[go: up one dir, main page]

JP7528959B2 - Tool and method for cutting oil well pipe joints, and method for manufacturing oil well pipes - Google Patents

Tool and method for cutting oil well pipe joints, and method for manufacturing oil well pipes Download PDF

Info

Publication number
JP7528959B2
JP7528959B2 JP2022000803A JP2022000803A JP7528959B2 JP 7528959 B2 JP7528959 B2 JP 7528959B2 JP 2022000803 A JP2022000803 A JP 2022000803A JP 2022000803 A JP2022000803 A JP 2022000803A JP 7528959 B2 JP7528959 B2 JP 7528959B2
Authority
JP
Japan
Prior art keywords
cutting
oil well
cutting tool
tool
arc portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022000803A
Other languages
Japanese (ja)
Other versions
JP2023100283A (en
Inventor
哲次 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022000803A priority Critical patent/JP7528959B2/en
Publication of JP2023100283A publication Critical patent/JP2023100283A/en
Application granted granted Critical
Publication of JP7528959B2 publication Critical patent/JP7528959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Description

本発明は、油井管継手部のピンを切削加工するための切削用工具、並びにこの切削用工具を用いた油井管継手部の切削方法および油井管の製造方法に関する。 The present invention relates to a cutting tool for cutting pins of oil well pipe joints, as well as a cutting method for oil well pipe joints using this cutting tool and a manufacturing method for oil well pipes.

油井管継手部のピンは、通常、雄ねじ部の先端部分にシール部とショルダー部を構成するためのノーズ部を有している。雄ねじ部を切削加工する場合、ねじ山部分については、複数のねじ山と同等の形状をした工具により切削がなされる。一方、シール部やショルダー部を構成するためのノーズ部の切削は、数ミクロンレベルの厳しい加工精度が要求される。また、その切削においては、高い加工能率が得られること、切削面の平滑性(表面粗さが小さい)が確保されることが必要であり、さらに、切り屑の排出性や工具寿命を高めることも必要となる。 The pins of oil well pipe joints usually have a nose at the tip of the male thread to form a seal and shoulder. When cutting the male thread, the thread portion is cut with a tool that has the same shape as the multiple threads. On the other hand, cutting the nose to form the seal and shoulder requires strict machining accuracy on the level of a few microns. In addition, it is necessary for the cutting to achieve high machining efficiency and ensure the smoothness of the cut surface (low surface roughness), as well as to improve the discharge of cutting chips and the tool life.

油井管継手部の切削技術に関して、特許文献1には、先端に曲率半径が異なる3つ以上の切削刃面を隣接して設けた切削工具が開示されており、この切削工具によれば、一定の速い送り速度で切削しても、表面粗さの細かい切削が可能であるとしている。
また、特許文献2には、曲率半径が異なる2つの切削刃面(切刃)を連続して設けるとともに、両切削刃面の連結部を特定の位置に形成した切削工具が開示されており、この形状の切削工具で仕上げ切削を行うことにより、表面粗さを向上させることができるとしている。
Regarding cutting technology for oil well pipe joints, Patent Document 1 discloses a cutting tool having three or more cutting blade faces with different radii of curvature adjacent to each other at the tip, and claims that this cutting tool is capable of cutting with fine surface roughness even when cutting at a constant high feed rate.
Furthermore, Patent Document 2 discloses a cutting tool having two cutting blade surfaces (cutting edges) with different radii of curvature provided in succession and a connecting portion between the two cutting blade surfaces formed at a specific position, and claims that by performing finish cutting with a cutting tool of this shape, it is possible to improve surface roughness.

特開平10-6108号公報Japanese Patent Application Publication No. 10-6108 実開平5-85505号公報Japanese Utility Model Application Publication No. 5-85505

上述した特許文献1、2によれば、それぞれで規定される切削刃面を有する切削工具を用いることで、旧来の切削工具よりも速く、かつ平滑な表面粗さに切削することができるとしている。
しかし、本発明者が検討したところによれば、特許文献1、2に示されるような切削刃面を有する切削工具では、油井管継手部のピンのシール部やショルダー部を所定の表面粗さを確保しつつ、高速で仕上げ切削することは難しい。このため生産性が低く(切削時間が長くなる)、所望の表面粗さも得られない問題がある。
また、これら技術では、必然的に切削抵抗(背分力)が大きくなることから、チッピングが発生しやすく、ビビリ振動などの問題もあって、十分な工具寿命が得られない問題もある。
According to the above-mentioned Patent Documents 1 and 2, by using a cutting tool having a cutting edge surface defined in each of them, it is possible to cut faster and with a smoother surface roughness than conventional cutting tools.
However, according to the inventor's investigation, it is difficult to perform finish cutting at high speed while ensuring a predetermined surface roughness on the seal portion and shoulder portion of the pin of the oil well pipe joint with a cutting tool having a cutting blade surface as shown in Patent Documents 1 and 2. This results in low productivity (long cutting time) and a problem that the desired surface roughness cannot be obtained.
Furthermore, these techniques inevitably result in large cutting resistance (thrust force), which makes chipping more likely to occur and also leads to problems such as chatter vibration, making it difficult to obtain a sufficient tool life.

したがって本発明の目的は、以上のような従来技術の課題を解決し、油井管継手部のピンの切削において、シール部やショルダー部などを平滑に切削し、所定の表面粗さに仕上げることができ、また、ビビリ振動の発生を抑えて高速で切削することができ、さらに工具寿命にも優れる切削用工具を提供することにある。
また、本発明の他の目的は、そのような切削用工具を用いて油井管継手部のピンを適切に切削加工することができる切削方法および油井管の製造方法を提供することにある。
Therefore, an object of the present invention is to solve the problems of the conventional technology as described above, and to provide a cutting tool which, in cutting pins for oil well pipe joints, can smoothly cut seal portions, shoulder portions, etc., and finish them to a prescribed surface roughness, can perform cutting at high speed while suppressing the occurrence of chatter vibration, and has an excellent tool life.
Another object of the present invention is to provide a cutting method and a manufacturing method of oil country tubular goods, which are capable of appropriately cutting pins of oil country tubular goods joints using such a cutting tool.

本発明者は、切削刃(切刃)が円弧のみで構成された従来の切削用工具(例えば、特許文献1)の問題点とその解決手段について検討を行った。図4(ア),(イ)は、切削用工具による加工後の切削面の管軸方向断面プロフィールを示すものであり、このうち図4(ア)が、図13に示すように切削刃10が円弧部Cのみで構成され、その円弧部Cの曲率半径Rが1.2mmの切削用工具(従来の切削用工具)で加工された切削面の管軸方向断面プロフィールである。この切削用工具の場合、1回転当りの工具送り量を0.9mmとすると、切削面の凹凸の高さはh1となる。このように切削刃が円弧部のみで構成されていると、円弧部の曲率半径を大きくしても結局はh1の高さの凹凸が残存することになるので、1回転当たりの工具送り量を大きくすると原理的に表面粗さの増大は避けられない。 The inventors have studied the problems of conventional cutting tools (e.g., Patent Document 1) in which the cutting blade (cutting edge) is composed of only arcs and the means for solving them. Figures 4(a) and (b) show the axial cross-sectional profile of the cutting surface after processing with the cutting tool, and of these, Figure 4(a) is the axial cross-sectional profile of the cutting surface processed with a cutting tool (conventional cutting tool) in which the cutting blade 10 is composed of only arc portions C as shown in Figure 13 and the radius of curvature R of the arc portions C is 1.2 mm. In the case of this cutting tool, if the tool feed amount per rotation is 0.9 mm, the height of the unevenness of the cutting surface is h1. In this way, if the cutting blade is composed of only arc portions, even if the radius of curvature of the arc portions is increased, unevenness of the height of h1 will remain, so in principle, if the tool feed amount per rotation is increased, an increase in surface roughness is unavoidable.

