JP7525834B2 - All-solid-state battery - Google Patents
All-solid-state battery Download PDFInfo
- Publication number
- JP7525834B2 JP7525834B2 JP2020071103A JP2020071103A JP7525834B2 JP 7525834 B2 JP7525834 B2 JP 7525834B2 JP 2020071103 A JP2020071103 A JP 2020071103A JP 2020071103 A JP2020071103 A JP 2020071103A JP 7525834 B2 JP7525834 B2 JP 7525834B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- electrode layer
- solid electrolyte
- solid
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Description
本発明は、全固体電池に関する。 The present invention relates to an all-solid-state battery.
リチウムイオン電池は、他の二次電池と比較して高エネルギー密度を有し、携帯機器やモビリティなどの幅広い分野で使用されている。今後、携帯機器の長時間の使用や高い消費電力、モビリティの航続距離の増加への要望が高まっている。そのため、二次電池の高エネルギー密度化及び安全性への両立が求められており、リチウムイオン電池に替わる次世代電池に期待が高まっている。 Lithium-ion batteries have a higher energy density than other secondary batteries and are used in a wide range of fields, including portable devices and mobility. In the future, there will be an increasing demand for longer use of portable devices, higher power consumption, and increased driving range for mobility. This has created a demand for secondary batteries that are both high energy density and safe, and expectations are high for next-generation batteries to replace lithium-ion batteries.
次世代電池の中でも全固体電池は、リチウムイオン電池が液体の有機電解液を電解質として用いるのに対して、無機材料の固体電解質を用いた電池である。全固体電池は、不燃性で化学的に安定な無機セラミックスを電解質に使うので安全性が高く、有機電解液を使用しないため、高温まで使用可能であり、高電位で動作させることができ、エネルギー密度を高めることができる。 Among next-generation batteries, all-solid-state batteries use an inorganic solid electrolyte, whereas lithium-ion batteries use a liquid organic electrolyte. All-solid-state batteries are highly safe because they use non-flammable and chemically stable inorganic ceramics as the electrolyte, and because they do not use an organic electrolyte, they can be used at high temperatures, can be operated at high potentials, and can increase energy density.
全固体電池に用いる負極に関し、負極内のリチウムイオンの伝導性パスの構築のため、リチウムイオン伝導性をもつ固体電解質を含有させる方法が知られている。また、負極内に固体電解質を含有させずに、リチウムイオンの伝導性パスを構築する構成として、負極にイオン伝導性樹脂を含有させる構成が知られている(例えば、特許文献1)。いずれも予めイオン伝導性物質を混合して、負極を作製する必要がある点では共通している。しかしながら、負極活物質と固体電解質との間に良質な界面の形成が十分に得られず、界面抵抗を低減することが難しかった。 Regarding the negative electrode used in an all-solid-state battery, a method is known in which a solid electrolyte with lithium ion conductivity is contained in the negative electrode to construct a conductive path for lithium ions in the negative electrode. In addition, a configuration is known in which an ion conductive resin is contained in the negative electrode as a configuration for constructing a conductive path for lithium ions without containing a solid electrolyte in the negative electrode (for example, Patent Document 1). Both methods have in common the fact that an ion conductive material must be mixed in advance to prepare the negative electrode. However, it is difficult to sufficiently form a good interface between the negative electrode active material and the solid electrolyte, making it difficult to reduce the interface resistance.
そこで本発明は、上記の問題点に鑑み、負極活物質と固体電解質との間の界面抵抗を低減することができる全固体電池を提供することを目的とする。 In view of the above problems, the present invention aims to provide an all-solid-state battery that can reduce the interfacial resistance between the negative electrode active material and the solid electrolyte.
上記の目的を達成するために、本発明は、正極層と、負極層と、前記正極層と前記負極層との間に配置された固体電解質層とを備える全固体電池であって、前記負極層は、M(BH4)2で表される化合物(Mは、Mg、Ca、Mn及びZnから成る群から選ばれた一以上の元素)を含むものである。 In order to achieve the above object, the present invention provides an all-solid-state battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, the negative electrode layer containing a compound represented by M( BH4 ) 2 (M is one or more elements selected from the group consisting of Mg, Ca, Mn, and Zn).
