JP7524916B2 - Method for measuring the amount of corrosion on test specimens - Google Patents
Method for measuring the amount of corrosion on test specimens Download PDFInfo
- Publication number
- JP7524916B2 JP7524916B2 JP2022026329A JP2022026329A JP7524916B2 JP 7524916 B2 JP7524916 B2 JP 7524916B2 JP 2022026329 A JP2022026329 A JP 2022026329A JP 2022026329 A JP2022026329 A JP 2022026329A JP 7524916 B2 JP7524916 B2 JP 7524916B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- test specimen
- amount
- test
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Description
本発明は、各種試験体の測定方法に関し、特に金属材料からなる試験体の腐食量の測定方法に関する。 The present invention relates to a method for measuring various test specimens, and in particular to a method for measuring the amount of corrosion of test specimens made of metallic materials.
冬季に融雪塩が道路に散布される地域においては、自動車の穴あき腐食に対する対策が重要な課題になっている。穴あき腐食は、鋼板、アルミニウム合金板をはじめとする板状の金属材料同士をスポット溶接やかしめ等により接合したときに形成される、板の合わせ部(重なり部)内部に発生する腐食である。合わせ部では、その内部(内側面)に化成処理や電着塗装が行き届かず、さらに水分や塩分が滞留しやすいことで、合わせ部内部以外の一般面の腐食よりも腐食速度が大きくなる場合がある。さらに、一般面の腐食と異なり、合わせ部内部では外観からの腐食の程度を把握することができず、管理が困難である。そのため、合わせ部における穴あき腐食に至るまでの寿命は、自動車構造材料の板厚を設定する上で重要な因子である。 In areas where snow melting salt is spread on roads in winter, measures against perforation corrosion of automobiles are an important issue. Perforation corrosion occurs inside the joints (overlaps) of plates formed when plate-shaped metal materials such as steel plates and aluminum alloy plates are joined together by spot welding or crimping. In joints, the inside (inner surface) is not fully treated with chemical conversion coating or electrocoating, and moisture and salt tend to accumulate, so the corrosion rate can be faster than that of general surfaces other than the inside of the joint. Furthermore, unlike corrosion on general surfaces, the degree of corrosion inside the joint cannot be determined from the appearance, making it difficult to manage. Therefore, the life until perforation corrosion occurs in the joint is an important factor in setting the plate thickness of automobile structural materials.
使用環境における穴あき腐食に至るまでの寿命の実態を把握する上で本質的に重要となるのは、対象とする金属材料の穴あき腐食速度である。腐食速度は、腐食量の微分値であり、腐食量の経時変化を測定し、その腐食量カーブから回帰式により算出される。つまり、ある時点での腐食速度を測定するためには、初めに多くの試験体(試験片)を暴露し、一定期間ごとにそれらの試験片を順次回収して当該試験片の初期状態からの腐食量を求めた過去の一連のデータが必要となる。 The rate of perforation corrosion of the target metal material is of fundamental importance in understanding the actual lifespan until perforation corrosion occurs in the operating environment. The corrosion rate is the differential value of the amount of corrosion, and is calculated by measuring the change in the amount of corrosion over time and using a regression equation from the corrosion amount curve. In other words, to measure the corrosion rate at a certain point in time, a series of past data is required, in which many test pieces (test specimens) are first exposed to the air, and then the test specimens are sequentially collected at regular intervals to determine the amount of corrosion from the initial state of the test specimens.
一般に、試験体の腐食量は、腐食により当該試験体に生成した腐食生成物を除去したうえで、マイクロメータなどを用いた板厚減少量の測定、あるいは重量法による測定により定量的に評価される。前記評価の際に試験体が破壊されることから、同一の試験体において腐食量を経時で追跡することは不可能である。そのため、腐食量の経時変化のデータを採取する場合には、腐食速度を測定するために多数の試験体を準備しておく必要がある。多数の試験体の準備や、それらのデータの採取と管理、解析には多大な労力を要することになる。 Generally, the amount of corrosion of a test specimen is quantitatively evaluated by removing the corrosion products that have formed on the test specimen due to corrosion, and then measuring the amount of plate thickness reduction using a micrometer or by measuring by gravimetric method. Because the test specimen is destroyed during the evaluation, it is impossible to track the amount of corrosion over time for the same test specimen. Therefore, when collecting data on the change in the amount of corrosion over time, it is necessary to prepare a large number of test specimens in order to measure the corrosion rate. Preparing a large number of test specimens and collecting, managing, and analyzing that data requires a great deal of effort.
無塗装で使用される耐候性鋼材の一般面における腐食に対しては、腐食速度と相関があると考えられている錆の状態を判定し、腐食速度を簡便に推定する各種の方法が提案されている。例えば、錆の外観からの判定基準として、非特許文献1に示されている5段階評価基準がある。この基準は、錆外観の粗度、剥離錆の有無から評点をつけて評価するものである。すなわち、外観上で、繊密で密着性のある錆が形成されていれば、腐食速度は十分低減されているものと判定し、維持管理上問題がないとするものである。
Regarding corrosion on the general surface of weathering steel materials used without painting, various methods have been proposed to judge the state of rust, which is thought to correlate with the corrosion rate, and to easily estimate the corrosion rate. For example, the five-level evaluation criteria shown in
しかしながら、上記の5段階評価基準による錆の外観判定では、例えば目視できない試験体の合わせ部内部で生じる腐食に対して適用することができない。 However, the above five-point evaluation criteria for determining the appearance of rust cannot be applied to corrosion that occurs inside joints of test specimens that cannot be seen with the naked eye, for example.
本発明は、上記事情に鑑みてなされたものであり、試験体の腐食を非破壊的に測定でき、かつ、同一の試験体を用いて腐食量を経時で測定することができる試験体の腐食量の測定方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a method for measuring the amount of corrosion of a test specimen that can measure the corrosion of the test specimen nondestructively and can measure the amount of corrosion over time using the same test specimen.
本発明者らは、上記課題を達成するために、鋭意研究を行い、環境に曝露され、腐食を生じた試験体の腐食量を、コンピュータ断層撮影法(Computed Tomography(CT))により非破壊的に測定可能であることを見出した。 In order to achieve the above object, the inventors have conducted intensive research and discovered that the amount of corrosion of a test specimen that has been exposed to the environment and has developed corrosion can be measured non-destructively using computed tomography (CT).
本発明は、以下の構成を有する。
[1]試験体の腐食量の測定方法であって、
測定対象の試験体について、コンピュータ断層撮影法で再構成処理により生成された複数の平行な断面像のそれぞれにおいて腐食領域を選定し、
前記選定した腐食領域を、前記複数の平行な断面像について積算することで前記試験体の腐食量を測定する、試験体の腐食量の測定方法。
[2]前記コンピュータ断層撮影法が、X線、中性子線、放射光のいずれかを使用したコンピュータ断層撮影法である、[1]に記載の試験体の腐食量の測定方法。
[3]前記コンピュータ断層撮影法が、管電圧が50kV以上300kV以下のX線を用いたX線コンピュータ断層撮影法である、[1]または[2]に記載の試験体の腐食量の測定方法。
[4]前記試験体が、2枚以上の金属材料の板材を板面内で接合した合わせ試験体である、[1]~[3]のいずれかに記載の試験体の腐食量の測定方法。
[5]前記腐食量が、腐食孔の深さ、または、腐食体積である、[1]~[4]のいずれかに記載の試験体の腐食量の測定方法。
[6]前記[1]~[5]のいずれかに記載の腐食量の測定方法に用いる試験体の腐食量の測定装置であって、
測定対象となる試験体を設置する回転台座と、前記試験体に向けてX線、中性子線、放射光のいずれかからなる放射線を照射する放射線発生部と、前記試験体を透過した前記放射線を検出して放射線透過信号を生成する検出部と、前記放射線透過信号を取り込んで放射線透過像を生成し、かつ前記回転台座を回転させることで当該回転台座に設置された前記試験体を回転させながら得た放射線透過像を積算することにより三次元再構成像を生成し画像解析を行う解析部を備える、試験体の腐食量の測定装置。
The present invention has the following configuration.
[1] A method for measuring the amount of corrosion of a test specimen, comprising:
Selecting a corroded region in each of a plurality of parallel cross-sectional images generated by a reconstruction process using a computed tomography method for the test specimen to be measured;
a method for measuring the amount of corrosion of a test specimen, the method comprising: measuring the amount of corrosion of the test specimen by integrating the selected corroded region for the plurality of parallel cross-sectional images.
[2] The method for measuring the amount of corrosion of a test specimen according to [1], wherein the computed tomography is a computed tomography using any one of X-rays, neutron rays, and synchrotron radiation.
[3] The method for measuring the amount of corrosion of a test specimen according to [1] or [2], wherein the computed tomography is an X-ray computed tomography using X-rays with a tube voltage of 50 kV or more and 300 kV or less.
[4] The method for measuring the amount of corrosion of a test specimen according to any one of [1] to [3], wherein the test specimen is a laminated test specimen in which two or more sheets of metal material are joined together within the plate surface.
[5] The method for measuring the amount of corrosion of a test specimen according to any one of [1] to [4], wherein the amount of corrosion is a depth of a corrosion pit or a corrosion volume.
[6] A device for measuring the amount of corrosion of a test specimen used in the method for measuring the amount of corrosion according to any one of [1] to [5],
An apparatus for measuring the amount of corrosion of a test piece, comprising: a rotating base on which a test piece to be measured is placed; a radiation generating unit that irradiates the test piece with radiation consisting of X-rays, neutron beams, or synchrotron radiation; a detection unit that detects the radiation that has passed through the test piece and generates a radiation transmission signal; and an analysis unit that takes in the radiation transmission signal to generate a radiation transmission image and rotates the rotating base to accumulate the radiation transmission images obtained while rotating the test piece placed on the rotating base, thereby generating a three-dimensional reconstructed image and performing image analysis.
本発明によれば、試験体の腐食を非破壊的に測定でき、かつ、同一の試験体を用いて腐食量を経時で測定することができる試験体の測定方法を提供できる。 The present invention provides a method for measuring a test specimen that can measure corrosion of the test specimen nondestructively and can measure the amount of corrosion over time using the same test specimen.
本発明によれば、試験体の表面や内部で生じる腐食を非破壊的に定量評価することができ、同一の試験体における腐食量の追跡評価が可能となる。本発明によれば、評価試験体の点数を削減することができ、さらに試験体間の測定ばらつきの影響を低減することも可能となる。 According to the present invention, it is possible to quantitatively evaluate corrosion occurring on the surface or inside of a test specimen nondestructively, and to track and evaluate the amount of corrosion in the same test specimen. According to the present invention, it is possible to reduce the number of test specimens to be evaluated, and further to reduce the effects of measurement variability between test specimens.
以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の好適な一実施態様を示すものであり、本発明は、以下の説明によって何ら限定されるものではない。 The following describes an embodiment of the present invention. Note that the following description shows one preferred embodiment of the present invention, and the present invention is not limited in any way by the following description.
本発明では、測定対象の試験体について、コンピュータ断層撮影法で再構成処理により生成された複数の平行な断面像のそれぞれにおいて腐食領域を選定し、前記選定した腐食領域を、前記複数の平行な断面像について積算することで前記試験体の腐食量を測定する。 In the present invention, for a test specimen to be measured, a corroded area is selected in each of a number of parallel cross-sectional images generated by reconstruction processing using computed tomography, and the amount of corrosion of the test specimen is measured by integrating the selected corroded areas for the multiple parallel cross-sectional images.
はじめに、測定対象の試験体について説明する。 First, we will explain the test specimen to be measured.
(試験体)
測定対象の試験体の材質としては、金属材料が好ましい。金属材料としては、普通鋼などの鋼(鉄合金)、ステンレス鋼、アルミニウム合金、マグネシウム合金、チタン合金をはじめとする、任意の金属材料が挙げられる。また、本発明では、同種または異種の材料が接合された合わせ部を有する合わせ試験体を測定対象とすることができる。本発明は、特に、2枚以上の板材が板面内で接合(板厚方向に積み重ねられて接合)されることで合わせ部(重なり部)が形成された合わせ試験体を測定対象とする場合に有用である。
(Test specimen)
The material of the test object to be measured is preferably a metal material. Examples of the metal material include any metal material, including ordinary steel (iron alloy), stainless steel, aluminum alloy, magnesium alloy, and titanium alloy. In addition, in the present invention, a laminated test object having a joint in which the same or different materials are joined can be measured. The present invention is particularly useful when a laminated test object having a joint (overlap) formed by joining two or more plate materials in the plate plane (stacking and joining in the plate thickness direction) is measured.
試験体の合わせ部内部における腐食(穴あき腐食)を評価する上では、同種の金属材料からなる同種合わせ試験体、または異なる金属種の金属材料からなる異種合わせ試験体を用いることができる。さらに、炭素繊維強化プラスチックなどのプラスチック材料や複合材料と金属材料からなる異種合わせ試験体を用いることもできる。このような各種合わせ試験体を測定対象とすることで、これらの材料と接触した金属材料の腐食(穴あき腐食状態)を測定することも可能である。さらに、これらの試験体に塗装を施した試験体を測定対象として用いることも可能である。 To evaluate corrosion (perforation corrosion) inside the joints of test specimens, homogeneous laminated test specimens made of the same metal material or heterogeneous laminated test specimens made of different metal materials can be used. Furthermore, heterogeneous laminated test specimens made of plastic materials such as carbon fiber reinforced plastics or composite materials and metal materials can also be used. By using such various laminated test specimens as the measurement subject, it is also possible to measure the corrosion (perforation corrosion state) of metal materials in contact with these materials. Furthermore, it is also possible to use test specimens in which these test specimens have been painted as the measurement subject.
試験体の合わせ部の形状や面積、クリアランスなどは限定されないが、実製品で形成されうる合わせ部の形状を模擬することが望ましい。合わせ部の形成方法は限定されないが、これも実製品と同様の手法をとることが好ましい。前記手法としては、抵抗スポット溶接、アーク溶接、ろう付けなどの溶融接合のほか、メカニカルクリンチ(かしめ)、摩擦攪拌接合(FSW)、ボルト締結などの各種機械接合等を用いることができる。 The shape, area, clearance, etc. of the joint of the test specimen are not limited, but it is desirable to simulate the shape of the joint that may be formed in the actual product. The method of forming the joint is not limited, but it is preferable to use the same method as the actual product. As the method, in addition to fusion joining such as resistance spot welding, arc welding, and brazing, various mechanical joining methods such as mechanical clinching, friction stir welding (FSW), and bolt fastening can be used.
合わせ試験体を測定対象として、X線を使用したX線コンピュータ断層撮影法(X線CT)により、試験体の合わせ部内部の腐食量を測定する場合、後述する放射線透過像および三次元再構成像で、腐食部と未腐食部(健全部)の明瞭なコントラストを得、腐食量を精度よく測定するためには、X線管電圧50kV以上のX線を用いることが好ましい。前記X線管電圧は、70kV以上がより好ましく、100kV以上がさらに好ましい。前記X線管電圧の上限は特に限定されないが、一例としては、前記X線管電圧は、300kV以下が好ましい。また、鮮明な像を得るために、X線管電流50μA以上10mA以下のX線を用いることが好ましい。試験体としては、鉄合金からなる板材を板面内で接合した合わせ試験体を用い、前記合わせ試験体の板厚(前記板材の板厚の合計)が10mm以下であることが好ましい。前記合わせ試験体の板厚は4mm以下がより好ましく、2mm以下がさらに好ましい。また、前記合わせ試験体を平面視した場合の合わせ部の短辺が70mm以下であることが好ましく、前記合わせ部の短辺が40mm以下であることがより好ましい。かかる合わせ試験体を用いることで、後述のように試験体を回転(自転)させながら撮影した場合に、回転する試験体の合わせ部に対してX線を十分に透過させることができ、合わせ部内部の腐食(穴あき腐食)を精度よく測定しやすくなる。 When measuring the amount of corrosion inside the joint of a laminated test piece by X-ray computed tomography (X-ray CT) using X-rays, it is preferable to use X-rays with an X-ray tube voltage of 50 kV or more in order to obtain a clear contrast between the corroded and uncorroded parts (sound parts) in the radiographic images and three-dimensional reconstruction images described below and to accurately measure the amount of corrosion. The X-ray tube voltage is more preferably 70 kV or more, and even more preferably 100 kV or more. There is no particular limit to the upper limit of the X-ray tube voltage, but as an example, the X-ray tube voltage is preferably 300 kV or less. In addition, in order to obtain a clear image, it is preferable to use X-rays with an X-ray tube current of 50 μA or more and 10 mA or less. As the test piece, a laminated test piece in which plate materials made of iron alloys are joined within the plate surface is used, and the plate thickness of the laminated test piece (the total plate thickness of the plate materials) is preferably 10 mm or less. The plate thickness of the laminated test piece is more preferably 4 mm or less, and even more preferably 2 mm or less. In addition, the short side of the joint when the laminated test specimen is viewed in plan is preferably 70 mm or less, and more preferably 40 mm or less. By using such a laminated test specimen, when the test specimen is rotated (spinned) while being photographed as described below, X-rays can be sufficiently transmitted through the joint of the rotating test specimen, making it easier to accurately measure corrosion (hole corrosion) inside the joint.
(コンピュータ断層撮影法)
本発明では、コンピュータ断層撮影法(CT)により試験体の腐食を非破壊で測定する。コンピュータ断層撮影法は、測定対象とする試験体を透過可能な放射線を使用するものであれば種類は問わない。例えば、コンピュータ断層撮影法としては、X線、中性子線、放射光を使用するものが挙げられる。装置の維持管理や測定用コストを考慮すると、X線を使用したX線CTが好ましく、汎用的な産業用X線CTを用いることが最も好ましい。
(Computed Tomography)
In the present invention, the corrosion of a test specimen is measured non-destructively by computer tomography (CT). Any type of computer tomography may be used as long as it uses radiation that can penetrate the test specimen to be measured. For example, computer tomography may use X-rays, neutron rays, or synchrotron radiation. Considering the maintenance and management of the device and the measurement costs, X-ray CT using X-rays is preferable, and it is most preferable to use a general-purpose industrial X-ray CT.
試験体の腐食量を測定する測定装置として用いるコンピュータ断層撮影装置(CT装置)は、測定対象の試験体を設置する台座と、前記試験体に向けて放射線を照射する放射線発生部と、前記試験体を透過した前記放射線を検出して放射線透過信号を生成する検出部と、前記検出部で検出した放射線透過信号を取り込んで画像解析を行う解析部を備える。前記台座は、回転(自転)可能な台座(回転台座)であり、前記台座が回転することで、前記台座に設置された試験体は、前記台座の回転軸を軸として回転(自転)する。前記放射線発生部は、当該放射線発生部から照射される放射線の光軸と、前記台座の回転軸とが垂直となるように配置されている。また、前記解析部は、コンピュータで構成されており、前記検出部で検出した放射線透過信号を取り込んで放射線透過像を生成する。さらに、前記解析部は、前記台座(試験体)を回転させながら撮影して得た放射線透過像を積算することにより三次元再構成像を生成し、そして、この三次元再構成像をもとに断面像を生成する(再構成処理)。前記解析部は、当該解析部に含まれるコンピュータプログラムないしソフトウェアにより、断面像として、任意の方向の断面像を生成することが可能であり、また、任意のピッチ(生成させる断面像間の間隔)で複数の断面像を生成することが可能である。例えば、試験体が板材であれば、板材の板厚方向に垂直となる複数の平行な断面像を生成することもできるし、板材の長さ方向または幅方向に垂直となる複数の平行な断面像を生成することもできる。 A computed tomography apparatus (CT apparatus) used as a measuring device for measuring the amount of corrosion of a test specimen includes a base on which the test specimen to be measured is placed, a radiation generating unit that irradiates radiation toward the test specimen, a detection unit that detects the radiation that has passed through the test specimen and generates a radioactive transmission signal, and an analysis unit that takes in the radioactive transmission signal detected by the detection unit and performs image analysis. The base is a rotatable base (rotating base), and when the base rotates, the test specimen placed on the base rotates (rotates) around the axis of rotation of the base. The radiation generating unit is disposed so that the optical axis of the radiation irradiated from the radiation generating unit and the axis of rotation of the base are perpendicular. The analysis unit is composed of a computer, and takes in the radioactive transmission signal detected by the detection unit to generate a radioactive transmission image. Furthermore, the analysis unit generates a three-dimensional reconstruction image by accumulating the radioactive transmission images obtained by photographing the base (test specimen) while rotating, and then generates a cross-sectional image based on this three-dimensional reconstruction image (reconstruction processing). The analysis unit can generate cross-sectional images in any direction as cross-sectional images by using a computer program or software included in the analysis unit, and can generate multiple cross-sectional images at any pitch (the interval between the cross-sectional images to be generated). For example, if the test object is a plate material, multiple parallel cross-sectional images perpendicular to the plate thickness direction can be generated, and multiple parallel cross-sectional images perpendicular to the plate length direction or width direction can be generated.
X線を使用したX線コンピュータ断層撮影法(X線CT)を例にとると、X線の吸収計数は原子番号に比例し増大する。すなわち、重元素ほどX線を多く吸収する。また、試験体中に電子密度が異なる領域がある場合、電子密度が高い領域ほどX線を多く吸収する。よって、試験体に腐食が生じて、試験体に酸化鉄等の腐食生成物や空隙が生じると、その領域は未腐食部(健全部)よりも疎となるため、X線の吸収が未腐食部よりも低くなる。このため、腐食が生じた試験体について、X線CTで、再構成処理により、生成した三次元再構成像をもとに断面像を生成すると、前記断面像では、試験体の未腐食部(健全部)と腐食部のコントラストが得られる。本発明では、試験体について、CTで再構成処理により生成された断面像において、未腐食部(健全部)とコントラストが異なる領域を腐食部(腐食領域)として選定する。 For example, in the case of X-ray computed tomography (X-ray CT), the absorption coefficient of X-rays increases in proportion to the atomic number. In other words, the heavier the element, the more X-rays it absorbs. Also, if there are regions with different electron densities in the test specimen, the higher the electron density, the more X-rays it absorbs. Therefore, when corrosion occurs in the test specimen and corrosion products such as iron oxide or voids are generated in the test specimen, the region becomes sparser than the uncorroded part (sound part), and therefore the absorption of X-rays is lower than in the uncorroded part. For this reason, when a cross-sectional image is generated based on a three-dimensional reconstruction image generated by reconstruction processing using X-ray CT for a corroded test specimen, the cross-sectional image provides a contrast between the uncorroded part (sound part) and the corroded part of the test specimen. In the present invention, the region with a different contrast from the uncorroded part (sound part) in the cross-sectional image generated by reconstruction processing using CT is selected as the corroded part (corroded area) for the test specimen.
本発明では、再構成処理により生成された複数の平行な断面像のそれぞれにおいて、未腐食部(健全部)とコントラストが異なる領域を腐食領域として選定する。この選定は、例えば、目視により行ってもよいし、画像処理ソフトウェア等により行ってもよい。そして、前記選定した腐食領域を、前記複数の平行な断面像について積算(前記腐食領域を前記複数の平行な断面像の垂直方向に積算)したものを試験体の腐食量とする。 In the present invention, in each of the multiple parallel cross-sectional images generated by the reconstruction process, an area that has a contrast different from that of the uncorroded area (healthy area) is selected as the corroded area. This selection may be performed, for example, visually or by using image processing software. The amount of corrosion of the test specimen is determined by integrating the selected corroded area for the multiple parallel cross-sectional images (integrating the corroded area in the vertical direction of the multiple parallel cross-sectional images).
前記腐食量は、例えば、腐食(腐食孔)の深さや、腐食体積として測定(算出)できる。また、腐食試験前の試験体の厚さ(板厚)から、測定した腐食孔の深さを差し引くことで、試験体残厚(板残厚)として腐食量を求めることもできる。 The amount of corrosion can be measured (calculated) as, for example, the depth of corrosion (corrosion pits) or the corrosion volume. In addition, the amount of corrosion can be calculated as the remaining thickness of the test specimen (remaining plate thickness) by subtracting the measured depth of the corrosion pits from the thickness of the test specimen (plate thickness) before the corrosion test.
なお、前記複数の平行な断面像の数は、求める測定値の精度、解析の負荷等に応じて、適宜設定できる。例えば、解析の負荷は大きくなるが、ピッチを小さくし、より多くの断面像について腐食領域を積算して腐食量を測定するようにすれば、実測の腐食量の数値により近づけることができる。 The number of parallel cross-sectional images can be set appropriately depending on the accuracy of the desired measurement value, the load of analysis, etc. For example, although the load of analysis will increase, by reducing the pitch and integrating the corrosion area for a larger number of cross-sectional images to measure the amount of corrosion, it is possible to get closer to the actual measured amount of corrosion.
また、本実施形態では、再構成処理で生成された断面像において腐食領域を選定して腐食量を測定したが、これとは逆に、前記断面像において未腐食部(健全部)の領域を選定し、これを複数の平行な断面像について積算することで未腐食部の領域を測定して、これを腐食試験前の試験体の全体から差し引くことで、腐食量を求めることもできる。 In addition, in this embodiment, the amount of corrosion was measured by selecting a corroded area in the cross-sectional image generated by the reconstruction process, but conversely, it is also possible to select an area of uncorroded (healthy) parts in the cross-sectional image, measure the area of the uncorroded parts by integrating this for multiple parallel cross-sectional images, and subtract this from the entire test piece before the corrosion test to obtain the amount of corrosion.
また、X線CTを用いる場合、測定対象に応じてX線CT装置の管電圧及び管電流を適宜調整し、放射線透過像および三次元再構成像上で、腐食部と未腐食部(健全部)のコントラストを調整することが望ましい。 In addition, when using X-ray CT, it is desirable to adjust the tube voltage and tube current of the X-ray CT device appropriately according to the object to be measured, and to adjust the contrast between corroded and uncorroded areas (healthy areas) on the radiographic images and three-dimensional reconstructed images.
例えば、板厚0.2mm以上5mm以下の鋼板を板面内で2枚重ねた合わせ試験体であって、前記試験体を平面視した場合の合わせ部の短辺の長さが70mm以下の試験体では、X線CTの管電圧を100kV以上300kV以下とすることで、明瞭なコントラストの三次元再構成像を得ることができる。前記板厚が0.2mm以上であると、鋼板の合わせ面と表面(外表面)の腐食の判別がし易くなる。前記板厚が5mm以下及び/又は前記合わせ部の短辺の長さが70mm以下であると、X線が透過しやすくなり鮮明な像が得られやすくなる。このときの管電流は50μA以上が好ましく、3mA以上がより好ましい。また、撮像視野の面積の大小は、三次元再構成像の分解能に影響することから、要求する測定精度に応じて設定することが好ましい。装置の機種にも依存するが、撮像視野の直径は、要求する分解能の概ね1000倍程度の長さとすることで、目標とする精度での測定が可能となる。再構成処理のための計算法は限定されないが、例えば一般的に用いられているフィルター補正逆投影法を用いることができる。 For example, in a laminated test specimen in which two steel plates with a thickness of 0.2 mm to 5 mm are overlapped in the plate plane, and the length of the short side of the joint when the test specimen is viewed in a plane is 70 mm or less, a three-dimensional reconstruction image with clear contrast can be obtained by setting the tube voltage of the X-ray CT to 100 kV to 300 kV. If the plate thickness is 0.2 mm or more, it becomes easier to distinguish between the corrosion of the joint surface and the surface (outer surface) of the steel plate. If the plate thickness is 5 mm or less and/or the length of the short side of the joint is 70 mm or less, X-rays are more likely to penetrate and a clear image is more likely to be obtained. In this case, the tube current is preferably 50 μA or more, and more preferably 3 mA or more. In addition, since the size of the area of the imaging field of view affects the resolution of the three-dimensional reconstruction image, it is preferable to set it according to the required measurement accuracy. Although it depends on the model of the device, the diameter of the imaging field of view is set to be approximately 1000 times the required resolution, making it possible to measure with the target accuracy. There are no limitations on the calculation method used for the reconstruction process, but for example, the commonly used filtered back projection method can be used.
上述した本発明の試験体の腐食量の測定方法によれば、試験体の腐食量を非破壊的に測定でき、かつ、同一の試験体を用いて腐食量を経時で測定することができる。 The above-described method for measuring the amount of corrosion of a test specimen of the present invention allows the amount of corrosion of the test specimen to be measured non-destructively, and allows the amount of corrosion to be measured over time using the same test specimen.
従来、試験体の腐食量を測定するためには、腐食により生成した腐食生成物を試験体から除去(錆落とし)したうえで、マイクロメータにより試験体の板厚減少量を測定したり、除去した腐食生成物量の重量を測定する操作が必要であった。さらに、試験体が合わせ試験体の場合、合わせ部内部の腐食量(穴あき腐食)を測定するためには、合わせ試験体を分解したうえで、上記操作をする必要があった。そのため、同一の試験体を用いた腐食量の測定は一回に限られており、同一の試験体を用いて腐食量を経時で追跡することは不可能であった。そして、腐食量の経時変化を評価する場合には、多数の試験体を準備しておく必要があり、多数の試験体を評価に用いることで、試験体間での測定ばらつきも生じていた。さらに試験体の材料の種類等によっては、腐食がいつ発生するかを予測することは困難であり、特に試験体が合わせ試験体の場合には、合わせ部内部で腐食が発生しているか否かを確認するために、試験体を分解して都度確認する必要があり、より多くの試験体を準備しておく必要あった。 Conventionally, in order to measure the amount of corrosion of a test specimen, it was necessary to remove the corrosion products generated by corrosion from the test specimen (rust removal), and then measure the thickness loss of the test specimen with a micrometer and measure the weight of the removed corrosion products. Furthermore, when the test specimen was a laminated test specimen, in order to measure the amount of corrosion inside the joint (perforation corrosion), it was necessary to disassemble the laminated test specimen and perform the above operations. Therefore, the measurement of the amount of corrosion using the same test specimen was limited to one time, and it was impossible to track the amount of corrosion over time using the same test specimen. Furthermore, when evaluating the change in the amount of corrosion over time, it was necessary to prepare a large number of test specimens, and using a large number of test specimens for evaluation also caused measurement variations between test specimens. Furthermore, depending on the type of material of the test specimen, it was difficult to predict when corrosion would occur, and especially when the test specimen was a laminated test specimen, it was necessary to disassemble the test specimen and check each time to confirm whether corrosion had occurred inside the joint, and it was necessary to prepare more test specimens.
本発明によれば、試験体の腐食量を非破壊で測定でき、かつ、同一の試験体を用いて腐食量を経時で測定できるため、あえて上記のように多数の試験体を準備しておく必要がない。本発明によれば、同一の試験体について、試験体の表面や内部で生じる腐食を非破壊的に定量評価することができ、同一の試験体における腐食量の追跡評価が可能となる。本発明によれば、評価試験体の点数を削減することができ、さらに試験体間の測定ばらつきの影響を低減できる。また、腐食の程度や、腐食が発生するタイミング、腐食がどのように進行していくか(腐食速度や腐食が進行する方向)等も非破壊で評価できる。特に本発明を合わせ試験体の測定に適用した場合には、合わせ試験体を分解して腐食量を測定する工程等が不要となるため、本発明の効果をより享受できる。 According to the present invention, the amount of corrosion of a test specimen can be measured nondestructively, and the amount of corrosion can be measured over time using the same test specimen, so there is no need to prepare a large number of test specimens as described above. According to the present invention, the corrosion occurring on the surface or inside of the same test specimen can be quantitatively evaluated nondestructively, making it possible to track and evaluate the amount of corrosion in the same test specimen. According to the present invention, the number of test specimens to be evaluated can be reduced, and the effects of measurement variations between test specimens can be reduced. In addition, the degree of corrosion, the timing at which corrosion occurs, and how corrosion progresses (corrosion rate and direction of corrosion progress) can also be evaluated nondestructively. In particular, when the present invention is applied to the measurement of a combined test specimen, the process of disassembling the combined test specimen to measure the amount of corrosion is not required, so the effects of the present invention can be enjoyed even more.
以下、図面を参照しながら、本発明の実施例を説明する。ただし、本発明は、以下の実施例に限定されない。 Below, examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.
(試験体)
本実施例では、溶接によって形成された鉄鋼材料の隙間部の腐食状態の経時変化を観測する目的で、合わせ試験体として、図1に示す接合試験片を用いた。図1に示すように、60mm×80mm×1mmサイズの鋼板(板1)と、40mm×60mm×1mmサイズ鋼板(板2)を、板厚方向に重ね合わせて、2か所で抵抗スポット溶接した接合試験片を作製した。これにリン酸亜鉛化成処理と電着塗装を施し、表面が塗装され、合わせ部内部(隙間部)は塗料の付き廻らない、すなわち合わせ部内部(隙間部)は塗装されていない接合試験片を作製し、この接合試験片を測定対象とした。
(Test specimen)
In this example, in order to observe the change over time in the corrosion state of the gap of the steel material formed by welding, a joint test piece shown in Fig. 1 was used as a joint test piece. As shown in Fig. 1, a steel plate (plate 1) of 60 mm x 80 mm x 1 mm size and a steel plate (plate 2) of 40 mm x 60 mm x 1 mm size were overlapped in the plate thickness direction and resistance spot welded at two places to prepare a joint test piece. This was subjected to zinc phosphate conversion treatment and electrodeposition coating to prepare a joint test piece in which the surface was painted and the inside of the joint (gap) was not painted, i.e., the inside of the joint (gap) was not painted, and this joint test piece was used as the measurement subject.
(腐食試験)
前記接合試験片を、SAE J2334(5days)に規定され、手動での塩水浸漬と乾湿繰り返しからなる乾湿繰り返し複合サイクル腐食試験に供した(図2)。そして、腐食試験開始前と、腐食試験中15サイクル毎にX線CT測定を行った。
(Corrosion Test)
The bonded test pieces were subjected to a wet-dry repeated combined cycle corrosion test, which was specified in SAE J2334 (5 days) and consisted of manual salt water immersion and wet-dry repeated cycles (FIG. 2). X-ray CT measurements were performed before the start of the corrosion test and every 15 cycles during the corrosion test.
(X線CT撮影)
X線CT装置として、アールエフ株式会社製工業用X線CT装置を用いた。このX線CT装置は、上述したCT装置と同様の構成を有しており、放射線発生部として、X線管を有している。また、試験体を設置する台座は、当該台座の試験体設置面が水平面と平行である。
(X-ray CT scan)
The X-ray CT device used was an industrial X-ray CT device manufactured by RF Corporation. This X-ray CT device has the same configuration as the above-mentioned CT device, and has an X-ray tube as a radiation generating unit. In addition, the test specimen is placed on a pedestal, and the test specimen placement surface of the pedestal is parallel to the horizontal plane.
上記X線CT装置を用い、上記試験体(接合試験片)の鋼板面がX線の光軸に対し垂直となるように(図1に示す板1と板2の長辺が鉛直方向となるように)、樹脂製のジグを用い、上記接合試験片を台座上で自立させた。そして、管電圧:80kV、管電流:3mAの条件で撮影を行った。解析部では、フィルター補正逆投影法により三次元像を再構成し、さらに板厚方向に100μmピッチで板面内の断面像を生成して、モニターに出力した。
Using the X-ray CT device, the above-mentioned bonded test piece was supported on a base using a resin jig so that the steel plate surface of the test piece (bonded test piece) was perpendicular to the optical axis of the X-rays (so that the long sides of
図3、図4に、上記断面像の例を示す。図3は、腐食試験中60サイクル終了時点の接合試験片の断面像である。図3では、接合試験片の合わせ面を0μmの位置として、接合試験片の板2の板厚方向に、前記合わせ面と平行に、200μm、400μm、600μm、800μmの各位置で生成した断面像を示している。また、図4は、同一の試験体(接合試験片)について、腐食試験15サイクル毎に生成した接合試験片の合わせ面(0μm位置)の断面像を示している。
Examples of the above-mentioned cross-sectional images are shown in Figures 3 and 4. Figure 3 is a cross-sectional image of a bonded test piece at the end of 60 cycles during a corrosion test. Figure 3 shows cross-sectional images generated at positions 200 μm, 400 μm, 600 μm, and 800 μm in the thickness direction of
図3において、板厚内各位置における板面内の断面像より、未腐食部(健全部)とコントラストが異なる領域を腐食領域として目視で選定し、各位置における面内の腐食面積を求めた。さらに、前記腐食面積を板厚方向に積算し、これを接合試験片の腐食量(腐食体積)とした。 In Figure 3, from the cross-sectional images of the plate surface at each position within the plate thickness, areas with a different contrast from the uncorroded areas (sound areas) were visually selected as corroded areas, and the corroded area within the surface at each position was calculated. Furthermore, the corroded area was integrated in the plate thickness direction, and this was determined as the amount of corrosion (corrosion volume) of the bonded test piece.
上記と同様に、同一の試験体(接合試験片)について、腐食試験15サイクル毎に測定した腐食量(腐食体積)と腐食試験サイクル数の関係を図5に示す。 As above, for the same test specimen (joint test piece), the relationship between the amount of corrosion (corrosion volume) measured every 15 cycles of the corrosion test and the number of corrosion test cycles is shown in Figure 5.
このように、本発明によれば、試験体の腐食を非破壊的に測定でき、かつ、同一の試験体を用いて腐食量を経時で測定することができる。 In this way, the present invention makes it possible to measure the corrosion of a test specimen nondestructively, and to measure the amount of corrosion over time using the same test specimen.
なお、今回開示された実施形態および実施例はすべての点で例示であって、本発明はこれらの例に限定されるものではない。 Note that the embodiments and examples disclosed herein are illustrative in all respects, and the present invention is not limited to these examples.
本発明の試験体の腐食量の測定方法および試験体の腐食量の測定装置は、試験体の表面の腐食、試験体内部の穴あき腐食を非破壊的に定量評価することができ、同一の試験体における腐食量の追跡評価が可能である。本発明によれば、評価試験体の点数を削減し、試験体間の測定ばらつきの影響を低減することも可能となることから、各種材料開発はもとより、腐食環境の厳しさの評価などを行う上でも有用である。 The method and device for measuring the amount of corrosion of a test specimen of the present invention can quantitatively evaluate the corrosion of the surface of a test specimen and the corrosion of holes inside the test specimen in a non-destructive manner, and can track and evaluate the amount of corrosion in the same test specimen. According to the present invention, it is possible to reduce the number of test specimens to be evaluated and to reduce the effects of measurement variability between test specimens, which is useful not only for the development of various materials but also for evaluating the severity of corrosive environments.
Claims (1)
測定対象の試験体について、コンピュータ断層撮影法で再構成処理により生成された複数の平行な断面像のそれぞれにおいて腐食領域を選定し、
前記選定した腐食領域を、前記複数の平行な断面像について積算することで前記試験体の腐食量を測定し、かつ前記試験体の腐食量の測定を、同一の試験体を用いて経時で行い、
前記コンピュータ断層撮影法が、管電圧が100kV以上300kV以下、管電流が3mA以上10mA以下のX線を用いたX線コンピュータ断層撮影法であり、
前記試験体が、板厚0.2mm以上5mm以下の鋼板を板面内で2枚重ねた合わせ部を有する合わせ試験体であって、前記合わせ試験体を平面視した場合の前記合わせ部の短辺の長さが70mm以下であり、
前記腐食量が、腐食孔の深さ、または、腐食体積である、試験体の腐食量の測定方法。 A method for measuring the amount of corrosion of a test specimen, comprising the steps of:
Selecting a corroded region in each of a plurality of parallel cross-sectional images generated by a reconstruction process using a computed tomography method for the test specimen to be measured;
The amount of corrosion of the test specimen is measured by integrating the selected corroded area for the plurality of parallel cross-sectional images , and the measurement of the amount of corrosion of the test specimen is performed over time using the same test specimen;
The computed tomography is an X-ray computed tomography using X-rays with a tube voltage of 100 kV or more and 300 kV or less and a tube current of 3 mA or more and 10 mA or less,
The test specimen is a laminated test specimen having a joint in which two steel plates having a plate thickness of 0.2 mm or more and 5 mm or less are overlapped in the plate plane, and the length of the short side of the joint when the laminated test specimen is viewed in a plane is 70 mm or less,
A method for measuring the amount of corrosion of a test specimen, wherein the amount of corrosion is a depth of a corrosion pit or a corrosion volume .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022026329A JP7524916B2 (en) | 2022-02-24 | 2022-02-24 | Method for measuring the amount of corrosion on test specimens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022026329A JP7524916B2 (en) | 2022-02-24 | 2022-02-24 | Method for measuring the amount of corrosion on test specimens |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023122684A JP2023122684A (en) | 2023-09-05 |
JP7524916B2 true JP7524916B2 (en) | 2024-07-30 |
Family
ID=87885726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022026329A Active JP7524916B2 (en) | 2022-02-24 | 2022-02-24 | Method for measuring the amount of corrosion on test specimens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7524916B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020190279A1 (en) | 2001-04-02 | 2002-12-19 | Matsushita Electric Industrial Co., Ltd. | Analog MOS semiconductor device, manufacturing method therefor, manufacturing program therefor, and program device therefor |
JP2005091288A (en) | 2003-09-19 | 2005-04-07 | Toyota Motor Corp | Method for identifying casting defects |
JP2009030126A (en) | 2007-07-27 | 2009-02-12 | Nisshin Steel Co Ltd | Stainless steel sheet for welding and stainless welded product |
JP2011052968A (en) | 2009-08-31 | 2011-03-17 | Hitachi-Ge Nuclear Energy Ltd | Piping tomograph and method of controlling the same |
JP6968317B1 (en) | 2021-01-08 | 2021-11-17 | 三菱電機株式会社 | Corrosion resistance diagnostic device, manufacturing method of corrosion resistance diagnostic device, and corrosion resistance diagnostic method |
-
2022
- 2022-02-24 JP JP2022026329A patent/JP7524916B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020190279A1 (en) | 2001-04-02 | 2002-12-19 | Matsushita Electric Industrial Co., Ltd. | Analog MOS semiconductor device, manufacturing method therefor, manufacturing program therefor, and program device therefor |
JP2005091288A (en) | 2003-09-19 | 2005-04-07 | Toyota Motor Corp | Method for identifying casting defects |
JP2009030126A (en) | 2007-07-27 | 2009-02-12 | Nisshin Steel Co Ltd | Stainless steel sheet for welding and stainless welded product |
JP2011052968A (en) | 2009-08-31 | 2011-03-17 | Hitachi-Ge Nuclear Energy Ltd | Piping tomograph and method of controlling the same |
JP6968317B1 (en) | 2021-01-08 | 2021-11-17 | 三菱電機株式会社 | Corrosion resistance diagnostic device, manufacturing method of corrosion resistance diagnostic device, and corrosion resistance diagnostic method |
Non-Patent Citations (1)
Title |
---|
田中 俊敬,産業用X線CTの理解と活用,軽金属,2021年09月,第71巻 第9 号,pp.417-424,DOI: 10.2464/jilm.71.417 |
Also Published As
Publication number | Publication date |
---|---|
JP2023122684A (en) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ditchburn et al. | NDT of welds: state of the art | |
Sakagami | Remote nondestructive evaluation technique using infrared thermography for fatigue cracks in steel bridges | |
Krolczyk et al. | Topographic inspection as a method of weld joint diagnostic | |
Cherfaoui | Innovative techniques in non-destructive testing and industrial applications on pressure equipment | |
Schumacher et al. | Application of different X-ray techniques to improve in-service carbon fiber reinforced rope inspection | |
Nitu et al. | Analyzing defects and their effects on the strength of a three-layer FSW joint by using X-ray microtomography, localized spectrum analysis, and acoustic emission | |
JP7524916B2 (en) | Method for measuring the amount of corrosion on test specimens | |
Bajgholi et al. | Total focusing method applied to probability of detection | |
Amirafshari et al. | Estimation of weld defects size distributions, rates and probability of detections in fabrication yards using a Bayesian theorem approach | |
Ghandourah et al. | Evaluation of welding imperfections with X-ray computed laminography for NDT inspection of carbon steel plates | |
Siryabe et al. | X-ray digital detector array radiology to infer sagging depths in welded assemblies | |
JP2005331262A (en) | Non-destructive inspection method and non-destructive inspection device | |
Jessadatavornwong et al. | Characterization of self-piercing rivet joints using X-ray computed tomography | |
Baydoun et al. | X-ray computed tomography study of the effects of scanning parameters on the hounsfield unit values of five metal alloys | |
Dolby et al. | Welds, their quality and inspection ability for high integrity structures and components | |
Samann | Detecting kissing disbond defect in adhesively bonded structures: A review | |
Becker et al. | Integration of NDT into life time management | |
El Mountassir et al. | A novel approach to enhance defect detection in wire arc additive manufacturing parts using radiographic testing without surface milling | |
JP4088455B2 (en) | Method and apparatus for measuring thickness of multi-layer material | |
Triyono et al. | Assessment of nugget size of spot weld using neutron radiography | |
Case et al. | 1. General and reviews | |
RU2742540C1 (en) | Method of investigating adhesive joints of a multilayer helicopter rotor hub | |
JPS6232347A (en) | Non-destructive deterioration test method for materials | |
Singh et al. | Evolution of Technology in Testing and Inspection of Welding: From Traditional to Modern Methods | |
RU2653955C1 (en) | Method for determining voltage supply and coordinates in heat-affected zones of pipelines by the method for measuring velocity of passage of ultrasonic wave |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7524916 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |