[go: up one dir, main page]

JP7528476B2 - Aluminum alloy forgings and manufacturing method thereof - Google Patents

Aluminum alloy forgings and manufacturing method thereof Download PDF

Info

Publication number
JP7528476B2
JP7528476B2 JP2020042006A JP2020042006A JP7528476B2 JP 7528476 B2 JP7528476 B2 JP 7528476B2 JP 2020042006 A JP2020042006 A JP 2020042006A JP 2020042006 A JP2020042006 A JP 2020042006A JP 7528476 B2 JP7528476 B2 JP 7528476B2
Authority
JP
Japan
Prior art keywords
mass
forging
casting
aluminum alloy
treatment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020042006A
Other languages
Japanese (ja)
Other versions
JP2021143372A (en
Inventor
卓也 荒山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2020042006A priority Critical patent/JP7528476B2/en
Publication of JP2021143372A publication Critical patent/JP2021143372A/en
Application granted granted Critical
Publication of JP7528476B2 publication Critical patent/JP7528476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、常温における機械的特性に優れたAl-Mg-Si系アルミニウム合金鍛造品の製造方法に関する。 The present invention relates to a method for manufacturing Al-Mg-Si aluminum alloy forgings that have excellent mechanical properties at room temperature.

近年、アルミニウム合金は、軽量性を生かして各種製品の構造部材としての用途が拡大しつつある。例えば、自動車の足廻りやバンパー部品は今まで高張力鋼が用いられてきたが、近年は高強度アルミニウム合金材が用いられるようになっている。自動車部品、例えば、サスペンション部品は専ら鉄系材料が使用されていたが、軽量化を主目的としてアルミニウム材料またはアルミニウム合金材料に置き換えられることが多くなってきた。 In recent years, aluminum alloys have been increasingly used as structural components for various products, taking advantage of their light weight. For example, high-tensile steel has traditionally been used for the suspension and bumper parts of automobiles, but in recent years high-strength aluminum alloy materials have come to be used. Automobile parts, such as suspension parts, used to be made almost exclusively of iron-based materials, but they are increasingly being replaced by aluminum or aluminum alloy materials, primarily for the purpose of reducing weight.

これらの自動車部品では優れた耐食性、高強度および優れた加工性が要求されることから、アルミニウム合金材料としてAl-Mg-Si系合金、特にA6061が多用されている。そして、このような自動車部品は強度の向上を図るため、アルミニウム合金材料を加工用素材として塑性加工の1つである鍛造加工を行って製造される。 Since these automobile parts require excellent corrosion resistance, high strength, and excellent workability, Al-Mg-Si alloys, especially A6061, are often used as the aluminum alloy material. In order to improve the strength of these automobile parts, they are manufactured by forging, a type of plastic processing, using the aluminum alloy material as the processing material.

また、最近ではコストダウンを図る必要があるため、押出をせずに鋳造部材をそのまま素材として鍛造した後、T6処理して得たサスペンション部品が実用化され始めており、さらなる軽量化を目的として、従来のA6061に代わる高強度合金の開発が進められている(下記特許文献1~3参照)。 In addition, due to the recent need to reduce costs, suspension parts have begun to be used in which cast parts are used as the raw material for forging without extrusion, and then T6 treatment is applied to obtain them. In order to further reduce weight, development of high-strength alloys to replace the conventional A6061 is underway (see Patent Documents 1 to 3 below).

特開平5-59477号公報Japanese Patent Application Publication No. 5-59477 特開平5-247574号公報Japanese Patent Application Publication No. 5-247574 特開平6-256880号公報Japanese Patent Application Publication No. 6-256880

しかし、上述したAl-Mg-Si系の高強度合金は、鍛造および熱処理工程において加工組織が再結晶し、粗大結晶粒が発生することにより、十分な高強度を得ることができないという問題があった。そのため、粗大再結晶粒生成防止のため、Zrを添加して再結晶を防止しているものがある(例えば上記特許文献1および2)。 However, the above-mentioned high-strength Al-Mg-Si alloys have a problem in that the processed structure recrystallizes during the forging and heat treatment processes, resulting in the generation of coarse crystal grains, making it impossible to obtain sufficiently high strength. For this reason, some alloys have been designed to prevent recrystallization by adding Zr to prevent the generation of coarse recrystallized grains (for example, Patent Documents 1 and 2 above).

しかしながら、Zrを添加することは、再結晶防止に効果があるものの、次のような問題点があった。 However, although adding Zr is effective in preventing recrystallization, it has the following problems:

(1)Zrの添加により、Al-Ti-B系合金の結晶粒微細化効果が弱められ、鋳塊自体の結晶粒が粗くなり、塑性加工後の加工品(鍛造品)の強度低下を招く。 (1) The addition of Zr weakens the grain refining effect of Al-Ti-B alloys, coarsening the grains of the ingot itself, leading to a decrease in the strength of the processed product (forged product) after plastic processing.

(2)鋳塊自体の結晶粒微細化効果が弱められるため、鋳塊割れが発生し易くなり、内部欠陥が増加し、歩留まりが悪化する。 (2) The effect of refining the crystal grains of the ingot itself is weakened, making the ingot more susceptible to cracking, increasing internal defects, and reducing yields.