このような問題を解決するため、本発明者は、円弧部と直線部を組み合わせた切削刃とすることにより、切削面の凹凸の高さを小さくするという着想をもとに検討を重ねた結果、切削刃を、工具先端を構成する第1の円弧部C1と、この円弧部C1に連なる直線部Sと、この直線部Sに連なる第2の円弧部C2を有する構成(形状)とすること、さらに好ましくは、円弧部C1,C2の曲率半径や直線部Sの構成を最適化することにより、切削面の凹凸の高さを非常に小さくすることができ、しかも、ビビリ振動の発生を抑えつつ高速(高い送り速度)での切削が可能となることを見出した。図4(イ)が、そのような切削用工具(円弧部C1の曲率半径:1.2mm、円弧部C2の曲率半径:0.4mm)による切削面の管軸方向断面プロフィールの一例であり、図4(ア)と同じ工具送り量(1回転当り0.9mm)であっても切削面の凹凸の高さはh2と非常に小さくなり、平滑に切削することが可能となる。 In order to solve such problems, the inventors of the present invention have conducted extensive research based on the idea of reducing the height of the unevenness of the cutting surface by using a cutting blade that combines a circular arc portion and a straight line portion. As a result, they have found that by configuring (shaping) the cutting blade to have a first circular arc portion C1 that constitutes the tip of the tool, a straight line portion S that is connected to this circular arc portion C1, and a second circular arc portion C2 that is connected to this straight line portion S, and more preferably by optimizing the radii of curvature of the circular arc portions C1 and C2 and the configuration of the straight line portion S, the height of the unevenness of the cutting surface can be made very small, and cutting at high speeds (high feed rates) while suppressing the occurrence of chatter vibrations is possible. Figure 4 (a) shows an example of a cross-sectional profile in the pipe axis direction of the cutting surface using such a cutting tool (radius of curvature of the circular arc portion C1: 1.2 mm, radius of curvature of the circular arc portion C2: 0.4 mm). Even with the same tool feed amount (0.9 mm per rotation) as in Figure 4 (a), the height of the unevenness of the cutting surface becomes very small at h2, making it possible to cut smoothly.

本発明は、以上のような知見に基づきなされたもので、以下を要旨とするものである。
[1]切削刃が、工具先端を構成する第1の円弧部(C1)を有するとともに、該円弧部(C1)の一端側において、円弧部(C1)に連なる直線部(S)と、該直線部(S)に連なる第2の円弧部(C2)を有することを特徴とする油井管継手部の切削用工具。
[2]上記[1]の切削用工具において、さらに、切削刃が、円弧部(C1)の他端側において、円弧部(C1)に連なる直線部(S)を有することを特徴とする油井管継手部の切削用工具。
[3]上記[1]の切削用工具において、さらに、切削刃が、円弧部(C1)の他端側において、円弧部(C1)に連なる直線部(S)と、該直線部(S)に連なる第2の円弧部(C2)を有し、
円弧部(C1)の一端側の直線部(S)および円弧部(C2)と他端側の直線部(S)および円弧部(C2)は、円弧部(C1)を中心として対称形状に構成されたことを特徴とする油井管継手部の切削用工具。
The present invention has been made based on the above findings, and has the following gist.
[1] A cutting tool for oil well pipe joints, characterized in that a cutting blade has a first arcuate portion (C1) constituting a tip of the tool, and at one end side of the arcuate portion (C1), has a straight portion (S) continuing to the arcuate portion (C1), and a second arcuate portion (C2) continuing to the straight portion (S).
[2] The cutting tool for an oil well pipe joint according to the above-mentioned [1], further characterized in that the cutting blade has a straight portion (S) connected to the arc portion (C1) on the other end side of the arc portion (C1).
[3] The cutting tool according to [1] above, further comprising a cutting blade having, at the other end side of the arc portion (C1), a straight portion (S) continuing to the arc portion (C1) and a second arc portion (C2) continuing to the straight portion (S);
A cutting tool for oil well pipe joints, characterized in that the straight line portion (S) and the arc portion (C2) on one end side of the arc portion (C1) and the straight line portion (S) and the arc portion (C2) on the other end side are configured symmetrically with respect to the arc portion (C1).

[4]上記[1]~[3]のいずれかの切削用工具において、直線部(S)の長さLが0.8mm以上1.2mm以下であることを特徴とする油井管継手部の切削用工具。
[5]上記[1]~[4]のいずれかの切削用工具において、円弧部(C1)の曲率半径R1が0.4mm以上1.5mm以下、円弧部(C2)の曲率半径R2が0.4mm以上1.2mm以下であることを特徴とする油井管継手部の切削用工具。
[6]上記[1]~[5]のいずれかの切削用工具において、被削管の管軸に対して平行な直線と被削管ノーズ部外周面の切削時における直線部(S)とのなす角度θが1.0°以上2.0°以下であることを特徴とする油井管継手部の切削用工具。
[7]上記[1]~[6]のいずれかの切削用工具において、円弧部(C1)の円弧の中心角αが111°±1.25°であることを特徴とする油井管継手部の切削用工具。
[4] The cutting tool for an oil well pipe joint according to any one of the above [1] to [3], wherein the length L of the straight portion (S) is 0.8 mm or more and 1.2 mm or less.
[5] The cutting tool for an oil well pipe joint according to any one of the above [1] to [4], wherein the radius of curvature R1 of the arc portion (C1) is 0.4 mm or more and 1.5 mm or less, and the radius of curvature R2 of the arc portion (C2) is 0.4 mm or more and 1.2 mm or less.
[6] A cutting tool for an oil well pipe joint according to any one of the above [1] to [5], characterized in that the angle θ 1 between a straight line parallel to the pipe axis of the pipe to be cut and a straight line portion (S) during cutting of the outer circumferential surface of the nose portion of the pipe to be cut is 1.0° or more and 2.0° or less.
[7] A cutting tool for an oil well pipe joint according to any one of the above [1] to [6], characterized in that the central angle α of the arc of the arc portion (C1) is 111°±1.25°.

[8]上記[1]~[7]のいずれかの切削用工具を用い、油井管継手部を構成するピンのうちの少なくともノーズ部外周面の切削加工を行うことを特徴とする油井管継手部の切削方法。
[9]上記[8]の切削方法において、上記[2]または[3]の切削用工具を用い、ノーズ部外周面からショルダー部までを連続して切削加工することを特徴とする油井管継手部の切削方法。
[10]上記[8]の切削方法において、上記[6]の切削用工具を用い、ノーズ部外周面を切削加工するに際し、被削管1回転当たりの切削用工具の管軸方向での送り量を、直線部(S)の長さLとcosθの積[L×cosθ]以下とすることを特徴とする油井管継手部の切削方法。
[11]上記[8]~[10]のいずれかの切削方法において、切削用工具を、その工具中心線が被削管の管軸を通る垂線に対してなす角度θが7°以上11°以下となるように取付具に保持させることを特徴とする油井管継手部の切削方法。
[8] A method for cutting an oil well pipe joint, comprising cutting at least an outer circumferential surface of a nose of a pin constituting the oil well pipe joint using a cutting tool according to any one of the above [1] to [7].
[9] A method for cutting an oil well pipe joint according to the above item [8], characterized in that the cutting tool according to the above item [2] or [3] is used to continuously cut from the outer peripheral surface of the nose portion to the shoulder portion.
[10] The cutting method for an oil well pipe joint according to [8] above, characterized in that, when cutting the outer peripheral surface of the nose portion using the cutting tool according to [6] above, the feed amount in the axial direction of the cutting tool per rotation of the pipe to be cut is equal to or less than the product [L × cosθ 1 ] of the length L of the straight portion (S) and cosθ 1 .
[11] A method for cutting an oil well pipe joint portion according to any one of the above-mentioned [8] to [10], characterized in that the cutting tool is held by a fixture so that the angle θ2 between the center line of the cutting tool and a perpendicular line passing through the axis of the pipe to be cut is 7° or more and 11° or less.

[12]上記[1]~[7]のいずれかの切削用工具を用い、油井管継手部を構成するピンのうちの少なくともノーズ部外周面の切削加工を行うことを特徴とする油井管の製造方法。
[13]上記[12]の製造方法において、上記[2]または[3]の切削用工具を用い、ノーズ部外周面からショルダー部までを連続して切削加工することを特徴とする油井管の製造方法。
[14]上記[12]の製造方法において、上記[6]の切削用工具を用い、ノーズ部外周面を切削加工するに際し、被削管1回転当たりの切削用工具の管軸方向での送り量を、直線部(S)の長さLとcosθの積[L×cosθ]以下とすることを特徴とする油井管の製造方法。
[15]上記[12]~[14]のいずれかの製造方法において、切削用工具を、その工具中心線が被削管の管軸を通る垂線に対してなす角度θが7°以上11°以下となるように取付具に保持させることを特徴とする油井管の製造方法。
[12] A method for manufacturing oil well tubular goods, comprising cutting at least an outer peripheral surface of a nose portion of a pin constituting an oil well tubular goods joint portion using a cutting tool according to any one of the above [1] to [7].
[13] A method for producing oil country tubular goods, characterized in that in the manufacturing method described above in [12], the cutting tool described above in [2] or [3] is used to continuously cut from the outer circumferential surface of the nose portion to the shoulder portion.
[14] The method for producing oil well tubular goods according to the above [12], characterized in that when cutting the outer peripheral surface of the nose portion using the cutting tool according to the above [6], the feed amount of the cutting tool in the axial direction of the pipe to be cut per one rotation of the pipe to be cut is equal to or less than the product [L × cos θ 1 ] of the length L of the straight portion (S) and cos θ 1 .
[15] In any one of the manufacturing methods according to [12] to [14] above, the cutting tool is held by the fixture so that the angle θ2 between the center line of the tool and a perpendicular line passing through the axis of the pipe to be cut is 7° or more and 11° or less.

本発明に係る油井管継手部の切削用工具は、油井管継手部のピンの切削において、ノーズ部に構成されるシール部やショルダー部などを平滑に切削し、所定の表面粗さに仕上げることができ、しかも、ビビリ振動の発生を抑えつつ高速で切削することができる。また、工具寿命に優れるため、製造コストも低減できる。
また、本発明に係る油井管継手部の切削方法および油井管の製造方法によれば、上記のような切削用工具を用いて、シール部やショルダー部などを適切かつ効率的に切削することができ、高品質の継手を有する油井管を高い生産性で製造することができる。
The cutting tool for oil well pipe joints according to the present invention can smoothly cut the seal and shoulder parts of the nose part and finish them to a predetermined surface roughness when cutting pins for oil well pipe joints, and can perform cutting at high speed while suppressing the occurrence of chatter vibration. In addition, the tool has a long tool life, which reduces manufacturing costs.
Furthermore, according to the method for cutting an oil country pipe joint and the method for manufacturing an oil country pipe of the present invention, it is possible to appropriately and efficiently cut a seal portion, a shoulder portion, and the like using the cutting tool as described above, and it is possible to manufacture an oil country pipe having a high-quality joint with high productivity.

本発明の切削用工具の一実施形態における切削刃を拡大して示す正面図FIG. 2 is an enlarged front view of a cutting blade in one embodiment of the cutting tool of the present invention. 図1の実施形態の切削用工具により被削管のノーズ部外周面を切削している時の切削刃を示す正面図FIG. 2 is a front view showing a cutting blade when the outer circumferential surface of the nose portion of a pipe to be cut is cut by the cutting tool of the embodiment of FIG. 図1の実施形態の切削用工具により被削管のノーズ部外周面とショルダー部との境界である管端円弧部を切削している時の切削刃を示す正面図FIG. 2 is a front view showing a cutting blade when cutting a pipe end arc portion, which is a boundary between an outer peripheral surface of a nose portion and a shoulder portion of a pipe to be cut, by the cutting tool of the embodiment of FIG. 1. 図1の実施形態の切削用工具によりショルダー部を切削している時の切削刃を示す正面図FIG. 2 is a front view showing a cutting blade when cutting a shoulder portion with the cutting tool of the embodiment of FIG. 1; 図1の実施形態の切削用工具(チップ)全体を示す正面図FIG. 2 is a front view showing the entire cutting tool (tip) according to the embodiment of FIG. 1; 本発明の切削用工具と従来の切削用工具による切削面の管軸方向断面のプロフィールを示す説明図FIG. 1 is an explanatory diagram showing the profiles of cut surfaces in the axial direction of a pipe made by a cutting tool of the present invention and a conventional cutting tool; 図3に示す実施形態の切削用工具を取付具に取り付けた状態を示す側面図FIG. 4 is a side view showing a state in which the cutting tool of the embodiment shown in FIG. 3 is attached to a fixture. 図3に示す実施形態の切削用工具を取付具に取り付けた状態を示す斜視図FIG. 4 is a perspective view showing a state in which the cutting tool of the embodiment shown in FIG. 3 is attached to a fixture; 取付具に取り付けられた図5および図6に示す切削用工具の切削時における送り方向を示す説明図FIG. 7 is an explanatory diagram showing a feed direction during cutting of the cutting tool shown in FIGS. 5 and 6 attached to a fixture. 本発明の切削用工具の取付具に対する取付角度θを模式的に示す説明図FIG. 2 is an explanatory diagram showing a schematic view of the mounting angle θ 2 of the cutting tool of the present invention relative to the mounting fixture. 本発明の切削用工具の角度θと切削面の表面粗さRaとの関係を示すグラフA graph showing the relationship between the angle θ1 of the cutting tool of the present invention and the surface roughness Ra of the cutting surface 本発明の切削用工具の取付角度θと切削面の表面粗さRaとの関係を示すグラフA graph showing the relationship between the mounting angle θ2 of the cutting tool of the present invention and the surface roughness Ra of the cutting surface. 本発明の切削用工具と従来の切削用工具による切削面の表面粗さRaを工具送り速度別に示すグラフGraph showing surface roughness Ra of the cutting surface by the cutting tool of the present invention and a conventional cutting tool at different tool feed speeds 油井管継手部の縦断面図Vertical cross section of oil well pipe joint 図4(ア)に切削面の管軸方向断面のプロフィールを示した従来の切削用工具による切削状況を示す説明図FIG. 4(A) is an explanatory diagram showing the cutting state by a conventional cutting tool, showing the profile of the cut surface in the pipe axial cross section.

図12は、油井管継手部の縦断面図であり、1はピン、2はボックスである。ピン1において、3は雄ねじ部、4はこの雄ねじ部3の先端部分に設けられ、外周面8の一部にシール部が形成されるノーズ部(平坦な先端管部)、5はこのノーズ部4の先端面に形成されるショルダー部、6はノーズ部4の外周部先端(ノーズ部4の外周面8とショルダー部5の境界部)に形成される管端円弧部、7は雄ねじ部3の始端部となるチャンファー面(ネジ切始めチャンファー面)である。
本発明の切削用工具は、少なくともノーズ部4の外周面8の切削に適用されるものであり、好ましくは、ノーズ部4の外周面8からショルダー部5までの連続した切削(ノーズ部4の外周面8→管端円弧部6→ショルダー部5の連続切削)に適用されるものである。
12 is a vertical cross-sectional view of an oil well pipe joint, with a pin 1 and a box 2. In the pin 1, 3 is a male thread, 4 is a nose portion (flat tip pipe portion) provided at the tip portion of the male thread 3 and having a seal portion formed on part of the outer circumferential surface 8, 5 is a shoulder portion formed on the tip surface of the nose portion 4, 6 is a pipe end arc portion formed at the outer circumferential tip of the nose portion 4 (boundary portion between the outer circumferential surface 8 of the nose portion 4 and the shoulder portion 5), and 7 is a chamfer surface (thread cutting start chamfer surface) which is the starting end of the male thread 3.
The cutting tool of the present invention is applicable to cutting at least the outer peripheral surface 8 of the nose portion 4, and is preferably applicable to continuous cutting from the outer peripheral surface 8 of the nose portion 4 to the shoulder portion 5 (continuous cutting of the outer peripheral surface 8 of the nose portion 4 → pipe end arc portion 6 → shoulder portion 5).

図1は、本発明の切削用工具の一実施形態における切削刃を拡大して示す正面図である。また、図2(図2-1~図2-3)は、図1の切削用工具により被削管のノーズ部4の外周面8→管端円弧部6→ショルダー部5を順次連続して切削する際の状況を示しており、図2-1はノーズ部4の外周面8を切削している時の切削刃を示す正面図、図2-2は管端円弧部6を切削している時の切削刃を示す正面図、図2-3はショルダー部5を切削している時の切削刃を示す正面図である。 Figure 1 is an enlarged front view of a cutting blade in one embodiment of the cutting tool of the present invention. Also, Figure 2 (Figures 2-1 to 2-3) shows the situation when the cutting tool of Figure 1 is used to cut the outer circumferential surface 8 of the nose portion 4 of the pipe to be cut, the pipe end arc portion 6, and the shoulder portion 5 in succession, with Figure 2-1 being a front view of the cutting blade when cutting the outer circumferential surface 8 of the nose portion 4, Figure 2-2 being a front view of the cutting blade when cutting the pipe end arc portion 6, and Figure 2-3 being a front view of the cutting blade when cutting the shoulder portion 5.

図1および図2に示すように、本発明の切削用工具は、切削刃(切刃)が、先端が円弧である尖頭状の平面形状を有しており、このような平面形状の切削刃は、工具先端を構成する第1の円弧部C1を有するとともに、この円弧部C1の一端側において、円弧部C1に連なる直線部S(図中ではSa)と、この直線部Sに連なる第2の円弧部C2(図中ではC2a)を有している。
また、この実施形態では、さらに、切削刃が、円弧部C1の他端側において、円弧部C1に連なる直線部S(図中ではSb)と、この直線部Sに連なる第2の円弧部C2(図中ではC2b)を有し、円弧部C1の一端側の直線部Sa・円弧部C2aと他端側の直線部Sb・円弧部C2bは、円弧部C1を中心として対称形(対称形状)に構成されている。
As shown in Figures 1 and 2, the cutting tool of the present invention has a cutting blade (cutting edge) having a pointed planar shape with an arc-shaped tip, and such a planar cutting blade has a first arc portion C1 that constitutes the tip of the tool, and at one end side of this arc portion C1, has a straight portion S (Sa in the figures) continuing to the arc portion C1, and a second arc portion C2 (C2a in the figures) continuing to the straight portion S.
Furthermore, in this embodiment, the cutting blade has, at the other end side of the arc portion C1, a straight line portion S (Sb in the figure) connected to the arc portion C1, and a second arc portion C2 (C2b in the figure) connected to this straight line portion S, and the straight line portion Sa and arc portion C2a on one end side of the arc portion C1 and the straight line portion Sb and arc portion C2b on the other end side are configured symmetrically (with a symmetrical shape) around the arc portion C1.

