[go: up one dir, main page]

JP7522092B2 - Composite material and its manufacturing method - Google Patents

Composite material and its manufacturing method Download PDF

Info

Publication number
JP7522092B2
JP7522092B2 JP2021209829A JP2021209829A JP7522092B2 JP 7522092 B2 JP7522092 B2 JP 7522092B2 JP 2021209829 A JP2021209829 A JP 2021209829A JP 2021209829 A JP2021209829 A JP 2021209829A JP 7522092 B2 JP7522092 B2 JP 7522092B2
Authority
JP
Japan
Prior art keywords
mass
conductive
matrix
composite material
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021209829A
Other languages
Japanese (ja)
Other versions
JP2023094383A (en
Inventor
正士 駒林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2021209829A priority Critical patent/JP7522092B2/en
Publication of JP2023094383A publication Critical patent/JP2023094383A/en
Application granted granted Critical
Publication of JP7522092B2 publication Critical patent/JP7522092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、複合材及びその製造方法に関する。 The present invention relates to a composite material and a method for manufacturing the same.

エピクロロヒドリンゴムは、半導電性を示すゴム材料として知られている(例えば非特許文献1)。 Epichlorohydrin rubber is known as a rubber material that exhibits semiconductivity (e.g., Non-Patent Document 1).

北川紀樹:「ゴムの工業的合成法 第12回 エピクロルヒドリンゴム」,日本ゴム協会誌,89,205-208(2016)Noriki Kitagawa: "Industrial synthesis of rubber, Vol. 12, Epichlorohydrin rubber", Journal of the Society of Rubber Science and Technology of Japan, 89, 205-208 (2016)

エピクロロヒドリンゴムを用いることにより半導電性を得ることはできるが、それに加えて、例えば高耐熱性のようなエピクロロヒドリンゴムが有さない特性も得たい場合には、エピクロロヒドリンゴムの適用は困難である。 Although it is possible to obtain semiconductivity by using epichlorohydrin rubber, it is difficult to apply epichlorohydrin rubber if you also want to obtain properties that epichlorohydrin rubber does not have, such as high heat resistance.

本発明の課題は、半導電性も含む導電性制御を行うことができる複合材を提供することである。 The objective of the present invention is to provide a composite material that can control electrical conductivity, including semiconductivity.

本発明は、絶縁性のマトリクスと、前記マトリクス内に設けられた導電性粒子とを備えた複合材であって、前記導電性粒子は、JIS Z8801-1:2019に規定される目開き1mmのふるいを透過する大きさの粒子本体と、前記粒子本体の表面を被覆する導電性コート層とを含み、前記導電性コート層は、ベース材と、前記ベース材内に設けられた導電材とを有し、前記導電性粒子における前記導電材の含有量が0.5質量%以上1.5質量%以下であり、前記複合材における前記導電性粒子の含有量が30質量部以上80質量部以下であり、前記複合材における前記導電性コート層の含有量が3質量部以上8質量部以下であり、前記複合材における前記導電材の含有量が0.15質量部以上0.4質量部以下であり、前記複合材の体積抵抗率が1.3×10 以上5.7×10 以下である The present invention provides a composite material including an insulating matrix and conductive particles provided within the matrix, the conductive particles including a particle body having a size that allows the conductive particles to pass through a sieve having an opening of 1 mm as defined in JIS Z8801-1:2019, and a conductive coating layer covering a surface of the particle body , the conductive coating layer including a base material and a conductive material provided within the base material, the conductive particles having a content of the conductive material of 0.5% by mass or more and 1.5% by mass or less, the conductive particles having a content of 30 parts by mass or more and 80 parts by mass or less, the conductive coating layer having a content of 3 parts by mass or more and 8 parts by mass or less, the conductive material having a content of 0.15 parts by mass or more and 0.4 parts by mass or less, and the composite material having a volume resistivity of 1.3 x 10 4 or more and 5.7 x 10 4 or less .

本発明は、絶縁性のマトリクスと、前記マトリクス内に設けられた導電性粒子とを備えた複合材の製造方法であって、前記導電性粒子を、JIS Z8801-1:2019に規定される目開き1mmのふるいを透過する大きさの粒子本体の表面を被覆するようにコーティング材により導電性コート層を形成することにより作製した後、前記マトリクスを形成するマトリクス形成材料と混合する。 The present invention provides a method for producing a composite material comprising an insulating matrix and conductive particles provided within the matrix, in which the conductive particles are produced by forming a conductive coating layer using a coating material so as to cover the surfaces of particle bodies having a size that allows passage through a sieve with a mesh size of 1 mm as specified in JIS Z8801-1:2019, and then mixing the conductive particles with a matrix-forming material that forms the matrix.