(3)Zrは、Al-Ti-B系合金と化合物を形成し、合金溶湯を貯留する炉の底に化合物が堆積し、炉を汚染すると共に、製造した鋳塊においてもこれら化合物が鋳塊中に粗大に晶出し、強度を低下させる。 (3) Zr forms compounds with Al-Ti-B alloys, and these compounds accumulate at the bottom of the furnace in which the molten alloy is stored, contaminating the furnace. In addition, these compounds also crystallize out as coarse particles in the produced ingot, reducing its strength.

このように、Zrの添加は、再結晶防止に効果があるものの、強度の安定性を維持することが困難であった。 Thus, although the addition of Zr is effective in preventing recrystallization, it was difficult to maintain strength stability.

本発明は、かかる技術的背景に鑑みてなされたものであって、常温における機械的特性に優れると共に、再結晶粒が発生し難いアルミニウム合金鍛造品およびその製造方法を提供することを目的とする。 The present invention was made in consideration of this technical background, and aims to provide an aluminum alloy forging that has excellent mechanical properties at room temperature and is less susceptible to recrystallization grains, and a manufacturing method thereof.

前記目的を達成するために、本発明は以下の手段を提供する。 To achieve the above objective, the present invention provides the following means:

[1]Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.15質量%、Si:0.95質量%~1.25質量%、Mn:0.4質量%~0.6質量%、Fe:0.2質量%~0.3質量%、Cr:0.11質量%~0.25質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金鍛造品であって、
前記鍛造品断面のX線回折測定で得られるX線回折パターンにおけるFeMnSi相の回折ピークの積分強度を「Q」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q」(cps・deg)としたとき、Q/Qの値が6×10-2以下であることを特徴とするアルミニウム合金鍛造品。
[1] An aluminum alloy forging containing Cu: 0.15% by mass to 1.0% by mass, Mg: 0.6% by mass to 1.15% by mass, Si: 0.95% by mass to 1.25% by mass, Mn: 0.4% by mass to 0.6% by mass, Fe: 0.2% by mass to 0.3% by mass, Cr: 0.11% by mass to 0.25% by mass, Ti: 0.012% by mass to 0.035% by mass, B: 0.0001% by mass to 0.03% by mass, Zn content is 0.25% by mass or less, Zr content is 0.05% by mass or less, and the balance is Al and inevitable impurities.
An aluminum alloy forging characterized in that, when the integrated intensity of the diffraction peak of the FeMnSi phase in an X-ray diffraction pattern obtained by X-ray diffraction measurement of the cross section of the forging is " Q1 " (cps·deg), and the integrated intensity of the diffraction peak of the (200) plane of the Al phase is " Q2 " (cps·deg), the value of Q1 / Q2 is 6× 10-2 or less.

[2]前項1に記載のアルミニウム合金鍛造品の製造方法であって、
溶湯を得る溶湯形成工程と、
前記溶湯形成工程で得られる溶湯を鋳造加工することにより鋳造品を得る鋳造工程と、
前記鋳造工程で得られる鋳造品に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程後の鋳造品に鍛造加工を行って鍛造品を得る鍛造工程と、
前記鍛造工程で得られる鍛造品に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程後に焼き入れする焼き入れ処理工程と、
前記焼き入れ処理工程後の鍛造品に時効処理を行う時効処理工程とを含むことを特徴とするアルミニウム合金鍛造品の製造方法。
[2] A method for producing an aluminum alloy forged product according to the preceding paragraph 1,
a molten metal forming step for obtaining a molten metal;
a casting step of obtaining a casting by casting the molten metal obtained in the molten metal forming step;
a homogenization heat treatment step in which homogenization heat treatment is performed on the casting obtained in the casting step;
A forging process for obtaining a forged product by forging the cast product after the homogenization heat treatment process;
a solution treatment step of subjecting the forged product obtained in the forging step to a solution treatment;
a quenching treatment step of quenching after the solution treatment step;
and an aging treatment step of subjecting the forged product after the quenching treatment step to aging treatment.

[3]前記均質化熱処理工程は前記鋳造工程で得られる鋳造品に370℃~560℃の温度で4時間~10時間保持する均質化熱処理を行い、
前記鍛造工程は前記均質化熱処理工程後の鋳造品に加熱温度450℃~560℃で鍛造加工を行い、
前記溶体化処理工程は前記鍛造工程で得られる鍛造品に20℃~500℃までの昇温速度が5.0℃/min以上で昇温させ、530℃~560℃で0.3時間~3時間以内保持する溶体化処理を行い、
前記焼き入れ処理工程は前記溶体化処理工程後5秒~60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間水槽内で焼き入れを行い、
前記時効処理工程は前記焼き入れ処理工程後の鍛造品に180℃~220℃の温度で0.5時間~1.5時間加熱して時効処理を行うことを特徴とする前項2に記載のアルミニウム合金鍛造品の製造方法。
[3] The homogenization heat treatment step is a homogenization heat treatment step in which the casting obtained in the casting step is held at a temperature of 370 ° C. to 560 ° C. for 4 hours to 10 hours;
The forging process is a process of forging the casting after the homogenization heat treatment process at a heating temperature of 450°C to 560°C.
The solution treatment step is a step of heating the forged product obtained in the forging step from 20°C to 500°C at a heating rate of 5.0°C/min or more, and then holding the product at 530°C to 560°C for 0.3 hours to 3 hours.
In the quenching treatment step, the entire surface of the forged product is brought into contact with quenching water within 5 to 60 seconds after the solution treatment step, and quenching is performed in a water tank for more than 5 minutes but not exceeding 40 minutes,
3. The method for producing an aluminum alloy forged product according to item 2 above, wherein the aging treatment step comprises heating the forged product after the quenching treatment step at a temperature of 180°C to 220°C for 0.5 hours to 1.5 hours to perform aging treatment.

