size to be collected, making it easier to collect. Some sludge has the effect of reducing the oxide while increasing its basicity. Some used refractories have the effect of reducing the oxide while decreasing its basicity. Some fly ash, sand, and gravel have the effect of lowering the oxide basicity. By taking these effects into consideration and adjusting the blending ratio of each raw material to control the chemical composition of the oxide within the above range, it is possible to eliminate sources of vitrification and expansion, and turn the oxide into a useful material that can be used as an aggregate for roadbed materials, concrete, etc.

さらに、スラグおよびダストに還元材を含有する原料を加えてもよい。スラグおよびダストが全体的に溶融した状態で還元材が存在していれば、酸化物の一部が還元され、副生成物から分離・回収できる金属の量が増加する。還元材を含有する原料として、例えば、石炭、コークス、製紙スラッジ、廃タイヤ、廃プラスチックから選ばれる1種以上を用いてよい。また、副生成物としてスラグや使用後耐火物を用いる場合に、還元材を含有するスラグや使用後耐火物を用いることが好ましい。還元材を含有するスラグや使用後耐火物を用いることで、酸化物を還元するために外部から加えられる還元材の量を少なくできる。 Furthermore, a raw material containing a reducing agent may be added to the slag and dust. If the reducing agent is present when the slag and dust are entirely molten, some of the oxides are reduced, and the amount of metal that can be separated and recovered from the by-products increases. For example, one or more raw materials containing a reducing agent may be used that are selected from coal, coke, paper sludge, waste tires, and waste plastics. In addition, when slag or used refractories are used as by-products, it is preferable to use slag or used refractories that contain a reducing agent. By using slag or used refractories that contain a reducing agent, the amount of reducing agent added from outside to reduce the oxides can be reduced.

抵抗加熱式電気炉への原料の装入は、低温で融液を生成するFeO、MnO、Alを含む原料を先に抵抗加熱式電気炉内に装入し、電圧を印加して溶融させた後に、順次他の原料を装入することが好ましい。これにより、高い効率で副生成物を全体的に溶融できる。さらに、最も低温で融液を生成する原料に加えて、原料全体の融点を低下させる原料を先に装入してもよい。 It is preferable to first charge the raw materials containing FeO, MnO, and Al2O3 , which generate a melt at a low temperature, into the resistance heating electric furnace, apply a voltage to melt them, and then charge the other raw materials in sequence. This allows the by-products to be melted as a whole with high efficiency. Furthermore, in addition to the raw material that generates a melt at the lowest temperature, a raw material that lowers the melting point of the entire raw materials may be charged first.

また、抵抗加熱式電気炉の炉壁耐火物保護のために、装入した副生成物の全量を溶解するのではなく、炉壁近傍の副生成物は溶解しないように操業してもよい。例えば、副生成物の全量が溶解しないように抵抗加熱式電気炉の電極を中心に寄せて操業してもよく、これにより、セルフライニング層を形成する耐火物の溶損が少なくなり、この結果、炉寿命が長くなる。なお、副生成物の全量が溶解しないように操業する場合には、溶融スラグを炉外に排出する際に、溶解していない部分が混合しないようにする必要がある。 In addition, to protect the refractory material in the walls of a resistance-heated electric furnace, the furnace may be operated so that the by-products near the furnace walls do not melt, rather than melting all of the by-products charged. For example, the electrodes of the resistance-heated electric furnace may be moved closer to the center so that the by-products do not melt in their entirety. This reduces the melting damage of the refractory material that forms the self-lining layer, and as a result, extends the furnace's life. When operating so that the by-products do not melt in their entirety, it is necessary to ensure that the unmelted portions are not mixed in when the molten slag is discharged out of the furnace.