このように、本発明に係る全固体電池によれば、その負極層に含まれるM(BH4)2で表される化合物(Mは、Mg、Ca、Mn及びZnから成る群から選ばれた一以上の元素)が、放電過程でイオン伝導性物質を自己生成するため、負極活物質と固体電解質間の粒子の隙間が埋まり、密着性が向上して界面抵抗を低減することができる。 As described above, in the all-solid-state battery according to the present invention, the compound represented by M( BH4 ) 2 (wherein M is one or more elements selected from the group consisting of Mg, Ca, Mn, and Zn) contained in the negative electrode layer generates an ion-conductive material during the discharge process, and the gaps between the particles of the negative electrode active material and the solid electrolyte are filled, improving the adhesion and reducing the interface resistance.
以下、添付図面を参照して、本発明に係る全固体電池の実施の形態について説明する。 The following describes an embodiment of the all-solid-state battery according to the present invention with reference to the attached drawings.
第1の実施形態の全固体電池10は、図1に示すように、正極層11と、負極層13と、正極層11と負極層13との間に位置する固体電解質層12とを備える。 As shown in FIG. 1, the all-solid-state battery 10 of the first embodiment includes a positive electrode layer 11, a negative electrode layer 13, and a solid electrolyte layer 12 located between the positive electrode layer 11 and the negative electrode layer 13.
正極層11は、正極活物質を含む層である。正極活物質としては、例えば、LiCoO2、LiNixCo1-xO2(0<x<1)、LiNi1/3Co1/3Mn1/3O2、LiMnO2、異種元素置換Li-Mnスピネル(LiMn1.5Ni0.5O4、LiMn1.5Al0.5O4、LiMn1.5Mg0.5O4、LiMn1.5Co0.5O4、LiMn1.5Fe0.5O4、LiMn1.5Zn0.5O4)、リン酸遷移金属リチウム(LiFePO4、LiMnPO4、LiCoPO4、LiNiPO4)などのリチウム系材料が挙げられる。 The positive electrode layer 11 is a layer containing a positive electrode active material. Examples of the positive electrode active material include LiCoO 2 , LiNi x Co 1-x O 2 (0<x<1), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , heteroelement-substituted Li-Mn spinel (LiMn 1.5 Ni 0.5 O 4 , LiMn 1.5 Al 0.5 O 4 , LiMn 1.5 Mg 0.5 O 4 , LiMn 1.5 Co 0.5 O 4 , LiMn 1.5 Fe 0.5 O 4 , LiMn 1.5 Zn 0.5 O 4 ), lithium transition metal phosphate (LiFePO 4 , LiMnPO 4 Examples of the lithium-based materials include lithium-based materials such as LiCoPO 4 and LiNiPO 4 .
また、正極層11は、正極活物質の他に、例えば、導電助剤や、バインダー、固体電解質を含んでもよい。導電助剤としては、例えば、アセチレンブラック(AB)、ケッチェンブラック等の高導電性カーボンブラック、黒鉛、コークスや、Ni粉末、Cu粉末、Ag粉末等の金属粉末などが挙げられる。バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダーや、スチレンブタジエンゴム(SBR)等のゴム系バインダーが挙げられる。正極層11中の正極活物質の含有率については、例えば、70重量%から95重量%の範囲が好ましい。また、正極層11の厚さは、例えば、2μmから100μmの範囲が好ましい。 In addition to the positive electrode active material, the positive electrode layer 11 may contain, for example, a conductive assistant, a binder, and a solid electrolyte. Examples of the conductive assistant include highly conductive carbon black such as acetylene black (AB) and ketjen black, graphite, coke, and metal powders such as Ni powder, Cu powder, and Ag powder. Examples of the binder include fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), and rubber-based binders such as styrene butadiene rubber (SBR). The content of the positive electrode active material in the positive electrode layer 11 is preferably in the range of, for example, 70% by weight to 95% by weight. The thickness of the positive electrode layer 11 is preferably in the range of, for example, 2 μm to 100 μm.