本発明の切削用工具により、図2-1に示すように被削管のノーズ部4の外周面8を切削する場合、円弧部C2aを主体(すなわち円弧部C2aが切削作用の主体となる)とする「円弧部C2a+直線部Sa+円弧部C1の一端側部分」による切削がなされる。したがって、被削管のノーズ部4の外周面8を切削する限りにおいては、切削用工具は、円弧部C1と、その一端側の直線部Sa・円弧部C2aを有していればよい。
一方、本発明の切削用工具により被削管のノーズ部4の外周面8→管端円弧部6→ショルダー部5を順次連続して切削する場合、まず、被削管のノーズ部4の外周面8については、上述のように切削がなされ(図2-1)、次いで、管端円弧部6については、図2-2に示すように円弧部C1による切削がなされる。さらに、ショルダー部5については、図2-3に示すように円弧部C1の他端側部分を主体(すなわち円弧部C1の他端側部分が切削作用の主体となる)とする「円弧部C1の他端側部分+直線部Sb」による切削がなされる。したがって、被削管のノーズ部4の外周面8→管端円弧部6→ショルダー部5を順次連続して切削するには、切削用工具は、円弧部C1と、その一端側の直線部Sa・円弧部C2aと、他端側の直線部Sbを有していればよい。すなわち、他端側の円弧部C2bは有していなくてもよい。
When cutting the outer peripheral surface 8 of the nose portion 4 of the pipe to be cut with the cutting tool of the present invention as shown in Figure 2-1, cutting is performed by "arc portion C2a + straight portion Sa + one end portion of arc portion C1" with arc portion C2a as the main component (i.e., arc portion C2a is the main component of the cutting action). Therefore, as long as cutting the outer peripheral surface 8 of the nose portion 4 of the pipe to be cut, it is sufficient for the cutting tool to have arc portion C1 and the straight portion Sa and arc portion C2a on one end side of the arc portion C1.
On the other hand, when the cutting tool of the present invention cuts the outer peripheral surface 8 of the nose portion 4 of the pipe to be cut, the pipe end arc portion 6, and the shoulder portion 5 in sequence, the outer peripheral surface 8 of the nose portion 4 of the pipe to be cut is first cut as described above (FIG. 2-1), and then the pipe end arc portion 6 is cut by the arc portion C1 as shown in FIG. 2-2. Furthermore, the shoulder portion 5 is cut by the "other end portion of the arc portion C1 + straight portion Sb" with the other end portion of the arc portion C1 as the main part (i.e., the other end portion of the arc portion C1 is the main part of the cutting action) as shown in FIG. 2-3. Therefore, in order to cut the outer peripheral surface 8 of the nose portion 4 of the pipe to be cut, the pipe end arc portion 6, and the shoulder portion 5 in sequence, the cutting tool only needs to have the arc portion C1, the straight portion Sa and the arc portion C2a on one end side, and the straight portion Sb on the other end side. In other words, the arc portion C2b on the other end side may not be present.

ここで、本実施形態の切削用工具が、円弧部C1の一端側の直線部Sa・円弧部C2aと他端側の直線部Sb・円弧部C2bを有し、それらが円弧部C1を中心として対称形(対称形状)に構成されているのは、円弧部C1の一端側の直線部Sa・円弧部C2aの切刃寿命が尽きた場合に、工具を反転させて他端側の直線部Sb・円弧部C2bを使用できるようにするためである。
また、図3は、本実施形態の切削用工具(チップ)全体を示す正面図であり、菱形チップの両端に円弧部C1を設けるとともに、各円弧部C1の両側に直線部Sa・円弧部C2aと直線部Sb・円弧部C2bを対称形(対称形状)に設けている。これにより計4箇所の切刃で切削を行うことができ、高い工具寿命を確保することができる。
Here, the cutting tool of this embodiment has a straight line portion Sa and an arc portion C2a at one end of the arc portion C1 and a straight line portion Sb and an arc portion C2b at the other end, and they are configured symmetrically (with a symmetrical shape) around the arc portion C1 so that when the cutting blade life of the straight line portion Sa and the arc portion C2a at one end of the arc portion C1 has expired, the tool can be flipped over to use the straight line portion Sb and the arc portion C2b at the other end.
3 is a front view showing the cutting tool (tip) of this embodiment, in which arcuate portions C1 are provided at both ends of the diamond-shaped tip, and linear portions Sa and C2a and linear portions Sb and C2b are provided symmetrically (symmetrically) on both sides of each arcuate portion C1. This allows cutting to be performed with a total of four cutting edges, ensuring a long tool life.

さきに図4(ア),(イ)に基づいて説明した通り、1回転当りの工具送り量が同じである場合、切削刃(切刃)が円弧部Cのみで構成された従来の切削用工具による切削面は、図4(ア)に示すように凹凸の高さがh1となるのに対して、本発明の切削用工具による切削面は、図4(イ)に示すように凹凸の高さがh2と非常に小さくなり、平滑に切削することを可能となる。
本発明の切削用工具において、円弧部C1,C2や直線部Sの構成に特別な制限はないが、工具寿命の確保、切削面の平滑性や高速切削性・生産性の確保、ビビリ振動の抑制などの観点から、以下のような構成とすることが好ましい。
As explained above based on Figures 4(A) and (B), when the tool feed amount per rotation is the same, the cutting surface cut by a conventional cutting tool whose cutting blade (cutting edge) is composed only of arc portion C has a height of unevenness h1 as shown in Figure 4(A), whereas the cutting surface cut by the cutting tool of the present invention has a height of unevenness h2, which is very small as shown in Figure 4(B), making it possible to perform smooth cutting.
In the cutting tool of the present invention, there are no particular limitations on the configuration of the arc portions C1, C2 and the straight portion S. However, from the viewpoints of ensuring the tool life, ensuring the smoothness of the cut surface, high-speed cutting performance and productivity, and suppressing chatter vibration, it is preferable to have the following configuration.

まず、直線部Sの長さL(円弧部C1,C2間での直線部Sの長さ)は0.8mm以上1.2mm以下とすることが好ましい。
直線部Sの長さLが0.8mm未満では、本発明の特徴である円弧部C1,C2と直線部Sを組み合わせることによる効果が得られにくくなる。また、直線部Sの長さLが小さすぎると切削熱が分散せず、蓄積し続けるため、その熱の影響で工具母材が軟化し、工具寿命が低下しやすいが、直線部Sの長さLを0.8mm以上とすることにより、切削熱を分散させることができるので、工具寿命を向上させることができる。一般に仕上げ切削における工具送り速度は0.1mm/回転程度であるが、本発明の切削用工具の場合、ビビリ振動の発生が抑えられるため高速切削が可能であり、工具送り速度を0.3mm/回転以上とすることを目標としており、これにより切削時間の短縮化が可能となる。ここで、例えば、本発明の切削用工具を用いて工具送り速度0.35mm/回転で切削を行う場合を考えると、その切削の際には、ノーズ部4の外周面8については円弧部C2主体の切削(補助的に直線部Sと円弧部C1の端部も切削に関与する)がなされ、ショルダー部5については円弧部C1主体の切削(補助的に直線部Sも切削に関与する)がなされることになるが、仮に円弧部C1,C2の切刃の寿命が尽きたとしても、それらの奥に存在する直線部Sの切刃が健在であるため、工具自体の寿命を向上させることができる。本発明の切削用工具において直線部Sの長さL=0.9mmとした場合、理論上の工具寿命を従来の切削用工具(汎用チップ)の2.57倍(=0.9mm÷0.35mm/回転)に高めることができる。また、外径139.7mmのL80油井管を工具送り速度0.35mm/回転で切削し、寿命調査を実施したところ、従来の切削用工具(汎用チップ):45端、本発明の切削用工具:142端となり、工具寿命が3.16倍となる結果が得られた。このため直線部Sの長さLは0.8mm以上が好ましい。
First, it is preferable that the length L of the straight line portion S (the length of the straight line portion S between the arcuate portions C1 and C2) be 0.8 mm or more and 1.2 mm or less.
If the length L of the straight portion S is less than 0.8 mm, it is difficult to obtain the effect of combining the arc portions C1, C2 and the straight portion S, which is a feature of the present invention. Also, if the length L of the straight portion S is too small, the cutting heat is not dispersed and continues to accumulate, and the tool base material is softened by the influence of the heat, and the tool life is likely to be reduced. However, by making the length L of the straight portion S 0.8 mm or more, the cutting heat can be dispersed, and the tool life can be improved. Generally, the tool feed speed in finish cutting is about 0.1 mm/revolution, but in the case of the cutting tool of the present invention, chatter vibration is suppressed, so high-speed cutting is possible, and the tool feed speed is targeted to be 0.3 mm/revolution or more, which makes it possible to shorten the cutting time. Here, for example, when cutting is performed at a tool feed rate of 0.35 mm/revolution using the cutting tool of the present invention, the outer peripheral surface 8 of the nose portion 4 is cut mainly by the arc portion C2 (the straight portion S and the end of the arc portion C1 also participate in the cutting as an auxiliary), and the shoulder portion 5 is cut mainly by the arc portion C1 (the straight portion S also participates in the cutting as an auxiliary), but even if the cutting blades of the arc portions C1 and C2 reach the end of their life, the cutting blade of the straight portion S located behind them is still in good condition, so the life of the tool itself can be improved. If the length L of the straight portion S in the cutting tool of the present invention is 0.9 mm, the theoretical tool life can be increased to 2.57 times (=0.9 mm÷0.35 mm/revolution) that of a conventional cutting tool (general-purpose tip). In addition, when an L80 oil well pipe having an outer diameter of 139.7 mm was cut at a tool feed rate of 0.35 mm/revolution and a life survey was carried out, the conventional cutting tool (general-purpose tip): end 45, the cutting tool of the present invention: end 142, and the tool life was 3.16 times longer. For this reason, the length L of the straight portion S is preferably 0.8 mm or more.

一方、直線部Sの長さLが大きすぎると、被削管との接触面積が大きくなるため切削抵抗が大きくなり、その影響でビビリ振動が発生しやすくなる。ビビリ振動が発生すると工具寿命が著しく低下する。このため工具送り速度を大きくすることができず、生産性が低下する。なお、切込量を少なくすることで切削抵抗を軽減することができるが、複数回の切削が必要となり、切削時間が長くなることにより生産性が低下することになる。このため直線部Sの長さLは1.2mm以下が好ましい。 On the other hand, if the length L of the straight section S is too large, the contact area with the pipe to be cut will be large, increasing the cutting resistance, which will make chatter vibrations more likely to occur. If chatter vibrations occur, the tool life will be significantly reduced. This makes it impossible to increase the tool feed speed, resulting in reduced productivity. Although the cutting resistance can be reduced by reducing the amount of cut, multiple cuts will be required, which will increase the cutting time and reduce productivity. For this reason, it is preferable that the length L of the straight section S be 1.2 mm or less.

円弧部C1は、その円弧の曲率半径R1を0.4mm以上1.5mm以下とすることが好ましい。
円弧部C1の曲率半径R1が小さすぎると、チッピングが発生しやすくなる。また、曲率半径R1がある程度大きい方が切削熱が分散されやすく、工具母材が軟化しにくいため、工具寿命の向上には有利である。一方、曲率半径R1が大きすぎると、ノーズ部4の外周面8とチャンファー面7間に存在するR部寸法が大きくなりすぎ、油井管継手を締め込んだ時に干渉する可能性がある。このため円弧部C1の曲率半径R1は0.4mm以上1.5mm以下が好ましい。
The arcuate portion C1 preferably has a radius of curvature R1 of 0.4 mm or more and 1.5 mm or less.
If the radius of curvature R1 of the arc portion C1 is too small, chipping is likely to occur. Also, if the radius of curvature R1 is relatively large, cutting heat is easily dispersed and the tool base material is less likely to soften, which is advantageous for improving the tool life. On the other hand, if the radius of curvature R1 is too large, the R portion dimension between the outer circumferential surface 8 of the nose portion 4 and the chamfer surface 7 becomes too large, which may cause interference when the oil well pipe joint is tightened. For this reason, the radius of curvature R1 of the arc portion C1 is preferably 0.4 mm or more and 1.5 mm or less.

円弧部C2は、その円弧の曲率半径R2を0.4mm以上1.2mm以下とすることが好ましい。
円弧部C1の曲率半径R1と同様、円弧部C2の曲率半径R2が小さすぎるとチッピングが発生しやすくなる。また、曲率半径R2がある程度大きい方が切削熱が分散されやすく、工具母材が軟化しにくいため、工具寿命の向上には有利である。一方、曲率半径R2が大きすぎると切削抵抗が大きくなり、切削を行っている刃先の反対側では切削用工具を押し上げる力が作用し、切削用工具周辺の部品への影響が懸念される。例えば、切削用工具をクランプする部品に大きい力がかかる影響で部品が摩耗し、クランプ力が弱くなる、若しくはその部品自体を破損させてしまう可能性がある。また、切削抵抗が大きくなると、(i)ビビリ振動が発生しやすくなるため、切削面の表面粗さが悪化しやすい、(ii)切削熱が異常発生し、円弧部C2が昇温により軟化して工具寿命が低下しやすい、という問題もある。このため円弧部C2の曲率半径R2は0.4mm以上1.2mm以下が好ましい。
The arcuate portion C2 preferably has a radius of curvature R2 of 0.4 mm or more and 1.2 mm or less.
Similarly to the radius of curvature R1 of the arc portion C1, if the radius of curvature R2 of the arc portion C2 is too small, chipping is likely to occur. In addition, if the radius of curvature R2 is relatively large, cutting heat is easily dispersed and the tool base material is less likely to soften, which is advantageous for improving the tool life. On the other hand, if the radius of curvature R2 is too large, the cutting resistance increases, and a force pushing up the cutting tool acts on the opposite side of the cutting edge performing cutting, which is a concern for the impact on the parts around the cutting tool. For example, the parts that clamp the cutting tool may wear out due to the effect of a large force being applied to them, the clamping force may be weakened, or the parts themselves may be damaged. In addition, if the cutting resistance increases, there are problems such as (i) chatter vibration is likely to occur, which makes the surface roughness of the cutting surface easily deteriorate, and (ii) cutting heat is abnormally generated, which makes the arc portion C2 soften due to the temperature rise, which makes the tool life easily shorten. For this reason, the radius of curvature R2 of the arc portion C2 is preferably 0.4 mm or more and 1.2 mm or less.

被削管の管軸に対して平行な直線(図1中の直線x)と被削管ノーズ部外周面(外周面8)の切削時における直線部Sとのなす角度θは1.0°以上2.0°以下が好ましい。
角度θが小さすぎると、取付具に切削用工具を取り付けた時のガタの影響で、直線部Sや円弧部C2が切削面に食い込んでしまう恐れがあり、そのような食い込みが生じると切粉の排出性が悪化し、切削抵抗(背分力)が増加する。その影響で、ビビリ振動が発生して表面粗さが大きくなる。本来、角度θが小さいほど表面粗さの平滑化効果は大きくなるが、上記のようなビビリ振動が発生すると、表面粗さの平滑化効果が打ち消されてしまう。一方、角度θが大きすぎると、切削面の凹凸部の高さが高くなるため表面粗さが大きくなり、特に、高い工具送り速度で切削を行った時に、良好な表面粗さが得られにくくなる。図9は、角度θを0°~3.0°の範囲で変えた本発明の切削用工具(直線部Sの長さL:1.0mm、円弧部C1の曲率半径R1:1.2mm、円弧部C2の曲率半径R2:0.4mm、取付角度θ:9°)を用い、工具送り速度0.1mm/回転で切削試験を行い、切削面の表面粗さRaを調べた結果を示している。本発明では切削面の表面粗さRaの一応の目標を1.6μm以下とするが、図9によれば、角度θが1.0~2.0°の範囲において切削面の表面粗さは最も小さく、高い平滑性が得られている。また、そのなかでも、1.5°前後(1.5°±0.25°程度)が最も平滑になるので好ましい。
The angle θ1 between a straight line (straight line x in FIG. 1) parallel to the axis of the pipe to be cut and a straight line portion S during cutting of the outer circumferential surface (outer circumferential surface 8) of the nose portion of the pipe to be cut is preferably 1.0° or more and 2.0° or less.
If the angle θ1 is too small, the straight line portion S and the arc portion C2 may bite into the cutting surface due to the backlash caused when the cutting tool is attached to the fixture, and if such bite occurs, the discharge of chips becomes poor and the cutting resistance (thrust force) increases. As a result, chatter vibration occurs and the surface roughness becomes large. In principle, the smaller the angle θ1 is, the greater the effect of smoothing the surface roughness, but if chatter vibration occurs as described above, the effect of smoothing the surface roughness is canceled. On the other hand, if the angle θ1 is too large, the height of the uneven parts of the cutting surface becomes high, so the surface roughness becomes large, and it becomes difficult to obtain a good surface roughness, especially when cutting is performed at a high tool feed rate. Fig. 9 shows the results of a cutting test performed at a tool feed rate of 0.1 mm / revolution using a cutting tool of the present invention (length L of straight portion S: 1.0 mm, radius of curvature R1 of arc portion C1: 1.2 mm, radius of curvature R2 of arc portion C2: 0.4 mm, mounting angle θ 2 : 9°) with angles θ 1 changed in the range of 0° to 3.0°, and investigating the surface roughness Ra of the cut surface. In the present invention, the tentative target for the surface roughness Ra of the cut surface is set to 1.6 μm or less, but Fig. 9 shows that the surface roughness of the cut surface is smallest and high smoothness is obtained when the angle θ 1 is in the range of 1.0 to 2.0°. Among them, an angle of about 1.5° (about 1.5°±0.25°) is preferable because it is the smoothest.