本発明によれば、絶縁性のマトリクス内に設けられた多数の導電性粒子のそれぞれが、粒子本体の表面が導電性コート層で被覆された構成を有することにより、半導電性も含む導電性制御を行うことができる。 According to the present invention, each of the numerous conductive particles provided in the insulating matrix has a configuration in which the surface of the particle body is covered with a conductive coating layer, making it possible to control the conductivity, including semiconductivity.

実施形態に係る複合材の模式的な断面図である。FIG. 1 is a schematic cross-sectional view of a composite material according to an embodiment. 導電性粒子の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of a conductive particle.

以下、実施形態について詳細に説明する。 The following describes the embodiments in detail.

図1は、実施形態に係る複合材10を示す。この複合材10は、例えば半導電性が求められるプリンタや複写機の帯電ロール、転写ロール、現像ロール等に適用することができる。また、この複合材10は、例えば導電性が求められる導電性マット等にも適用することができる。 Figure 1 shows a composite material 10 according to an embodiment. This composite material 10 can be used, for example, in charging rolls, transfer rolls, and developing rolls of printers and copiers that require semiconductivity. This composite material 10 can also be used, for example, in conductive mats that require conductivity.

実施形態に係る複合材10は、絶縁性のマトリクス11と、そのマトリクス11内にランダムに設けられた多数の導電性粒子12とを備える。 The composite material 10 according to the embodiment comprises an insulating matrix 11 and a large number of conductive particles 12 randomly arranged within the matrix 11.

マトリクス11としては、例えばゴムや樹脂が挙げられる。マトリクス11は、複合材10の導電性を制御する観点から、これらのうちのゴムが好ましい。ゴムのマトリクス11は、ポリマー単体であっても、ポリマーにゴム配合剤が配合されたゴム組成物であっても、どちらでもよい。ゴムのマトリクス11は、ポリマー鎖間が架橋された架橋ゴムであっても、未架橋ゴムであっても、どちらでもよい。ゴムのマトリクス11を構成するポリマーとしては、例えば、シリコーンゴム、フッ素ゴム等が挙げられる。マトリクス11は、ポリマーを架橋させる硬化剤、架橋剤、触媒等を含有していてもよい。 Examples of the matrix 11 include rubber and resin. From the viewpoint of controlling the electrical conductivity of the composite material 10, rubber is preferred as the matrix 11. The rubber matrix 11 may be either a polymer alone or a rubber composition in which a rubber compounding agent is compounded with a polymer. The rubber matrix 11 may be either a crosslinked rubber in which polymer chains are crosslinked or an uncrosslinked rubber. Examples of the polymer constituting the rubber matrix 11 include silicone rubber and fluororubber. The matrix 11 may contain a curing agent, a crosslinking agent, a catalyst, etc. that crosslink the polymer.

マトリクス11は、絶縁性である。ここで、本出願における「絶縁性」とは、JIS K6271-1:2015に基づいて測定される体積抵抗率が1.0×1013Ω・cm以上であることをいう。 The matrix 11 is insulating. In this application, the term "insulating" refers to a volume resistivity of 1.0×10 13 Ω·cm or more as measured based on JIS K6271-1:2015.

導電性粒子12は、粒子本体121と、その粒子本体121の表面を被覆する導電性コート層122とを含む。 The conductive particle 12 includes a particle body 121 and a conductive coating layer 122 that covers the surface of the particle body 121.

複合材10における導電性粒子12の総含有量は、複合材10の導電性を制御する観点から、好ましくは20質量%以上90質量%以下、より好ましくは30質量%以上70質量%以下である。導電性粒子12における導電性コート層122の含有量は、同様の観点から、好ましくは1質量%以上20質量%以下、より好ましくは5質量%以上10質量%以下である。複合材10における導電性コート層122の総含有量は、複合材10の導電性を制御する観点から、好ましくは0.5質量%以上15質量%以下、より好ましくは1質量%以上10質量%以下である。 From the viewpoint of controlling the conductivity of the composite 10, the total content of the conductive particles 12 in the composite 10 is preferably 20% by mass or more and 90% by mass or less, more preferably 30% by mass or more and 70% by mass or less. From the same viewpoint, the content of the conductive coating layer 122 in the conductive particles 12 is preferably 1% by mass or more and 20% by mass or less, more preferably 5% by mass or more and 10% by mass or less. From the viewpoint of controlling the conductivity of the composite 10, the total content of the conductive coating layer 122 in the composite 10 is preferably 0.5% by mass or more and 15% by mass or less, more preferably 1% by mass or more and 10% by mass or less.

粒子本体121としては、例えば、ゴム粒子、樹脂粒子等が挙げられる。粒子本体121は、複合材10の導電性を制御する観点から、これらのうちのゴム粒子が好ましい。ゴム粒子の粒子本体121は、ポリマー単体で形成されていても、ポリマーにゴム配合剤が配合されたゴム組成物で形成されていても、どちらでもよい。ゴム粒子の粒子本体121は、カーボンブラック等の導電材料が配合された導電性を有するゴム組成物で形成されていてもよい。ゴム粒子の粒子本体121は、架橋ゴムで形成されていても、未架橋ゴムで形成されていても、どちらでもよい。ゴム粒子の粒子本体121を形成するポリマーとしては、例えば、シリコーンゴム、フッ素ゴム等が挙げられる。ゴム粒子の粒子本体121は、資源の再利用の観点から、使用済みゴム製品から回収された廃棄ゴムで構成されていることが好ましい。粒子本体121の粒径は、マトリクス11への導電性粒子12の混合性を高め、粉砕により粒子本体121を効率的に得るとともに、複合材10の導電性を制御する観点から、好ましくは125μm以上2mm以下である。粒子本体121は、同様の観点から、JIS Z8801-1:2019に規定される目開き1mmのふるいを透過する大きさであることが好ましい。 Examples of the particle body 121 include rubber particles and resin particles. From the viewpoint of controlling the conductivity of the composite material 10, the particle body 121 is preferably a rubber particle. The particle body 121 of the rubber particle may be formed of a polymer alone or a rubber composition in which a rubber compounding agent is mixed with a polymer. The particle body 121 of the rubber particle may be formed of a rubber composition having conductivity in which a conductive material such as carbon black is mixed. The particle body 121 of the rubber particle may be formed of a crosslinked rubber or an uncrosslinked rubber. Examples of the polymer forming the particle body 121 of the rubber particle include silicone rubber and fluororubber. From the viewpoint of recycling resources, the particle body 121 of the rubber particle is preferably composed of waste rubber recovered from used rubber products. The particle diameter of the particle body 121 is preferably 125 μm or more and 2 mm or less from the viewpoint of increasing the mixability of the conductive particles 12 in the matrix 11, efficiently obtaining the particle body 121 by pulverization, and controlling the conductivity of the composite material 10. From the same viewpoint, it is preferable that the particle body 121 is of a size that allows it to pass through a sieve with 1 mm openings as specified in JIS Z8801-1:2019.

導電性コート層122は、図2に示すように、ベース材122aと、そのベース材122a内に設けられた多数の導電材122bとを有する。 As shown in FIG. 2, the conductive coating layer 122 has a base material 122a and a number of conductive materials 122b provided within the base material 122a.

複合材10におけるベース材122aの総含有量は、複合材10の導電性を制御する観点から、好ましくは0.45質量%以上14.5質量%以下、より好ましくは0.95質量%以上9.95質量%以下である。導電性粒子12におけるベース材122aの含有量は、同様の観点から、好ましくは0.90質量%以上19.9質量%以下、より好ましくは4.8質量%以上9.9質量%以下である。導電性コート層122におけるベース材122aの含有量は、同様の観点から、好ましくは60質量%以上99質量%以下、より好ましくは70質量%以上95質量%以下である。 From the viewpoint of controlling the electrical conductivity of the composite material 10, the total content of the base material 122a in the composite material 10 is preferably 0.45% by mass or more and 14.5% by mass or less, more preferably 0.95% by mass or more and 9.95% by mass or less. From the same viewpoint, the content of the base material 122a in the conductive particles 12 is preferably 0.90% by mass or more and 19.9% by mass or less, more preferably 4.8% by mass or more and 9.9% by mass or less. From the same viewpoint, the content of the base material 122a in the conductive coating layer 122 is preferably 60% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 95% by mass or less.

複合材10における導電材122bの総含有量は、複合材10の導電性を制御する観点から、好ましくは0.05質量%以上5質量%以下、より好ましくは0.1質量%以上3質量%以下である。導電性粒子12における導電材122bの含有量は、同様の観点から、好ましくは0.1質量%以上3質量%以下、より好ましくは0.2質量%以上1.5質量%以下である。導電性コート層122における導電材122bの含有量は、同様の観点から、好ましくは1質量%以上40質量%以下、より好ましくは5質量%以上30質量%以下である。 From the viewpoint of controlling the conductivity of the composite 10, the total content of the conductive material 122b in the composite 10 is preferably 0.05% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less. From the same viewpoint, the content of the conductive material 122b in the conductive particles 12 is preferably 0.1% by mass or more and 3% by mass or less, more preferably 0.2% by mass or more and 1.5% by mass or less. From the same viewpoint, the content of the conductive material 122b in the conductive coating layer 122 is preferably 1% by mass or more and 40% by mass or less, more preferably 5% by mass or more and 30% by mass or less.

