この発明に係る眼科装置、眼科装置の制御方法、及びプログラムの実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
実施形態に係る眼科装置は、干渉光学系を含み、光スキャナを用いて偏向された測定光で被検眼をスキャンし、得られた干渉光の検出結果に基づいて、撮影条件(計測条件)の調整を行う。干渉光学系は、光源からの光を測定光と参照光とに分割し、光スキャナを介して測定光を被検眼に照射し、被検眼からの測定光の戻り光と参照光との干渉光を検出する。光スキャナは、所定のスキャンパターン(偏向パターン)に従って測定光を偏向する。撮影条件の調整には、撮影部位の位置の調整、フォーカス調整、偏波調整、非点収差の補正がある
いくつかの実施形態では、干渉光学系は、非点収差補正光学部材(乱視補正部材)を含む。光スキャナは、干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に測定光を偏向する。いくつかの実施形態に係る光スキャナは、メリジオナル(meridional)方向及びサジタル(sagittal)方向に測定光を偏向する。メリジオナル方向は、干渉光学系の光軸を中心とする同心円方向である。サジタル方向は、干渉光学系の光軸を中心とする放射方向である。眼科装置は、光スキャナにより偏向された測定光で被検眼をスキャンすることにより得られた干渉光の検出結果に基づいて非点収差を補正する。
非点収差補正光学部材の例として、バリアブルクロスシリンダー(Variable Cross Cylinder:以下、VCC)レンズ、液晶レンズ、デフォーマブルミラー、アルバレツ(Alvarez)レンズなどが挙げられる。
これにより、ラスタスキャン(2以上のラインスキャン)の場合に比べて少ないスキャン回数で、上記の水平方向の情報と上記の垂直方向の情報とを取得することができる。従って、ラスタスキャンに要する時間より短い時間で、水平方向の情報と垂直方向の情報とを取得し、取得された水平方向の情報と垂直方向の情報とから非点収差を補正することができる。ここで、ラスタスキャンに要する時間は、例えば、複数のラインスキャンに要する時間と各ラインスキャンの間のフライバックに要する時間との和に相当する。すなわち、実施形態によれば、光源が高速化した場合でも、眼球の動き等の影響を受けることなく、非点収差を高精度に補正することが可能になる。
特に、干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に測定光を偏向するスキャンモードとしてサークルスキャンを採用することで、スキャン速度をスキャン領域全域でほぼ一定にすることができる。それにより、スキャン領域全域で均質なスキャン結果を取得することができ、均質なスキャン結果に基づいて非点収差を高精度に補正することが可能になる。また、対物レンズの頂点からの正反射の影響を受けにくくなるため、アーチファクトフリーなスキャン結果に基づいて非点収差を高精度に補正することが可能になる。
いくつかの実施形態では、干渉光学系は、測定光の焦点位置を変更可能な合焦位置変更部材を含む。眼科装置は、光スキャナを用いて偏向された測定光で被検眼をスキャンし、得られた干渉光の検出結果に基づいて合焦位置変更部材を制御する。測定光の偏向パターンは、任意のパターンであってよい。例えば、眼科装置は、干渉光学系の光軸に交差するライン方向に偏向された測定光、又は干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に偏向された測定光で被検眼をスキャンすることにより得られた干渉光の検出結果に基づいて合焦位置変更部材を制御する。
合焦位置変更部材としては、光軸に沿って移動可能なレンズ、液晶レンズ、アルバレツレンズなどがある。
いくつかの実施形態では、干渉光学系は、測定光と参照光との光路長差を変更する光路長変更部材を含む。眼科装置は、光スキャナを用いて偏向された測定光で被検眼をスキャンし、得られた干渉光の検出結果に基づいて光路長変更部材を制御する。測定光の偏向パターンは、任意のパターンであってよい。例えば、眼科装置は、干渉光学系の光軸に交差するライン方向に偏向された測定光、又は干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に偏向された測定光で被検眼をスキャンすることにより得られた干渉光の検出結果に基づいて光路長変更部材を制御する。
いくつかの実施形態では、干渉光学系は、測定光の偏波状態又は参照光の偏波状態を変更する偏波状態変更部材を含む。眼科装置は、光スキャナを用いて偏向された測定光で被検眼をスキャンし、得られた干渉光の検出結果に基づいて偏波状態変更部材を制御する。測定光の偏向パターンは、任意のパターンであってよい。例えば、眼科装置は、干渉光学系の光軸に交差するライン方向に偏向された測定光、又は干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に偏向された測定光で被検眼をスキャンすることにより得られた干渉光の検出結果に基づいて偏波状態変更部材を制御する。
実施形態に係る眼科装置の制御方法は、実施形態に係る眼科装置を制御するための方法である。実施形態に係るプログラムは、コンピュータに実施形態に係る眼科装置の制御方法の各ステップを実行させる。実施形態に係る記録媒体は、実施形態に係るプログラムを記録する。
以下の実施形態では、干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に測定光を偏向するためのスキャンモードとして、サークルスキャンを例に説明する。しなしながら、実施形態は、サークルスキャン以外のスキャンパターンで測定光を偏向する場合にも適用可能である。
実施形態に係る眼科装置は、例えば眼底や前眼部など、被検眼の任意の部位に対してOCTを実行することが可能である。この明細書では、OCTによって取得される画像をOCT画像と総称することがある。また、OCT画像を形成するための計測動作をOCT計測と呼ぶことがある。
以下、実施形態では、OCTを用いた計測又は撮影においてスウェプトソースタイプのOCTの手法を用いる場合について特に詳しく説明する。しかしながら、他のタイプ(例えば、スペクトラルドメインタイプ又はタイムドメインタイプ)のOCTを用いる眼科装置に対して、実施形態に係る構成を適用することも可能である。
[構成]
図1~図3に示すように、眼科装置1は、眼底カメラユニット2、OCTユニット100及び演算制御ユニット200を含む。眼底カメラユニット2は、従来の眼底カメラとほぼ同様の光学系を有する。OCTユニット100には、眼底(又は前眼部)のOCT画像を取得するための光学系が設けられている。演算制御ユニット200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。
〔眼底カメラユニット2〕
図1に示す眼底カメラユニット2には、被検眼Eの眼底Efの表面形態を表す2次元画像(眼底像)を取得するための光学系が設けられている。眼底像には、観察画像や撮影画像などが含まれる。観察画像は、例えば、近赤外光を用いて所定のフレームレートで形成されるモノクロの動画像である。撮影画像は、例えば、可視光をフラッシュ発光して得られるカラー画像、又は近赤外光若しくは可視光を照明光として用いたモノクロの静止画像であってもよい。眼底カメラユニット2は、これら以外の画像、例えばフルオレセイン蛍光画像やインドシアニングリーン蛍光画像や自発蛍光画像などを取得可能に構成されていてもよい。
眼底カメラユニット2には、被検者の顔を支持するための顎受けや額当てが設けられている。更に、眼底カメラユニット2には、照明光学系10と撮影光学系30が設けられている。照明光学系10は眼底Efに照明光を照射する。撮影光学系30は、この照明光の眼底反射光を撮像装置(CCDイメージセンサ(単にCCDと呼ぶことがある)35、38)に導く。また、撮影光学系30は、OCTユニット100からの測定光を眼底Efに導くとともに、眼底Efを経由した測定光をOCTユニット100に導く。
照明光学系10の観察光源11は、例えばハロゲンランプを含む。観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19及びリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー48を透過し、対物レンズ22により屈折されて眼底Efを照明する。なお、観察光源としてLED(Light Emitting Diode)を用いることも可能である。
観察照明光の眼底反射光は、対物レンズ22により屈折され、ダイクロイックミラー48を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、合焦レンズ31を経由し、ミラー32により反射される。更に、この眼底反射光は、ハーフミラー33Aを透過し、ダイクロイックミラー33により反射され、集光レンズ34によりCCDイメージセンサ35の受光面に結像される。CCDイメージセンサ35は、例えば所定のフレームレートで眼底反射光を検出する。表示装置3には、CCDイメージセンサ35により検出された眼底反射光に基づく画像(観察画像)が表示される。なお、撮影光学系30のピントが前眼部に合わせられている場合、被検眼Eの前眼部の観察画像が表示される。
撮影光源15は、例えばキセノンランプを含む。撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。撮影照明光の眼底反射光は、観察照明光のそれと同様の経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりCCDイメージセンサ38の受光面に結像される。表示装置3には、CCDイメージセンサ38により検出された眼底反射光に基づく画像(撮影画像)が表示される。なお、観察画像を表示する表示装置3と撮影画像を表示する表示装置3は、同一のものであってもよいし、異なるものであってもよい。また、被検眼Eを赤外光で照明して同様の撮影を行う場合には、赤外の撮影画像が表示される。また、撮影光源としてLEDを用いることも可能である。
LCD(Liquid Crystal Display)39は、固視標や視力測定用視標を表示する。固視標は被検眼Eを固視させるための視標であり、眼底撮影時やOCT計測時などに使用される。
LCD39から出力された光は、その一部がハーフミラー33Aにて反射され、ミラー32に反射され、合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過する。孔部を通過した光は、ダイクロイックミラー48を透過し、対物レンズ22により屈折されて眼底Efに投影される。
LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。被検眼Eの固視位置としては、例えば、従来の眼底カメラと同様に、眼底Efの黄斑部を中心とする画像を取得するための位置や、視神経乳頭を中心とする画像を取得するための位置や、黄斑部と視神経乳頭との間の眼底中心を中心とする画像を取得するための位置などがある。また、固視標の表示位置を任意に変更することも可能である。
更に、眼底カメラユニット2には、従来の眼底カメラと同様にアライメント光学系50とフォーカス光学系60が設けられている。アライメント光学系50は、被検眼Eに対する装置光学系の位置合わせ(アライメント)を行うための視標(アライメント視標)を生成する。フォーカス光学系60は、眼底Efに対してフォーカス(ピント)を合わせるための視標(スプリット視標)を生成する。
アライメント光学系50のLED51から出力された光(アライメント光)は、絞り52、53及びリレーレンズ54を経由してダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過する。孔部を通過した光は、ダイクロイックミラー48を透過し、対物レンズ22により被検眼Eの角膜に投影される。
アライメント光の角膜反射光は、対物レンズ22、ダイクロイックミラー48及び上記孔部を経由し、その一部がダイクロイックミラー55を透過し、合焦レンズ31を通過し、ミラー32により反射され、ハーフミラー33Aを透過する。ハーフミラー33Aを透過した角膜反射光は、ダイクロイックミラー33に反射され、集光レンズ34によりCCDイメージセンサ35の受光面に投影される。CCDイメージセンサ35による受光像(アライメント視標)は、観察画像とともに表示装置3に表示される。ユーザは、従来の眼底カメラと同様の操作を行ってアライメントを実施する。また、演算制御ユニット200がアライメント視標の位置を解析して光学系を移動させることによりアライメントを行ってもよい(オートアライメント機能)。
フォーカス調整を行う際には、照明光学系10の光路上に反射棒67の反射面が斜設される。フォーカス光学系60のLED61から出力された光(フォーカス光)は、リレーレンズ62を通過し、スプリット視標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65により反射される。ミラー65により反射された光は、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー48を透過し、対物レンズ22により屈折されて眼底Efに投影される。
フォーカス光の眼底反射光は、アライメント光の角膜反射光と同様の経路を通ってCCDイメージセンサ35により検出される。CCDイメージセンサ35による受光像(スプリット視標)は、観察画像とともに表示装置3に表示される。演算制御ユニット200は、従来と同様に、スプリット視標の位置を解析して合焦レンズ31及びフォーカス光学系60を移動させてピント合わせを行う(オートフォーカス機能)。また、スプリット視標を視認しつつ手動でピント合わせを行ってもよい。