また、円弧部C1の円弧の中心角α(刃先角度)は、ノーズ部4の外周面8→管端円弧部6→ショルダー部5を順次連続して切削する際に、各部位の形状を正確に切削する上で重要であり、その中心角α(刃先角度)は111°±1.25°とすることが好ましい。
本発明の切削用工具の材質については、従来の汎用チップと同様に硬度が必要となり、超硬合金やダイヤモンドなどが適用できる。
In addition, the central angle α (tip angle) of the arc of the arc portion C1 is important in accurately cutting the shape of each portion when cutting the outer peripheral surface 8 of the nose portion 4 → the pipe end arc portion 6 → the shoulder portion 5 in succession, and it is preferable that the central angle α (tip angle) be 111°±1.25°.
The material of the cutting tool of the present invention must have the same hardness as the conventional general-purpose tip, and may be made of cemented carbide, diamond, or the like.

次に、本発明の切削用工具を用いた被削管の切削方法および油井管の製造方法について、図2-1~図2-3に基づいて説明する。図2-1~図2-3は、図1の実施形態の切削用工具を用いて、一般的な特殊ねじにおけるノーズ部4の外周面8→管端円弧部6→ショルダー部5を順次連続して切削する場合の被削管と切削用工具の位置関係を示している。
まず、チャンファー面7について、円弧部C1を主体(すなわち円弧部C1が切削作用の主体となる)とする「円弧部C1+直線部Sa」による切削がなされ、引き続き、その先のノーズ部4の外周面8について、図2-1に示すように円弧部C2aを主体(すなわち円弧部C2aが切削作用の主体となる)とする「円弧部C2a+直線部Sa+円弧部C1の一端側部分」による切削がなされる。引き続き、管端円弧部6について、図2-2に示すように円弧部C1による切削がなされ、さらに、ショルダー部5について、図2-3に示すように円弧部C1の他端側部分を主体(すなわち円弧部C1の他端側部分が切削作用の主体となる)とする「円弧部C1の他端側部分+直線部Sb」による切削がなされる。この際、直線部Sbの角度θが1.0°以上であることにより、直線部Sbがショルダー部5の切削面に食い込むことなく切削がなされる。
Next, a method for cutting a pipe to be cut and a method for manufacturing an oil country tubular good using the cutting tool of the present invention will be described with reference to Figures 2-1 to 2-3. Figures 2-1 to 2-3 show the positional relationship between the pipe to be cut and the cutting tool when the cutting tool of the embodiment of Figure 1 is used to cut the outer circumferential surface 8 of the nose portion 4, the pipe end arc portion 6, and the shoulder portion 5 in a general special thread in succession.
First, the chamfer surface 7 is cut by "arc portion C1 + straight portion Sa" mainly consisting of the arc portion C1 (i.e., the arc portion C1 is the main cutting action), and then, the outer peripheral surface 8 of the nose portion 4 is cut by "arc portion C2a + straight portion Sa + one end portion of the arc portion C1" mainly consisting of the arc portion C2a (i.e., the arc portion C2a is the main cutting action) as shown in FIG. 2-1. Next, the pipe end arc portion 6 is cut by the arc portion C1 as shown in FIG. 2-2, and further, the shoulder portion 5 is cut by "the other end portion of the arc portion C1 + straight portion Sb" mainly consisting of the other end portion of the arc portion C1 (i.e., the other end portion of the arc portion C1 is the main cutting action) as shown in FIG. 2-3. At this time, since the angle θ 1 of the straight portion Sb is 1.0° or more, the straight portion Sb is cut without biting into the cutting surface of the shoulder portion 5.

このように本発明の切削用工具を用いて、ノーズ部4の外周面8→管端円弧部6→ショルダー部5を順次連続して切削することにより、シール部が形成されるノーズ部4の外周面8だけでなく、ショルダー部5についても表面粗さを向上させることができる。このため、1つの切削用工具を用いた連続切削により、ピン先端全体を表面粗さを確保しながら高速、高能率で切削することが可能となる。また、さきに述べたように、本発明の切削用工具は高い工具寿命を有する。このため高品質の油井管継手部(油井管)を高い生産性で低コストで製造することが可能となる。 In this way, by using the cutting tool of the present invention to cut the outer peripheral surface 8 of the nose portion 4, the pipe end arc portion 6, and the shoulder portion 5 in succession, the surface roughness can be improved not only of the outer peripheral surface 8 of the nose portion 4 where the seal portion is formed, but also of the shoulder portion 5. Therefore, by continuous cutting using one cutting tool, it is possible to cut the entire pin tip at high speed and high efficiency while ensuring surface roughness. In addition, as mentioned above, the cutting tool of the present invention has a long tool life. This makes it possible to manufacture high-quality oil well pipe joints (oil well pipes) with high productivity and low cost.

次に、本発明の切削用工具を使用するに当たり、好ましい使用条件について説明する。
図5および図6は、図3に示す実施形態の本発明の切削用工具を切削装置(旋盤)の取付具に保持させた状態を示すものであり、図5は側面図、図6は斜視図である。また、図7は、取付具に取り付けられた切削用工具の切削時における送り方向を示す説明図である。図において、Aが切削用工具、Bが取付具、Pが被削管である。
Next, preferred conditions for using the cutting tool of the present invention will be described.
Fig. 5 and Fig. 6 show the cutting tool of the embodiment shown in Fig. 3 held by a fixture of a cutting device (lathe), Fig. 5 is a side view and Fig. 6 is a perspective view. Fig. 7 is an explanatory diagram showing the feed direction of the cutting tool attached to the fixture during cutting. In the figure, A is the cutting tool, B is the fixture, and P is the pipe to be cut.

ここで、本発明の切削用工具Aの切削装置(旋盤)に対する取付形態としては、その工具中心線fまたはこれに平行な直線f’が被削管Pの管軸を通る垂線gに対してなす角度θ(取付角度)が7°以上11°以下となるように取付具Bに保持させることが好ましい。図8は、この切削用工具Aの取付具Bに対する取付角度θを模式的に示す説明図である。この取付角度θが小さすぎると、チップ逃げ面と被削管間の隙間が小さくなり、チップ自体に異常な温度上昇・摩耗が発生しやすくなるため、切削面の平滑性(表面粗さ)が悪化しやすくなり、極端な場合には工具本体が被削管と接触してしまうような恐れもある。一方、取付角度θが大きすぎると切削刃の切れ味が低下するようになる。図10は、本発明の切削用工具(直線部Sの長さL:1.0mm、円弧部C1の曲率半径R1:1.2mm、円弧部C2の曲率半径R2:0.4mm、角度θ:1.5°)の取付角度θを0°~12°の範囲で変えて送り速度0.1mm/回転で切削試験を行い、切削面の表面粗さを調べた結果を示している。これによれば、取付角度θを7~11°とすることにより最も良好な表面粗さが得られることが分かる。また、そのなかでも9°前後(9°±1°程度)が最適な角度であるといえる。 Here, as a mounting form of the cutting tool A of the present invention to the cutting device (lathe), it is preferable to hold it on the mounting fixture B so that the angle θ 2 (mounting angle) that the tool center line f or a straight line f' parallel to it makes with the perpendicular line g passing through the pipe axis of the workpiece P is 7° or more and 11° or less. FIG. 8 is an explanatory diagram showing the mounting angle θ 2 of the cutting tool A to the mounting fixture B. If this mounting angle θ 2 is too small, the gap between the tip flank face and the workpiece pipe becomes small, and the tip itself is likely to experience abnormal temperature rise and wear, so the smoothness (surface roughness) of the cutting surface is likely to deteriorate, and in extreme cases, there is a risk that the tool body may come into contact with the workpiece pipe. On the other hand, if the mounting angle θ 2 is too large, the sharpness of the cutting blade decreases. 10 shows the results of a cutting test conducted at a feed rate of 0.1 mm/revolution with the mounting angle θ2 of a cutting tool of the present invention (length L of straight portion S: 1.0 mm, radius of curvature R1 of arc portion C1: 1.2 mm, radius of curvature R2 of arc portion C2: 0.4 mm, angle θ1 : 1.5°) changed from 0° to 12°, and the surface roughness of the cut surface was examined. This shows that the best surface roughness can be obtained by setting the mounting angle θ2 to 7 to 11°. Among these angles, an angle of around 9° (approximately 9°±1°) is the optimal angle.

本発明の切削用工具を用いた切削では、ビビリ振動の発生を抑えつつ所定の表面粗さに高速で切削することができ、従来の切削用工具を用いた場合に較べて3.5倍程度の工具送り速度で切削を行うことができる。図11は、本発明の切削用工具(直線部Sの長さL:1.0mm、円弧部C1の曲率半径R1:1.2mm、円弧部C2の曲率半径R2:0.4mm、角度θ:1.5°、取付角度θ:9°)と従来の切削用工具(図13)を用いて切削する場合の工具送り速度と切削面の表面粗さRaとの関係を調べた結果を示している。これによれば、従来の切削用工具を用いた切削では、送り速度0.10mm/回転で切削面の表面粗さRaが約1.3μmであり、送り速度0.15mm/回転では切削面の表面粗さRaが約1.8μmであり、目標である表面粗さRa1.6μm以下を満足しなくなる。これに対して、本発明の切削用工具を用いた切削では、送り速度0.35mm/回転でも切削面の表面粗さRaは0.8~0.9μm程度であり、高速切削であっても格段に平滑な切削が可能であることが分る。
外径244.5mmのL80油井管継手部のピンの切削時間を従来の切削用工具(汎用チップ)と比較した場合、以下のような結果となり、本発明の切削用工具を用いることにより切削時間を約1/2に短縮することができた。
・従来の切削用工具 送り速度0.10mm/回転、切削時間185秒
・本発明の切削用工具 送り速度0.35mm/回転、切削時間92秒
本発明による切削時間の短縮効果 93秒(50.3%生産性向上)
In cutting using the cutting tool of the present invention, cutting can be performed at high speed to a predetermined surface roughness while suppressing the occurrence of chatter vibration, and cutting can be performed at a tool feed speed about 3.5 times faster than when using a conventional cutting tool. Figure 11 shows the results of investigating the relationship between the tool feed speed and the surface roughness Ra of the cut surface when cutting using the cutting tool of the present invention (length L of straight portion S: 1.0 mm, radius of curvature R1 of arc portion C1: 1.2 mm, radius of curvature R2 of arc portion C2: 0.4 mm, angle θ1 : 1.5°, mounting angle θ2 : 9°) and a conventional cutting tool (Figure 13). According to this, in cutting using the conventional cutting tool, the surface roughness Ra of the cut surface is about 1.3 μm at a feed speed of 0.10 mm/revolution, and about 1.8 μm at a feed speed of 0.15 mm/revolution, which does not satisfy the target surface roughness Ra of 1.6 μm or less. In contrast, when cutting using the cutting tool of the present invention, the surface roughness Ra of the cut surface is about 0.8 to 0.9 μm even at a feed rate of 0.35 mm/revolution, which shows that significantly smoother cutting is possible even at high speed cutting.
When the cutting time for a pin of an L80 oil well pipe joint having an outer diameter of 244.5 mm was compared with that of a conventional cutting tool (general-purpose tip), the following results were obtained, and by using the cutting tool of the present invention, the cutting time was reduced to about half.
Conventional cutting tool: Feed rate 0.10 mm/revolution, cutting time 185 seconds Cutting tool of the present invention: Feed rate 0.35 mm/revolution, cutting time 92 seconds Cutting time reduction effect of the present invention: 93 seconds (50.3% productivity improvement)

なお、本発明の切削用工具でノーズ部4の外周面8の切削を行う場合、被削管1回転当たりの工具送り量(管軸方向での送り量)を、直線部Sの長さLとcosθの積[L×cosθ]以下とすることが好ましい。被削管1回転当たりの工具送り量を積[L×cosθ]以下にしないと、直線部Sから切削代がはみ出し、正常な切削ができなくなる。例えば、直線部の長さLが1.0mm、角度θが1.5°の場合には、送り速度は1.0mm/回転以下とすることが好ましい。
また、本発明の切削用工具を用いた切削では、ショルダー部5側から切削を開始し、ショルダー部5→管端円弧部6→ノーズ部4の外周面8を順次連続して切削するようにしてもよい。
When cutting the outer peripheral surface 8 of the nose portion 4 with the cutting tool of the present invention, it is preferable to set the tool feed rate (feed rate in the axial direction) per revolution of the pipe to be cut to less than the product [L× cosθ1 ] of the length L of the straight portion S and cosθ1 . If the tool feed rate per revolution of the pipe to be cut is not less than the product [L× cosθ1 ], the cutting allowance will extend beyond the straight portion S, making normal cutting impossible. For example, when the length L of the straight portion is 1.0 mm and the angle θ1 is 1.5°, it is preferable to set the feed rate to 1.0 mm/revolution or less.
In addition, when cutting using the cutting tool of the present invention, cutting may be started from the shoulder portion 5 side, and cutting may be performed successively from the shoulder portion 5 to the pipe end arc portion 6 to the outer peripheral surface 8 of the nose portion 4 in that order.

1 ピン
2 ボックス
3 雄ねじ部
4 ノーズ部
5 ショルダー部
6 管端円弧部
7 チャンファー面
8 ノーズ部外周面
A 切削用工具
B 取付具
P 被削管
C1 円弧部
C2,C2a,C2b 円弧部
S,Sa,Sb 直線部
REFERENCE SIGNS LIST 1 Pin 2 Box 3 Male thread 4 Nose 5 Shoulder 6 Pipe end arcuate portion 7 Chamfer surface 8 Nose outer peripheral surface A Cutting tool B Fixture P Pipe to be cut C1 Arcuate portion C2, C2a, C2b Arcuate portions S, Sa, Sb Straight portions

Claims (14)

切削刃が、工具先端を構成する第1の円弧部(C1)を有するとともに、該円弧部(C1)の一端側において、円弧部(C1)に連なる直線部(S)と、該直線部(S)に連なる第2の円弧部(C2)を有することを特徴とする油井管継手部の切削用工具(但し、円弧部(C1)と円弧部(C2)との間に段部を有する切削用工具を除く。) A cutting tool for cutting oil well pipe joints, characterized in that the cutting blade has a first arc portion (C1) constituting the tip of the tool, and at one end side of the arc portion (C1), has a straight portion (S) continuing to the arc portion (C1), and a second arc portion (C2) continuing to the straight portion (S) (however, cutting tools having a step portion between the arc portions (C1) and (C2) are excluded) . さらに、切削刃が、円弧部(C1)の他端側において、円弧部(C1)に連なる直線部(S)を有することを特徴とする請求項1に記載の油井管継手部の切削用工具。 The cutting tool for oil well pipe joints according to claim 1, further characterized in that the cutting blade has a straight portion (S) connected to the arc portion (C1) at the other end side of the arc portion (C1). さらに、切削刃が、円弧部(C1)の他端側において、円弧部(C1)に連なる直線部(S)と、該直線部(S)に連なる第2の円弧部(C2)を有し、
円弧部(C1)の一端側の直線部(S)および円弧部(C2)と他端側の直線部(S)および円弧部(C2)は、円弧部(C1)を中心として対称形状に構成されたことを特徴とする請求項1に記載の油井管継手部の切削用工具。
Further, the cutting blade has, at the other end side of the arc portion (C1), a straight portion (S) continuing to the arc portion (C1) and a second arc portion (C2) continuing to the straight portion (S),
2. The cutting tool for an oil well pipe joint according to claim 1, characterized in that the straight portion (S) and the arc portion (C2) on one end side of the arc portion (C1) and the straight portion (S) and the arc portion (C2) on the other end side are configured symmetrically with respect to the arc portion (C1).
直線部(S)の長さLが0.8mm以上1.2mm以下であることを特徴とする請求項1~3のいずれかに記載の油井管継手部の切削用工具。 A cutting tool for oil well pipe joints according to any one of claims 1 to 3, characterized in that the length L of the straight section (S) is 0.8 mm or more and 1.2 mm or less. 円弧部(C1)の曲率半径R1が0.4mm以上1.5mm以下、円弧部(C2)の曲率半径R2が0.4mm以上1.2mm以下であることを特徴とする請求項1~4のいずれかに記載の油井管継手部の切削用工具。 A cutting tool for oil well pipe joints according to any one of claims 1 to 4, characterized in that the radius of curvature R1 of the arc portion (C1) is 0.4 mm or more and 1.5 mm or less, and the radius of curvature R2 of the arc portion (C2) is 0.4 mm or more and 1.2 mm or less. 円弧部(C1)の円弧の中心角αが111°±1.25°であることを特徴とする請求項1~のいずれかに記載の油井管継手部の切削用工具。 6. The cutting tool for an oil well pipe joint according to claim 1 , wherein the central angle α of the arc of the arc portion (C1) is 111°±1.25°. 請求項1~のいずれかに記載の切削用工具を用い、油井管継手部を構成するピンのうちの少なくともノーズ部外周面の切削加工を行うことを特徴とする油井管継手部の切削方法。 A cutting method for an oil well pipe joint, comprising cutting at least an outer circumferential surface of a nose of a pin constituting the oil well pipe joint by using the cutting tool according to any one of claims 1 to 6 . 請求項2または3に記載の切削用工具を用い、ノーズ部外周面からショルダー部までを連続して切削加工することを特徴とする請求項に記載の油井管継手部の切削方法。 8. A method for cutting an oil well pipe joint according to claim 7 , characterized in that the cutting tool according to claim 2 or 3 is used to continuously cut from an outer circumferential surface of the nose portion to a shoulder portion. ノーズ部外周面を切削加工するに際し、被削管の管軸に対して平行な直線と切削用工具の直線部(S)とのなす角度θ を1.0°以上2.0°以下とし、被削管1回転当たりの切削用工具の管軸方向での送り量を、直線部(S)の長さLとcosθの積[L×cosθ]以下とすることを特徴とする請求項に記載の油井管継手部の切削方法。 The method for cutting an oil well pipe joint according to claim 7, characterized in that, when cutting the outer peripheral surface of the nose portion , the angle θ1 between a straight line parallel to the pipe axis of the pipe to be cut and the straight line portion (S) of the cutting tool is set to 1.0° or more and 2.0° or less, and the feed amount in the pipe axial direction of the cutting tool per one rotation of the pipe to be cut is set to be equal to or less than the product [L x cos θ1 ] of the length L of the straight line portion (S) and cos θ1. 切削用工具を、その工具中心線が被削管の管軸を通る垂線に対してなす角度θが7°以上11°以下となるように取付具に保持させることを特徴とする請求項のいずれかに記載の油井管継手部の切削方法。 The cutting method for an oil well pipe joint according to any one of claims 7 to 9, characterized in that the cutting tool is held by the fixture so that the angle θ2 between the center line of the tool and a perpendicular line passing through the pipe axis of the pipe to be cut is 7° or more and 11 ° or less. 請求項1~のいずれかに記載の切削用工具を用い、油井管継手部を構成するピンのうちの少なくともノーズ部外周面の切削加工を行うことを特徴とする油井管の製造方法。 A method for manufacturing an oil well tubular good, comprising cutting at least an outer circumferential surface of a nose portion of a pin constituting an oil well tubular good joint portion, using the cutting tool according to any one of claims 1 to 6 . 請求項2または3に記載の切削用工具を用い、ノーズ部外周面からショルダー部までを連続して切削加工することを特徴とする請求項11に記載の油井管の製造方法。 12. The method for producing an oil country tubular good according to claim 11 , wherein cutting is performed continuously from the outer peripheral surface of the nose portion to the shoulder portion by using the cutting tool according to claim 2 or 3. ノーズ部外周面を切削加工するに際し、被削管の管軸に対して平行な直線と切削用工具の直線部(S)とのなす角度θ を1.0°以上2.0°以下とし、被削管1回転当たりの切削用工具の管軸方向での送り量を、直線部(S)の長さLとcosθの積[L×cosθ]以下とすることを特徴とする請求項11に記載の油井管の製造方法。 12. A method for manufacturing an oil well tubular good according to claim 11, characterized in that, when cutting the outer peripheral surface of the nose portion , an angle θ1 between a straight line parallel to the pipe axis of the pipe to be cut and a straight line portion (S) of the cutting tool is set to 1.0° or more and 2.0° or less, and a feed amount in the pipe axial direction of the cutting tool per one rotation of the pipe to be cut is set to be equal to or less than the product [L × cos θ1 ] of the length L of the straight line portion (S) and cos θ1 . 切削用工具を、その工具中心線が被削管の管軸を通る垂線に対してなす角度θが7°以上11°以下となるように取付具に保持させることを特徴とする請求項1113のいずれかに記載の油井管の製造方法。 The method for manufacturing an oil well tubular good according to any one of claims 11 to 13, characterized in that the cutting tool is held by the fixture so that the angle θ2 between the center line of the tool and a perpendicular line passing through the axis of the pipe to be cut is 7° or more and 11 ° or less.
JP2022000803A 2022-01-06 2022-01-06 Tool and method for cutting oil well pipe joints, and method for manufacturing oil well pipes Active JP7528959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022000803A JP7528959B2 (en) 2022-01-06 2022-01-06 Tool and method for cutting oil well pipe joints, and method for manufacturing oil well pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022000803A JP7528959B2 (en) 2022-01-06 2022-01-06 Tool and method for cutting oil well pipe joints, and method for manufacturing oil well pipes

Publications (2)

Publication Number Publication Date
JP2023100283A JP2023100283A (en) 2023-07-19
JP7528959B2 true JP7528959B2 (en) 2024-08-06

Family

ID=87201677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022000803A Active JP7528959B2 (en) 2022-01-06 2022-01-06 Tool and method for cutting oil well pipe joints, and method for manufacturing oil well pipes

Country Status (1)

Country Link
JP (1) JP7528959B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039944A1 (en) 2005-10-06 2007-04-12 Sumitomo Electric Hardmetal Corp. Cutting tool for high quality and high efficiency machining and cutting method using the cutting tool
JP2007144525A (en) 2005-11-24 2007-06-14 Tungaloy Corp Throw-away type lathe turning tool
US20070160433A1 (en) 2006-01-02 2007-07-12 Lee Sang-Soo Cutting insert
WO2021059807A1 (en) 2019-09-24 2021-04-01 日本製鉄株式会社 Screw-threaded joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039944A1 (en) 2005-10-06 2007-04-12 Sumitomo Electric Hardmetal Corp. Cutting tool for high quality and high efficiency machining and cutting method using the cutting tool
JP2007144525A (en) 2005-11-24 2007-06-14 Tungaloy Corp Throw-away type lathe turning tool
US20070160433A1 (en) 2006-01-02 2007-07-12 Lee Sang-Soo Cutting insert
WO2021059807A1 (en) 2019-09-24 2021-04-01 日本製鉄株式会社 Screw-threaded joint

Also Published As

Publication number Publication date
JP2023100283A (en) 2023-07-19

Similar Documents

Publication Publication Date Title
TWI778013B (en) Ceramic face mill and method of machining an inconel work piece
US7862263B2 (en) Cutting tool with multiple flutes defining different profiles, and method
JP5663136B2 (en) Method for cutting a crankshaft and apparatus for carrying out the method
CN108136510B (en) Turning Inserts and Methods
JP4473112B2 (en) CUTTING TOOL, ITS PARTS AND CUTTING TOOL MANUFACTURING METHOD
US10780505B2 (en) Face grooving tool body for metal cutting
US8056452B2 (en) Method of machining crankshafts and a crankshaft machining tool insert therefor
JP2007516844A (en) Cutting insert for high speed feed face milling
KR20010024686A (en) Milling cutter and insert
US11400524B2 (en) Drill and method of producing drilled product
KR101332729B1 (en) Modular drilling tool and method for the production thereof
WO2014024862A1 (en) Lathe turning tool
EP3009217B1 (en) Tangential cutting insert and milling tool comprising such a cutting insert
KR20080009330A (en) Helical cutting insert with axial clearance slash
WO2019044791A1 (en) Tapered reamer
KR20190101967A (en) End mill
WO2019073752A1 (en) Rotary cutting tool
JP2002292515A (en) End mill for cutting contour line
WO2011105098A1 (en) Chaser and screw thread cutting method
JP7528959B2 (en) Tool and method for cutting oil well pipe joints, and method for manufacturing oil well pipes
JP5173336B2 (en) Saw blade
JPH0832382B2 (en) Cutting tool with nick
JP7071971B2 (en) Metal drilling tool
JP7373161B2 (en) Hole drilling method and boring tool
WO2017033658A1 (en) Circular saw blade with tips

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240708

R150 Certificate of patent or registration of utility model

Ref document number: 7528959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150