[1]の発明によれば、各元素の含有量が所定の範囲内に設定され、Q/Qの値が6×10-2以下であることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を提供することができる。 According to the invention [1], the contents of each element are set within a predetermined range, and the value of Q1 / Q2 is 6× 10-2 or less, so that an aluminum alloy forging having excellent mechanical properties at room temperature and being resistant to recrystallized grains can be provided.

[2]の発明によれば、溶湯形成工程、鋳造工程、均質化熱処理工程、鍛造工程、溶体化処理工程、焼き入れ処理工程および時効処理工程が含まれることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。 According to the invention of [2], by including a molten metal forming process, a casting process, a homogenization heat treatment process, a forging process, a solution treatment process, a quenching process and an aging treatment process, it is possible to manufacture an aluminum alloy forging that has excellent mechanical properties at room temperature and is less susceptible to the generation of recrystallized grains.

[3]の発明によれば、各処理工程における処理条件が所定の範囲内に設定されることで、より一層、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。 According to the invention [3], by setting the processing conditions in each processing step within a predetermined range, it is possible to manufacture an aluminum alloy forging that has even better mechanical properties at room temperature and is less susceptible to recrystallization grains.

図1は本発明の製造方法で得られるアルミニウム合金鍛造品を示す斜視図である。FIG. 1 is a perspective view showing an aluminum alloy forging obtained by the manufacturing method of the present invention.

本発明のアルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法について説明する。 The aluminum alloy forgings of the present invention and the method for manufacturing the aluminum alloy forgings are described below.

なお、以下に示す実施形態は例示に過ぎず、本発明はこれらの例示した実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲において適宜変更することができる。 Note that the embodiments shown below are merely examples, and the present invention is not limited to these exemplified embodiments, and may be modified as appropriate within the scope of the technical concept of the present invention.

本実施形態のアルミニウム合金鍛造品1は、Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.15質量%、Si:0.95質量%~1.25質量%、Mn:0.4質量%~0.6質量%、Fe:0.2質量%~0.3質量%、Cr:0.11質量%~0.25質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下で、残部がAl及び不可避不純物からなり、この鍛造品1の断面について、X線回折測定で得られるX線回折パターンにおけるFeMnSi相の回折ピークの積分強度を「Q」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q」(cps・deg)としたとき、Q/Qの値が6×10-2以下であることを特徴とする。 The aluminum alloy forged product 1 of this embodiment contains Cu: 0.15 mass% to 1.0 mass%, Mg: 0.6 mass% to 1.15 mass%, Si: 0.95 mass% to 1.25 mass%, Mn: 0.4 mass% to 0.6 mass%, Fe: 0.2 mass% to 0.3 mass%, Cr: 0.11 mass% to 0.25 mass%, Ti: 0.012 mass% to 0.035 mass%, B: 0.0001 mass% to 0.03 mass%, Zn content is 0.25 mass% or less, Zr content is 0.05 mass% or less, and the balance is Al and inevitable impurities. For the cross section of this forged product 1, the integrated intensity of the diffraction peak of the FeMnSi phase in the X-ray diffraction pattern obtained by X-ray diffraction measurement is defined as "Q 1 (cps·deg) and the integrated intensity of the diffraction peak of the (200) plane of the Al phase is "Q 2 " (cps·deg), the Q 1 /Q 2 value is 6×10 -2 or less.

このように、各元素の含有量が所定の範囲内に設定され、Q/Qの値が6×10-2以下であることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を提供することができる。 In this way, by setting the content of each element within a predetermined range and setting the value of Q1 / Q2 to 6× 10-2 or less, it is possible to provide an aluminum alloy forging that has excellent mechanical properties at room temperature and is resistant to the generation of recrystallized grains.

本実施形態のアルミニウム合金鍛造品1の製造方法は、溶湯形成工程、鋳造工程、均質化熱処理工程、鍛造工程、溶体化処理工程、焼き入れ処理工程および時効処理工程をこの順に行うことで、例えば図1に示すようなアルミニウム合金鍛造品1を製造するものである。以下、各工程について説明する。 The method for manufacturing an aluminum alloy forged product 1 according to this embodiment involves carrying out a molten metal forming process, a casting process, a homogenizing heat treatment process, a forging process, a solution treatment process, a quenching process, and an aging treatment process in this order to manufacture an aluminum alloy forged product 1, for example, as shown in FIG. 1. Each process will be described below.

(溶湯形成工程)
溶湯形成工程は、原料を溶解して組成を調製したアルミニウム合金溶湯を得る工程である。
(Molten metal forming process)
The molten metal forming step is a step in which raw materials are melted to obtain a molten aluminum alloy having a composition adjusted.