ダイクロイックミラー48は、眼底撮影用の光路からOCT計測用の光路を分岐させている。ダイクロイックミラー48は、OCT計測に用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。このOCT計測用の光路には、OCTユニット100側から順に、コリメートレンズユニット40と、光路長変更部41と、光スキャナ42と、コリメートレンズ43と、ミラー44と、OCT合焦レンズ45と、フィールドレンズ46と、バリアブルクロスシリンダー(Variable Cross Cylinder:以下、VCC)レンズ47とが設けられている。
光路長変更部41は、図1に示す矢印の方向に移動可能に構成され、OCT計測用の光路の光路長を変更する。この光路長の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部41は、例えばコーナーキューブと、これを移動する機構とを含んで構成される。
光スキャナ42は、被検眼の瞳孔と光学的に共役な位置(瞳孔共役位置)又はその近傍に配置されている。光スキャナ42は、OCT計測用の光路を通過する光(測定光)の進行方向を変更する。光スキャナ42は、後述の演算制御ユニット200からの制御を受け、測定光を1次元的又は2次元的に偏向することができる。
光スキャナ42は、例えば、第1ガルバノミラーと、第2ガルバノミラーと、これらを独立に駆動する機構とを含む。第1ガルバノミラーは、OCT光学系8の光軸に直交する水平方向(x方向)に撮影部位(眼底Ef又は前眼部)をスキャンするように測定光LSを偏向する。x方向は、干渉光学系の光軸に垂直な平面における水平方向である。第2ガルバノミラーは、OCT光学系8の光軸に直交する垂直方向(y方向)に撮影部位をスキャンするように、第1ガルバノミラーにより偏向された測定光LSを偏向する。y方向は、干渉光学系の光軸に垂直な平面における垂直方向である。それにより、撮影部位を測定光LSでxy平面上の任意の方向に走査することができる。
例えば、光スキャナ42に含まれる第1ガルバノミラーの向きと第2ガルバノミラーの向きを同時に制御することで、xy面上の任意の軌跡に沿って測定光の照射位置を移動刺させることが可能である。それにより、所望のスキャンパターンに従って撮影部位のスキャンを行うことができる。
OCT合焦レンズ45は、測定光LSの光路(干渉光学系の光軸)に沿って移動可能である。OCT合焦レンズ45は、後述の演算制御ユニット200からの制御を受け、測定光LSの光路に沿って移動する。
いくつかの実施形態では、OCT合焦レンズ45に代えて液晶レンズ又はアルバレツレンズが設けられる。液晶レンズ又はアルバレツレンズは、OCT合焦レンズ45と同様に、演算制御ユニット200により制御される。
VCCレンズ47は、測定光の光路に配置され、円柱度数(乱視度数)及び円柱軸角度(乱視軸角度)の少なくとも1つを変更する。VCCレンズ47は、対向配置された2つの円柱レンズ(光学素子)を有し、2つの円柱レンズの軸方向の少なくとも1つを変更することにより円柱度数及び円柱軸角度の少なくとも1つを変更するように構成されている。実施形態では、2つの円柱レンズのそれぞれは、2つの軸方向が相対的に変更されるように独立に回動可能に構成される。また、2つの円柱レンズは、2つの軸方向のなす角を維持した状態で一体的に回動可能に構成される。
VCCレンズ47は、被検眼の瞳孔と光学的に共役な位置(瞳共役位置)又はその近傍に配置される。実施形態では、光スキャナ42が被検眼の瞳孔と光学的に共役な位置に配置されているため、VCCレンズ47は、被検眼の瞳孔と光学的に共役な位置の近傍に配置されている。
被検眼Eの乱視度数の補正を目的とする場合、VCCレンズ47が瞳共役位置の近傍に配置されていても、瞳共役位置に対するVCCレンズ47の配置位置のずれが、VCCレンズ47により変更される円柱度数や円柱軸角度に及ぼす影響は少ないと考えてよい。
被検眼Eの検眼データ(他覚測定値、又は自覚検査値)に基づいてVCCレンズ47が制御される場合、当該検眼データは、主に被検眼Eの中心窩における測定値である。しかしながら、瞳共役位置に対するVCCレンズ47の配置位置のずれがVCCレンズ47により変更される円柱度数や円柱軸角度に及ぼす影響は少ないと考えてよい。従って、撮影部位が中心窩と異なる部位である場合でも、VCCレンズ47が瞳共役位置の近傍に配置されていてもよい。
このようなVCCレンズ47は、例えば図3に示すように、パワーが等しく、且つ、符号が互いに異なる円柱レンズ471、472(焦点距離f0、-f0)を含んで構成されている。円柱レンズ471(VCC1)は、凸状の面(正の度数)を有し、測定光LSの光路(干渉光学系の光軸SO)を中心に回動方向dr1に回動可能に設けられる。円柱レンズ472(VCC2)は、凹状の面(負の度数)を有し、光軸SOを中心に回動方向dr2に回動可能に設けられる。円柱レンズ471、472は、パルスモータ等の駆動装置により駆動され、光軸SOを中心にそれぞれ独立に回動される。円柱レンズ471、472が互いに逆方向に回転されると円柱度数が変更され、同じ方向に一体的に回転されると円柱軸角度が変更される。
例えば、円柱レンズ471、472の円柱軸角度を光軸SOに対して所定角度(例えば45度)傾けた状態から、円柱レンズ471、472を互いに逆方向に回動させることにより、任意の円柱度数を発生させることができる。また、円柱レンズ471、472を同じ方向に一体的に回動させることにより、任意の円柱軸角度を発生させることができる。
〔OCTユニット100〕
図2を参照しつつOCTユニット100の構成の一例を説明する。OCTユニット100には、眼底EfのOCT画像を取得するための光学系が設けられている。この光学系は、従来のスウェプトソースタイプのOCT装置と同様の構成を有する。すなわち、この光学系は、波長走査型(波長掃引型)光源からの光を測定光と参照光とに分割し、眼底Efを経由した測定光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光を検出する干渉光学系である。干渉光学系における干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す信号であり、演算制御ユニット200に送られる。
光源ユニット101は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を走査(掃引)可能な波長走査型(波長掃引型)光源を含んで構成される。光源ユニット101は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。
光源ユニット101から出力された光L0は、光ファイバー102により偏波コントローラ103に導かれてその偏波状態(偏光状態)が調整される。偏波コントローラ103は、例えばループ状にされた光ファイバー102に対して外部から応力を与えることで、光ファイバー102内を導かれる光L0の偏波状態を調整する。
偏波コントローラ103により偏波状態が調整された光L0は、光ファイバー104によりファイバーカプラ105に導かれて測定光LSと参照光LRとに分割される。
参照光LRは、光ファイバー110によりコリメータ111に導かれて平行光束となる。平行光束となった参照光LRは、光路長補正部材112及び分散補償部材113を経由し、コーナーキューブ114に導かれる。光路長補正部材112は、参照光LRと測定光LSの光路長(光学距離)を合わせるための遅延手段として作用する。分散補償部材113は、参照光LRと測定光LSの分散特性を合わせるための分散補償手段として作用する。
コーナーキューブ114は、コリメータ111により平行光束となった参照光LRの進行方向を逆方向に折り返す。コーナーキューブ114に入射する参照光LRの光路と、コーナーキューブ114から出射する参照光LRの光路とは平行である。また、コーナーキューブ114は、参照光LRの入射光路及び出射光路に沿う方向に移動可能とされている。この移動により参照光LRの光路(参照光路)の長さが変更される。
コーナーキューブ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換されて光ファイバー117に入射する。光ファイバー117に入射した参照光LRは、偏波コントローラ118に導かれて参照光LRの偏波状態が調整される。
偏波コントローラ118は、例えば、偏波コントローラ103と同様の構成を有する。偏波コントローラ118により偏波状態が調整された参照光LRは、光ファイバー119によりアッテネータ120に導かれて、演算制御ユニット200の制御の下で光量が調整される。アッテネータ120により光量が調整された参照光LRは、光ファイバー121によりファイバーカプラ122に導かれる。
ファイバーカプラ105により生成された測定光LSは、光ファイバー127により導かれ、コリメートレンズユニット40により平行光束とされる。平行光束にされた測定光LSは、光路長変更部41、VCCレンズ47、光スキャナ42、コリメートレンズ43、ミラー44、OCT合焦レンズ45、フィールドレンズ46、及びVCCレンズ47を経由してダイクロイックミラー48に到達する。そして、測定光LSは、ダイクロイックミラー48により反射され、対物レンズ22により屈折されて眼底Efに照射される。測定光LSは、眼底Efの様々な深さ位置において散乱(反射を含む)される。眼底Efによる測定光LSの後方散乱光は、往路と同じ経路を逆向きに進行してファイバーカプラ105に導かれ、光ファイバー128を経由してファイバーカプラ122に到達する。
ファイバーカプラ122は、光ファイバー128を介して入射された測定光LSと、光ファイバー121を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバーカプラ122は、所定の分岐比(例えば1:1)で、測定光LSと参照光LRとの干渉光を分岐することにより、一対の干渉光LCを生成する。ファイバーカプラ122から出射した一対の干渉光LCは、それぞれ光ファイバー123、124により検出器125に導かれる。
検出器125は、例えば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを有し、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode)である。検出器125は、その検出結果(検出信号)を演算制御ユニット200に送る。演算制御ユニット200は、例えば一連の波長走査毎に(Aライン毎に)、検出器125により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことで断層像を形成する。演算制御ユニット200は、形成された画像を表示装置3に表示させる。
実施形態ではマイケルソン型の干渉計を採用しているが、例えばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。実施形態では、干渉光学系は、図2に示す構成に加えて、図1に示すコリメートレンズユニット40、光路長変更部41、光スキャナ42、コリメートレンズ43、ミラー44、OCT合焦レンズ45、フィールドレンズ46、VCCレンズ47を含んでもよい。この干渉光学系は、この実施形態に係る「干渉光学系」の一例である。VCCレンズ47(及びVCC駆動部47A)は、実施形態に係る「非点収差補正光学部材」の一例である。OCT合焦レンズ45(及びOCT合焦駆動部45A)は、実施形態に係る「合焦位置変更部材」の一例である。光路長変更部41及びコーナーキューブ114(及び参照駆動部114A)の少なくとも1つは、実施形態に係る「光路長変更部材」の一例である。偏波コントローラ103、118の少なくとも1つは、実施形態に係る「偏波状態変更部材」の一例である。表示制御部211Cは、実施形態に係る「第1表示制御部」、「第2表示制御部」、又は「第3表示制御部」の一例である。
〔演算制御ユニット200〕
演算制御ユニット200の構成について説明する。
図4及び図5に、実施形態に係る眼科装置1の処理系の構成例のブロック図を示す。図5は、図4の解析部231の構成例の機能ブロック図である。図4において、図1又は図2と同様の部分には同一符号を付し、適宜説明を省略する。
演算制御ユニット200は、検出器125から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のスウェプトソースタイプのOCT装置と同様である。
図4に示すように、演算制御ユニット200は、制御部210を含み、眼底カメラユニット2、表示装置3及びOCTユニット100の各部を制御する。例えば、演算制御ユニット200は、眼底EfのOCT画像(断層像、3次元画像)を形成し、形成されたOCT画像を表示装置3に表示させる。
眼底カメラユニット2の制御として、観察光源11、撮影光源15及びLED51、61の動作制御、LCD39の動作制御、合焦レンズ31の移動制御、OCT合焦レンズ45の移動制御、反射棒67の移動制御、フォーカス光学系60の移動制御、光路長変更部41の移動制御、VCCレンズ47の駆動制御、光スキャナ42の動作制御などがある。
OCTユニット100の制御として、光源ユニット101の動作制御、コーナーキューブ114の移動制御、検出器125の動作制御、アッテネータ120の動作制御、偏波コントローラ103、118の動作制御などがある。