以上説明したように、本実施形態に係る副生成物の処理方法では、抵抗加熱式電気炉を用いて、常温のスラグやダスト等の副生成物を1300℃以上に加熱して所定の化学成分の酸化物と金属とに分離する。これにより、常温のスラグやダスト等の副生成物を路盤材やコンクリート等の骨材に利用できる有用な酸化物と、製鉄原料に利用できる有用な金属とに分離できる。 As described above, in the by-product processing method according to this embodiment, a resistance heating electric furnace is used to heat room temperature by-products such as slag and dust to 1300°C or higher to separate them into oxides and metals of specified chemical composition. This allows the room temperature by-products such as slag and dust to be separated into useful oxides that can be used as aggregates for roadbed materials and concrete, and useful metals that can be used as raw materials for steelmaking.

次に、本発明に係る副生成物の処理方法の実施例を説明する。まず、100kVAの抵抗加熱式電気炉に常温の副生成物を20kg装入し、当該副生成物に電極を差し込み、通電を開始した。電極間の副生成物の溶融が確認された後に原料を追装していき、200kgの副生成物が装入された後、所定温度において1時間保持し、その後、10℃/minで冷却して、副生成物を金属と酸化物とに分離した。副生成物である各原料の化学組成を表1に示す。表1中、製鋼スラグBは、低温で融液を生成する原料である。使用済耐火物である耐火物屑Aおよび耐火物屑Bやフライアッシュは、原料全体の融点を低下させる原料である。また、Cr鉱石溶融還元炉スラグ、SUSダスト、冷延スラッジ、使用後耐火物およびフライアッシュは、還元材を含有する原料である。使用済耐火物に含まれる還元材は炭化ケイ素(SiC)である。表1中の「<0.1」は含有量が0.1質量%未満であることを示し、「<1」は含有量が1質量%未満であることを示す。また、表1において、化学組成の和が100に満たない材料があるが、これは、表1に示した原料が当該化学成分以外の他の成分を含むためである。 Next, an embodiment of the by-product processing method according to the present invention will be described. First, 20 kg of room temperature by-products were charged into a 100 kVA resistance heating electric furnace, electrodes were inserted into the by-products, and electricity was started. After melting of the by-products between the electrodes was confirmed, raw materials were added, and after 200 kg of the by-products were charged, the temperature was held at a predetermined temperature for 1 hour, and then cooled at 10 ° C/min to separate the by-products into metals and oxides. The chemical composition of each raw material, which is a by-product, is shown in Table 1. In Table 1, steelmaking slag B is a raw material that generates a molten liquid at a low temperature. Refractory scrap A and refractory scrap B, which are used refractories, and fly ash are raw materials that lower the melting point of the entire raw material. In addition, Cr ore melting reduction furnace slag, SUS dust, cold rolling sludge, used refractories, and fly ash are raw materials containing reducing materials. The reducing material contained in the used refractories is silicon carbide (SiC). In Table 1, "<0.1" indicates that the content is less than 0.1% by mass, and "<1" indicates that the content is less than 1% by mass. In addition, in Table 1, there are materials whose sum of chemical compositions is less than 100. This is because the raw materials shown in Table 1 contain other components in addition to the chemical components in question.

Figure 0007531273000001
Figure 0007531273000001

発明例1~38における各原料の配合割合を表2~5に示す。同様に、比較例1~19における各原料の配合割合を表6、7に示す。表2~7におけるコークス、製紙スラッジおよび廃タイヤはいずれも還元材を含む原料である。 The blending ratios of each raw material in Invention Examples 1 to 38 are shown in Tables 2 to 5. Similarly, the blending ratios of each raw material in Comparative Examples 1 to 19 are shown in Tables 6 and 7. Coke, paper sludge, and waste tires in Tables 2 to 7 are all raw materials that contain reducing agents.

Figure 0007531273000002
Figure 0007531273000002

Figure 0007531273000003
Figure 0007531273000003

Figure 0007531273000004
Figure 0007531273000004

Figure 0007531273000005
Figure 0007531273000005

Figure 0007531273000006
Figure 0007531273000006

Figure 0007531273000007
Figure 0007531273000007

発明例1~38における分離後の酸化物および金属の化学組成と酸化物と金属との分離状態を表8、表9に示す。同様に、比較例1~19における分離後の酸化物および金属の化学組成と、酸化物と金属との分離状態を表10に示す。なお、本実施例では酸化物への金属の混入量が10質量%以下である場合に分離が良好とし、表8~10の「分離」列に「〇」と記載した。一方、酸化物への金属の混入量が10質量%より多い場合に分離が良好ではないとし、表8~10の「分離」列に「×」と記載した。また、表8~10の「<1」は含有量が1質量%未満であることを意味する。 Tables 8 and 9 show the chemical composition of the oxide and metal after separation and the state of separation between the oxide and metal in Examples 1 to 38. Similarly, Table 10 shows the chemical composition of the oxide and metal after separation and the state of separation between the oxide and metal in Comparative Examples 1 to 19. In this example, separation was considered to be good when the amount of metal mixed into the oxide was 10% by mass or less, and is marked with "O" in the "Separation" column in Tables 8 to 10. On the other hand, separation was considered to be poor when the amount of metal mixed into the oxide was more than 10% by mass, and is marked with "X" in the "Separation" column in Tables 8 to 10. In addition, "<1" in Tables 8 to 10 means that the content is less than 1% by mass.

Figure 0007531273000008
Figure 0007531273000008

Figure 0007531273000009
Figure 0007531273000009

Figure 0007531273000010
Figure 0007531273000010

発明例1~11、37、38は、製鋼スラグA、B、C、Dにダスト、スラッジ、使用後耐火物(耐火物屑Aまたは耐火物屑B)、塩基度調整材(フライアッシュ)および還元材を加えた発明例である。熱処理温度は1550℃である。発明例1~11では、金属の混入量10質量%以下で所定の化学成分の酸化物が分離回収でき、路盤材やコンクリート等の骨材として使用できる緻密な酸化物が得られた。また、発明例1~11では還元材を加えているので、FeO+Feが2質量%以下およびCrが1質量%未満となり、酸化物中の金属を十分に回収することができた。なお、本実施例では塩基度調整材としてフライアッシュを用いたが、フライアッシュに代えて、砂、砂利を用いても同様の効果が得られる。 Examples 1 to 11, 37, and 38 are examples of the invention in which dust, sludge, used refractories (refractory scrap A or refractory scrap B), basicity adjuster (fly ash), and reducing agent are added to steelmaking slag A, B, C, and D. The heat treatment temperature is 1550°C. In Examples 1 to 11, oxides of a specified chemical composition can be separated and recovered with a metal contamination amount of 10 mass% or less, and dense oxides that can be used as aggregates for roadbed materials and concrete, etc. are obtained. In Examples 1 to 11, a reducing agent is added, so that FeO+Fe 2 O 3 is 2 mass% or less and Cr 2 O 3 is less than 1 mass%, and the metals in the oxides can be sufficiently recovered. In this embodiment, fly ash is used as a basicity adjuster, but the same effect can be obtained by using sand or gravel instead of fly ash.

発明例12~22は、Cr鉱石溶融還元炉スラグにダスト、スラッジ、使用後耐火物(耐火物屑Aまたは耐火物屑B)、塩基度調整材(フライアッシュ)を加えた発明例である。熱処理温度は1550℃である。発明例12~22においても、金属の混入量10質量%以下で所定の化学成分の酸化物が分離回収でき、路盤材やコンクリート等の骨材として使用できる緻密な酸化物が得られた。Cr鉱石溶融還元炉スラグは遊離炭素を含むので、還元材を加えなくても酸化物中のFeO+Feが2質量%以下およびCrが1質量%未満となり、酸化物中の金属を十分に回収することができた。 Inventive Examples 12 to 22, dust, sludge, used refractories (scrap refractories A or scrap refractories B), and basicity adjuster (fly ash) were added to the Cr ore smelting reduction furnace slag. The heat treatment temperature was 1550°C. In Inventive Examples 12 to 22, oxides of a specified chemical composition could be separated and recovered with a metal contamination amount of 10 mass% or less, and dense oxides that can be used as aggregates for roadbeds and concrete were obtained. Since the Cr ore smelting reduction furnace slag contains free carbon, the FeO+Fe 2 O 3 in the oxide was 2 mass% or less and the Cr 2 O 3 was less than 1 mass%, and the metals in the oxide could be sufficiently recovered without adding a reducing agent.