固体電解質層12は、固体電解質の粒子1を含む層である。固体電解質としては、例えば、水素化物系固体電解質や、硫化物系固体電解質材料、酸化物系固体電解質材料などが挙げられ、これらのうち、水素化物系固体電解質が特に好ましい。詳しくは後述する負極層13において放電過程で生成するイオン伝導性物質と同じ水素化物系の固体電解質を用いることで、負極活物質と固体電解質との間の界面抵抗をより低減することができる。水素化物系固体電解質としては、LiBH4(水素化ホウ酸リチウム)や、Li2B12H12、Li4(BH4)3I、Li2B12H12などが挙げられ、これらのうち、LiBH4が特に好ましい。詳しくは後述する負極層13において放電過程で生成するイオン伝導性物質と同じ化合物のLiBH4を用いることで、負極活物質と固体電解質との間の界面抵抗をより一層低減することができる。硫化物系固体電解質材料としては、例えば、Li9.54Si1.74P1.44S11.7Cl0.3、Li10GePS12などが挙げられ、酸化物系固体電解質材料としては、例えば、Li1+xAlxTi2-x(PO4)3、Li1.5Al0.5Ge1.5(PO4)3などが挙げられる。 The solid electrolyte layer 12 is a layer containing solid electrolyte particles 1. Examples of solid electrolytes include hydride-based solid electrolytes, sulfide-based solid electrolyte materials, and oxide-based solid electrolyte materials, among which hydride-based solid electrolytes are particularly preferred. By using a hydride-based solid electrolyte that is the same as the ion-conductive material generated in the anode layer 13 during the discharge process, which will be described later in detail, the interface resistance between the anode active material and the solid electrolyte can be further reduced. Examples of hydride-based solid electrolytes include LiBH 4 (lithium borohydride), Li 2 B 12 H 12 , Li 4 (BH 4 ) 3 I, and Li 2 B 12 H 12 , among which LiBH 4 is particularly preferred. By using LiBH 4 , which is the same compound as the ion-conductive material generated in the anode layer 13 during the discharge process, which will be described later in detail, the interface resistance between the anode active material and the solid electrolyte can be further reduced. Examples of sulfide-based solid electrolyte materials include Li9.54Si1.74P1.44S11.7Cl0.3 and Li10GePS12 , and examples of oxide-based solid electrolyte materials include Li1 + xAlxTi2 -x ( PO4 ) 3 and Li1.5Al0.5Ge1.5 ( PO4 ) 3 .
固体電解質層12における固体電解質の粒子1の平均粒子径は、例えば、50μmから100μmの範囲が好ましい。なお、本明細書では「平均粒子径」とは、レーザー回折式粒度分布測定装置を用いて測定される体積基準の粒度分布におけるメディアン径(50%粒子径)をいう。また、固体電解質層12の厚さは、例えば、300μmから500μmの範囲が好ましい。 The average particle diameter of the solid electrolyte particles 1 in the solid electrolyte layer 12 is preferably in the range of, for example, 50 μm to 100 μm. In this specification, the term "average particle diameter" refers to the median diameter (50% particle diameter) in the volume-based particle size distribution measured using a laser diffraction particle size distribution measuring device. The thickness of the solid electrolyte layer 12 is preferably in the range of, for example, 300 μm to 500 μm.
負極層13は、負極活物質として、M(BH4)2で表される化合物(Mは、Mg、Ca、Mn及びZnから成る群から選ばれた一以上の元素)の粒子2を含む層である。負極活物質としてM(BH4)2で表される化合物を用いることで、以下の反応式1に示すように、放電過程で負極層13にイオン伝導性物質を自己生成することができるため、負極活物質の粒子2と固体電解質の粒子1との間の隙間を埋め、密着性が向上して界面抵抗を低減することができる。なお、以下の反応式は、正極活物質としてリチウム系材料を用いた場合である。
M(BH4)2+2Li++2e-→M+2LiBH4・・・・(反応式1)
The negative electrode layer 13 is a layer containing particles 2 of a compound represented by M(BH 4 ) 2 (M is one or more elements selected from the group consisting of Mg, Ca, Mn, and Zn) as a negative electrode active material. By using a compound represented by M(BH 4 ) 2 as a negative electrode active material, an ion conductive material can be self-generated in the negative electrode layer 13 during discharge as shown in the following reaction formula 1, so that the gap between the particles 2 of the negative electrode active material and the particles 1 of the solid electrolyte can be filled, and the adhesion can be improved to reduce the interface resistance. Note that the following reaction formula is for the case where a lithium-based material is used as the positive electrode active material.
M( BH4 ) 2 + 2Li ++ 2e- →M+ 2LiBH4 ... (Reaction formula 1)
また、このように放電過程で負極層13にLiBH4といったイオン伝導性物質が自己生成するため、あらかじめ負極層13にイオン伝導性物質として固体電解質の粒子1を含有させる必要が無い。後述する図2に示す全固体電池20のように、負極層23に予め固体電解質層22と同様の固体電解質の粒子1をイオン伝導性物質として混合する手法では、負極層23中に本来必要なイオン伝導性物質の量より多くの量の固体電解質の粒子1を混合することから、相対的に負極活物質の粒子2の量が少なくなり、実質的な負極容量を減らすおそれがあった。よって、負極層13では固体電解質の粒子1を含有しない分、相対的に負極活物質の粒子2を多く保有することができ、実質的な負極容量を増やすことができる。 In addition, since an ion conductive material such as LiBH 4 is generated in the anode layer 13 during the discharge process, it is not necessary to previously include solid electrolyte particles 1 in the anode layer 13 as an ion conductive material. In a method in which solid electrolyte particles 1 similar to the solid electrolyte layer 22 are previously mixed as an ion conductive material in the anode layer 23 as in the all-solid-state battery 20 shown in FIG. 2 described later, the amount of solid electrolyte particles 1 is mixed in the anode layer 23 in a larger amount than the amount of ion conductive material originally required, so that the amount of negative electrode active material particles 2 is relatively small, and there is a risk of reducing the actual negative electrode capacity. Therefore, since the negative electrode layer 13 does not contain the solid electrolyte particles 1, it is possible to relatively hold a large amount of negative electrode active material particles 2, and the actual negative electrode capacity can be increased.
負極層13は、M(BH4)2で表される化合物の粒子2に加えて、必要により、導電助剤の粒子3を含んでもよい。導電助剤としては、例えば、アセチレンブラック(AB)、ケッチェンブラック等の高導電性カーボンブラック、黒鉛、コークスや、Ni粉末、Cu粉末、Ag粉末等の金属粉末などが挙げられる。負極層13中のM(BH4)2で表される化合物の含有率については、例えば、40重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上が更に好ましい。負極層13中のM(BH4)2で表される化合物の含有率の上限は、特に限定されないが、例えば、85重量%以下が好ましく、70重量%以下がより好ましい。負極層13中の導電助剤の含有率については、例えば、15重量%から40重量%の範囲が好ましく、25重量%から35重量%の範囲がより好ましい。なお、負極層13は、固体電解質の粒子1を一切含まない。 The negative electrode layer 13 may contain particles 3 of a conductive assistant, if necessary, in addition to particles 2 of a compound represented by M(BH 4 ) 2. Examples of conductive assistants include highly conductive carbon black such as acetylene black (AB) and ketjen black, graphite, coke, and metal powders such as Ni powder, Cu powder, and Ag powder. The content of the compound represented by M(BH 4 ) 2 in the negative electrode layer 13 is preferably 40% by weight or more, more preferably 60% by weight or more, and even more preferably 70% by weight or more. The upper limit of the content of the compound represented by M(BH 4 ) 2 in the negative electrode layer 13 is not particularly limited, but is preferably 85% by weight or less, and more preferably 70% by weight or less. The content of the conductive assistant in the negative electrode layer 13 is preferably, for example, in the range of 15% by weight to 40% by weight, and more preferably in the range of 25% by weight to 35% by weight. The negative electrode layer 13 does not contain any solid electrolyte particles 1 .
負極層13におけるM(BH4)2で表される化合物の粒子2の平均粒子径は、例えば、5μmから30μmの範囲が好ましく、5μmから20μmの範囲がより好ましい。負極層13における導電助剤の粒子3の平均粒子径は、例えば、1μmから10μmの範囲が好ましく、1μmから5μmの範囲がより好ましい。また、負極層13の厚さは、例えば、2μmから100μmの範囲が好ましい。 The average particle size of the particles 2 of the compound represented by M( BH4 ) 2 in the negative electrode layer 13 is preferably in the range of, for example, 5 μm to 30 μm, and more preferably in the range of 5 μm to 20 μm. The average particle size of the particles 3 of the conductive assistant in the negative electrode layer 13 is preferably in the range of, for example, 1 μm to 10 μm, and more preferably in the range of 1 μm to 5 μm. The thickness of the negative electrode layer 13 is preferably in the range of, for example, 2 μm to 100 μm.
全固体電池10は、必要により、正極層11に正極集電体(図示省略)や負極層13に負極集電体(図示省略)を備えてもよい。正極集電体および負極集電体の材料としては、例えば、プラチナ、銅、ステンレス鋼、ニッケル、チタン、アルミニウムなどを用いることができる。 The all-solid-state battery 10 may, if necessary, include a positive electrode current collector (not shown) in the positive electrode layer 11 and a negative electrode current collector (not shown) in the negative electrode layer 13. Materials for the positive electrode current collector and the negative electrode current collector may be, for example, platinum, copper, stainless steel, nickel, titanium, aluminum, etc.
また、第2の実施形態の全固体電池20は、図2に示すように、正極層21と、負極層23と、正極層21と負極層23との間に位置する固体電解質層22とを備える。この全固体電池20は、負極層23の構成を除いて、第1の実施形態の全固体電池10と同様の構成を有する。負極層23は、図2に示すように、M(BH4)2で表される化合物(Mは、Mg、Ca、Mn及びZnから成る群から選ばれた一以上の元素)の粒子2と、導電助剤の粒子3に加えて、固体電解質の粒子1を含む。これら粒子1~3については第1の実施の形態と同様であるので、ここでの説明は省略する。 As shown in FIG. 2, the all-solid-state battery 20 of the second embodiment includes a positive electrode layer 21, a negative electrode layer 23, and a solid electrolyte layer 22 located between the positive electrode layer 21 and the negative electrode layer 23. The all-solid-state battery 20 has a configuration similar to that of the all-solid-state battery 10 of the first embodiment, except for the configuration of the negative electrode layer 23. As shown in FIG. 2, the negative electrode layer 23 includes particles 2 of a compound represented by M(BH 4 ) 2 (M is one or more elements selected from the group consisting of Mg, Ca, Mn, and Zn), particles 3 of a conductive assistant, and particles 1 of a solid electrolyte. These particles 1 to 3 are the same as those of the first embodiment, and therefore will not be described here.
負極層23中のM(BH4)2で表される化合物の含有率については、例えば、30重量%から70重量%の範囲が好ましく、35重量%から60重量%の範囲がより好ましい。負極層23中の導電助剤の含有率については、例えば、15重量%から40重量%の範囲が好ましく、25重量%から35重量%の範囲がより好ましい。負極層23中の固体電解質の含有率については、例えば、15重量%から40重量%の範囲が好ましく、25重量%から35重量%の範囲がより好ましい。 The content of the compound represented by M( BH4 ) 2 in the negative electrode layer 23 is preferably in the range of 30% by weight to 70% by weight, more preferably in the range of 35% by weight to 60% by weight. The content of the conductive assistant in the negative electrode layer 23 is preferably in the range of 15% by weight to 40% by weight, more preferably in the range of 25% by weight to 35% by weight. The content of the solid electrolyte in the negative electrode layer 23 is preferably in the range of 15% by weight to 40% by weight, more preferably in the range of 25% by weight to 35% by weight.
このように負極層23は、固体電解質層22と同様の固体電解質の粒子1をイオン伝導性物質として予め含む。但し、充放電の際に負極層23中の全ての固体電解質の粒子1が電極反応に寄与しているわけではなく、電極反応に寄与していない固体電解質の粒子1も負極層23中に点在することから、負極層23中に本来必要なイオン伝導性物質の量より多くの量の固体電解質の粒子1を混合することとなる。よって、第1の実施の形態の全固体電池10の負極層13よりも相対的に負極活物質の粒子2の量が少なくなり、実質的な負極容量が減るものの、本発明は、負極層23に固体電解質の粒子1を予め含む実施の形態を完全に排除するものではない。 In this way, the negative electrode layer 23 contains the same solid electrolyte particles 1 as the solid electrolyte layer 22 as an ion conductive material in advance. However, not all of the solid electrolyte particles 1 in the negative electrode layer 23 contribute to the electrode reaction during charging and discharging, and the solid electrolyte particles 1 that do not contribute to the electrode reaction are also scattered in the negative electrode layer 23, so that a larger amount of solid electrolyte particles 1 than the amount of ion conductive material originally required is mixed in the negative electrode layer 23. Therefore, although the amount of the negative electrode active material particles 2 is relatively smaller than that of the negative electrode layer 13 of the all-solid-state battery 10 of the first embodiment and the actual negative electrode capacity is reduced, the present invention does not completely exclude the embodiment in which the solid electrolyte particles 1 are already contained in the negative electrode layer 23.
[1.電池特性評価用セルの作製]
図3に示す電池特性評価用セル30を作製した。電池特性評価用セル30は、対極層31、負極層33、対極層と負極層との間に配置された固体電解質層32とを備える。この電池特性評価用セル30は、ステンレス鋼製の拘束枠34で積層方向に一定の圧力によって拘束した。拘束枠34の上枠板34eと下枠板34bの両端は、それぞれ縦枠材34b、34cを介して接続した。これら拘束枠の各部材34b~34eはそれぞれOリング35を介して接続した。そして、拘束枠34内に位置し、上枠板34eにバネ36を介して設けられた調整板34aと下枠板34bとの間で、電池特性評価用セル30を挟んだ。
[1. Preparation of cells for evaluating battery characteristics]
A cell 30 for evaluating battery characteristics shown in FIG. 3 was fabricated. The cell 30 for evaluating battery characteristics includes a counter electrode layer 31, an anode layer 33, and a solid electrolyte layer 32 disposed between the counter electrode layer and the anode layer. The cell 30 for evaluating battery characteristics was restrained in the stacking direction by a stainless steel restraining frame 34 with a constant pressure. Both ends of the upper frame plate 34e and the lower frame plate 34b of the restraining frame 34 were connected via vertical frame members 34b and 34c, respectively. Each member 34b to 34e of the restraining frame was connected via an O-ring 35. The cell 30 for evaluating battery characteristics was sandwiched between an adjustment plate 34a and a lower frame plate 34b, which were located in the restraining frame 34 and provided on the upper frame plate 34e via a spring 36.
対極層31としては、リチウム金属(Li)箔(直径10mm、厚さ150μm)を用いた。固体電解質層32の材料としては、LiBH4粒子(Sigma-aldrich社製、平均粒子径300μm)を30mg用いた。負極層33の材料としては、Mg(BH4)2粒子(Sigma-aldrich社製、平均粒子径30μm)とアセチレンブラック(AB)粒子(デンカ社製、一次粒子径36nm)を7:3の重量比で合計6mg用い、400rpm、2時間のボールミル混合を行った。そして、固体電解質層32は、上記材料を20kNの荷重で一軸加圧してペレット状に成形した。また、負極層33は、上記混合材料を30kNの荷重で一軸加圧してペレット状に成形した。これら作業は、グローブボックス中のプレス機で行った。これら二層のペレットに上記Li箔を張り付けて、電池特性評価用セルを作製した(実施例1)。 As the counter electrode layer 31, lithium metal (Li) foil (diameter 10 mm, thickness 150 μm) was used. As the material of the solid electrolyte layer 32, 30 mg of LiBH 4 particles (manufactured by Sigma-Aldrich, average particle size 300 μm) was used. As the material of the negative electrode layer 33, a total of 6 mg of Mg (BH 4 ) 2 particles (manufactured by Sigma-Aldrich, average particle size 30 μm) and acetylene black (AB) particles (manufactured by Denka, primary particle size 36 nm) were used in a weight ratio of 7:3, and ball mill mixing was performed at 400 rpm for 2 hours. Then, the solid electrolyte layer 32 was formed into a pellet shape by uniaxially pressing the above material with a load of 20 kN. Moreover, as the negative electrode layer 33, the above mixed material was formed into a pellet shape by uniaxially pressing the above mixed material with a load of 30 kN. These operations were performed with a press machine in a glove box. The above-mentioned Li foil was attached to these two-layer pellets to prepare a cell for evaluating battery characteristics (Example 1).
[2.充放電測定]
充放電試験装置(ナガノ社製、品番:BTS2004H)を用いて、温度120℃、電流密度0.5mA/cm-2、電圧範囲0.3V-1.5Vvs.Li+/Liの条件で、上記にて作製した電池特性評価用セル30の充放電試験を行った。その結果を図4に示す。また、結果の検証のため、負極層33の材料として、LiBH4粒子を更に加え、Mg(BH4)2:LiBH4:ABを4:3:3の重量比で混合したことを除いて実施例1と同様に作製した電池特性評価用セル(実施例2)についても同様に充放電試験を行った。その結果を図5に示す。
[2. Charge/Discharge Measurement]
A charge-discharge test was performed on the battery characteristic evaluation cell 30 prepared above using a charge-discharge tester (Nagano Corporation, product number: BTS2004H) under conditions of a temperature of 120° C., a current density of 0.5 mA/cm −2 , and a voltage range of 0.3 V-1.5 V vs. Li + /Li. The results are shown in FIG. 4. In addition, in order to verify the results, a charge-discharge test was also performed on a battery characteristic evaluation cell (Example 2 ) prepared in the same manner as in Example 1, except that LiBH 4 particles were further added as the material for the negative electrode layer 33, and Mg(BH 4 ) 2 :LiBH 4 :AB was mixed in a weight ratio of 4:3:3. The results are shown in FIG. 5.
図4、図5に示すように、実施例1、実施例2のいずれも0.5mAcm-2の大電流で約0.9Vのフラットな放電プラトーが得られた。また、実施例1では、負極層にイオン伝導性物質を混合しなくても実施例2と同様に放電反応が進行した。また、図6に実施例1、2の1~15サイクルまでの可逆容量を示した。負極層中にLiBH4が入っていなくても充放電が進行し、3サイクル目までと12サイクル目以降はむしろLiBH4が入っていない方が可逆容量は大きかった。
この結果から、上記の反応式1に示すように、放電によってイオン伝導性物質としてLiBH4が負極層側で自己生成していることが推測される。
As shown in Figures 4 and 5, in both Example 1 and Example 2, a flat discharge plateau of about 0.9 V was obtained at a large current of 0.5 mA cm -2 . In Example 1, the discharge reaction proceeded in the same manner as in Example 2 even if no ion conductive material was mixed into the negative electrode layer. In addition, Figure 6 shows the reversible capacity from 1 to 15 cycles in Examples 1 and 2. Charge and discharge proceeded even if LiBH 4 was not present in the negative electrode layer, and the reversible capacity was larger up to the third cycle and from the 12th cycle onwards when LiBH 4 was not present.
From this result, it is presumed that LiBH4 is self-generated as an ion conductive material on the negative electrode layer side by discharging, as shown in the above reaction formula 1.
また、実施例1の放電前後の負極層側について、X線回折測定装置(Rigaku社製、品番:MiniFlex 600)を用いてそれらの回析パターンを得た結果を図7に示す。放電後にLiBH4とMgのピークが観測されることから、上記の結果を確認することができた。 In addition, the diffraction patterns of the negative electrode layer side before and after discharge in Example 1 were obtained using an X-ray diffraction measuring device (Rigaku Corporation, product number: MiniFlex 600) and are shown in Figure 7. The above results could be confirmed by observing peaks of LiBH4 and Mg after discharge.
なお、上記の実施例では負極活物質としてMg(BH4)2を用いたが、類似する構成であり、反応も同様と考えられることから、負極活物質としてCa(BH4)2、Mn(BH4)2、Zn(BH4)2を用いても同様にイオン伝導性物質としてLiBH4を自己生成すると推測される。 In the above example, Mg( BH4 ) 2 was used as the negative electrode active material. However, since the structure is similar and the reaction is considered to be similar, it is presumed that LiBH4 will be self-generated as an ion conductive material even if Ca( BH4 ) 2 , Mn( BH4 ) 2 , or Zn( BH4 ) 2 is used as the negative electrode active material.