演算制御ユニット200は、例えば、従来のコンピュータと同様に、プロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスクドライブ、通信インターフェイスなどを含んで構成される。ハードディスクドライブ等の記憶装置には、眼科装置1を制御するためのコンピュータプログラムが記憶されている。演算制御ユニット200は、各種の回路基板、例えばOCT画像を形成するための回路基板を備えていてもよい。また、演算制御ユニット200は、キーボードやマウス等の操作デバイス(入力デバイス)や、LCD等の表示デバイスを備えていてもよい。
プロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を含む。プロセッサは、例えば、記憶回路又は記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。記憶回路又は記憶装置がプロセッサに含まれていてよい。また、記憶回路又は記憶装置がプロセッサの外部に設けられていてよい。いくつかの実施形態では、演算制御ユニット200の機能は、1以上のプロセッサにより実現される。
眼底カメラユニット2、表示装置3、OCTユニット100及び演算制御ユニット200は、一体的に(つまり単一の筺体内に)構成されていてもよいし、2つ以上の筐体に別れて構成されていてもよい。
制御部210は、主制御部211と、記憶部212とを含む。
(主制御部211)
主制御部211は、前述の眼科装置1の各部に制御信号を出力することにより各種制御を行う。特に、主制御部211は、眼底カメラユニット2に対して、CCDイメージセンサ35、38、LCD39、合焦駆動部31A、光路長変更部41、光スキャナ42、OCT合焦駆動部45A、及びVCC駆動部47Aを制御する。更に、主制御部211は、OCTユニット100に対して、光源ユニット101、参照駆動部114A、偏波コントローラ103、118、アッテネータ120、検出器125を制御する。
主制御部211は、CCDイメージセンサ35又はCCDイメージセンサ38の露光時間(電荷蓄積時間)、感度、フレームレート等を制御する。いくつかの実施形態では、主制御部211は、所望の画質の画像を取得するようにCCDイメージセンサ35又はCCDイメージセンサ38を制御する。
主制御部211は、LCD39に対して固視標や視力測定用視標の表示制御を行う。それにより、被検眼Eに呈示される視標が切り替えられたり、視標の種別が変更されたりする。また、LCD39における視標の表示位置を変更することにより、被検眼Eに対する視標呈示位置を変更することが可能である。
合焦駆動部31Aは、合焦レンズ31を光軸方向に移動する。主制御部211は、合焦レンズ31が所望の合焦位置に配置されるように合焦駆動部31Aを制御する。それにより、撮影光学系30の合焦位置が変更される。
例えば、主制御部211は、CCDイメージセンサ35により得られた受光像(スプリット視標)におけるスプリット視標の位置を解析して、合焦駆動部31A及びフォーカス光学系60を制御する。或いは、例えば、主制御部211は、被検眼Eのライブ画像を後述の表示部240Aに表示させながら、後述の操作部240Bに対してユーザが行った操作に応じて合焦駆動部31A及びフォーカス光学系60を制御する。
主制御部211は、光路長変更部41を制御することにより測定光LSの光路長を変更する。それにより、測定光LSの光路長と参照光LRの光路長との差が変更される。
例えば、主制御部211は、OCT計測により得られた干渉光LCの検出結果(又は当該検出結果に基づいて形成されたOCT画像)を解析し、計測部位が所望の深さ位置になるように光路長変更部41を制御する。
主制御部211(後述の光スキャナ制御部211A)は、光スキャナ42を制御する。主制御部211は、事前に設定されたスキャンモードに対応した偏向パターンに従って測定光LSを偏向するように光スキャナ42を制御する。
このようなスキャンモードの例として、ラインスキャン、十字スキャン、サークルスキャン、ラジアルスキャン、同心円スキャン、マルチラインクロススキャン、らせん状スキャン、リサジュー(Lissajous)スキャン、3次元スキャンなどが挙げられる。
ラインスキャンは、撮影部位(計測部位)における測定光LSの照射位置の移動軌跡がライン状になるように測定光LSを偏向するスキャンモードである。移動軌跡のライン方向は、xy平面上において光軸を中心に変更可能(回転可能)である。
例えば、ラインスキャンは、水平スキャンと、垂直スキャンとを含む。水平スキャンは、測定光LSの照射位置の移動軌跡が水平方向(x方向)になるように測定光LSを偏向するスキャンモードである。水平スキャンには、垂直方向(y方向)に配列された複数の水平方向に延びるスキャンラインに沿って測定光LSを走査させる態様も含まれる。この態様においては、スキャンラインの間隔を任意に設定することが可能である。また、隣接するスキャンラインの間隔を十分に狭くすることにより、3次元画像を形成することができる(3次元スキャン)。垂直スキャンについても同様である。
十字スキャンは、撮影部位(計測部位)における測定光LSの照射位置の移動軌跡が十字状になるように測定光LSを偏向するスキャンモードである。例えば、ライン方向が互いに交差する2つのラインスキャンを実行することにより十字スキャンを実行することができる。2つのラインスキャンが交差する角度は、変更可能である。いくつかの実施形態では、2つのラインスキャンにおけるBスキャン方向のスキャン長は同一である。いくつかの実施形態では、2つのラインスキャンにおけるBスキャン方向のスキャン長は異なる。
サークルスキャンは、撮影部位(計測部位)における測定光LSの照射位置の移動軌跡が、例えば光軸SOを中心にサークル状になるように測定光LSを偏向するスキャンモードである。例えば、サークスキャンでは、移動軌跡が真円、楕円、又は円弧状(円周の一部)になるように測定光LSが偏向される。
ラジアルスキャンは、撮影部位(計測部位)における測定光LSの照射位置の移動軌跡が、例えば光軸SOを中心に放射状になるように測定光LSを偏向するスキャンモードである。ラジアルスキャンでは、所定の角度を介して配列された複数の直線軌跡からなる放射状の軌跡に沿って測定光LSの照射位置が移動される。上記の十字スキャンは、ラジアルスキャンの1つの態様である。
例えば、ラジアルスキャンでは、Bスキャン方向が互いに異なる2以上のラインスキャンが実行される。いくつかの実施形態では、2以上のラインスキャンにおけるBスキャン方向のスキャン長は、同一である。いくつかの実施形態では、2以上のラインスキャンの少なくとも1つにおけるBスキャン方向のスキャン長は、他のスキャン長と異なる。
同心円スキャンは、撮影部位(計測部位)における測定光LSの照射位置の移動軌跡が、例えば光軸SOを中心に同心円状になるように測定光LSを偏向するスキャンモードである。例えば、同心円スキャンでは、各円の移動軌跡が真円、楕円、又は円弧状(円周の一部)になるように測定光LSが偏向される。いくつかの実施形態に係る同心円スキャンでは、互いに径が異なる複数のサークルスキャンを組み合わせて実行される。サークルスキャンは、同心円スキャンの1つの態様である。
マルチラインクロススキャンは、互いに平行な水平スキャンライン群(例えば、5本)と互いに平行な垂直スキャンライン群(例えば、5本)とが双方のスキャンライン群の中央位置付近にて直交するように配列されたスキャンパターンである。
例えば、マルチラインクロススキャンにおける各スキャンライン群では、2以上のラインスキャンが実行される。いくつかの実施形態では、2以上のラインスキャンにおけるBスキャン方向のスキャン長は、同一である。いくつかの実施形態では、2以上のラインスキャンの少なくとも1つにおけるBスキャン方向のスキャン長は、他のスキャン長と異なる。
らせん状スキャンは、撮影部位(計測部位)における測定光LSの照射位置の移動軌跡が、例えば光軸SOを中心にらせん状になるように測定光LSを偏向するスキャンモードである。らせん状スキャンでは、回転半径を次第に小さく(又は大きく)させながら螺旋状の軌跡に沿って測定光LSの照射位置を移動させる。
リサジュースキャンは、撮影部位(計測部位)における測定光LSの照射位置の移動軌跡が、リサジュー曲線に沿うように測定光LSを偏向するスキャンモードである。リサジュースキャンについては、例えば、特開2018-68578号公報に開示されている。
上記のスキャンモードのうち干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に測定光LSを偏向するスキャンモードの例として、サークルスキャン、ラジアルスキャン、同心円スキャン、マルチラインクロススキャン、らせん状スキャン、リサジュースキャン、3次元スキャンなどが挙げられる。
上記のようなスキャンモードに対応した偏向パターンに従って測定光LSで撮影部位をスキャンすることにより、スキャンライン(スキャン軌跡)に沿う方向と眼底深度方向(z方向)とにより張られる面における断層像を取得することができる。
上記のような測定光LSのスキャン対象となる被検眼Eにおける領域、つまりOCT撮影の対象となる被検眼Eにおける領域をスキャン領域と呼ぶ。例えば、3次元スキャンにおけるスキャン領域は、複数の水平スキャンが配列された矩形の領域である。例えば、同心円スキャンにおけるスキャン領域は、最大径の円スキャンの軌跡により囲まれる円盤状の領域である。また、ラジアルスキャンにおけるスキャン領域は、各スキャンラインの両端位置を結んだ円盤状(或いは多角形状)の領域である。
OCT合焦駆動部45Aは、測定光LSの光軸SOに沿ってOCT合焦レンズ45を移動する。主制御部211は、OCT合焦レンズ45が所望の合焦位置に配置されるようにOCT合焦駆動部45Aを制御する。それにより、測定光LSの合焦位置が変更される。測定光LSの合焦位置は、測定光LSのビームウェストの深さ位置(z位置)に相当する。
例えば、主制御部211は、OCT計測により得られた干渉光LCの検出結果の信号対雑音比、又は当該検出結果に基づいて形成されたOCT画像の画質に対応した評価値(評価値の統計値を含む)に基づいてOCT合焦駆動部45Aを制御する。
OCT合焦レンズ45に代えて液晶レンズ又はアルバレツレンズが設けられる場合、主制御部211は、OCT合焦駆動部45Aに対する制御と同様に、液晶レンズ又はアルバレツレンズを制御することが可能である。
VCC駆動部47Aは、測定光LSの光軸SOを中心に円柱レンズ471、472を互いに独立に回動させる。それにより、円柱度数及び円柱軸角度の少なくとも1つが変更される。
例えば、主制御部211は、OCT計測により得られた干渉光LCの検出結果の信号対雑音比、又は当該検出結果に基づいて形成されたOCT画像の画質に対応した評価値(評価値の統計値を含む)に基づいてVCC駆動部47Aを制御する。具体的には、主制御部211は、サークルスキャンに対応した偏向パターンに従って測定光LSを偏向することにより得られた干渉光LCの検出結果の信号対雑音比、又は当該検出結果に基づいて形成されたOCT画像の画質に対応した評価値(評価値の統計値を含む)に基づいてVCC駆動部47Aを制御する。
VCCレンズ47に代えて、液晶レンズ、デフォーマブルミラー、又はアルバレツレンズが設けられる場合、主制御部211は、VCC駆動部47Aと同様に、液晶レンズ、デフォーマブルミラー、又はアルバレツレンズを制御することが可能である。
主制御部211は、光源ユニット101を制御する。光源ユニット101の制御には、光源の点灯と消灯の切り替え、出射光の強度制御、出射光の中心周波数の変更、出射光の掃引速度の変更、掃引周波数の変更、掃引波長範囲の変更などが含まれる。
参照駆動部114Aは、参照光の光路に設けられたコーナーキューブ114を、この光路に沿って移動する。それにより、測定光LSの光路長と参照光LRの光路長との差が変更される。
例えば、主制御部211は、OCT計測により得られた干渉光LCの検出結果(又は当該検出結果に基づいて形成されたOCT画像)を解析し、計測部位が所望の深さ位置になるように参照駆動部114Aを制御する。いくつかの実施形態では、光路長変更部41と参照駆動部114Aのいずれか一方だけが設けられる。
主制御部211は、偏波コントローラ103、118を制御する。例えば、主制御部211は、OCT計測により得られた干渉光LCの検出結果の信号対雑音比、又は当該検出結果に基づいて形成されたOCT画像の画質に対応した評価値(評価値の統計値を含む)に基づいて偏波コントローラ103、118を制御する。
主制御部211は、アッテネータ120を制御する。例えば、主制御部211は、OCT計測により得られた干渉光LCの検出結果の信号対雑音比、又は当該検出結果に基づいて形成されたOCT画像の画質に対応した評価値(評価値の統計値を含む)に基づいてアッテネータ120を制御する。
主制御部211は、検出器125を制御する。検出器125の制御には、露光時間(電荷蓄積時間)、感度、フレームレート等の制御がある。
移動機構150は、被検眼Eに対して眼底カメラユニット2(OCTユニット100)を3次元的に相対的に移動する。例えば、主制御部211は、移動機構150を制御して、眼底カメラユニット2に設けられた光学系を3次元的に移動させることができる。この制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとピント合わせが実行される。トラッキングは、被検眼Eを動画撮影して得られる画像に基づき被検眼Eの位置や向きに合わせて装置光学系をリアルタイムで移動させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。
いくつかの実施形態では、主制御部211(後述の光スキャナ制御部211A)は、トラッキング制御により得られたトラッキング情報(被検眼Eの移動に対して光学系(干渉光学系)を追従することにより得られたトラッキング情報)に基づいて、OCT撮影のためのスキャン範囲(第2スキャン範囲)の位置をリアルタイムに補正する。主制御部211は、補正されたスキャン範囲を測定光LSでスキャンするように光スキャナ42を制御することが可能である。
また、主制御部211(後述の表示制御部211C)は、各種情報を表示装置3(又は後述の表示部240A)に表示させる。表示装置3に表示される情報には、撮影結果(観察画像、OCT画像(第2スキャン範囲を測定光LSでスキャンすることにより得られた干渉光LCの検出結果に基づいて形成された被検眼の画像)、測定結果(測定値)、後述する撮影条件の変更結果を表す情報などがある。
実施形態では、本撮影(本計測)の前に、仮撮影(仮計測)が実行される。仮撮影において取得された干渉光LCの検出結果又は当該検出結果から形成されたOCT画像に基づいて、本撮影のための撮影条件が調整される。
図4に示すように、主制御部211は、光スキャナ制御部211Aと、補正制御部211Bと、表示制御部211Cとを含む。
光スキャナ制御部211Aは、上記のように、事前に設定されたスキャンモードに対応した偏向パターンに従って測定光LSを偏向するように光スキャナ42を制御する。光スキャナ制御部211Aは、仮撮影において、本撮影で実行されるスキャンモードと異なるスキャンモードに従って光スキャナ42を制御することが可能である。例えば、光スキャナ制御部211Aは、仮撮影において、本撮影における測定光LSの偏向方向と異なる偏向方向に測定光LSを偏向するように光スキャナ42を制御することが可能である。いくつかの実施形態では、光スキャナ制御部211Aは、仮撮影において、調整対象毎に異なるスキャンモードに従って光スキャナ42を制御する。
補正制御部211Bは、干渉光LCの検出結果又は当該検出結果から形成されたOCT画像に基づいて眼科装置1の各部を制御することにより、撮影条件を変更する。補正制御部211Bは、少なくともVCCレンズ47、光路長変更部41、参照駆動部114A、偏波コントローラ103、118の少なくとも1つを制御することによりOCT撮影の撮影条件を変更する。
表示制御部211Cは、上記のような表示装置3に対する表示制御に加えて、補正制御部211Bによる制御結果を表示装置3に表示させることが可能である。
また、主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。
(記憶部212)
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、例えば、OCT画像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部212には、外部の装置(例えば、レフラクトメータや自覚検眼装置)によりあらかじめ取得された検眼データや、眼科装置1を動作させるための各種プログラムやデータが記憶されている。検眼データは、被検眼の乱視度数、及び乱視軸角度を含む。検眼データは、更に被検眼の球面度数を含んでもよい。検眼データは、被検眼の球面度数、乱視度数、及び乱視軸角度の少なくとも1つを含んでもよい。
記憶部212に記憶された上記のデータの少なくとも一部は、眼科装置1の外部に設けられた記憶部に記憶されていてもよい。例えば、眼科装置1は、院内LAN(Local Area Network)等のネットワークを介して、上記のデータの少なくとも一部を記憶する機能を有するサーバ装置と通信可能に接続される。ここで、眼科装置1とサーバ装置は、インターネット等のWAN(WideAreaNetwork)を介して接続されていてもよい。また、LANとWANとを組み合わせたネットワークを介して眼科装置1とサーバ装置を接続してもよい。
(画像形成部220)
画像形成部220は、検出器125からの検出信号(干渉信号)に基づいて、眼底Efの断層像の画像データを形成する。すなわち、画像形成部220は、干渉光学系による干渉光LCの検出結果に基づいて被検眼Eの画像を形成する。この処理には、従来のスウェプトソースタイプの光コヒーレンストモグラフィと同様に、ノイズ除去(ノイズ低減)、フィルター処理、FFT(Fast Fourier Transform)などの処理が含まれている。このようにして取得される画像データは、複数のAライン(被検眼E内における各測定光LSの経路)における反射強度プロファイルを画像化することにより形成された一群の画像データを含むデータセットである。
画質を向上させるために、同じパターンでのスキャンを複数回繰り返して収集された複数のデータセットを重ね合わせる(加算平均する)ことができる。
画像形成部220は、例えば、前述の回路基板を含んで構成される。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。また、眼底Efの部位とその画像とを同一視することもある。
(データ処理部230)
データ処理部230は、干渉光LCの検出結果、又は画像形成部220により形成された画像に対して各種のデータ処理(画像処理)や解析処理を施す。例えば、データ処理部230は、干渉信号の信号対雑音比の解析、画像の輝度補正、分散補正等の各種補正処理を実行する。
また、データ処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して各種の画像処理や解析処理を施す。
データ処理部230は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行して、眼底Efの3次元画像の画像データを形成する。なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、データ処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240A等の表示デバイスには、この擬似的な3次元画像が表示される。
また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。
データ処理部230は、眼底像とOCT画像との位置合わせを行うことができる。眼底像とOCT画像とが並行して取得される場合には、双方の光学系が同軸であることから、(ほぼ)同時に取得された眼底像とOCT画像とを、撮影光学系30の光軸を基準として位置合わせすることができる。また、眼底像とOCT画像との取得タイミングに関わらず、OCT画像をxy平面に投影して得られる画像と眼底像との位置合わせをすることにより、そのOCT画像とその眼底像とを位置合わせすることも可能である。この位置合わせ手法は、眼底像取得用の光学系とOCT計測用の光学系とが同軸でない場合においても適用可能である。また、双方の光学系が同軸でない場合であっても、双方の光学系の相対的な位置関係が既知であれば、この相対位置関係を参照して同軸の場合と同様の位置合わせを実行することが可能である。
(解析部231)
データ処理部230は、上記の解析処理を行う解析部231を含む。解析部231は、少なくとも、干渉光LCの検出結果又は画像形成部220により形成された断層像を解析し、断層像の画質(信号対雑音比)に対応した評価値(評価値の統計値を含む)を解析結果として出力する。主制御部211(補正制御部211B)は、解析部231により得られた解析結果に基づいてVCCレンズ47、OCT合焦駆動部45A、光路長変更部41、偏波コントローラ103、118の少なくとも1つを制御することが可能である。特に、サークルスキャンに対応した偏向パターンに従って測定光LSを偏向することにより取得された干渉光LCの検出結果又は当該検出結果に基づいて形成された断層像を解析部231の解析対象とすることで、光源が高速化した場合でも、眼球の動き等の影響を受けることなく、撮影条件を高精度に調整することが可能になる。
解析部231は、図5に示すように、画像分割部231Aと、画像評価部231Bとを含む。
(画像分割部231A)
画像分割部231Aは、画像形成部220により形成された断層像をAスキャン方向に交差する方向に分割することにより複数の分割画像を生成する。いくつかの実施形態では、画像分割部231Aは、断層像をBスキャン方向(又はAスキャン方向に直交する方向)に分割することにより複数の分割画像を生成する。いくつかの実施形態では、画像分割部231Aは、被検眼Eの瞳孔に相当する位置におけるスキャン中心位置を中心とする扇形の径方向に交差する方向に分割することにより複数の分割画像を生成する。複数の分割画像の形状又はサイズは同一であってもよいし、異なっていてもよい。
図6、図7A、及び図7Bに、実施形態に係る画像分割部231Aの動作説明図を示す。図6は、サークルスキャンにより得られた断層像IMGをn(nは1以上。nは4以上が好ましい)分割して得られた分割画像DP1~DPnを表す。図7A及び図7Bは、画像分割部231Aがサークルスキャンにより得られた断層像を8分割する例を模式的に表したものである。図7A及び図7Bは、スキャン開始位置Stを起点に開始されるサークルスキャンによる測定光LSの照射位置の移動軌跡を模式的に表す。
断層像IMGでは、1024個のAスキャン画像がBスキャン方向(Aスキャン方向の直交する方向)に配列される。画像分割部231Aは、例えば、断層像IMGをBスキャン方向にn分割して、分割画像DP1~DPnを生成する。図6では、耳側T(Temporal)、上方S(Superior)、鼻側N(Nasal)、下方I(Inferior)、及び耳側Tの順序で移動するサークルスキャン方向に、分割画像DP1~DPnが生成される。分割画像DP1~DPnのそれぞれのBスキャン方向の幅は、同一であってもよいし、同一でなくてもよい。
例えば、図7Aでは、分割画像の境界線の少なくとも1つの向きが水平方向(x方向)又は垂直方向(y方向)になるように断層像が分割される。これに対して、図7Bでは、分割画像の境界線の向きが水平方向及び垂直方向に一致しないように断層像が分割される。例えば、図7Bに示すようにサークルスキャンのスキャン開始位置Stを変更することで、スキャン開始位置StにおけるAスキャンラインを基準に、断層像を8分割することができる。或いは、スキャン開始位置Stを変更することなく、断層像の分割位置を変更することで、図7Bに示すように断層像を8分割することができる。
図7Bに示すように、分割画像の境界線の向きが水平方向及び垂直方向に一致しないように断層像を分割することで、乱視度数及び乱視軸角度に関して垂直方向と水平方向とで画質の差が大きくなる確率が高いことを利用して、分割画像の画質の変化に対する評価値の感度を向上させることができる。それにより、撮影条件を高精度に調整することができるようになる。
いくつかの実施形態では、画像分割部231Aは、断層像を偶数個に分割する。それにより、後述の画像評価部231Bは、撮影部位におけるサークルスキャンの中心位置を基準として点対称の分割画像の対称性に基づいて画質を評価することが可能である。
(画像評価部231B)
画像評価部231Bは、画像分割部231Aにより生成された複数の分割画像のそれぞれについて解析処理を施し、得られた解析結果に対応する評価値を算出する。すなわち、画像評価部231Bは、複数の分割画像に対して複数の評価値を算出する。
画像評価部231Bは、画質を定量的に表現する任意の評価値を算出することが可能である。典型的には、画像の品質が高いほど値が大きくなるように評価値が算出される。画像評価部231Bにより実行される評価値の算出処理は、任意の処理であってよい。例えば、画像評価部231Bは、信号対雑音比(SNR)、コントラスト対雑音比(CNR)、二乗平均平方根(RMS)粒状度、ウィーナースペクトル(Wiener Spectrum)、変調伝達関数(MTF)、品質指標(Quality Index;QI)など、任意の公知技術を利用した処理を実行することが可能である。
いくつかの実施形態では、画像評価部231Bは、所定の部位に相当する画像に対して設定された評価領域に対して所定の解析処理(例えば、セグメンテーション処理)を適用する。それにより、画像評価部231Bは、所望の部位(組織)に相当する画像領域(信号領域)と、それ以外の画像領域(非信号領域)とを特定する。次に、画像評価部231Bは、信号領域における輝度のヒストグラムと、非信号領域における輝度のヒストグラムとを生成する。続いて、画像評価部231Bは、これら2つのヒストグラムの重なり具合から画質に対応した評価値を算出する。例えば、双方のヒストグラムが完全に重なっている場合には評価値=0となり、双方のヒストグラムが完全に分離している場合には評価値=100となるように、0~100の範囲において評価値が定義される。この評価演算は、例えば、2つのヒストグラムの正規化、確率分布関数の生成、所定の演算式を用いた評価値の算出などを含んでいてよい。
更に、画像評価部231Bは、複数の分割画像に対する複数の評価値の統計値を算出することが可能である。統計値の例として、最大値、最小値、中央値、平均値、最頻値、レンジ、分散、標準偏差、及び、上記のいずれかの統計値を用いた所定の評価式の値などがある。
評価式の例として、複数の分割画像の評価値の合計値が高く、且つ、複数の分割画像の評価値のバラツキが小さくなるほど、評価式の値VCCQが大きくなるような下記の式(1)などがある。
式(1)では、評価式の値VCCQは、複数の分割画像の評価値の和を(複数の評価値の標準偏差+1)で除した値である。
主制御部211(補正制御部211B)は、画像評価部231Bにより算出された複数の評価値の統計値に基づいてVCCレンズ47、OCT合焦駆動部45A、光路長変更部41、偏波コントローラ103、118の少なくとも1つを制御することが可能である。例えば、複数の評価値の統計値が最大(最小、又は所望の値)になるようにVCCレンズ47等の制御とOCT計測とが繰り返し実行される。