本実施形態では、Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.15質量%、Si:0.95質量%~1.25質量%、Mn:0.4質量%~0.6質量%、Fe:0.2質量%~0.3質量%、Cr:0.11質量%~0.25質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなる6000系アルミニウム合金の溶湯を得る(調製する)。このアルミニウム合金の溶湯においては、Zn含有率が0質量%(Zn非含有)であってもよく、またZr含有率が0質量%(Zr非含有)であってもよい。 In this embodiment, a molten 6000 series aluminum alloy containing Cu: 0.15% to 1.0% by mass, Mg: 0.6% to 1.15% by mass, Si: 0.95% to 1.25% by mass, Mn: 0.4% to 0.6% by mass, Fe: 0.2% to 0.3% by mass, Cr: 0.11% to 0.25% by mass, Ti: 0.012% to 0.035% by mass, B: 0.0001% to 0.03% by mass, Zn content is 0.25% by mass or less, Zr content is 0.05% by mass or less, and the balance is Al and unavoidable impurities is obtained (prepared). In this molten aluminum alloy, the Zn content may be 0% by mass (Zn-free), and the Zr content may be 0% by mass (Zr-free).

(鋳造工程)
鋳造工程は、溶湯形成工程で得られたアルミニウム合金溶湯を鋳造加工することによって鋳造品を得る工程である。
(Casting process)
The casting step is a step of obtaining a casting by casting the aluminum alloy molten metal obtained in the molten metal forming step.

鋳造品を得るための連続鋳造法としては、特に限定されるものではないが、様々な公知の連続鋳造法(垂直型連続鋳造法、水平型連続鋳造法等)を挙げることができる。垂直型連続鋳造法としては、ホットトップ鋳造法等が用いられる。以下では、連続鋳造法の一例としてホットトップ鋳造装置を用いたホットトップ鋳造法によってアルミニウム合金連続鋳造材を製造する場合(即ちアルミニウム合金の溶湯をホットトップ鋳造法によって連続鋳造してアルミニウム合金連続鋳造材を製造する場合)について簡単に説明する。 The continuous casting method for obtaining the cast product is not particularly limited, and various known continuous casting methods (vertical continuous casting method, horizontal continuous casting method, etc.) can be mentioned. As a vertical continuous casting method, a hot top casting method, etc. is used. Below, a brief explanation is given of an example of a continuous casting method in which an aluminum alloy continuous cast material is produced by a hot top casting method using a hot top casting device (i.e., a case in which an aluminum alloy continuous cast material is produced by continuously casting molten aluminum alloy by the hot top casting method).

ホットトップ鋳造装置は、モールド(鋳型)、溶湯受容器(ヘッダー)等を具備している。モールドは、その内部に充満された冷却水により冷却されている。受容器は、一般に耐火物製であり、モールドの上側に設置されている。受容器内のアルミニウム合金溶湯は、冷却されたモールド内に下方向に注入されると共に、モールドから噴出された冷却水により所定の冷却速度で冷却されて凝固し、更に水槽内の水(その温度:約20℃)に浸されて完全に凝固する。これにより棒状等の長尺な連続鋳造材が得られる。 The hot top casting device is equipped with a mold, a molten metal receiving vessel (header), etc. The mold is cooled by cooling water that fills its interior. The receiving vessel is generally made of refractory material and is installed above the mold. The molten aluminum alloy in the receiving vessel is poured downward into the cooled mold and is cooled and solidified at a predetermined cooling rate by the cooling water sprayed from the mold, and is then immersed in water (temperature: approximately 20°C) in a water tank where it solidifies completely. This produces long continuous cast material in the shape of a rod, etc.

(均質化熱処理工程)
均質化熱処理工程は、鋳造工程で得られた鋳造材に対して均質化熱処理を行うことによって、凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出および準安定相の平衡相への変化を行う工程である。
(Homogenization heat treatment process)
The homogenization heat treatment process is a process in which the cast material obtained in the casting process is subjected to homogenization heat treatment to homogenize microsegregations caused by solidification, precipitate supersaturated solid solution elements, and transform metastable phases into equilibrium phases.

本実施形態では、鋳造工程で得られた鋳造品を370℃~560℃の温度で、4時間~10時間保持する均質化熱処理を行う。この温度範囲で均質化熱処理を施すことにより、鋳塊の均質化と溶質原子の溶入化が十分になされるため、その後の時効処理によって必要とされる十分な強度が得られるものとなる。 In this embodiment, the casting obtained in the casting process is subjected to homogenization heat treatment, in which the casting is held at a temperature of 370°C to 560°C for 4 to 10 hours. By carrying out homogenization heat treatment in this temperature range, the ingot is homogenized sufficiently and solute atoms are sufficiently dissolved, so that the sufficient strength required for the subsequent aging treatment can be obtained.

(鍛造工程)
鍛造工程は、均質化熱処理工程後に得られた鍛造用ビレットを加熱し、プレス機で圧力をかけて金型成型する工程である。
(Forging process)
The forging step is a step in which the forging billet obtained after the homogenization heat treatment step is heated and pressed with a press to form it into a die.

本実施形態では、均質化熱処理後の鋳塊に加熱温度450℃~560℃で鍛造加工を行って鍛造品(例えば自動車のサスペンションアーム部品等)を得る。この時、鍛造素材の鍛造の開始温度は450℃~560℃とする。開始温度が450℃未満になると変形抵抗が高くなって十分な加工ができなくなり、560℃を超えると鍛造割れや共晶融解等の欠陥が発生し易くなるためである。 In this embodiment, the ingot after homogenization heat treatment is forged at a heating temperature of 450°C to 560°C to obtain a forged product (such as an automobile suspension arm part). At this time, the starting temperature for forging the forging material is 450°C to 560°C. If the starting temperature is less than 450°C, the deformation resistance becomes high and sufficient processing becomes impossible, and if it exceeds 560°C, defects such as forging cracks and eutectic melting are likely to occur.

(溶体化処理工程)
溶体化処理工程は、鍛造工程で導入された歪みを緩和し、溶質元素の固溶を行う工程である。
(Solution treatment process)
The solution treatment process is a process for relieving the strain introduced in the forging process and for dissolving the solute elements.

本実施形態では、鍛造工程後の鍛造品の温度を20℃まで下げた後、室温になってから加熱を始め、20℃~500℃までの温度範囲全域において昇温速度が常に5.0℃/min以上で昇温させ、530℃~560℃で0.3時間~3時間以内保持することで溶体化処理を行う。 In this embodiment, the temperature of the forged product after the forging process is lowered to 20°C, and then heating begins once it has reached room temperature. The temperature is increased at a rate of at least 5.0°C/min throughout the entire temperature range from 20°C to 500°C, and the product is held at 530°C to 560°C for 0.3 to 3 hours to perform solution treatment.

昇温速度が5.0℃/min未満ではMgSiが粗大析出してしまい、また、処理温度が530℃未満では溶体化が進まず時効析出による高強度化を実現できなくなり、処理温度が560℃を超えると溶質元素の固溶がより促進されるものの、共晶融解や再結晶が生じ易くなるためである。 If the heating rate is less than 5.0°C/min, coarse Mg2Si precipitates, and if the treatment temperature is less than 530°C, the solution treatment does not progress and high strength through aging precipitation cannot be achieved. If the treatment temperature exceeds 560°C, although the solid solution of the solute elements is further promoted, eutectic melting and recrystallization are likely to occur.

(焼き入れ処理工程)
焼き入れ処理工程は、溶体化処理工程によって得られた固溶状態を急速に冷却せしめて過飽和固溶体を形成する熱処理である。
(Quenching process)
The quenching process is a heat treatment for forming a supersaturated solid solution by rapidly cooling the solid solution state obtained by the solution treatment process.

本実施形態では、溶体化処理後5秒~60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間、水槽内で焼き入れ処理を行う。 In this embodiment, the entire surface of the forged product comes into contact with quenching water within 5 to 60 seconds after solution treatment, and the quenching process is carried out in the water tank for more than 5 minutes but not exceeding 40 minutes.

(時効処理工程)
時効処理工程は、アルミニウム合金鍛造品を比較的低温で加熱保持し過飽和に固溶した元素を析出させて、適度な硬さを付与するための熱処理である。
(Aging treatment process)
The aging treatment process is a heat treatment in which the aluminum alloy forged product is heated and held at a relatively low temperature to precipitate elements that are supersaturated in solid solution, thereby imparting an appropriate hardness.

本実施形態では、焼き入れ処理工程後の鍛造品に180℃~220℃の温度で0.5時間~1.5時間加熱して時効処理を行う。処理温度が180℃未満あるいは処理時間が0.5時間未満では引張強度を向上させるMgSi系析出物が十分に成長できなくなり、処理温度が220℃を超えるとMgSi系析出物が粗大になり過ぎて引張強度を十分に向上させることができないためである。 In this embodiment, the forged product after the quenching process is heated for 0.5 to 1.5 hours at a temperature of 180° C. to 220° C. to perform aging treatment. If the treatment temperature is less than 180° C. or the treatment time is less than 0.5 hours, the Mg 2 Si-based precipitates that improve the tensile strength do not grow sufficiently, and if the treatment temperature exceeds 220° C., the Mg 2 Si-based precipitates become too coarse to sufficiently improve the tensile strength.

上述したように、本発明のアルミニウム合金鍛造品の製造方法は各元素の含有量が所定の範囲内に設定され、各処理工程における処理条件が所定の範囲内に設定されることで、より一層、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。 As described above, the manufacturing method of the aluminum alloy forgings of the present invention sets the content of each element within a predetermined range, and the processing conditions in each processing step are set within a predetermined range, making it possible to manufacture aluminum alloy forgings that have even better mechanical properties at room temperature and are less susceptible to recrystallization grains.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1~13>
表1に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表1に示す条件で均質化熱処理を行った。得られた鋳造材を表1に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
<Examples 1 to 13>
A continuous cast material having a circular cross section and a diameter of 54 mm was produced from an aluminum alloy having an alloy composition shown in Table 1, and was subjected to homogenization heat treatment under the conditions shown in Table 1. The obtained cast material was subjected to forging under the conditions shown in Table 1 and plastically worked into the shape of an automobile suspension arm part shown in FIG.

次に、表1に示す条件で昇温、溶体化処理を行った後、表1に示す焼き入れ処理を行い、その後時効処理を行ってアルミニウム合金鍛造品1を得た。 Next, the temperature was raised and solution treatment was performed under the conditions shown in Table 1, followed by quenching treatment as shown in Table 1, and then aging treatment to obtain aluminum alloy forging 1.

<比較例1~9>
表2に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表2に示す条件で均質化熱処理を行った。得られた鋳造材を表2に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
<Comparative Examples 1 to 9>
Continuously cast aluminum alloys having the alloy compositions shown in Table 2 were used to produce continuous cast materials having a circular cross section with a diameter of 54 mm, and were subjected to homogenization heat treatment under the conditions shown in Table 2. The resulting cast materials were subjected to forging under the conditions shown in Table 2 and plastically worked into the shape of an automobile suspension arm part shown in FIG.

次に、表2に示す条件で昇温、溶体化処理を行った後、表2に示す焼き入れ処理を行い、その後時効処理を行ってアルミニウム合金鍛造品1を得た。 Next, the temperature was raised and the solution treatment was performed under the conditions shown in Table 2, after which the quenching treatment shown in Table 2 was performed, and then aging treatment was performed to obtain aluminum alloy forging 1.

また、焼き入れ開始は鍛造品全体が水についた時点とする。 Also, quenching begins when the entire forged product is submerged in water.

Figure 0007528476000001
Figure 0007528476000001

Figure 0007528476000002
Figure 0007528476000002

上記のようにして得られた各アルミニウム合金鍛造品について下記評価法に基づいて評価を行った。 The aluminum alloy forgings obtained as described above were evaluated according to the following evaluation methods.

<常温での耐力評価法>
得られたアルミニウム合金鍛造品から、標点間距離25.4mm、平行部直径6.4mmの引張試験片を採取し、該引張試験片の常温(25℃)引張試験を行うことによって、耐力を測定し、下記判定基準に基づいて評価した。
<Method for evaluating strength at room temperature>
Tensile test pieces having a gauge length of 25.4 mm and a parallel part diameter of 6.4 mm were taken from the obtained aluminum alloy forgings, and the tensile test pieces were subjected to a room temperature (25° C.) tensile test to measure the yield strength and evaluate them based on the following criteria.

(判定基準)
「〇」…常温での耐力が370MPa以上である
「△」…常温での耐力が360MPa以上370MPa未満である
「×」…常温での耐力が360MPa未満である。
(Judgment criteria)
"◯": the yield strength at room temperature is 370 MPa or more; "Δ": the yield strength at room temperature is 360 MPa or more and less than 370 MPa; "×": the yield strength at room temperature is less than 360 MPa.

表1から明らかなように、本発明の製造方法で製造された実施例1~13のアルミニウム合金鍛造品は、常温での耐力に優れていた。 As is clear from Table 1, the aluminum alloy forgings of Examples 1 to 13 manufactured using the manufacturing method of the present invention had excellent yield strength at room temperature.

これに対し、表2に示すように、本発明の規定範囲を逸脱する比較例1~9のアルミニウム合金鍛造品では、常温での耐力に劣っていた。 In contrast, as shown in Table 2, the aluminum alloy forgings of Comparative Examples 1 to 9, which deviate from the range specified by the present invention, had poor yield strength at room temperature.

<アルミニウム合金鍛造品のAl相及びFeMnSi相の回折ピークの積分強度測定法>
各アルミニウム合金鋳造材、各アルミニウム合金押出材について株式会社リガク製X線回折装置(SmartLab)を用いてX線回折測定を行った。なお、鍛造品より10mm×10mm×厚さ2mmの板状体を採取して、これをX線回折測定試料として用いた。X線回折測定により得られたX線回折パターンにおいてAl相の(200)面の回折ピークを同定し、該Al相の(200)面の回折ピーク強度の積分値(回折ピークの積分強度Q)を求めると共に、FeMnSi相の回折ピークを同定し、このFeMnSi相の回折ピーク強度の積分値(回折ピークの積分強度Q)を求め、これらよりQ/Qの値を求めた。これらの結果を表1および2に示した。
<Method for measuring integrated intensity of diffraction peaks of Al phase and FeMnSi phase in aluminum alloy forging>
X-ray diffraction measurements were performed on each aluminum alloy cast material and each aluminum alloy extrusion material using an X-ray diffraction device (SmartLab) manufactured by Rigaku Corporation. A plate-shaped body measuring 10 mm x 10 mm x 2 mm thick was taken from the forged product and used as an X-ray diffraction measurement sample. In the X-ray diffraction pattern obtained by the X-ray diffraction measurement, the diffraction peak of the (200) plane of the Al phase was identified, and the integrated value of the diffraction peak intensity of the (200) plane of the Al phase (integral intensity of the diffraction peak Q 2 ) was obtained, and the diffraction peak of the FeMnSi phase was identified, and the integrated value of the diffraction peak intensity of the FeMnSi phase (integral intensity of the diffraction peak Q 1 ) was obtained, from which the value of Q 1 /Q 2 was obtained. These results are shown in Tables 1 and 2.

表1に示すように、実施例1~13では、Q/Qの値は6×10-2より小さくなっていることがわかる。 As shown in Table 1, in Examples 1 to 13, the value of Q 1 /Q 2 was smaller than 6×10 −2 .

これに対し、表2に示すように、比較例1~9では、Q/Qの値は6×10-2より大きくなっていることがわかる。 In contrast, as shown in Table 2, in Comparative Examples 1 to 9, the value of Q 1 /Q 2 is greater than 6×10 −2 .

本発明に係るアルミニウム合金鍛造品の製造方法で得られた鍛造品は、常温における機械的強度に優れているので、例えば、自動車のサスペンションアーム部品等の足廻り材として好適に用いられるが、特にこのような用途に限定されるものではない。 The forged products obtained by the method for manufacturing aluminum alloy forged products according to the present invention have excellent mechanical strength at room temperature, and are therefore suitable for use as suspension parts such as suspension arm parts for automobiles, but are not limited to such applications.

1: アルミニウム合金鍛造品 1: Aluminum alloy forgings

Claims (3)

Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.15質量%、Si:0.95質量%~1.25質量%、Mn:0.4質量%~0.6質量%、Fe:0.2質量%~0.3質量%、Cr:0.11質量%~0.25質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金鍛造品であって、
前記鍛造品断面のX線回折測定で得られるX線回折パターンにおけるFeMnSi相の回折ピークの積分強度を「Q」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q」(cps・deg)としたとき、Q/Qの値が6×10-2以下であり、
前記アルミニウム合金鍛造品の耐力は376MPa以上であることを特徴とするアルミニウム合金鍛造品。
An aluminum alloy forging containing 0.15 mass% to 1.0 mass% Cu, 0.6 mass% to 1.15 mass% Mg, 0.95 mass% to 1.25 mass% Si, 0.4 mass% to 0.6 mass% Mn, 0.2 mass% to 0.3 mass% Fe, 0.11 mass% to 0.25 mass% Cr, 0.012 mass% to 0.035 mass% Ti, and 0.0001 mass% to 0.03 mass% B, with a Zn content of 0.25 mass% or less, a Zr content of 0.05 mass% or less, and the balance being Al and unavoidable impurities,
When the integrated intensity of the diffraction peak of the FeMnSi phase in the X-ray diffraction pattern obtained by X-ray diffraction measurement of the cross section of the forged product is "Q 1 " (cps·deg) and the integrated intensity of the diffraction peak of the (200) plane of the Al phase is "Q 2 " (cps·deg), the value of Q 1 /Q 2 is 6 × 10 -2 or less ,
The aluminum alloy forging has a yield strength of 376 MPa or more .
請求項1に記載のアルミニウム合金鍛造品の製造方法であって、
溶湯を得る溶湯形成工程と、
前記溶湯形成工程で得られる溶湯を鋳造加工することにより鋳造品を得る鋳造工程と、
前記鋳造工程で得られる鋳造品に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程後の鋳造品に鍛造加工を行って鍛造品を得る鍛造工程と、
前記鍛造工程で得られる鍛造品に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程後に焼き入れする焼き入れ処理工程と、
前記焼き入れ処理工程後の鍛造品に時効処理を行う時効処理工程とを含むことを特徴とするアルミニウム合金鍛造品の製造方法。
A method for producing an aluminum alloy forged product according to claim 1,
a molten metal forming step for obtaining a molten metal;
a casting step of obtaining a casting by casting the molten metal obtained in the molten metal forming step;
a homogenization heat treatment step in which homogenization heat treatment is performed on the casting obtained in the casting step;
A forging process for obtaining a forged product by forging the cast product after the homogenization heat treatment process;
a solution treatment step of subjecting the forged product obtained in the forging step to a solution treatment;
a quenching treatment step of quenching after the solution treatment step;
and an aging treatment step of subjecting the forged product after the quenching treatment step to aging treatment.
前記均質化熱処理工程は前記鋳造工程で得られる鋳造品に370℃~560℃の温度で4時間~10時間保持する均質化熱処理を行い、
前記鍛造工程は前記均質化熱処理工程後の鋳造品に加熱温度450℃~560℃で鍛造加工を行い、
前記溶体化処理工程は前記鍛造工程で得られる鍛造品に20℃~500℃までの昇温速度が5.0℃/min以上で昇温させ、530℃~560℃で0.3時間~3時間以内保持する溶体化処理を行い、
前記焼き入れ処理工程は前記溶体化処理工程後5秒~60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間水槽内で焼き入れを行い、
前記時効処理工程は前記焼き入れ処理工程後の鍛造品に180℃~220℃の温度で0.5時間~1.5時間加熱して時効処理を行うことを特徴とする請求項2に記載のアルミニウム合金鍛造品の製造方法。
The homogenization heat treatment step is a homogenization heat treatment step in which the casting obtained in the casting step is held at a temperature of 370°C to 560°C for 4 hours to 10 hours,
The forging process is a process of forging the casting after the homogenization heat treatment process at a heating temperature of 450°C to 560°C.
The solution treatment step is a step of heating the forged product obtained in the forging step from 20°C to 500°C at a heating rate of 5.0°C/min or more, and then holding the product at 530°C to 560°C for 0.3 hours to 3 hours.
In the quenching treatment step, the entire surface of the forged product is brought into contact with quenching water within 5 to 60 seconds after the solution treatment step, and quenching is performed in a water tank for more than 5 minutes but not exceeding 40 minutes,
3. The method for manufacturing an aluminum alloy forged product according to claim 2, wherein the aging treatment step comprises heating the forged product after the quenching treatment step at a temperature of 180°C to 220°C for 0.5 hours to 1.5 hours to perform aging treatment.
JP2020042006A 2020-03-11 2020-03-11 Aluminum alloy forgings and manufacturing method thereof Active JP7528476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020042006A JP7528476B2 (en) 2020-03-11 2020-03-11 Aluminum alloy forgings and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042006A JP7528476B2 (en) 2020-03-11 2020-03-11 Aluminum alloy forgings and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021143372A JP2021143372A (en) 2021-09-24
JP7528476B2 true JP7528476B2 (en) 2024-08-06

Family

ID=77767070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042006A Active JP7528476B2 (en) 2020-03-11 2020-03-11 Aluminum alloy forgings and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7528476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023073118A (en) * 2021-11-15 2023-05-25 株式会社レゾナック Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
JP2023073120A (en) * 2021-11-15 2023-05-25 株式会社レゾナック Aluminum alloy ingot, aluminum alloy material and method for producing aluminum alloy material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144296A (en) 1998-08-25 2000-05-26 Kobe Steel Ltd High-strength and high-toughness aluminum alloy forged material
JP2007009273A (en) 2005-06-30 2007-01-18 Showa Denko Kk Plastic-worked article made from aluminum alloy, manufacturing method therefor, automotive parts, aging treatment furnace, and system for manufacturing plastic-worked article made from aluminum alloy
JP2008223108A (en) 2007-03-14 2008-09-25 Kobe Steel Ltd Forged material of aluminum alloy and manufacturing method therefor
JP2013177672A (en) 2012-02-02 2013-09-09 Kobe Steel Ltd Aluminum alloy forged material and method for producing the same
JP2015193903A (en) 2014-03-27 2015-11-05 株式会社神戸製鋼所 Aluminum alloy forging material and manufacturing method therefor
WO2016129127A1 (en) 2015-02-10 2016-08-18 昭和電工株式会社 Aluminum alloy plastic worked article, method for manufacturing same, and automobile component
JP2017179413A (en) 2016-03-28 2017-10-05 株式会社神戸製鋼所 Method for producing automobile aluminum alloy forged material
CN109136669A (en) 2018-11-13 2019-01-04 广东省材料与加工研究所 A kind of aluminum alloy forge piece and the preparation method and application thereof
JP2021127507A (en) 2020-02-14 2021-09-02 昭和電工株式会社 Manufacturing method of aluminum alloy forging material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144296A (en) 1998-08-25 2000-05-26 Kobe Steel Ltd High-strength and high-toughness aluminum alloy forged material
JP2007009273A (en) 2005-06-30 2007-01-18 Showa Denko Kk Plastic-worked article made from aluminum alloy, manufacturing method therefor, automotive parts, aging treatment furnace, and system for manufacturing plastic-worked article made from aluminum alloy
JP2008223108A (en) 2007-03-14 2008-09-25 Kobe Steel Ltd Forged material of aluminum alloy and manufacturing method therefor
JP2013177672A (en) 2012-02-02 2013-09-09 Kobe Steel Ltd Aluminum alloy forged material and method for producing the same
JP2015193903A (en) 2014-03-27 2015-11-05 株式会社神戸製鋼所 Aluminum alloy forging material and manufacturing method therefor
WO2016129127A1 (en) 2015-02-10 2016-08-18 昭和電工株式会社 Aluminum alloy plastic worked article, method for manufacturing same, and automobile component
JP2017179413A (en) 2016-03-28 2017-10-05 株式会社神戸製鋼所 Method for producing automobile aluminum alloy forged material
CN109136669A (en) 2018-11-13 2019-01-04 广东省材料与加工研究所 A kind of aluminum alloy forge piece and the preparation method and application thereof
JP2021127507A (en) 2020-02-14 2021-09-02 昭和電工株式会社 Manufacturing method of aluminum alloy forging material

Also Published As

Publication number Publication date
JP2021143372A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP7528474B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7647086B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7639270B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
TWI507532B (en) High strength aluminum magnesium silicon alloy and its manufacturing process
JP7528473B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7639321B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP2024088721A (en) Manufacturing method of aluminum alloy forging material
JP7528476B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7528475B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7639269B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7639271B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7571376B2 (en) Manufacturing method for Al-Mg-Si aluminum alloy forgings
JP7639318B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7647085B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7639319B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7643024B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7639320B2 (en) Aluminum alloy forgings and manufacturing method thereof
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JP7643025B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP7533746B2 (en) Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof
JP2024086591A (en) Aluminum alloy forging material, aluminum alloy forging product and its manufacturing method
JP2025000887A (en) Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof
JP2024085793A (en) Aluminum alloy forged product and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240708

R150 Certificate of patent or registration of utility model

Ref document number: 7528476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150