ベース材122aとしては、例えばゴムや樹脂が挙げられる。ベース材122aは、複合材10の導電性を制御する観点から、ゴム又は樹脂であることが好ましく、ゴムであることがより好ましい。ゴムのベース材122aは、ポリマー単体であっても、ポリマーにゴム配合剤が配合されたゴム組成物であっても、どちらでもよい。ゴムのベース材122aは、ポリマー鎖間が架橋された架橋ゴムであっても、未架橋ゴムであっても、どちらでもよい。ゴムのベース材122aを構成するポリマーとしては、例えば、シリコーンゴム、イソプレンゴム、ウレタンゴム等が挙げられる。マトリクス11及びベース材122aのいずれもゴムの場合、ベース材122aを構成するポリマーは、マトリクス11への導電性粒子12の混合性を高める観点から、マトリクス11を構成するポリマーと同種ポリマーであることが好ましい。具体的には、例えば、マトリクス11がシリコーンゴムである場合、ベース材122aもシリコーンゴムであることが好ましい。ベース材122aは、ポリマーを架橋させる硬化剤、架橋剤、触媒等を含有していてもよい。 The base material 122a may be, for example, rubber or resin. From the viewpoint of controlling the conductivity of the composite material 10, the base material 122a is preferably rubber or resin, and more preferably rubber. The rubber base material 122a may be either a polymer alone or a rubber composition in which a rubber compounding agent is compounded with a polymer. The rubber base material 122a may be either a crosslinked rubber in which polymer chains are crosslinked or an uncrosslinked rubber. Examples of the polymer constituting the rubber base material 122a include silicone rubber, isoprene rubber, and urethane rubber. When both the matrix 11 and the base material 122a are rubber, the polymer constituting the base material 122a is preferably the same type of polymer as the polymer constituting the matrix 11 from the viewpoint of increasing the mixability of the conductive particles 12 with the matrix 11. Specifically, for example, when the matrix 11 is silicone rubber, the base material 122a is preferably silicone rubber. The base material 122a may contain a curing agent, a crosslinking agent, a catalyst, etc. that crosslinks the polymer.

導電材122bとしては、例えば、炭素系導電材、金属系導電材等が挙げられる。炭素系導電材としては、例えば、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、炭素繊維などの繊維状炭素系導電材;アセチレンブラック、ケッチェンブラックなどの粒子状炭素系導電材等が挙げられる。金属系導電材としては、例えば、金、銀、銅、その他の金属、及びそれらの合金の金属粒子が挙げられる。導電材122bは、これらのうちの1種又は2種以上を含むことが好ましく、複合材10の導電性を制御する観点から、炭素系導電材を含むことがより好ましく、繊維状炭素系導電材を含むことが更に好ましく、カーボンナノチューブ(CNT)を含むことがより更に好ましい。導電材122bの大きさは、導電性粒子12の粒子本体121の大きさよりもはるかに小さい。 Examples of the conductive material 122b include carbon-based conductive materials and metal-based conductive materials. Examples of the carbon-based conductive materials include fibrous carbon-based conductive materials such as carbon nanotubes (CNT), carbon nanofibers (CNF), and carbon fibers; and particulate carbon-based conductive materials such as acetylene black and ketjen black. Examples of the metal-based conductive materials include metal particles of gold, silver, copper, other metals, and alloys thereof. The conductive material 122b preferably contains one or more of these, and from the viewpoint of controlling the conductivity of the composite material 10, it is more preferable to contain a carbon-based conductive material, even more preferable to contain a fibrous carbon-based conductive material, and even more preferable to contain a carbon nanotube (CNT). The size of the conductive material 122b is much smaller than the size of the particle body 121 of the conductive particle 12.

以上の構成の実施形態に係る複合材10によれば、絶縁性のマトリクス11内に設けられた多数の導電性粒子12のそれぞれが、粒子本体121の表面が導電性コート層122で被覆された構成を有することにより、半導電性も含む導電性制御を行うことができる。 According to the composite material 10 according to the embodiment of the above configuration, each of the numerous conductive particles 12 provided in the insulating matrix 11 has a configuration in which the surface of the particle body 121 is covered with a conductive coating layer 122, thereby making it possible to control the conductivity, including semiconductivity.

実施形態に係る複合材10が半導電性である場合、その体積抵抗率は1.0×10Ω・cm以上1.0×10Ω・cm以下である。ここで、本出願における複合材10の体積抵抗率は、次のようにして求められる。複合材10の円盤状等のシート状の試験片について、その上下面の全面にそれぞれ電極を押し当て、両電極間に電圧を変化させて印加し、各電圧で流れる電流を測定する。そして、電流と電圧との関係を求め、それを線形近似したときの傾きを抵抗値とし、その抵抗値に試験片の面積を乗じるとともに、厚さで除したものを体積抵抗率とする。 When the composite material 10 according to the embodiment is semiconductive, its volume resistivity is 1.0×10 3 Ω·cm or more and 1.0×10 8 Ω·cm or less. Here, the volume resistivity of the composite material 10 in the present application is obtained as follows. For a disk-shaped or sheet-shaped test piece of the composite material 10, electrodes are pressed against the entire upper and lower surfaces, respectively, and a voltage is applied between the two electrodes while varying, and the current flowing at each voltage is measured. Then, the relationship between the current and the voltage is obtained, and the slope when the relationship is linearly approximated is taken as the resistance value, and the resistance value is multiplied by the area of the test piece and divided by the thickness to obtain the volume resistivity.

次に、実施形態に係る複合材10の製造方法について説明する。 Next, we will explain the manufacturing method of the composite material 10 according to the embodiment.

まず、液状ベース材に導電材122bを混合したコーティング材を調製する。液状ベース材は、加熱されて固化することによりベース材122aに形成される液状材料である。コーティング材は、液状ベース材及び導電材122b以外に、粘度調整等のための溶媒を含有していてもよい。コーティング材は、液状ベース材のポリマーが架橋する場合、硬化剤、架橋剤、触媒を含有していてもよい。 First, a coating material is prepared by mixing a liquid base material with conductive material 122b. The liquid base material is a liquid material that is formed on the base material 122a by being heated and solidified. In addition to the liquid base material and conductive material 122b, the coating material may contain a solvent for viscosity adjustment, etc. If the polymer of the liquid base material is crosslinked, the coating material may contain a curing agent, a crosslinking agent, and a catalyst.

次いで、多数の粒子本体121のそれぞれについて、その表面にコーティング材を付着させる。この付着手段としては、例えば、粒子本体121のコーティング材への浸漬、粒子本体121の表面へのコーティング材のスプレー等が挙げられる。 Next, a coating material is applied to the surface of each of the numerous particle bodies 121. Examples of the application method include immersing the particle bodies 121 in the coating material, spraying the coating material onto the surface of the particle bodies 121, etc.

続いて、表面にコーティング材が付着した粒子本体121を加熱し、液状ベース材を固化させて導電性コート層122を形成し、これにより、各々、粒子本体121の表面を導電性コート層122で被覆した多数の導電性粒子12を作製する。 Next, the particle body 121 with the coating material attached to its surface is heated to solidify the liquid base material and form a conductive coating layer 122, thereby producing a large number of conductive particles 12, each of which has the surface of the particle body 121 coated with a conductive coating layer 122.

その後、導電性粒子12をマトリクス形成材料と混合する。マトリクス形成材料は、マトリクス11を形成する材料であって、固体材料であっても、液体材料であっても、どちらでもよい。固体材料のマトリクス形成材料の場合、混練により導電性粒子12をマトリクス形成材料と混合することができる。液体材料のマトリクス形成材料には、撹拌により導電性粒子12をマトリクス形成材料と混合することができる。マトリクス形成材料は、ポリマーが架橋する場合、硬化剤、架橋剤、触媒を含有していてもよい。 Then, the conductive particles 12 are mixed with the matrix-forming material. The matrix-forming material is a material that forms the matrix 11, and may be either a solid material or a liquid material. In the case of a solid matrix-forming material, the conductive particles 12 can be mixed with the matrix-forming material by kneading. In the case of a liquid matrix-forming material, the conductive particles 12 can be mixed with the matrix-forming material by stirring. In the case where the polymer is crosslinked, the matrix-forming material may contain a curing agent, a crosslinking agent, and a catalyst.

そして、導電性粒子12を混合したマトリクス形成材料を所定形状に成形し、必要に応じて加熱等してマトリクス形成材料のポリマーを架橋等させることにより実施形態に係る複合材10を得る。 The matrix-forming material mixed with the conductive particles 12 is then molded into a predetermined shape, and heated, if necessary, to crosslink the polymer of the matrix-forming material, thereby obtaining the composite material 10 according to the embodiment.

(複合材)
<マトリクス形成材料の準備>
マトリクス形成材料として、液状シリコーンゴム(KE-1950-70A/B 信越化学工業社製)を準備した。
(Composite materials)
<Preparation of matrix-forming material>
As a matrix-forming material, liquid silicone rubber (KE-1950-70A/B, manufactured by Shin-Etsu Chemical Co., Ltd.) was prepared.

<導電性粒子の作製>
シリコーンゴム(KE1950-40A/B 信越化学工業社製)を架橋させた架橋ゴムを、カッターミルを用いて粉砕し、それをJIS Z8801-1:2019に規定される目開き1mmのふるいにかけて透過したゴム粒子を回収し、それを粒子本体とした。
<Preparation of conductive particles>
A crosslinked rubber obtained by crosslinking silicone rubber (KE1950-40A/B manufactured by Shin-Etsu Chemical Co., Ltd.) was pulverized using a cutter mill, and the pulverized rubber was passed through a sieve having an opening of 1 mm as specified in JIS Z8801-1:2019 to recover the rubber particles that passed through the sieve, which were used as the particle body.

シリコーンワニス(TSR1122 モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)と、その触媒(YC8108 モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)と、多層長尺カーボンナノチューブ分散液(9326MWL トクシキ社製)とを混合してコーティング材原液を得た。このコーティング材原液を、後述する導電性粒子における導電性コート層の含有量が5質量%、8質量%、及び10質量%となるように酢酸ブチルで希釈し、シリコーンゴム及びその触媒を含有するとともに酢酸ブチルを含む溶剤を含有する液状ベース材に導電材のカーボンナノチューブ(CNT)が分散した3種のコーティング材1乃至3を調製した。 A coating material stock solution was obtained by mixing silicone varnish (TSR1122, Momentive Performance Materials Japan), its catalyst (YC8108, Momentive Performance Materials Japan), and a multi-layer long carbon nanotube dispersion (9326MWL, Tokushiki). This coating material stock solution was diluted with butyl acetate so that the conductive coating layer content in the conductive particles described below was 5 mass%, 8 mass%, and 10 mass%, and three types of coating materials 1 to 3 were prepared in which conductive carbon nanotubes (CNTs) were dispersed in a liquid base material containing silicone rubber and its catalyst and a solvent containing butyl acetate.

コーティング材1乃至3のそれぞれに、粒子本体のゴム粒子を浸漬して混合し、それをホットプレート上で十分に乾燥させ、その後、180℃に温度設定した大気オーブンに20分間入れてシリコーンゴムを架橋させることにより、各々、粒子本体の表面が導電性コート層で被覆された導電性粒子1乃至3を作製した。導電性粒子1乃至3の構成については表1に示す。 The rubber particles of the particle body were immersed in and mixed with each of the coating materials 1 to 3, then thoroughly dried on a hot plate, and then placed in an atmospheric oven set at 180°C for 20 minutes to crosslink the silicone rubber, producing conductive particles 1 to 3, each of which had the surface of the particle body covered with a conductive coating layer. The composition of conductive particles 1 to 3 is shown in Table 1.

Figure 0007522092000001
Figure 0007522092000001

<複合材の作製>
マトリクス形成材料及び導電性粒子1を、前者の含有量が70質量%及び後者の含有量が30質量%となるように混合して撹拌することにより塊状材料を調製した。この塊状材料0.35gを、金型の内径10mm及び深さ3mmの円盤状のキャビティに充填し、130℃の温度下で9.8MPaの圧力を負荷して5分間保持するプレス成形により円盤状の複合材を作製した。そして、この複合材を実施例1-1とした。
<Preparation of composite material>
A bulk material was prepared by mixing and stirring the matrix-forming material and the conductive particles 1 so that the content of the former was 70% by mass and the content of the latter was 30% by mass. 0.35 g of this bulk material was filled into a disk-shaped cavity of a mold having an inner diameter of 10 mm and a depth of 3 mm, and a disk-shaped composite material was produced by press molding at a temperature of 130° C. and a pressure of 9.8 MPa, which was maintained for 5 minutes. This composite material was designated Example 1-1.

マトリクス形成材料及び導電性粒子1の含有量がそれぞれ60質量%及びが40質量%、50質量%及びが50質量%、40質量%及びが60質量%、30質量%及びが70質量%、並びに20質量%及びが80質量%である塊状材料も調製し、これらを用いて実施例1-1と同様の複合材を作製した。そして、それらをそれぞれ実施例1-2乃至1-6とした。実施例1-1乃至1-6の構成については表2Aに示す。 Block materials were also prepared in which the contents of the matrix forming material and conductive particles 1 were 60% by mass and 40% by mass, 50% by mass and 50% by mass, 40% by mass and 60% by mass, 30% by mass and 70% by mass, and 20% by mass and 80% by mass, respectively, and were used to make composite materials similar to those in Example 1-1. These were then designated Examples 1-2 to 1-6, respectively. The configurations of Examples 1-1 to 1-6 are shown in Table 2A.

導電性粒子1に代えて導電性粒子2を用いたことを除いて、実施例1-1乃至1-6と同一構成の複合材を作製した。そして、それらの複合材を実施例2-1乃至2-6とした。実施例2-1乃至2-6の構成については表2Bに示す。同様に、導電性粒子1に代えて導電性粒子3を用いたことを除いて、実施例1-1乃至1-6と同一構成の複合材を作製した。そして、それらの複合材を実施例3-1乃至3-6とした。実施例3-1乃至3-6の構成については表2Cに示す。 Composite materials with the same configuration as Examples 1-1 to 1-6 were prepared, except that conductive particle 2 was used instead of conductive particle 1. These composite materials were then designated Examples 2-1 to 2-6. The configurations of Examples 2-1 to 2-6 are shown in Table 2B. Similarly, composite materials with the same configuration as Examples 1-1 to 1-6 were prepared, except that conductive particle 3 was used instead of conductive particle 1. These composite materials were then designated Examples 3-1 to 3-6. The configurations of Examples 3-1 to 3-6 are shown in Table 2C.

Figure 0007522092000002
Figure 0007522092000002

Figure 0007522092000003
Figure 0007522092000003

Figure 0007522092000004
Figure 0007522092000004

(試験方法)
実施例1-1乃至1-6、実施例2-1乃至2-6、及び実施例3-1乃至3-6のそれぞれの円盤状の複合材について、その上下面のそれぞれに厚さ1mmの20mm角の銅板電極を押し当てて0.2MPaの圧力で挟持するとともに、両銅板電極間に0V、30V、50V、80V、及び100Vの電圧を段階的に変化させて印加し、各電圧で流れる電流を測定した。そして、電流と電圧との関係を求め、それを線形近似したときの傾きを抵抗値とし、その抵抗値に試験片の面積(0.5πcm)を乗じるとともに、厚さ(0.3cm)で除したものを体積抵抗率とした。
(Test method)
For each of the disk-shaped composite materials of Examples 1-1 to 1-6, Examples 2-1 to 2-6, and Examples 3-1 to 3-6, a 20 mm square copper plate electrode with a thickness of 1 mm was pressed against the top and bottom surfaces of the composite material, respectively, and the composite material was clamped under a pressure of 0.2 MPa, and a voltage of 0 V, 30 V, 50 V, 80 V, and 100 V was applied between the two copper plate electrodes while being changed in stages, and the current flowing at each voltage was measured. The relationship between the current and the voltage was then calculated, and the slope of the linear approximation was taken as the resistance value. The resistance value was multiplied by the area (0.5 2 π cm 2 ) of the test piece and divided by the thickness (0.3 cm) to obtain the volume resistivity.

(試験結果)
試験結果を表2A乃至2Cに示す。表2A乃至2Cによれば、実施例1-1乃至1-6、実施例2-1乃至2-6、及び実施例3-1乃至3-6のいずれの複合材も、体積抵抗率が1.0×10Ω・cm以上1.0×10Ω・cm以下の範囲にあって、半導電性を示すことが分かる。
(Test results)
The test results are shown in Tables 2A to 2C. It can be seen from Tables 2A to 2C that the composite materials of Examples 1-1 to 1-6, Examples 2-1 to 2-6, and Examples 3-1 to 3-6 all had a volume resistivity in the range of 1.0×10 3 Ω·cm or more and 1.0×10 8 Ω·cm or less, and thus exhibited semiconductivity.

本発明は、複合材の技術分野について有用である。 The present invention is useful in the field of composite materials.

10 複合材
11 マトリクス
12 導電性粒子
121 粒子本体
122 導電性コート層
122a ベース材
122b 導電材
10 Composite material 11 Matrix 12 Conductive particle 121 Particle body 122 Conductive coating layer 122a Base material 122b Conductive material

Claims (4)

絶縁性のマトリクスと、前記マトリクス内に設けられた導電性粒子と、を備えた複合材であって、
前記導電性粒子は、JIS Z8801-1:2019に規定される目開き1mmのふるいを透過する大きさの粒子本体と、前記粒子本体の表面を被覆する導電性コート層と、を含み、
前記導電性コート層は、ベース材と、前記ベース材内に設けられた導電材と、を有し、
前記導電性粒子における前記導電材の含有量が0.5質量%以上1.5質量%以下であり、
前記複合材における前記導電性粒子の含有量が30質量部以上80質量部以下であり、
前記複合材における前記導電性コート層の含有量が3質量部以上8質量部以下であり、
前記複合材における前記導電材の含有量が0.15質量部以上0.4質量部以下であり、
前記複合材の体積抵抗率が1.3×10 以上5.7×10 以下である複合材。
A composite material comprising an insulating matrix and conductive particles disposed within the matrix,
The conductive particles include a particle body having a size that allows the particle body to pass through a sieve having an opening of 1 mm as defined in JIS Z8801-1:2019, and a conductive coating layer that covers a surface of the particle body,
The conductive coating layer has a base material and a conductive material provided in the base material,
The content of the conductive material in the conductive particles is 0.5% by mass or more and 1.5% by mass or less,
The content of the conductive particles in the composite material is 30 parts by mass or more and 80 parts by mass or less,
The content of the conductive coating layer in the composite material is 3 parts by mass or more and 8 parts by mass or less,
The content of the conductive material in the composite material is 0.15 parts by mass or more and 0.4 parts by mass or less,
The volume resistivity of the composite material is 1.3 x 10 4 or more and 5.7 x 10 4 or less .
請求項に記載された複合材において、
前記ベース材がゴム又は樹脂である複合材。
2. The composite material according to claim 1 ,
A composite material in which the base material is rubber or resin.
請求項1又は2に記載された複合材において、
前記マトリクスがゴムである複合材。
The composite material according to claim 1 or 2 ,
A composite material in which the matrix is rubber.
絶縁性のマトリクスと、前記マトリクス内に設けられた導電性粒子と、を備えた複合材の製造方法であって、
前記導電性粒子を、JIS Z8801-1:2019に規定される目開き1mmのふるいを透過する大きさの粒子本体の表面を被覆するようにコーティング材により導電性コート層を形成することにより作製した後、前記マトリクスを形成するマトリクス形成材料と混合する複合材の製造方法。
1. A method for producing a composite material comprising an insulating matrix and conductive particles disposed within the matrix, the method comprising the steps of:
A method for producing a composite material, comprising the steps of: preparing the conductive particles by forming a conductive coating layer using a coating material so as to cover the surface of a particle body having a size that allows the conductive particles to pass through a sieve with a mesh size of 1 mm as specified in JIS Z8801-1:2019; and then mixing the conductive particles with a matrix forming material that forms the matrix.
JP2021209829A 2021-12-23 2021-12-23 Composite material and its manufacturing method Active JP7522092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021209829A JP7522092B2 (en) 2021-12-23 2021-12-23 Composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021209829A JP7522092B2 (en) 2021-12-23 2021-12-23 Composite material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2023094383A JP2023094383A (en) 2023-07-05
JP7522092B2 true JP7522092B2 (en) 2024-07-24

Family

ID=87001357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021209829A Active JP7522092B2 (en) 2021-12-23 2021-12-23 Composite material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7522092B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100512A (en) * 1997-09-26 1999-04-13 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition

Also Published As

Publication number Publication date
JP2023094383A (en) 2023-07-05

Similar Documents

Publication Publication Date Title
Chu et al. Smart conducting polymer composites having zero temperature coefficient of resistance
JP3720044B1 (en) Composite material
JP2009144000A (en) Resin carbon composite material
JP6911770B2 (en) Conductive composites produced from coating powder
WO2015076390A1 (en) Carbon heating composition and carbon heating element
CN106810875A (en) A kind of thermal conductivity composite of graphene-containing and its preparation method and application
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
JP7522092B2 (en) Composite material and its manufacturing method
JPH0311602A (en) Resistance paste proper to manufacture of electric resistance layer and resistance layer manufactured from said resistance paste
CN105924862A (en) Method for preparing composite polytetrafluoroethene conductive material
JP2020517101A5 (en)
KR20160033856A (en) Conducting film and method of manufacturing the same
JP5643328B2 (en) Method for producing porous article
JP2005014201A (en) Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method
KR101993883B1 (en) Method for Manufacturing Non Metallic Silicon Complex Using Nano Hole of CNT and the Silicon Complex
US3808678A (en) Method of making pressure-sensitive resistor element
JP7478763B2 (en) Composites
WO2020183449A1 (en) Composite material with enhanced thermal conductivity and method for fabrication thereof
KR20200101348A (en) Carbon brush and manufacturing method of carbon brush
KR100642622B1 (en) Planar heating element using carbon nanotube and its manufacturing method
JP2007250207A (en) Conductive wax, conductive molding material, and conductive molded product
JP7460610B2 (en) Composition for bipolar plates and method for producing said composition
JP3568063B2 (en) Semiconductive resin composite material
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
JP2002353003A (en) High polymer ptc element and manufacturing method therfor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240711

R150 Certificate of patent or registration of utility model

Ref document number: 7522092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150