いくつかの実施形態では、主制御部211は、式(1)により得られた評価式の値VCCQに基づいてVCCレンズ47、OCT合焦駆動部45A、光路長変更部41、偏波コントローラ103、118の少なくとも1つを制御する。この場合、評価式の値VCCQが最大になるようにVCCレンズ47等の制御とOCT計測とが繰り返し実行される。
主制御部211(表示制御部211C)は、画像評価部231Bにより算出された評価値又は統計値を表示装置3又は表示部240A(表示手段)に表示させる。いくつかの実施形態では、主制御部211は、画像分割部231Aにより生成された複数の分割画像の少なくとも1つについて、分割画像の評価値を当該分割画像に関連付けて表示装置3等に表示させる。
以上のように機能するデータ処理部230は、例えば、前述のプロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。ハードディスクドライブ等の記憶装置には、上記機能をマイクロプロセッサに実行させるコンピュータプログラムがあらかじめ格納されている。
(ユーザインターフェイス240)
ユーザインターフェイス240には、表示部240Aと操作部240Bとが含まれる。表示部240Aは、前述した演算制御ユニット200の表示デバイスや表示装置3を含んで構成される。操作部240Bは、前述した演算制御ユニット200の操作デバイスを含んで構成される。操作部240Bには、眼科装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。例えば眼底カメラユニット2が従来の眼底カメラと同様の筺体を有する場合、操作部240Bは、この筺体に設けられたジョイスティックや操作パネル等を含んでいてもよい。また、表示部240Aは、眼底カメラユニット2の筺体に設けられたタッチパネルなどの各種表示デバイスを含んでいてもよい。
なお、表示部240Aと操作部240Bは、それぞれ個別のデバイスとして構成される必要はない。例えばタッチパネルのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部240Bは、このタッチパネルとコンピュータプログラムとを含んで構成される。操作部240Bに対する操作内容は、電気信号として制御部210に入力される。また、表示部240Aに表示されたグラフィカルユーザインターフェイス(GUI)と、操作部240Bとを用いて、操作や情報入力を行うようにしてもよい。
表示装置3又は表示部240Aは、この実施形態に係る「表示手段」の一例である。
<撮影条件の調整例>
上記のように、実施形態では、本撮影の前に仮撮影が実行され、本撮影のための撮影条件の調整が行われる。撮影条件の調整には、VCCレンズ47の調整、OCT合焦レンズ45の調整、光路長変更部41又はコーナーキューブ114の調整、偏波コントローラ103、118の調整がある。
(VCCレンズ47の調整例)
まず、主制御部211は、OCT計測を実行する。OCT計測では、サークルスキャンが実行される(すなわち、干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に測定光LSが偏向される)。画像形成部220は、サークルスキャンにより得られた干渉光LCの検出結果に基づいて、図6に示すような断層像IMGを形成する。
次に、画像分割部231Aは、図6に示すように、断層像IMGを分割して複数の分割画像を生成する。画像評価部231Bは、生成された分割画像毎に、上記のように評価値を算出する。続いて、画像評価部231Bは、複数の分割画像について算出された複数の評価値の統計値を算出する。例えば、画像評価部231Bは、式(1)に示す評価式の値を統計値として算出する。
主制御部211は、画像評価部231Bにより算出された複数の評価値の統計値に基づいてVCC駆動部47Aを制御する。それにより、複数の分割画像における複数の評価値の統計値に応じて、円柱度数及び円柱軸角度の少なくとも1つが変更される。
主制御部211は、統計値が所定の第1終了条件を満足するまで、OCT計測と、OCT計測により得られた干渉光LCの検出結果に基づく断層像に対する統計値の算出と、VCC駆動部47Aに対する制御とを反復的に実行する(繰り返す)。第1終了条件は、既定のサイズ以下の最小錯乱円の位置(強主経線が収束する前焦線の位置と弱主経線が収束する後焦線の位置との中間位置)を所定の位置(例えば、眼底Ef(網膜)又はその近傍)に配置するための条件である。例えば、主制御部211は、統計値と第1終了条件を満たすための第1既定値との差が小さくなるように、OCT計測と統計値の算出とVCC駆動部47Aに対する制御とを反復的に実行する。主制御部211は、統計値と第1既定値との関係が所定の第1関係になったとき、VCCレンズ47の調整を終了する。
例えば、主制御部211は、複数の分割画像の評価値の合計値が高く、且つ、複数の分割画像の評価値のバラツキが小さくなるように、OCT計測と統計値の算出とVCC駆動部47Aに対する制御とを反復的に実行する。
いくつかの実施形態では、表示制御部211Cは、変更前又は変更後の円柱度数及び円柱軸角度の少なくとも一方を表示装置3又は表示部240Aに表示させる。
いくつかの実施形態では、上記の調整例において実行されるサークルスキャンのスキャン範囲は、OCT画像を取得するための撮影範囲に内包される。すなわち、光スキャナ制御部211Aは、被検眼Eの第1スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御することで干渉光学系により得られた干渉光LCの検出結果に基づいてVCCレンズ47(VCC駆動部47A)を制御する。その後、光スキャナ制御部211Aは、第1スキャン範囲を内包する第2スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御する。画像形成部220は、第2スキャン範囲を測定光LSでスキャンすることにより得られた干渉光LCの検出結果に基づいて被検眼EのOCT画像(断層像)を形成する。
(OCT合焦レンズ45の調整例)
いくつかの実施形態では、OCT合焦レンズ45の調整は、VCCレンズ47の調整と同様に、サークルスキャンにより得られた断層像(又は干渉光LCの検出結果)を用いて実行される。すなわち、サークルスキャンにより得られた断層像を分割した複数の分割画像の複数の評価値の統計値が所定の第2終了条件を満足するまで、OCT計測と、上記の統計値の算出と、OCT合焦駆動部45Aに対する制御とが反復的に実行される。第2終了条件は、第1終了条件と同様であってよい。例えば、主制御部211は、統計値と第2終了条件を満たすための第2既定値との差が小さくなるように、OCT計測と統計値の算出とOCT合焦駆動部45Aに対する制御とを反復的に実行する。主制御部211は、統計値と第2既定値との関係が所定の第2関係になったとき、OCT合焦レンズ45の調整を終了する。
いくつかの実施形態では、OCT合焦レンズ45の調整は、サークルスキャン以外のスキャン(例えば、ラインスキャン)により得られた断層像(又は干渉光LCの検出結果)を用いて実行される。すなわち、ラインスキャンにより得られた断層像を分割した複数の分割画像の複数の評価値の統計値が所定の第2終了条件を満足するまで、OCT計測と、上記の統計値の算出と、OCT合焦駆動部45Aに対する制御とが反復的に実行される。第2終了条件は、第1終了条件と同様であってよい。例えば、主制御部211は、統計値と第2終了条件を満たすための第2既定値との差が小さくなるように、OCT計測と統計値の算出とOCT合焦駆動部45Aに対する制御とを反復的に実行する。主制御部211は、統計値と第2既定値との関係が所定の第2関係になったとき、OCT合焦レンズ45の調整を終了する。
いくつかの実施形態では、表示制御部211Cは、変更前又は変更後のOCT合焦レンズ45の位置を表示装置3又は表示部240Aに表示させる。
いくつかの実施形態では、上記の調整例において実行されるスキャンのスキャン範囲は、OCT画像を取得するための撮影範囲に内包される。すなわち、光スキャナ制御部211Aは、被検眼Eの第1スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御することで干渉光学系により得られた干渉光LCの検出結果に基づいてOCT合焦レンズ45(OCT合焦駆動部45A)を制御する。その後、光スキャナ制御部211Aは、第1スキャン範囲を内包する第2スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御する。画像形成部220は、第2スキャン範囲を測定光LSでスキャンすることにより得られた干渉光LCの検出結果に基づいて被検眼EのOCT画像(断層像)を形成する。
(光路長変更部41、コーナーキューブ114の調整例)
いくつかの実施形態では、光路長変更部41又はコーナーキューブ114の調整は、VCCレンズ47の調整と同様に、サークルスキャンにより得られた断層像(又は干渉光LCの検出結果)を用いて実行される。この場合、サークルスキャンにより得られた断層像全体の単一の評価値が所定の第3終了条件を満足するまで、OCT計測と、上記の評価値の算出と、光路長変更部41又は参照駆動部114Aに対する制御とが反復的に実行される。第3終了条件は、断層像における注目部位(組織)に相当する画像領域が所定の深さ範囲内に入るための条件である。断層像における注目部位に相当する画像領域の特定は、断層像に対してセグメンテーション処理を実行することにより得られた複数の層領域から所望の注目部位に相当する層領域を特定することにより行われる。例えば、主制御部211は、評価値と第3終了条件を満たすための第3既定値との差が小さくなるように、OCT計測と統計値の算出と光路長変更部41又はコーナーキューブ114に対する制御とを反復的に実行する。主制御部211は、評価値と第3既定値との関係が所定の第3関係になったとき、光路長変更部41又はコーナーキューブ114の調整を終了する。
いくつかの実施形態では、光路長変更部41又はコーナーキューブ114の調整は、ラインスキャンにより得られた断層像(又は干渉光LCの検出結果)を用いて実行される。この場合、ラインスキャンにより得られた断層像全体の単一の評価値が所定の第3終了条件を満足するまで、OCT計測と、上記の評価値の算出と、光路長変更部41又はコーナーキューブ114に対する制御とが反復的に実行される。
いくつかの実施形態では、表示制御部211Cは、変更前又は変更後の光路長に対応する情報を表示装置3又は表示部240Aに表示させる。
いくつかの実施形態では、上記の調整例において実行されるスキャンのスキャン範囲は、OCT画像を取得するための撮影範囲に内包される。すなわち、光スキャナ制御部211Aは、被検眼Eの第1スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御することで干渉光学系により得られた干渉光LCの検出結果に基づいて光路長変更部41又はコーナーキューブ114(参照駆動部114A)を制御する。その後、光スキャナ制御部211Aは、第1スキャン範囲を内包する第2スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御する。画像形成部220は、第2スキャン範囲を測定光LSでスキャンすることにより得られた干渉光LCの検出結果に基づいて被検眼EのOCT画像(断層像)を形成する。
(偏波コントローラ103、118の調整例)
いくつかの実施形態では、偏波コントローラ103、118の調整は、VCCレンズ47の調整と同様に、サークルスキャンにより得られた断層像(又は干渉光LCの検出結果)を用いて実行される。この場合、サークルスキャンにより得られた断層像全体の単一の評価値が所定の第4終了条件を満足するまで、OCT計測と、上記の評価値の算出と、偏波コントローラ103、118に対する制御とが反復的に実行される。第4終了条件は、断層像全体の画質が最も高くなるための条件(例えば、評価値が最大値になること)である。例えば、主制御部211は、評価値と第4終了条件を満たすための第4既定値との差が小さくなるように、OCT計測と統計値の算出と偏波コントローラ103、118に対する制御とを反復的に実行する。主制御部211は、評価値と第4既定値との関係が所定の第4関係になったとき、偏波コントローラ103、118の調整を終了する。
いくつかの実施形態では、偏波コントローラ103、118の調整は、ラインスキャンにより得られた断層像(又は干渉光LCの検出結果)を用いて実行される。この場合、ラインスキャンにより得られた断層像全体の単一の評価値が所定の第4終了条件を満足するまで、OCT計測と、上記の評価値の算出と、偏波コントローラ103、118に対する制御とが反復的に実行される。
いくつかの実施形態では、表示制御部211Cは、変更前又は変更後の偏波状態に対応する情報を表示装置3又は表示部240Aに表示させる。
いくつかの実施形態では、上記の調整例において実行されるサークルスキャンのスキャン範囲は、OCT画像を取得するための撮影範囲に内包される。すなわち、光スキャナ制御部211Aは、被検眼Eの第1スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御することで干渉光学系により得られた干渉光LCの検出結果に基づいて偏波コントローラ103、118を制御する。その後、光スキャナ制御部211Aは、第1スキャン範囲を内包する第2スキャン範囲を測定光LSでスキャンするように光スキャナ42を制御する。画像形成部220は、第2スキャン範囲を測定光LSでスキャンすることにより得られた干渉光LCの検出結果に基づいて被検眼EのOCT画像(断層像)を形成する。
図8A及び図8Bに、仮撮影において実行されるサークルスキャンと本撮影において実行されるスキャンのスキャン範囲を模式的に示す。
図8Aに示すように、本撮影において実行されるスキャンのスキャン範囲SA0に対して、仮撮影では、例えばサークルスキャンCS1、CS2、CS3が実行される。すなわち、スキャン範囲SA0内の少なくとも一部をスキャンするようにサークルスキャンが実行される。仮撮影において実行されるサークルスキャンは、スキャン範囲SA0に内包されることが望ましい(例えば、サークルスキャンCS1、CS2)。
いくつかの実施形態では、図8Bに示すように、スキャン範囲SA0の中央部又は角部をスキャンするようにサークルスキャンCS1、CS11、CS12、CS12、CS13が実行される。撮影条件の調整対象に応じて、スキャン範囲SA0内の位置を変更してサークルスキャンを実行してもよい。
レーザー光のスペックルノイズの空間的な拡がり(スペックルサイズ)は、回折限界rにほぼ等しくなる。回折限界rは、レーザー光の中心周波数λに比例し、対物レンズ22の開口数に反比例する。いくつかの実施形態では、サークルスキャンが実行されたときの被検眼Eにおけるサークル状のスキャンライン(直径R)におけるAライン数をNとしたとき、R×π/N<rを満たす。このとき、サークルスキャンのAライン数を減らすことが可能になり、撮影条件をより短時間で高精度に調整することができるようになる。
なお、上記の各調整例では、断層像を形成する場合について説明したが、干渉光LCの検出結果から評価値を算出することも可能である。
[動作例]
実施形態に係る眼科装置1の動作例について説明する。
図9、図10A、及び図10Bに、実施形態に係る眼科装置1の動作例のフロー図を示す。図9は、実施形態に係る眼科装置1の動作例のフローチャートを表す。図10A及び図10Bは、図9のステップS6の動作例のフローチャートを表す。記憶部212には、図9、図10A、及び図10Bに示す処理を実現するためのコンピュータプログラムが記憶されている。主制御部211は、このコンピュータプログラムに従って動作することにより、図9、図10A及び図10Bに示す処理を実行する。
(S1:アライメント)
まず、所定の固視位置に固視標を提示した状態で、主制御部211は、被検眼Eに対する光学系のアライメント調整を行う。アライメント調整の例として、手動で行う場合と自動で行う場合とがある。
アライメント調整を手動で行う場合、主制御部211は、アライメント光学系50により一対のアライメント指標を被検眼Eに投影する。表示部240Aには、これらアライメント指標の受光像として一対のアライメント輝点が表示される。また、主制御部211は、一対のアライメント輝点の移動目標となる位置を表すアライメントスケールを表示部240Aに表示させる。アライメントスケールは、たとえば括弧型の画像である。
被検眼Eと眼底カメラユニット2(対物レンズ22)との位置関係が適正である場合、すなわち、被検眼Eと眼底カメラユニット2との間の距離(ワーキングディスタンス)が適正であり、且つ、眼底カメラユニット2の光学系の光軸と被検眼Eの眼軸(角膜頂点位置)とが(ほぼ)一致している場合、公知の手法により、一対のアライメント輝点は、所定位置(たとえば、角膜頂点と角膜曲率中心との中間位置)においてそれぞれ一旦結像して被検眼Eに投影されるようになっている。検者(ユーザ)は、一対のアライメント輝点をアライメントスケール内に導くように眼底カメラユニット2を3次元的に移動させることにより、被検眼Eに対する光学系のアライメント調整を行うことが可能である。
アライメント調整を自動で行う場合、眼底カメラユニット2を移動させるための移動機構150が用いられる。データ処理部230は、表示部240Aに表示される画面中の各アライメント輝点の位置を特定し、特定された各アライメント輝点の位置とアライメントスケールとの変位を求める。主制御部211は、この変位をキャンセルするように移動機構150により眼底カメラユニット2を移動させる。各アライメント輝点の位置の特定は、たとえば、各アライメント輝点の輝度分布を求め、この輝度分布に基づいて重心位置を求めることにより実行できる。アライメントスケールの位置は一定であるので、たとえばその中心位置と上記重心位置との変位を求めることにより、目的の変位を求めることが可能である。眼底カメラユニット2の移動方向及び移動距離は、あらかじめ設定されたx方向、y方向及びz方向の各方向における単位移動距離(たとえば、眼底カメラユニット2をどの方向にどれだけ移動させると、アライメント指標がどの方向にどれだけ移動するかを事前に計測した結果)を参照して決定することが可能である。主制御部211は、決定された移動方向及び移動距離に応じた信号を生成し、この信号を移動機構150に送信する。それにより、被検眼Eに対する光学系の位置が自動で調整される。
(S2:VCC駆動部を初期化)
次に、主制御部211は、VCC駆動部47Aを初期化する。VCC駆動部47Aを初期化することにより、VCCレンズ47の円柱度数を初期化する。これにより、後述のステップS3~ステップS6において、意図しない円柱度数が適用された状態で眼科装置1の各部の調整が行われる事態を回避することができる。
(S3:深さ位置を調整)
続いて、主制御部211は、被検眼Eにおける注目部位に相当する画像領域が断層像における所定の深さ範囲に入るように、注目部位に相当する画像領域が描出される深さ位置の調整を行う。
具体的には、主制御部211は、光源ユニット101を点灯させ、ラインスキャンに対応した偏向パターンに従って測定光LSを偏向するように光スキャナ42を制御することにより、OCT計測を実行させる。
次に、主制御部211は、ラインスキャンにより得られた干渉光LCの検出結果に基づいて画像形成部220に断層像を形成させる。
次に、主制御部211は、解析部231を制御することにより、断層像に対してセグメンテーション処理を施し、複数の層領域を特定させる。解析部231は、特定された複数の層領域から所望の浅層側の第1層領域と深層側の第2層領域とを特定する。主制御部211は、特定された第1層領域と第2層領域の間の領域に相当する画像領域が断層像における所定の深さ範囲内に入るように、光路長変更部41又は参照駆動部114Aを制御する。
いくつかの実施形態では、ステップS3は、第1層領域と第2層領域との間の領域に相当する画像領域が断層像における所望の深さ範囲内に入るように、ラインスキャンと、層領域の特定処理とが繰り返される。
いくつかの実施形態では、ステップS3では、干渉光LCの検出結果は、サークルスキャンにより取得される。
(S4:フォーカス調整)
次に、主制御部211は、フォーカス調整を行う。
具体的には、主制御部211は、光源ユニット101を点灯させ、サークルスキャンに対応した偏向パターンに従って測定光LSを偏向するように光スキャナ42を制御することにより、OCT計測を実行させる。
次に、主制御部211は、サークルスキャンにより得られた干渉光LCの検出結果に基づいて画像形成部220に断層像を形成させる。
続いて、主制御部211は、形成された断層像をBスキャン方向に分割することにより複数の分割画像を画像分割部231Aに生成させる。画像分割部231Aは、例えば、断層像をBスキャン方向に8分割することにより分割画像DP1~DP8を生成する。
次に、主制御部211は、生成された分割画像DP1~DP8のそれぞれの画質に対応した評価値を画像評価部231Bに算出させる。画像評価部231Bは、上記のように、生成された分割画像毎に評価値を算出する。更に、画像評価部231Bは、複数の分割画像について算出された複数の評価値の統計値を算出する。画像評価部231Bは、例えば、式(1)に示す評価式の値VCCQを統計値として算出する。
主制御部211は、画像評価部231Bにより算出された複数の評価値の統計値(評価式の値VCCQ)に基づいて、OCT合焦駆動部45Aを制御する。それにより、複数の評価値の統計値に対応した位置にOCT合焦レンズ45が移動される。
複数の評価値の統計値が所定の終了条件を満足するまで、OCT計測と、上記の統計値の算出と、OCT合焦駆動部45Aに対する制御とが反復的に実行される。例えば、主制御部211は、統計値と所定の終了条件を満たすための既定値との差が小さくなるように、OCT計測と統計値の算出とOCT合焦駆動部45Aに対する制御とを反復的に実行する。主制御部211は、統計値と既定値との関係が所定の関係になったとき、OCT合焦レンズ45の調整を終了する。
(S5:偏波調整)
次に、主制御部211は、偏波調整を行う。偏波調整では、測定光LSの偏波状態及び参照光LRの偏波状態の少なくとも一方が調整される。
具体的には、主制御部211は、光源ユニット101を点灯させ、サークルスキャンに対応した偏向パターンに従って測定光LSを偏向するように光スキャナ42を制御することにより、OCT計測を実行させる。
次に、主制御部211は、サークルスキャンにより得られた干渉光LCの検出結果に基づいて画像形成部220に断層像を形成させる。
続いて、主制御部211は、形成された断層像をBスキャン方向に分割することにより複数の分割画像を画像分割部231Aに生成させる。画像分割部231Aは、例えば、断層像をBスキャン方向に8分割することにより分割画像DP1~DP8を生成する。
次に、主制御部211は、生成された分割画像DP1~DP8のそれぞれの画質に対応した評価値を画像評価部231Bに算出させる。画像評価部231Bは、上記のように、生成された分割画像毎に評価値を算出する。更に、画像評価部231Bは、複数の分割画像について算出された複数の評価値の統計値を算出する。画像評価部231Bは、例えば、式(1)に示す評価式の値VCCQを統計値として算出する。
主制御部211は、画像評価部231Bにより算出された複数の評価値の統計値(評価式の値VCCQ)が最大になるように偏波コントローラ103又は偏波コントローラ118を制御する。それにより、複数の評価値の統計値に応じて、測定光LSの偏波状態及び参照光LRの偏波状態の少なくとも1つが変更される。いくつかの実施形態では、偏波コントローラ103及び偏波コントローラ118の一方の調整が行われた後、他方の調整が行われる。
複数の評価値の統計値が所定の終了条件を満足するまで、OCT計測と、上記の統計値の算出と、偏波コントローラ103、118に対する制御とが反復的に実行される。例えば、主制御部211は、統計値と所定の終了条件を満たすための既定値との差が小さくなるように、OCT計測と統計値の算出と偏波コントローラ103、118に対する制御とを反復的に実行する。主制御部211は、統計値と既定値との関係が所定の関係になったとき、偏波コントローラ103、118の調整を終了する。
(S6:VCCレンズを調整)
次に、主制御部211は、VCCレンズ47の調整を行う。
ステップS6の詳細は、後述する。
(S7:OCT計測)
ステップS2~ステップS6により眼科装置1の各部の調整を調整することにより撮影条件が調整されると、主制御部211は、本撮影のためのOCT計測を実行する。
具体的には、主制御部211は、光源ユニット101を点灯させ、所望のスキャンモードに対応した偏向パターンに従って測定光LSを偏向するように光スキャナ42を制御することにより、OCT計測を実行させる。ステップS7では、例えば、ラインスキャン、サークルスキャン、ラジアルスキャン、マルチラインクロススキャン、又は3Dスキャンが実行される。
次に、主制御部211は、所望のスキャンモードに対応した偏向パターンのスキャンにより得られた干渉光LCの検出結果に基づいて画像形成部220に断層像を形成させる。
ステップS7では、形成された断層像を用いて被検眼Eの画像がライブ表示されたり、3次元画像が形成されたりする。
以上で、眼科装置1の動作は終了である(エンド)。
図9のステップS6では、例えば、図10A及び図10Bに示すフローが実行される。
図11に、図9のステップS6の動作説明図を示す。図11は、円柱レンズ471(VCC1)の軸方向と円柱レンズ472(VCC2)の軸方向とを模式的に表す。図11では、説明の便宜上、水平方向の軸角度を0度と表し、垂直方向(上方向)の軸角度を90度と表し、0度から90度に向かう回転方向を正方向とする。
(S11:円柱度数を初期値に設定)
まず、主制御部211は、VCC駆動部47Aを制御して、円柱レンズ471、472を回動して円柱度数(図11のθp)を初期値に設定する。
具体的には、主制御部211は、VCC駆動部47Aを制御して、円柱レンズ471の軸方向と円柱レンズ472の軸方向とを0度に設定する。その後、主制御部211は、VCC駆動部47Aを制御して、円柱レンズ471の軸方向と円柱レンズ472の軸方向とを変更し、あらかじめ決められている円柱度数θpをθp´に設定する(θp=θp´)。
続いて、主制御部211は、VCCレンズ47の円柱軸角度を決定するための制御を実行する(ステップS12~ステップS16)。
(S12:OCT計測)
次に、主制御部211は、OCTユニット100等を制御してOCT計測を実行する。
具体的には、主制御部211は、光源ユニット101を点灯させ、サークルスキャンに対応した偏向パターンに従って測定光LSを偏向するように光スキャナ42を制御することにより、OCT計測を実行させる。
(S13:OCT画像を評価)
次に、主制御部211は、ステップS12において得られた干渉光LCの検出結果に基づいてOCT画像(断層像)を画像形成部220に形成させる。
続いて、主制御部211は、形成されたOCT画像をBスキャン方向に分割することにより分割画像DP1~DP8を画像分割部231Aに生成させる。
続いて、主制御部211は、生成された分割画像DP1~DP8のそれぞれの画質に対応した評価値を画像評価部231Bに算出させる。画像評価部231Bは、上記のように、生成された分割画像毎に評価値を算出する。更に、画像評価部231Bは、分割画像DP1~DP8について算出された評価値の統計値を算出する。画像評価部231Bは、例えば、式(1)に示す評価式の値VCCQを統計値として算出する。
(S14:次?)
次に、主制御部211は、円柱軸角度を更に変更してOCT画像の再評価を行うか否かを判定する。例えば、主制御部211は、0度から180度までの範囲の円柱軸角度θaについてOCT画像の評価を行うようにOCT画像の再評価を繰り返す。
ステップS14においてOCT画像の再評価を行うと判定されたとき(ステップS14:Y)、眼科装置1の動作はステップS15に移行する。一方、ステップS14においてOCT画像の再評価を行わないと判定されたとき(ステップS14:N)、眼科装置1の動作はステップS16に移行する。
(S15:円柱軸角度を変更)
ステップS14においてOCT画像の再評価を行うと判定されたとき(ステップS14:Y)、主制御部211は、VCC駆動部47Aを制御して、円柱度数θpを維持した状態で円柱レンズ471の軸方向と円柱レンズ472の軸方向とを変更する。
具体的には、主制御部211は、VCC駆動部47Aを制御して、正方向に所定のステップだけ円柱軸角度を変更する。
眼科装置1の動作は、ステップS12に移行する。
ステップS12~ステップS15は、0度から180度までの範囲の円柱軸角度θaについて繰り返し実行される。
(S16:円柱軸角度を決定)
ステップS14においてOCT画像の再評価を行わないと判定されたとき(ステップS14:N)、主制御部211は、円柱軸角度を決定する。
具体的には、主制御部211は、0度から180度までの範囲の円柱軸角度θaについて繰り返し実行されたステップS13において算出された統計値の最大値を特定し、統計値が最大値になるときの円柱軸角度θa´を特定する。主制御部211は、特定された円柱軸角度を円柱軸角度θaとして決定する(θa=θa´)。
続いて、主制御部211は、VCCレンズ47の円柱度数を決定するための制御を実行する(ステップS17~ステップS22)。
(S17:円柱度数を設定)
次に、主制御部211は、VCC駆動部47Aを制御して、円柱レンズ471、472を回動して所定の円柱度数を設定する。
例えば、主制御部211は、VCC駆動部47Aを制御し、円柱レンズ471を+θp´/2だけ回動し、円柱レンズ472を-θp´/2だけ回動する。それにより、円柱レンズ471(VCC1)の円柱軸角度θa1は式(2)のように表される。
同様に、円柱レンズ472(VCC2)の円柱軸角度θa2は式(3)のように表される。
図11に示すように、円柱軸角度θa1、θa2のなす角度によって円柱度数θpが決まる。
(S18:OCT計測)
次に、主制御部211は、ステップS12と同様に、OCTユニット100等を制御してOCT計測を実行する。
(S19:OCT画像を評価)
次に、主制御部211は、ステップS13と同様に、ステップS18において得られた干渉光LCの検出結果に基づいてOCT画像(断層像)を画像形成部220に形成させる。
続いて、主制御部211は、形成されたOCT画像をBスキャン方向に分割することにより分割画像DP1~DP8を画像分割部231Aに生成させる。
続いて、主制御部211は、生成された分割画像DP1~DP8のそれぞれの画質に対応した評価値を画像評価部231Bに算出させる。画像評価部231Bは、上記のように、生成された分割画像毎に評価値を算出する。更に、画像評価部231Bは、分割画像DP1~DP8について算出された評価値の統計値を算出する。画像評価部231Bは、例えば、式(1)に示す評価式の値VCCQを統計値として算出する。
(S20:次?)
次に、主制御部211は、円柱度数を更に変更してOCT画像の再評価を行うか否かを判定する。例えば、主制御部211は、0度から90度までの範囲の円柱度数θpについてOCT画像の評価を行うようにOCT画像の再評価を繰り返す。
ステップS20においてOCT画像の再評価を行うと判定されたとき(ステップS20:Y)、眼科装置1の動作はステップS21に移行する。一方、ステップS20においてOCT画像の再評価を行わないと判定されたとき(ステップS20:N)、眼科装置1の動作はステップS22に移行する。
(S21:円柱度数を変更)
ステップS20においてOCT画像の再評価を行うと判定されたとき(ステップS20:Y)、主制御部211は、VCC駆動部47Aを制御して、円柱軸角度θaを維持した状態で円柱レンズ471の軸方向と円柱レンズ472の軸方向とを変更する。
具体的には、主制御部211は、VCC駆動部47Aを制御して、円柱レンズ471の軸方向と円柱レンズ472の軸方向の少なくとも1つを変更して所定のステップだけ円柱度数を変更する。
眼科装置1の動作は、ステップS18に移行する。
ステップS18~ステップS21は、0度から90度までの範囲の円柱度数θpについて繰り返し実行される。
(S22:円柱度数を決定)
ステップS20においてOCT画像の再評価を行わないと判定されたとき(ステップS20:N)、主制御部211は、円柱度数を決定する。
具体的には、主制御部211は、0度から90度までの範囲の円柱度数θpについて繰り返し実行されたステップS19において算出された統計値の最大値を特定し、統計値が最大値になるときの円柱度数θp″を特定する。主制御部211は、特定された円柱度数を円柱度数θpとして決定する(θp=θp″)。
(S23:VCCレンズを調整)
続いて、主制御部211は、VCC駆動部47Aを制御して、ステップS16において決定された円柱軸角度θa´とステップS22において決定された円柱度数θp″を用いてVCCレンズ47を調整する。
具体的には、主制御部211は、VCC駆動部47Aを制御し、円柱レンズ471の円柱軸角度θa1を式(4)に示すように設定する。
同様に、主制御部211は、VCC駆動部47Aを制御し、円柱レンズ472の円柱軸角度θa2を式(5)に示すように設定する。
以上で、図9のステップS6のフローは終了である(エンド)。
以上のように、サークルスキャンを用いて少なくともVCCレンズ47を調整するようにしたので、ラスタスキャン(又は2以上のラインスキャン)の場合に比べて短い時間で、干渉光学系の光軸に垂直な平面における水平方向方向の情報と垂直方向の情報とを取得することができる。従って、より短い時間で、水平方向の情報と垂直方向の情報とを取得し、取得された水平方向の情報と垂直方向の情報とから非点収差を補正することができる。その結果、光源が高速化した場合でも、眼球の動き等の影響を受けることなく、非点収差を高精度に補正することが可能になる。
また、撮影条件を決定する調整対象毎にスキャンモードを変更するようにしたので、調整対象に応じた最適なスキャンモードで撮影条件を変更することが可能になる。それにより、より短い時間で撮影条件を高精度に調整することが可能になる。
なお、実施形態は、図9におけるステップの順序に限定されるものではない。例えば、ステップS4~ステップS6の各ステップの実行順序は任意に変更可能である。
いくつかの実施形態では、上記の眼科装置の制御方法をコンピュータに実行させるためのプログラムが提供される。このようなプログラムを、コンピュータによって読み取り可能な非一時的な(non-transitory)任意の記録媒体に記憶させることができる。記録媒体は、磁気、光、光磁気、半導体などを利用した電子媒体であってよい。典型的には、記録媒体は、磁気テープ、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ、ソリッドステートドライブなどである。また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
[効果]
実施形態に係る眼科装置、眼科装置の制御方法、及びプログラムについて説明する。
いくつかの実施形態に係る眼科装置(1)は、干渉光学系(OCTユニット100に含まれる光学系、光スキャナ42、VCCレンズ47)と、光スキャナ制御部(211A)と、補正制御部(211B)とを含む。干渉光学系は、非点収差補正光学部材(VCCレンズ47)と、光スキャナ(42)とを含む。干渉光学系は、光源(光源ユニット101)からの光(L0)を測定光(LS)と参照光(LR)とに分割し、非点収差補正光学部材及び光スキャナを介して測定光を被検眼(E)に照射し、被検眼からの測定光の戻り光と参照光との干渉光(LC)を検出する。光スキャナ制御部は、干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に測定光を偏向するように光スキャナを制御する。補正制御部は、干渉光学系により得られた干渉光の検出結果に基づいて非点収差を補正するように非点収差補正光学部材を制御する。
このような構成によれば、ラスタスキャン又は2以上のラインスキャンに比べて短時間で干渉光学系の光軸に垂直な平面における水平方向の情報と垂直方向の情報とを取得し、非点収差を補正することができる。それにより、光源が高速化した場合でも、眼球の動き等の影響を受けることなく、非点収差を高精度に補正することが可能になる。
いくつかの実施形態は、干渉光の検出結果を解析する解析部(231)を含む。補正制御部は、解析部により得られた解析結果に基づいて非点収差補正光学部材を制御する。
このような構成によれば、干渉光の検出結果に応じて非点収差をより高精度に補正することが可能になる。
いくつかの実施形態は、干渉光の検出結果に基づいて被検眼の画像を形成する画像形成部(220)を含む。解析部は、画像をAスキャン方向に交差する方向に分割することにより得られた複数の分割画像のそれぞれを解析する。補正制御部は、複数の分割画像に対する複数の解析結果に基づいて非点収差補正光学部材を制御する。
このような構成によれば、被検眼の画像をAスキャン方向に交差する方向に分割することに複数の分割画像を生成し、分割画像を解析して得られた複数の解析結果に基づいて非点収差補正光学部材を制御するようにしたので、被検眼の画像についてより詳細な解析結果に基づいて非点収差補正光学部材を制御することができる。それにより、短い時間で、簡素な処理で非点収差補正光学部材を高精度に調整することが可能になる。
いくつかの実施形態では、解析部は、各分割画像について解析結果に対応する評価値を算出する。補正制御部は、複数の分割画像に対する複数の評価値の統計値に基づいて非点収差補正光学部材を制御する。
このような構成によれば、各分割画像について評価値を算出し、複数の分割画像に対する複数の評価値の統計値に基づいて非点収差補正光学部材を制御するようにしたので、短い時間で、より一層簡素な処理で非点収差補正光学部材を高精度に調整することが可能になる。
いくつかの実施形態は、解析部により算出された評価値又は統計値を表示手段(表示装置3、表示部240A)に表示させる第1表示制御部(表示制御部211C)を含む。
このような構成によれば、複数の分割画像から評価値が異なる分割画像を容易に特定することができ、非点収差補正光学部材の調整の適否の要因の特定が容易になる。
いくつかの実施形態では、光スキャナ制御部は、被検眼の第1スキャン範囲を測定光でスキャンするように光スキャナを制御することで干渉光学系により得られた干渉光の検出結果に基づいて非点収差補正光学部材を制御した後、第1スキャン範囲を内包する第2スキャン範囲を測定光でスキャンするように光スキャナを制御する。画像形成部は、第2スキャン範囲を測定光でスキャンすることにより得られた干渉光の検出結果に基づいて被検眼の画像を形成する。
このような構成によれば、被検眼の画像を形成するための第2スキャン範囲における干渉光の検出結果を考慮して非点収差補正光学部材を制御するが可能になるため、本撮影(本計測)のための非点収差を高精度に補正することが可能になる。また、第1スキャン範囲を第2スキャン範囲より狭くすることで、第1スキャン範囲のスキャン時間をより短縮することができ、非点収差をより高精度に補正することができるようになる。
いくつかの実施形態では、光スキャナ制御部は、被検眼の移動に対して干渉光学系を追従することにより得られたトラッキング情報に基づいて第2スキャン範囲の位置を補正し、補正された第2スキャン範囲を測定光でスキャンするように光スキャナを制御する。
このような構成によれば、被検眼の移動に追従しつつ、非点収差をより高精度に補正することができるようになる。
いくつかの実施形態は、第2スキャン範囲を測定光でスキャンすることにより得られた干渉光の検出結果に基づいて形成された被検眼の画像を表示手段(表示装置3、表示部240A)に表示させる第2表示制御部(表示制御部211C)を含む。
このような構成によれば、非点収差が高精度に補正された被検眼の画像を表示手段に表示可能な眼科装置を提供することができるようになる。
いくつかの実施形態では、干渉光学系は、測定光の光路に配置され、測定光の焦点位置を変更可能な合焦位置変更部材(OCT合焦レンズ45、OCT合焦駆動部45A)を含む。補正制御部は、干渉光学系により得られた干渉光の検出結果に基づいて合焦位置変更部材を制御する。
このような構成によれば、短時間で非点収差を高精度に補正し、且つ、測定光の焦点位置を調整可能な眼科装置を提供することができるようになる。
いくつかの実施形態では、干渉光学系は、測定光の光路又は参照光の光路に配置され、測定光と参照光との光路長差を変更する光路長変更部材(光路長変更部41、コーナーキューブ114及び参照駆動部114A)を含む。光スキャナ制御部は、干渉光学系の光軸に交差する方向に測定光を偏向するように光スキャナを制御する。補正制御部は、干渉光学系により得られた干渉光の検出結果に基づいて光路長変更部材を制御する。
このような構成によれば、短時間で非点収差を高精度に補正し、且つ、測定光と参照光との光路長差を調整可能な眼科装置を提供することができるようになる。
いくつかの実施形態では、干渉光学系は、測定光の光路又は参照光の光路に配置され、測定光の偏波状態又は参照光の偏波状態を変更する偏波状態変更部材(偏波コントローラ103、118)を含む。光スキャナ制御部は、干渉光学系の光軸に交差する方向に測定光を偏向するように光スキャナを制御する。補正制御部は、干渉光学系により得られた干渉光の検出結果に基づいて偏波状態変更部材を制御する。
このような構成によれば、短時間で非点収差を高精度に補正し、且つ、測定光と参照光との光路長差を調整可能な眼科装置を提供することができるようになる。
いくつかの実施形態では、非点収差補正光学部材は、円柱度数及び円柱軸角度を変更可能である。
このような構成によれば、円柱度数及び円柱軸角度を変更することで、短時間で非点収差を高精度に補正することが可能になる。
いくつかの実施形態では、非点収差補正光学部材は、バリアブルクロスシリンダレンズを含む。
このような構成によれば、バリアブルクロスシリンダレンズを用いることで、低コスト、且つ、短時間で非点収差を高精度に補正することが可能になる。
いくつかの実施形態は、円柱度数及び円柱軸角度の少なくとも一方を表示手段(表示装置3、表示部240A)に表示させる第3表示制御部(表示制御部)を含む。
このような構成によれば、非点収差の調整の状態を容易に把握することが可能になる。
いくつかの実施形態では、光スキャナ制御部は、サークル状に測定光を偏向するように光スキャナを制御することにより水平方向及び垂直方向に測定光を偏向させる。
このような構成によれば、スキャン速度をスキャン領域全域でほぼ一定にすることができ、スキャン領域全域で均質なスキャン結果を取得することができる。その結果、均質なスキャン結果に基づいて非点収差を高精度に補正することが可能になる。また、例えば、対物レンズの頂点からの正反射の影響を受けにくくなるため、アーチファクトフリーなスキャン結果に基づいて非点収差を高精度に補正することが可能になる。
いくつかの実施形態では、回折限界をrとし、被検眼におけるサークル状のスキャンラインの直径をRとし、スキャンラインにおけるAライン数をNとしたとき、R×π/N<rを満たす。
このような構成によれば、撮影条件(計測条件)を調整するためのスキャンの精度を低下させることなくAライン数を低減することが可能になり、より短時間で非点収差を高精度に補正することが可能になる。
いくつかの実施形態に係る眼科装置(1)の制御方法は、干渉光学系(OCTユニット100に含まれる光学系、光スキャナ42、VCCレンズ47)と、光スキャナ制御部(211A)と、補正制御部(211B)とを含む眼科装置の制御方法である。干渉光学系は、非点収差補正光学部材(VCCレンズ47)と、光スキャナ(42)とを含む。干渉光学系は、光源(光源ユニット101)からの光(L0)を測定光(LS)と参照光(LR)とに分割し、非点収差補正光学部材及び光スキャナを介して測定光を被検眼(E)に照射し、被検眼からの測定光の戻り光と参照光との干渉光(LC)を検出する。眼科装置の制御方法は、干渉光学系の光軸に垂直な平面における水平方向及び垂直方向に測定光を偏向するように光スキャナを制御する第1制御ステップと、第1制御ステップにおいて偏向された測定光を被検眼に照射することにより干渉光学系により得られた干渉光の検出結果に基づいて非点収差を補正するように非点収差補正光学部材を制御する第2制御ステップと、を含む。
このような方法によれば、ラスタスキャン又は2以上のラインスキャンに比べて短時間で水平方向の情報と垂直方向の情報とを取得し、非点収差を補正することができる。それにより、光源が高速化した場合でも、眼球の動き等の影響を受けることなく、非点収差を高精度に補正することが可能になる。
いくつかの実施形態は、干渉光の検出結果を解析する解析ステップを含む。第2制御ステップは、解析ステップにおいて得られた解析結果に基づいて非点収差補正光学部材を制御する。
このような方法によれば、干渉光の検出結果に応じて非点収差をより高精度に補正することが可能になる。
いくつかの実施形態は、干渉光の検出結果に基づいて被検眼の画像を形成する第1画像形成ステップを含む。解析ステップは、画像をAスキャン方向に交差する方向に分割することにより得られた複数の分割画像のそれぞれを解析する。第2制御ステップは、複数の分割画像に対応する複数の解析結果に基づいて非点収差補正光学部材を制御する。
このような方法によれば、被検眼の画像をAスキャン方向に交差する方向に分割することに複数の分割画像を生成し、分割画像を解析して得られた複数の解析結果に基づいて非点収差補正光学部材を制御するようにしたので、被検眼の画像についてより詳細な解析結果に基づいて非点収差補正光学部材を制御することができる。それにより、短い時間で、簡素な処理で非点収差補正光学部材を高精度に調整することが可能になる。
いくつかの実施形態では、解析ステップは、各分割画像について解析結果に対応する評価値を算出する。第2制御ステップは、複数の分割画像に対する評価値の統計値に基づいて非点収差補正光学部材を制御する。
このような方法によれば、各分割画像について評価値を算出し、複数の分割画像に対する複数の評価値の統計値に基づいて非点収差補正光学部材を制御するようにしたので、短い時間で、より一層簡素な処理で非点収差補正光学部材を高精度に調整することが可能になる。
いくつかの実施形態は、解析ステップにおいて算出された評価値又は統計値を表示手段(表示装置3、表示部240A)に表示させる第1表示制御ステップを含む。
このような方法によれば、複数の分割画像から評価値が異なる分割画像を容易に特定することができ、非点収差補正光学部材の調整の適否の要因の特定が容易になる。
いくつかの実施形態では、第3制御ステップと、第2画像形成ステップとを含む。第3制御ステップは、第2制御ステップにおいて、第1制御ステップにおいて被検眼の第1スキャン範囲を測定光でスキャンすることにより得られた干渉光の検出結果に基づいて非点収差補正光学部材を制御した後に、第1スキャン範囲を内包する第2スキャン範囲を測定光でスキャンするように光スキャナを制御する。第2画像形成ステップは、第3制御ステップにおいて第2スキャン範囲を測定光でスキャンすることにより得られた干渉光の検出結果に基づいて被検眼の画像を形成する。
このような方法によれば、被検眼の画像を形成するための第2スキャン範囲における干渉光の検出結果を考慮して非点収差補正光学部材を制御するが可能になるため、本撮影(本計測)のための非点収差を高精度に補正することが可能になる。また、第1スキャン範囲を第2スキャン範囲より狭くすることで、第1スキャン範囲のスキャン時間をより短縮することができ、非点収差をより高精度に補正することができるようになる。
いくつかの実施形態では、第2制御ステップは、被検眼の移動に対して干渉光学系を追従することにより得られたトラッキング情報に基づいて第2スキャン範囲の位置を補正し、補正された第2スキャン範囲を測定光でスキャンするように光スキャナを制御する。
このような方法によれば、被検眼の移動に追従しつつ、非点収差をより高精度に補正することができるようになる。
いくつかの実施形態は、第2スキャン範囲を測定光でスキャンすることにより得られた干渉光の検出結果に基づいて形成された被検眼の画像を表示手段(表示装置3、表示部240A)に表示させる第2表示制御ステップを含む。
このような方法によれば、非点収差が高精度に補正された被検眼の画像を表示手段に表示することができるようになる。
いくつかの実施形態では、干渉光学系は、測定光の光路に配置され、測定光の焦点位置を変更可能な合焦位置変更部材(OCT合焦レンズ45、OCT合焦駆動部45A)を含む。眼科装置の制御方法は、更に、干渉光学系により得られた干渉光の検出結果に基づいて合焦位置変更部材を制御する第4制御ステップを含む。
このような方法によれば、短時間で非点収差を高精度に補正し、且つ、測定光の焦点位置を調整することができるようになる。
いくつかの実施形態では、干渉光学系は、測定光の光路又は参照光の光路に配置され、測定光と参照光との光路長差を変更する光路長変更部材(光路長変更部41、コーナーキューブ114及び参照駆動部114A)を含む。眼科装置の制御方法は、干渉光学系の光軸に交差する方向に測定光を偏向するように光スキャナを制御する第5制御ステップと、第5制御ステップにおいて偏向された測定光を被検眼に照射することにより干渉光学系により得られた干渉光の検出結果に基づいて光路長変更部材を制御する第6制御ステップと、を含む。
このような方法によれば、短時間で非点収差を高精度に補正し、且つ、測定光と参照光との光路長差を調整することができるようになる。
いくつかの実施形態では、干渉光学系は、測定光の光路又は参照光の光路に配置され、測定光の偏波状態又は参照光の偏波状態を変更する偏波状態変更部材(偏波コントローラ103、118)を含む。眼科装置の制御方法は、干渉光学系の光軸に交差する方向に測定光を偏向するように光スキャナを制御する第7制御ステップと、第7制御ステップにおいて偏向された測定光を被検眼に照射することにより干渉光学系により得られた干渉光の検出結果に基づいて偏波状態変更部材を制御する第8制御ステップと、を含む。
このような方法によれば、短時間で非点収差を高精度に補正し、且つ、測定光と参照光との光路長差を調整することができるようになる。
いくつかの実施形態では、非点収差補正光学部材は、円柱度数及び円柱軸角度を変更可能である。
このような方法によれば、円柱度数及び円柱軸角度を変更することで、短時間で非点収差を高精度に補正することが可能になる。
いくつかの実施形態では、非点収差補正光学部材は、バリアブルクロスシリンダレンズを含む。
このような方法によれば、バリアブルクロスシリンダレンズを用いることで、低コスト、且つ、短時間で非点収差を高精度に補正することが可能になる。
いくつかの実施形態は、円柱度数及び円柱軸角度の少なくとも一方を表示手段(表示装置3、表示部240A)に表示させる第3表示制御ステップを含む。
このような方法によれば、非点収差の調整の状態を容易に把握することが可能になる。
いくつかの実施形態では、第1制御ステップは、サークル状に測定光を偏向するように光スキャナを制御することにより水平方向及び垂直方向に測定光を偏向させる。
このような方法によれば、スキャン速度をスキャン領域全域でほぼ一定にすることができ、スキャン領域全域で均質なスキャン結果を取得することができる。その結果、均質なスキャン結果に基づいて非点収差を高精度に補正することが可能になる。また、例えば対物レンズの頂点からの正反射の影響を受けにくくなるため、アーチファクトフリーなスキャン結果に基づいて非点収差を高精度に補正することが可能になる。
いくつかの実施形態では、回折限界をrとし、被検眼におけるサークル状のスキャンラインの直径をRとし、スキャンラインにおけるAライン数をNとしたとき、R×π/N<rを満たす。
このような方法によれば、撮影条件(計測条件)を調整するためのスキャンの精度を低下させることなくAライン数を低減することが可能になり、より短時間で非点収差を高精度に補正することが可能になる。
いくつかの実施形態に係るプログラムは、コンピュータに、上記のいずれかに記載の眼科装置の制御方法の各ステップを実行させる。
このようなプログラムによれば、ラスタスキャン又は2以上のラインスキャンに比べて短時間で干渉光学系の光軸に垂直な平面における水平方向の情報と垂直方向の情報とを取得し、非点収差を補正することができる。それにより、光源が高速化した場合でも、眼球の動き等の影響を受けることなく、非点収差を高精度に補正することが可能になる。
以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。適用される構成は、例えば目的に応じて選択される。また、適用される構成に応じ、当業者にとって自明の作用効果や、本明細書において説明された作用効果が得られる。