発明例23~33は、銅スラグにダスト、スラッジ、使用後耐火物(耐火物屑Aまたは耐火物屑B)、塩基度調整材(フライアッシュ)、還元材を加えた発明例である。熱処理温度は1550℃である。発明例23~33においても、金属の混入量10質量%以下で所定の化学成分の酸化物が分離回収でき、路盤材やコンクリート等の骨材として使用できる緻密な酸化物が得られた。発明例23~33では還元材を加えているので、FeO+Feが2質量%以下およびCrが1質量%未満となり、酸化物中の金属を十分に回収することができた。 Inventive Examples 23 to 33, dust, sludge, used refractories (scrap refractories A or scrap refractories B), basicity adjuster (fly ash), and reducing agent were added to copper slag. The heat treatment temperature was 1550°C. In Inventive Examples 23 to 33, oxides of a specified chemical composition could be separated and recovered with a metal contamination amount of 10 mass% or less, and dense oxides that can be used as aggregates for roadbeds and concrete were obtained. In Inventive Examples 23 to 33, a reducing agent was added, so FeO + Fe 2 O 3 was 2 mass% or less and Cr 2 O 3 was less than 1 mass%, and the metals in the oxides could be sufficiently recovered.

発明例34~36は、発明例2、16、28と同じの原料配合であって、熱処理温度を1300℃とした発明例である。発明例34~36においても、金属の混入量10質量%以下で所定の化学成分の酸化物が分離回収でき、路盤材やコンクリート等の骨材として使用できる緻密な酸化物が得られた。但し、酸化物中のFeO+Fe濃度は、実施例2、16、28と比較して若干高くなり、発明例2、16、28に対して還元性がわずかに劣っていた。 Examples 34 to 36 were the same as Examples 2, 16, and 28 in terms of raw material composition, but the heat treatment temperature was 1300°C. In Examples 34 to 36, oxides of the specified chemical components could be separated and recovered with a metal contamination level of 10% by mass or less, and dense oxides were obtained that could be used as aggregates for roadbeds and concrete, etc. However, the FeO+ Fe2O3 concentration in the oxides was slightly higher than in Examples 2, 16, and 28 , and the reducibility was slightly inferior to Examples 2, 16, and 28.

比較例1~5は、製鋼スラグA、Bにスラッジ、使用済耐火物(耐火物屑Aまたは耐火物屑B)および塩基度調整材(フライアッシュ)を加えた比較例である。熱処理温度は1550℃である。比較例1は塩基度が2.1と高く、溶融状態の酸化物が高粘度となり、金属と酸化物とが分離しきらず、酸化物中に金属が多く混入した。また、比較例5は塩基度が6.1と高いために原料を完全に溶融させることができず、金属と酸化物とを分離させることができなかった。比較例2~4は塩基度が低く溶融状態の酸化物の粘度が低いたために、10℃/minの冷却速度であっても酸化物がガラス化し、路盤材やコンクリート等の骨材として使用できる緻密な酸化物が得られなかった。 Comparative Examples 1 to 5 are comparative examples in which sludge, used refractories (scrap refractories A or scrap refractories B), and basicity adjuster (fly ash) were added to steelmaking slag A and B. The heat treatment temperature was 1550°C. Comparative Example 1 had a high basicity of 2.1, which resulted in high viscosity of the molten oxide, which prevented the metal and oxide from being completely separated, resulting in a large amount of metal being mixed into the oxide. Comparative Example 5 had a high basicity of 6.1, which prevented the raw materials from being completely melted, and the metal and oxide from being separated. Comparative Examples 2 to 4 had low basicity and low viscosity of the molten oxide, so the oxide was vitrified even at a cooling rate of 10°C/min, and dense oxides that could be used as aggregates for roadbeds and concrete could not be obtained.

比較例6~11は、Cr鉱石溶融還元炉スラグにダスト、スラッジ、使用後耐火物(耐火物屑Aまたは耐火物屑B)および塩基度調整材(フライアッシュ)を加えた比較例である。熱処理温度は1550℃である。比較例6は基度が2.1と高く、溶融状態の酸化物が高粘度となり、金属と酸化物とが分離しきらず、酸化物中に金属が多く混入した。比較例9はMgO含有量が22質量%と高いために酸化物が高粘度となり、金属と酸化物とが分離しきらず、酸化物中に金属が多く混入した。比較例11は塩基度が6.2と高いために原料を完全に溶融させることができず、金属と酸化物とを分離させることができなかった。比較例7、8、10は塩基度が0.1~0.6と低く、溶融状態の酸化物の粘度が低いために、10℃/minの冷却速度であってもガラス化し、路盤材やコンクリート等の骨材として使用できる緻密な酸化物が得られなかった。 Comparative Examples 6 to 11 are comparative examples in which dust, sludge, used refractories (refractory scrap A or refractory scrap B) and basicity adjuster (fly ash) were added to the Cr ore melting reduction furnace slag. The heat treatment temperature was 1550°C. Comparative Example 6 had a high basicity of 2.1, which resulted in high viscosity of the molten oxide, which prevented the metal and oxide from being completely separated, and a large amount of metal was mixed into the oxide. Comparative Example 9 had a high MgO content of 22 mass%, which resulted in high viscosity of the oxide, which prevented the metal and oxide from being completely separated, and a large amount of metal was mixed into the oxide. Comparative Example 11 had a high basicity of 6.2, which prevented the raw materials from being completely melted, and the metal and oxide from being separated. Comparative Examples 7, 8, and 10 had low basicities of 0.1 to 0.6, which resulted in low viscosity of the molten oxide, which prevented the oxide from being vitrified even at a cooling rate of 10°C/min, and therefore did not produce dense oxides that could be used as aggregates for roadbeds and concrete.

比較例12~16は銅スラグにダスト、スラッジ、使用後耐火物(耐火物屑A、耐火物屑B)および塩基度調整材(フライアッシュ)を加えた比較例である。熱処理温度は1550℃である。比較例12は基度が2.1と高く、溶融状態の酸化物が高粘度となり、金属と酸化物とが分離しきらず、酸化物中に金属が多く混入した。比較例16は塩基度が6.2と高いために原料を完全に溶融させることができず、金属と酸化物とを分離させることができなかった。比較例13~15は塩基度が0.1~0.6と低く、溶融状態の酸化物の粘度が低いために、10℃/minの冷却速度であってもガラス化し、路盤材やコンクリート等の骨材として使用できる緻密な酸化物が得られなかった。 Comparative Examples 12 to 16 are comparative examples in which dust, sludge, used refractories (refractory scrap A, refractory scrap B), and basicity adjuster (fly ash) were added to copper slag. The heat treatment temperature was 1550°C. Comparative Example 12 had a high basicity of 2.1, which resulted in high viscosity of the molten oxide, which prevented the metal and oxide from being completely separated, resulting in a large amount of metal being mixed into the oxide. Comparative Example 16 had a high basicity of 6.2, which prevented the raw materials from being completely melted, and the metal and oxide from being separated. Comparative Examples 13 to 15 had a low basicity of 0.1 to 0.6, which resulted in low viscosity of the molten oxide, which resulted in vitrification even at a cooling rate of 10°C/min, and therefore did not produce a dense oxide that could be used as an aggregate for roadbeds, concrete, etc.

比較例17は発明例1と同じ原料配合であって、熱処理温度を1250℃にした比較例である。比較例18は発明例13と同じ配合であって、熱処理温度を1100℃にした比較例である。比較例19は発明例25と同じ配合であって、熱処理温度を1000℃にした比較例である。これらの比較例はいずれも熱処理温度が1300℃より低く、原料を完全に溶融させることができず、金属と酸化物とを分離させることができなかった。 Comparative Example 17 is a comparative example in which the raw material composition is the same as that of Invention Example 1, but the heat treatment temperature is 1250°C. Comparative Example 18 is a comparative example in which the raw material composition is the same as that of Invention Example 13, but the heat treatment temperature is 1100°C. Comparative Example 19 is a comparative example in which the raw material composition is the same as that of Invention Example 25, but the heat treatment temperature is 1000°C. In all of these comparative examples, the heat treatment temperature is lower than 1300°C, and the raw materials could not be completely melted, and the metal and oxide could not be separated.

Claims (8)

金属製造工程で発生する副生成物を処理するにあたり、前記副生成物を加熱して前記副生成物を金属と酸化物とに分離する副生成物の処理方法であって、
前記副生成物は、スラグ、ダスト、スラッジおよび使用後耐火物から選ばれる1種以上であり、
前記副生成物は、電気炉を用いて1300℃以上に加熱され、
前記酸化物の化学組成は、CaO:17質量%以上59質量%以下、SiO:17質量%以上53質量%以下、Al:5質量%以上45質量%以下、MgO:2質量%以上20質量%以下、塩基度(CaO/SiO):0.7以上2.0以下であり、
前記副生成物は、金属および遊離炭素から選ばれる1種以上を合計で1質量%以上含有し、前記電気炉は抵抗加熱式電気炉である、副生成物の処理方法。
A method for treating a by-product generated in a metal manufacturing process, comprising heating the by-product to separate the by-product into a metal and an oxide, the method comprising the steps of:
The by-product is at least one selected from slag, dust, sludge, and used refractories,
The by-product is heated to 1300° C. or higher using an electric furnace;
The chemical composition of the oxides is as follows: CaO: 17% by mass or more and 59% by mass or less; SiO2: 17% by mass or more and 53% by mass or less; Al2O3 : 5 % by mass or more and 45% by mass or less; MgO: 2% by mass or more and 20% by mass or less; and basicity (CaO/ SiO2 ): 0.7 or more and 2.0 or less .
The method for treating a by-product , wherein the by-product contains at least one type selected from metals and free carbon in a total amount of at least 1 mass %, and the electric furnace is a resistance heating electric furnace .
前記塩基度(CaO/SiO)は0.7以上1.6以下である、請求項1記載の副生成物の処理方法。 The method for treating by-products according to claim 1 , wherein the basicity (CaO/SiO 2 ) is 0.7 or more and 1.6 or less. 前記スラグは還元材を含有する、請求項1または請求項2に記載の副生成物の処理方法。 The method for treating by-products according to claim 1 or 2 , wherein the slag contains a reducing agent. 前記使用後耐火物は還元材を含有する、請求項1から請求項3のいずれか一項に記載の副生成物の処理方法。 The method for treating by-products according to claim 1 , wherein the used refractory contains a reducing material. 前記副生成物に、還元材を含有する原料をさらに加えて処理を行う、請求項1から請求項4のいずれか一項に記載の副生成物の処理方法。 The method for treating a by-product according to claim 1 , further comprising the step of adding a raw material containing a reducing agent to the by-product for treatment. 前記還元材を含有する原料は、石炭、コークス、製紙スラッジ、廃タイヤおよび廃プラスチックから選ばれる1種以上である、請求項5に記載の副生成物の処理方法。 6. The method for treating by-products according to claim 5 , wherein the raw material containing the reducing agent is at least one selected from the group consisting of coal, coke, paper sludge, waste tires and waste plastics. 前記副生成物に、酸化物の化学組成を調整する原料をさらに加えて処理を行う、請求項1から請求項6のいずれか一項に記載の副生成物の処理方法。 The method for treating a by-product according to claim 1 , further comprising the step of adding a raw material for adjusting a chemical composition of an oxide to the by-product for treatment. 前記酸化物の化学組成を調整する原料は、フライアッシュ、砂および砂利から選ばれる1種以上である、請求項7に記載の副生成物の処理方法。 8. The method for treating by-products according to claim 7 , wherein the raw material for adjusting the chemical composition of the oxide is at least one selected from the group consisting of fly ash, sand and gravel.
JP2019216819A 2019-11-29 2019-11-29 How to treat by-products Active JP7531273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019216819A JP7531273B2 (en) 2019-11-29 2019-11-29 How to treat by-products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019216819A JP7531273B2 (en) 2019-11-29 2019-11-29 How to treat by-products

Publications (2)

Publication Number Publication Date
JP2021084091A JP2021084091A (en) 2021-06-03
JP7531273B2 true JP7531273B2 (en) 2024-08-09

Family

ID=76086437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216819A Active JP7531273B2 (en) 2019-11-29 2019-11-29 How to treat by-products

Country Status (1)

Country Link
JP (1) JP7531273B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095674B2 (en) * 2019-11-29 2022-07-05 Jfeスチール株式会社 How to make concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306654A (en) 2004-04-21 2005-11-04 Nippon Steel Corp Method for modifying steelmaking slag and modified steelmaking slag
WO2014003123A1 (en) 2012-06-27 2014-01-03 新日鐵住金株式会社 Steel slag reduction method
JP2016145125A (en) 2015-02-06 2016-08-12 新日鐵住金株式会社 Slag product raw material and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194125A (en) * 1985-02-23 1986-08-28 Nippon Jiryoku Senko Kk Simultaneous treatment of sludge and steel making slag
JP5444883B2 (en) * 2009-06-26 2014-03-19 新日鐵住金株式会社 Modified slag
JP5531536B2 (en) * 2009-09-30 2014-06-25 Jfeスチール株式会社 Method for recovering iron and phosphorus from steelmaking slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306654A (en) 2004-04-21 2005-11-04 Nippon Steel Corp Method for modifying steelmaking slag and modified steelmaking slag
WO2014003123A1 (en) 2012-06-27 2014-01-03 新日鐵住金株式会社 Steel slag reduction method
JP2016145125A (en) 2015-02-06 2016-08-12 新日鐵住金株式会社 Slag product raw material and manufacturing method therefor

Also Published As

Publication number Publication date
JP2021084091A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
CN106048109B (en) A kind of method for mixing the recycling of slag melting and reducing and modifier treatment
JP4351490B2 (en) Method for modifying steelmaking slag and modified steelmaking slag
US4124404A (en) Steel slag cement and method for manufacturing same
CN104039987A (en) Steel slag reduction method
CN104556702B (en) A kind of method that high alkalinity devitrified glass is prepared using metallurgical slag
AU717488B2 (en) Method of recovering metals from slags
WO2019071790A1 (en) Method for recovering valuable components from mixed slag containing zinc and iron
SK58495A3 (en) Process for making steel and hydraulically active binders
CA3181620A1 (en) Method for producing liquid pig iron from a dri product
JP4571818B2 (en) Method for reforming steelmaking slag
CN105152536B (en) A kind of method that microcrystal glass material is synthesized using ferrochrome slag
CN105579598B (en) Method and mineral hydraulic adhesive for handling slag
JP7531273B2 (en) How to treat by-products
CN106755653A (en) A kind of method containing rare earth or the also original production of niobium slag metallurgy melting
JP7531274B2 (en) How to treat by-products
JP2001316712A (en) Chromium recovery method from chromium-containing slag
JP3965139B2 (en) Method for reforming steelmaking slag
JP7131534B2 (en) Aggregate manufacturing method, coarse aggregate and fine aggregate
JP6451462B2 (en) Method for recovering chromium from chromium-containing slag
JPH0747784B2 (en) Method for recovering zinc and lead from steelmaking dust
JP2005126732A (en) Method and apparatus for melting reduction of metal oxide-containing material
RU2492151C1 (en) Method of processing steel-smelting slags with production of cement clinker and iron
JP7095674B2 (en) How to make concrete
JP2008266672A (en) Ladle refine method
JP2009167469A (en) Method for treating copper-containing dross

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240730

R150 Certificate of patent or registration of utility model

Ref document number: 7531273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150