10 全固体電池
20 全固体電池(比較例)
30 電池特性評価用セル
11、21 正極層
12、22、32 固体電解質層
13、23、33 負極層
31 対極層
34 拘束枠
10 All-solid-state battery 20 All-solid-state battery (comparative example)
30 Cell for evaluating battery characteristics 11, 21 Positive electrode layer 12, 22, 32 Solid electrolyte layer 13, 23, 33 Negative electrode layer 31 Counter electrode layer 34 Restraint frame
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071103A JP7525834B2 (en) | 2020-04-10 | 2020-04-10 | All-solid-state battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071103A JP7525834B2 (en) | 2020-04-10 | 2020-04-10 | All-solid-state battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021168256A JP2021168256A (en) | 2021-10-21 |
JP7525834B2 true JP7525834B2 (en) | 2024-07-31 |
Family
ID=78079675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020071103A Active JP7525834B2 (en) | 2020-04-10 | 2020-04-10 | All-solid-state battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7525834B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190089016A1 (en) | 2017-09-18 | 2019-03-21 | StoreDot Ltd. | Regulation of metal ion levels in lithium ion batteries |
JP2019071164A (en) | 2016-01-27 | 2019-05-09 | 株式会社日立製作所 | Solid electrolyte and all solid lithium battery using solid electrolyte |
-
2020
- 2020-04-10 JP JP2020071103A patent/JP7525834B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019071164A (en) | 2016-01-27 | 2019-05-09 | 株式会社日立製作所 | Solid electrolyte and all solid lithium battery using solid electrolyte |
US20190089016A1 (en) | 2017-09-18 | 2019-03-21 | StoreDot Ltd. | Regulation of metal ion levels in lithium ion batteries |
Also Published As
Publication number | Publication date |
---|---|
JP2021168256A (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11646443B2 (en) | Lithium solid battery | |
EP3819966A1 (en) | Solid electrolyte, electrochemical battery including the solid electrolyte, and method of preparing the solid electrolyte | |
CN105308775A (en) | Conductive carbons for lithium ion batteries | |
US10158144B2 (en) | Solid electrolyte material and all solid lithium battery | |
CN104204829B (en) | The inspection device of all-solid-state battery and inspection method | |
Yuan et al. | Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance | |
US20220181610A1 (en) | All solid state battery | |
US20250070164A1 (en) | Positive active material, positive electrode plate, lithium-ion battery, and electrical device | |
JP2008226643A (en) | Nonaqueous electrolyte secondary battery | |
Appetecchi et al. | Novel types of lithium-ion polymer electrolyte batteries | |
JP5544981B2 (en) | Method for producing electrode active material | |
CN108808006B (en) | Negative pole piece and battery | |
JP7525834B2 (en) | All-solid-state battery | |
JP6972965B2 (en) | All solid state battery | |
Helen et al. | Magnesium sulphide as anode material for lithium-ion batteries | |
JP7517242B2 (en) | All-solid-state battery | |
JP7347454B2 (en) | Negative electrode active material layer | |
WO2017163458A1 (en) | Solid electrolyte, production method thereof, and all-solid-state battery | |
JP7524875B2 (en) | Solid-state battery and method for manufacturing the same | |
WO2024174513A1 (en) | Positive electrode composite material, positive electrode sheet, secondary battery and electrical device | |
WO2022219847A1 (en) | Solid electrolyte material and battery using same | |
US11387439B2 (en) | Anode layer and all solid state battery | |
US20250023046A1 (en) | Anode material for secondary battery, anode layer for secondary battery, solid secondary battery, and charging method therefor | |
JP2020053154A (en) | Negative electrode mixture material | |
EP4362136A1 (en) | Positive electrode active material having core-shell structure and preparation method therefor, positive electrode sheet, secondary battery, battery module, battery pack, and electrical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200521 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7525834 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |