[go: up one dir, main page]

JP7515815B1 - Method for extracting technetium-99m from low specific activity molybdenum-99, method for producing physiological saline solution containing technetium-99m using said method, and system for recovering technetium-99m from natural molybdenum - Google Patents

Method for extracting technetium-99m from low specific activity molybdenum-99, method for producing physiological saline solution containing technetium-99m using said method, and system for recovering technetium-99m from natural molybdenum Download PDF

Info

Publication number
JP7515815B1
JP7515815B1 JP2024075307A JP2024075307A JP7515815B1 JP 7515815 B1 JP7515815 B1 JP 7515815B1 JP 2024075307 A JP2024075307 A JP 2024075307A JP 2024075307 A JP2024075307 A JP 2024075307A JP 7515815 B1 JP7515815 B1 JP 7515815B1
Authority
JP
Japan
Prior art keywords
technetium
molybdenum
solution
column
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024075307A
Other languages
Japanese (ja)
Inventor
克嘉 蓼沼
マウゾルフ エドワード
ブイ.ジョンストン エリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical Design Labo
Innovative Fuel Solutions LLC
Original Assignee
Chemical Design Labo
Innovative Fuel Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Design Labo, Innovative Fuel Solutions LLC filed Critical Chemical Design Labo
Priority to JP2024075307A priority Critical patent/JP7515815B1/en
Application granted granted Critical
Publication of JP7515815B1 publication Critical patent/JP7515815B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

【課題】モリブデン溶液の量に影響されず、短時間で低比放射能モリブデン99からのテクネチウム99mを抽出する。
【解決手段】低比放射能モリブデン99からのテクネチウム99mの回収方法は、比放射能の低いモリブデン99を含む高濃度モリブデン溶液中に含まれる、当該モリブデン99の崩壊により生成された娘核種テクネチウム99mを、活性炭で分離させて回収する方法であって、前記活性炭は、前記モリブデン溶液中に浸漬され、モリブデン99の原子数の比が1016以上存在してもその中の微量なテクネチウム99mを選択的に吸着する、ことを特徴とする。
【選択図】図1

The present invention relates to a method for extracting technetium-99m from low specific activity molybdenum-99 in a short period of time, without being affected by the amount of molybdenum solution.
[Solution] A method for recovering technetium-99m from low specific activity molybdenum-99 is a method for recovering technetium-99m, a daughter nuclide produced by the decay of molybdenum-99 contained in a high-concentration molybdenum solution containing molybdenum-99 with low specific activity, by separating it with activated carbon, characterized in that the activated carbon is immersed in the molybdenum solution and selectively adsorbs trace amounts of technetium-99m even when the ratio of the number of molybdenum-99 atoms is 1016 or more.
[Selected Figure] Figure 1

Description

本発明は、低比放射能の放射性モリブデン99(99Mo)を原料とする放射性医薬品及びその標識化合物原料としての放射性テクネチウム99m(99mTc)の回収、濃縮、精製分離プロセス及びそのシステムに関する。 The present invention relates to a process and system for recovering, concentrating, purifying and separating radiopharmaceuticals made from low specific activity radioactive molybdenum-99 ( 99 Mo) and radioactive technetium-99m ( 99m Tc) as a raw material for labeling compounds thereof.

Tc(テクネチウム)は、第7族、第5周期に位置する原子番号43の遷移金属である。Tcの同位体のうち、99mTc(テクネチウム99m)は、画像診断に適した短い半減期(6時間)と体外計測に適した弱いエネルギー(140keV)のγ(ガンマ)線のみを放射し、さらに99Mo(モリブデン99)との放射平衡を利用したジェネレータ(99Mo/99mTcジェネレータ)で生成されて核医学画像診断に広く用いられている。99mTcは、短半減期のため、通常その親核種の99Mo(半減期66時間)を得て、99Moから99mTcを得る方法で使われている。 Tc (technetium) is a transition metal with atomic number 43, located in the 7th group and 5th period. Among the isotopes of Tc, 99m Tc (technetium 99m) emits only gamma rays with a short half-life (6 hours) suitable for imaging diagnosis and a weak energy (140 keV) suitable for in-vitro measurement, and is generated by a generator ( 99 Mo/ 99m Tc generator) that utilizes radioactive equilibrium with 99 Mo (molybdenum 99), and is widely used in nuclear medicine imaging diagnosis. Because of its short half-life, 99m Tc is usually used in a method in which its parent nuclide 99 Mo (half-life 66 hours) is obtained and 99m Tc is obtained from 99 Mo.

99Moを得る方法としては、これまで核分裂性ウラニウム(235U;ウラン)の中性子照射による核分裂法を利用して製造される比放射能(放射性同位元素を含有する物質の単位質量あたりの放射能の強さ)が非常に高い99Moを生成させ、同時に生成される核分裂生成物から分離して用いるFission法(核分裂法)が実用技術として世界中で用いられてきた。その場合は、99Moの比放射能が高いため、その吸着体として一般的に医療用で使われる酸化アルミニウム(アルミナ)を用いて、そのMo飽和吸着以下のMo(99Mo)を担持させ、アルミナカラムに吸着させたMo(99Mo)から生成する99Moの娘核種の99mTcを生理食塩水で溶出(ミルキング)させることによって99mTcを得る方法が、実際の製造技術として使われている。 As a method for obtaining 99 Mo, the fission method has been used worldwide as a practical technology, in which 99 Mo with a very high specific radioactivity (the strength of radioactivity per unit mass of a substance containing a radioisotope) is produced by using the fission method by irradiating fissile uranium ( 235 U; uranium) with neutrons, and then separated from the fission products produced at the same time. In this case, since the specific radioactivity of 99 Mo is high, the actual manufacturing technology used is to use aluminum oxide (alumina), which is generally used for medical purposes, as an adsorbent, to support Mo ( 99 Mo) below the Mo saturation adsorption level, and to obtain 99m Tc by eluting (milking) the daughter nuclide of 99 Mo produced from Mo ( 99 Mo) adsorbed on the alumina column with physiological saline.

一方、99Moを得るための原料としてウランを用いず、モリブデン化合物を原料として、その同位体の一種として含まれる98Moの中性子放射化(n,γ)反応(中性子nが照射された物質が核反応を起こし、放射性物質に変化した際にγ線を放出する中性子捕獲反応)を利用することで、目的とする99Moを生成する方法があり、この(n,γ)法で生成する99MoはFission法に比べると、その99Moの比放射能が約1万分の1と極端に低く、そのため(n,γ)法を実用化するには大量の非放射性Mo中に含まれる微量の99Moから生成する娘核種としての微量の99mTcを分離し精製回収する必要がある。これまで、(n,γ)法として検討や実用化された方法としては、ゾルゲル法、MEK法、昇華法が知られている。本件発明者等は、別途、(n,γ)法としてのゾルゲル法の一種のPZC(ポリジルコニウム化合物)法を開発し提案している。 On the other hand, there is a method for producing the desired 99 Mo by using a molybdenum compound as a raw material, instead of uranium, as the raw material and utilizing the neutron activation (n, γ) reaction of 98 Mo contained as one of its isotopes (a neutron capture reaction in which a substance irradiated with neutrons n undergoes a nuclear reaction and emits γ rays when it is changed into a radioactive substance). The specific radioactivity of 99 Mo produced by this (n, γ ) method is extremely low, about 1/ 10,000 , compared with that of the Fission method, and therefore, in order to put the (n, γ) method into practical use, it is necessary to separate and purify and recover a trace amount of 99m Tc as a daughter nuclide produced from a trace amount of 99 Mo contained in a large amount of non-radioactive Mo. So far, the sol-gel method, MEK method, and sublimation method have been known as methods that have been investigated or put into practical use as the (n, γ) method. The present inventors have separately developed and proposed a PZC (polyzirconium compound) method, which is a type of sol-gel method as an (n, γ) method.

特許文献1には、テクネチウムの親核種である放射性モリブデン99Moを、天然同位体のMoを原料として原子炉で中性子照射することで98Mo(n,γ)反応により生成し、99Moを含むMo溶液を活性炭(AC)カラムの中を通液させることで、99Moの娘核種である99mTcを選択的にACに吸着させて捕集し、ACカラムの空隙やACの細孔中に残る活性炭非吸着性のMo(99Mo含む)を水で洗い流し、その後、アルカリ(苛性ソーダNaOHなど)溶液を用いてACに吸着している99mTcをACから溶出させ、さらに、99mTc回収液中に含まれるMo、99Mo、放射性不純物やその他の不純物などをACカラムの後段に配置した酸化アルミニウム(アルミナ)を充填したALカラムに通液させて除去することで、99mTc回収液を精製する方法と装置が記載されている。 Patent Document 1 describes a method and an apparatus for purifying a 99m Tc recovery liquid, which comprises the steps of: generating radioactive molybdenum 99 Mo, which is the parent nuclide of technetium, by irradiating natural isotope Mo as a raw material with neutrons in a nuclear reactor through a 98 Mo(n, γ) reaction; passing a Mo solution containing 99 Mo through an activated carbon (AC) column to selectively adsorb and collect 99m Tc, which is the daughter nuclide of 99 Mo; washing away Mo (including 99 Mo) remaining in the voids of the AC column and in the pores of the AC that is not adsorbed by the activated carbon with water; eluting the 99m Tc adsorbed on the AC from the AC using an alkali (caustic soda NaOH, etc.); and passing the solution through an AL column packed with aluminum oxide (alumina) located downstream of the AC column to remove Mo, 99 Mo, radioactive impurities, and other impurities contained in the 99m Tc recovery liquid, thereby purifying the 99m Tc recovery liquid.

特許文献2には、特許文献1と同様に、天然同位体のMoを原料として原子炉で中性子照射することで98Mo(n,γ)反応により生成された99Moからその娘核種である99mTcを、球状の活性炭(BAC)を用いて99mTcを回収する方法、99Mo含むMo溶液をACカラムにポンプで押し込む加圧フローあるいはポンプで吸い込む減圧フローで通液させる方法を比較検討し、その後、ACカラムの空隙やACの細孔中に残る活性炭非吸着性のMo(99Mo含む)を水で洗い流した後、アルカリ(苛性ソーダNaOHなど)溶液を用いてACに吸着された99mTcをACから溶出させる方法として、80℃程度に加熱して溶出を促進させる方法を検討し、その後、99mTc回収液中に含まれるMo、99Mo、放射化不純物やその他の不純物などを、ACカラムの後段に配置したALを充填させたカラムで除去することで99mTc回収液を精製する方法と装置が記載されている。 In Patent Document 2, similar to Patent Document 1, a method is compared and examined in which natural isotope Mo is used as a raw material, and 99 Mo is irradiated with neutrons in a nuclear reactor to generate 98 Mo (n, γ) reaction, and then 99m Tc, the daughter nuclide of 99 Mo, is recovered by using spherical activated carbon (BAC), and a method is compared and examined in which a Mo solution containing 99 Mo is passed through an AC column by a pressurized flow in which it is pushed into the AC column by a pump, or a reduced pressure flow in which it is sucked in by a pump, and then a method is examined in which Mo (including 99 Mo) that is not adsorbed to the activated carbon and remains in the voids in the AC column and in the pores of the AC is washed away with water, and then an alkali (caustic soda NaOH, etc.) solution is used to elute the 99m Tc adsorbed on the AC from the AC by heating to about 80° C. to promote elution, and then Mo, 99 Mo, radioactive impurities, and other impurities contained in the 99m Tc recovery solution are removed by a column packed with AL arranged after the AC column, thereby obtaining 99m Tc. A method and apparatus for purifying Tc recovery fluid is described.

特許文献3には、特許文献1及び特許文献2と同様に、天然同位体のMoを原料として原子炉で中性子照射することで98Mo(n,γ)反応により生成された99Moからその娘核種である99mTcを、ACを用いて回収する方法として、主に、99Moから放出されるγ線等の放射線を遮蔽して放射性物質の漏洩を防ぐために二重の隔壁セルの内部に設置した99Moを含むMo溶液タンクから、放射線遮蔽能力の低いACカラムを設置した外部セルに配管し、Mo溶液を外部セルに設置したACカラムに配管し再度内部のMo溶液タンクに戻るように循環通液させることで、99mTcを選択的に吸着捕集して外部への放射線漏洩を防ぐ構造とし、その後、ACカラムの空隙やACの細孔中に残る活性炭非吸着性のMo(99Mo含む)を水で洗い流した後、アルカリ(苛性ソーダNaOHなど)溶液を用いてACに吸着された99mTcをACから溶出させ、最終的に、99mTc回収液中に含まれるMo、99Mo、放射性不純物やその他の不純物などを、ACカラムの後段に配置したALを充填したカラムに通液させて除去することで、99mTc回収液を精製する方法と装置が記載されている。 Patent Document 3, like Patent Documents 1 and 2, describes a method for recovering 99m Tc, a daughter nuclide, from 99 Mo produced by the 98 Mo(n,γ) reaction produced by irradiating natural isotope Mo as a raw material with neutrons in a nuclear reactor, by using AC. The method mainly involves piping a Mo solution tank containing 99 Mo, which is installed inside a double-partitioned cell to shield radiation such as γ rays emitted from 99 Mo and prevent leakage of radioactive materials, to an external cell in which an AC column with low radiation shielding ability is installed, piping the Mo solution to the AC column installed in the external cell, and then circulating the liquid back to the internal Mo solution tank, thereby selectively adsorbing and collecting 99m Tc to prevent radiation leakage to the outside, and then washing out the non-adsorbed Mo (including 99 Mo) remaining in the voids of the AC column and in the pores of the AC with water, and then eluting the 99m Tc adsorbed to the AC from the AC using an alkali (caustic soda NaOH, etc.) solution, and finally The present invention describes a method and an apparatus for purifying a 99m Tc recovery liquid by removing Mo, 99 Mo, radioactive impurities and other impurities contained in the 99m Tc recovery liquid by passing the liquid through a column filled with AL placed after the AC column.

特許第5427483号公報Patent No. 5427483 特許第5916082号公報Patent No. 5916082 特許第6355462号公報Patent No. 6355462

特許文献1~3に記載の従来技術は、99Moを含むMo溶液中に生成された99mTcを回収するために、Mo溶液の流入部と流出部が接続された金属製円筒状容器(カラム)の内部に、99mTcを選択的に吸着可能なACを充填内蔵させておいて、そのカラムにMo溶液を通液させるものである。 In the prior art described in Patent Documents 1 to 3, in order to recover 99m Tc produced in a Mo solution containing 99 Mo, an AC capable of selectively adsorbing 99m Tc is packed inside a metallic cylindrical container (column) connected to the inlet and outlet of the Mo solution, and the Mo solution is passed through the column.

従来方式において、ACカラムに通液させてMo溶液に含まれる99mTcを完全に吸着捕集するには、Mo(99Mo)溶液を流通式のACカラムに流す際の流量に制限を設ける必要がある。具体的には、低比放射能Mo溶液では99Mo濃度が低いため、目的とする量の99mTcを回収するには、多量のMo(99Mo)溶液をACカラムに通液させる必要があり、例えば、5gのACを充填したACカラムに通液させる単位時間あたりの流量として最大50~100mL/分の場合に、2.0LのMo(99Mo)溶液を通液させるには、20~40分以上の時間が必要となり、短半減期の99mTcを短時間で回収して診断利用するには作業効率性が課題である。 In the conventional method, in order to completely adsorb and collect 99m Tc contained in the Mo solution by passing it through an AC column, it is necessary to limit the flow rate when passing the Mo ( 99 Mo) solution through a flow-through AC column. Specifically, since the 99 Mo concentration is low in a low specific activity Mo solution, in order to recover the desired amount of 99m Tc, it is necessary to pass a large amount of Mo ( 99 Mo) solution through the AC column. For example, when the flow rate per unit time for passing through an AC column filled with 5 g of AC is a maximum of 50 to 100 mL/min, it takes 20 to 40 minutes or more to pass 2.0 L of Mo ( 99 Mo) solution through the AC column, and the work efficiency is an issue in recovering 99m Tc with a short half-life in a short time for diagnostic use.

しかし、Mo(99Mo)溶液量が、例えば、5~20Lになると、99mTcを吸着捕集するためにACカラムに通液させる時間が2~5時間以上要することになり、作業効率が低下し、回収した短半減期の99mTcが変質して99gTcになり医薬品原料として使用不可になるおそれがある。なお、99gTc(テクネチウム99grand)は、99mTcから生成される半減期21.11万年のTcの放射性同位体の一つで、医薬品原料99mTcの抽出分離後の経過時間に比例して生成されていき、多すぎると医薬品原料99mTcの不純物となる。 However, when the amount of Mo ( 99 Mo) solution is, for example, 5 to 20 L, it takes 2 to 5 hours or more to pass the solution through the AC column to adsorb and collect 99m Tc, reducing the efficiency of the work and causing the short half-life of the recovered 99m Tc to change to 99g Tc, which may make it unusable as a pharmaceutical raw material. 99g Tc (technetium 99grand) is one of the radioisotopes of Tc with a half-life of 211,100 years that is produced from 99m Tc, and is produced in proportion to the time that has elapsed since the extraction and separation of the pharmaceutical raw material 99m Tc, and if there is too much, it becomes an impurity in the pharmaceutical raw material 99m Tc.

放射性医薬品原料としての放射性モリブデン99(99Mo)を含む高濃度Mo溶液中から、該高濃度Mo溶液中に99Moの崩壊により生成され含まれている99Moの娘核種であるテクネチウム99m(99mTc)を回収するために、Mo(99Mo)の原子数の比が1016以上存在してもその中の微量な99mTcを選択的に吸着回収可能なACを用いれば良い。 In order to recover technetium-99m ( 99m Tc), which is a daughter nuclide of 99 Mo produced by decay of 99 Mo and contained in a high-concentration Mo solution containing radioactive molybdenum-99 ( 99 Mo) as a radiopharmaceutical raw material, from the high-concentration Mo solution, an AC capable of selectively adsorbing and recovering a trace amount of 99m Tc even when the atomic ratio of Mo ( 99 Mo) is 10 16 or more may be used.

高濃度Mo溶液中に形成される99Moの娘核種99mTcを選択的に分離回収する方法として、Mo溶液中にACを内蔵した金属網状円筒容器を浸漬させ、周囲のMo溶液を撹拌流動させてMo溶液中の99mTcを吸着捕集する方式であれば、流量制限が必要なACカラムに通液させる必要は無くなる。すなわち、Mo溶液中に含まれる99mTcを、Mo溶液に浸漬されたACに吸着させて捕集すれば、ACカラムへの通液で長時間かけずに済む。 As a method for selectively separating and recovering the daughter nuclide 99m Tc of 99 Mo formed in a high-concentration Mo solution, if a metallic mesh cylindrical container containing an AC is immersed in the Mo solution and the surrounding Mo solution is stirred and flowed to adsorb and collect 99m Tc in the Mo solution, it becomes unnecessary to pass the solution through an AC column which requires flow rate restriction. In other words, if the 99m Tc contained in the Mo solution is adsorbed and collected by the AC immersed in the Mo solution, it is not necessary to pass the solution through the AC column for a long time.

そこで、本発明は、モリブデン溶液の量に影響されず、短時間で低比放射能モリブデン99からのテクネチウム99mを抽出する方法を提供することを目的とする。 The present invention aims to provide a method for extracting technetium-99m from low specific activity molybdenum-99 in a short period of time, without being affected by the amount of molybdenum solution.

上記の課題を解決するために、本発明である低比放射能モリブデン99からのテクネチウム99mの回収方法は、比放射能の低いモリブデン99を含む高濃度モリブデン溶液中に含まれる、当該モリブデン99の崩壊により生成された娘核種テクネチウム99mを、活性炭で分離させて回収する方法であって、前記活性炭は、前記モリブデン溶液中に浸漬され、モリブデンの原子数の比が1016以上存在してもその中の微量なテクネチウム99mを選択的に吸着する、ことを特徴とする。 In order to solve the above problems, the method for recovering technetium-99m from low specific activity molybdenum-99 according to the present invention is a method for recovering technetium-99m, a daughter nuclide produced by the decay of molybdenum-99 contained in a high-concentration molybdenum solution containing molybdenum-99 with low specific activity, by separating it with activated carbon, characterized in that the activated carbon is immersed in the molybdenum solution and selectively adsorbs a trace amount of technetium-99m even when the ratio of the number of molybdenum atoms is 10 or more.

前記低比放射能モリブデン99からのテクネチウム99mの回収方法において、前記モリブデン溶液は、天然同位体モリブデンの中性子捕獲(n,γ)反応により生成される放射性核種モリブデン99を含む、ことを特徴とする。 The method for recovering technetium-99m from low specific activity molybdenum-99 is characterized in that the molybdenum solution contains the radioactive nuclide molybdenum-99 produced by the neutron capture (n, gamma) reaction of the natural isotope of molybdenum.

前記低比放射能モリブデン99からのテクネチウム99mの回収方法において、前記活性炭は、流量が制限されるカラムではない金属網状円筒容器内に充填され、撹拌により流動している前記モリブデン溶液中に浸漬される、ことを特徴とする。 The method for recovering technetium-99m from low specific activity molybdenum-99 is characterized in that the activated carbon is packed in a cylindrical metal mesh container that is not a column in which the flow rate is restricted, and is immersed in the molybdenum solution that is being stirred and flowing.

また、本発明であるテクネチウム99mを含む生理的食塩水溶液の生成方法は、前記低比放射能モリブデン99からのテクネチウム99mの回収方法で回収されたテクネチウム99mが吸着された活性炭の細孔中に残留するモリブデンを水洗し、その活性炭からアルカリ溶液で溶出させたテクネチウム99mを含む溶液を強酸性陽イオン交換樹脂が充填されたIERカラムに通液させてアルカリ成分を除去し、さらにアルミナを充填したALカラムに通液させてテクネチウム99mを捕捉し、前記アルミナカラムから生理食塩水を用いてテクネチウム99mを溶出させることで、不純物が除去されたテクネチウム99mを含む生理的食塩水溶液として精製する、ことを特徴とする。 The method for producing a physiological saline solution containing technetium-99m according to the present invention is characterized in that the molybdenum remaining in the pores of the activated carbon to which technetium-99m recovered by the method for recovering technetium-99m from low specific activity molybdenum-99 is adsorbed is washed with water, the solution containing technetium-99m eluted from the activated carbon with an alkaline solution is passed through an IER column packed with a strongly acidic cation exchange resin to remove the alkaline components, and further passed through an AL column packed with alumina to capture technetium-99m, and the technetium-99m is eluted from the alumina column using physiological saline to purify the solution into a physiological saline solution containing technetium-99m from which impurities have been removed.

前記テクネチウム99mを含む生理的食塩水溶液の生成方法において、前記活性炭を収容する容器、前記IERカラム、及び前記ALカラムは、オートクレーブ滅菌処理可能な材質を用いる、ことを特徴とする。 The method for producing a physiological saline solution containing technetium-99m is characterized in that the container containing the activated carbon, the IER column, and the AL column are made of materials that can be sterilized in an autoclave.

さらに、本発明である天然モリブデンからのテクネチウム99mの回収システムは、天然同位体モリブデンの中性子捕獲(n,γ)反応により生成される比放射能の低いモリブデン99を含む高濃度モリブデン溶液を生成する手段と、前記モリブデン溶液中にモリブデン99の崩壊によって娘核種テクネチウム99mを生成させる手段と、流量が制限されるカラムではない金属網状円筒容器内に活性炭を充填し、撹拌により流動している前記モリブデン溶液中に前記活性炭を浸漬させる手段と、テクネチウム99mが吸着された前記活性炭から残留するモリブデン99を水洗する手段と、水洗された前記活性炭からアルカリ溶液を用いてテクネチウム99mを溶出させ、それを強酸性陽イオン交換樹脂カラムに通液させてアルカリ成分を除去した後の溶液を、アルミナカラムに通液させてテクネチウム99mを捕捉する手段と、前記アルミナカラムから生理食塩水を用いてテクネチウム99mを溶出させ、精製されたテクネチウム99mを回収する手段と、を有する、ことを特徴とする。 Furthermore, the system for recovering technetium-99m from natural molybdenum of the present invention comprises: a means for producing a high-concentration molybdenum solution containing molybdenum-99 with low specific activity produced by the neutron capture (n, gamma) reaction of the natural isotope of molybdenum; a means for producing the daughter nuclide technetium-99m in the molybdenum solution by the decay of molybdenum-99; and a means for filling a metallic mesh cylindrical container, which is not a column with a restricted flow rate, with activated carbon and immersing the activated carbon in the molybdenum solution which is being stirred and flowing. The apparatus is characterized by having a means for washing the remaining molybdenum-99 from the activated carbon on which technetium-99m has been adsorbed, a means for eluting technetium-99m from the washed activated carbon using an alkaline solution, passing the solution through a strong acid cation exchange resin column to remove the alkaline components, and passing the resulting solution through an alumina column to capture technetium-99m, and a means for eluting technetium-99m from the alumina column using physiological saline and recovering purified technetium-99m.

本発明によれば、放射性99Moを含む高濃度Mo溶液を生成し、24時間程度放置することで99Moから99mTcが生成され放射平衡(親核種と娘核種の放射能の比が一定に釣り合っている)で混在している状態とし、従来のようにACカラムに通液させるのではなく、撹拌流動しているMo溶液中にAC充填金属網状円筒容器を浸漬させることで、常時99mTcをACに吸着させて捕捉することができる。 According to the present invention, a high-concentration Mo solution containing radioactive 99Mo is produced and left for about 24 hours, whereby 99mTc is produced from 99Mo and mixed in a state of radioactive equilibrium (the ratio of the radioactivities of the parent and daughter nuclides is constantly balanced). Instead of passing the solution through an AC column as in the conventional method, an AC-filled metal mesh cylindrical container is immersed in the stirred and flowing Mo solution, whereby 99mTc can be constantly adsorbed and captured by the AC.

高濃度Mo溶液の量が、例えば、0.1Lと少量であっても5~20Lと大量であっても、99Moから99mTcが生成され放射平衡になる経過時間又は希望する99mTc量が生成される時間において、目的量の99mTcがACへ選択的に吸着捕集されるので、特に短時間の半減期(6時間)の99mTcの回収には有効である。 Whether the amount of high-concentration Mo solution is as small as 0.1 L or as large as 5 to 20 L, the desired amount of 99m Tc is selectively adsorbed and collected by AC during the time it takes for 99m Tc to be produced from 99 Mo and reach radioactive equilibrium or the time the desired amount of 99m Tc is produced, and this method is particularly effective for recovering 99m Tc with a short half-life (6 hours).

金属網状円筒容器中のACに吸着捕集された99mTcを脱着処理する際に、ACに非吸着残留するMo(99Mo)も99mTcと同時に溶脱してくるが、99mTc回収液をアルミナカラムに通液させることで、Mo(99Mo)など放射能不純物の混入なく、医薬品原料として高純度の99mTcを精製回収することができる。 When 99m Tc adsorbed and collected on AC in a cylindrical metal mesh container is desorbed, the Mo ( 99 Mo) remaining unadsorbed on the AC is also leached out at the same time as 99m Tc. However, by passing the 99m Tc recovery solution through an alumina column, it is possible to purify and recover high-purity 99m Tc for use as a pharmaceutical raw material without contamination with radioactive impurities such as Mo ( 99 Mo).

本発明である低比放射能モリブデン99からのテクネチウム99mの抽出方法、その方法を用いたテクネチウム99mを含む生理的食塩水溶液の生成方法、及び天然モリブデンからのテクネチウム99mの回収システムの概要を示す図である。FIG. 1 is a diagram showing an outline of a method for extracting technetium-99m from low specific activity molybdenum-99 according to the present invention, a method for producing a physiological saline solution containing technetium-99m using the method, and a system for recovering technetium-99m from natural molybdenum. 従来のモリブデン溶液を活性炭カラムに通液させる方法を示す図である。FIG. 1 is a diagram showing a conventional method for passing a molybdenum solution through an activated carbon column. 本発明である低比放射能モリブデン99からのテクネチウム99mの抽出方法、その方法を用いたテクネチウム99mを含む生理的食塩水溶液の生成方法、及び天然モリブデンからのテクネチウム99mの回収システムの構成を示す図である。FIG. 1 is a diagram showing a method for extracting technetium-99m from low specific activity molybdenum-99 according to the present invention, a method for producing a physiological saline solution containing technetium-99m using the method, and the configuration of a system for recovering technetium-99m from natural molybdenum. 本発明である低比放射能モリブデン99からのテクネチウム99mの抽出方法と従来方法のプロセスを比較した図である。FIG. 1 is a diagram comparing the process of the present invention for extracting technetium-99m from low specific activity molybdenum-99 with the process of a conventional method. 本発明であるテクネチウム99mを含む生理的食塩水溶液の生成方法の短時間製造のプロセス条件を示す図である。FIG. 2 is a diagram showing the process conditions for short-time production of a physiological saline solution containing Technetium-99m according to the present invention.

99Moを含むMo溶液をACカラムに通して99mTcを回収するのではなく、ACを充填した円筒形の金属(例えば、ステンレスなど)製の網状容器を、99Mo溶液タンクに常に浸漬させておき、AC容器を浸したMo溶液を撹拌して流動させることにより、常にACが99mTcを吸着可能な状態にする。 Instead of passing a Mo solution containing 99 Mo through an AC column to recover 99m Tc, a cylindrical metal (e.g., stainless steel) mesh container filled with AC is constantly immersed in a 99 Mo solution tank, and the Mo solution in which the AC container is immersed is stirred and kept flowing, so that the AC is always in a state where it can adsorb 99m Tc.

所定又は任意のタイミングでAC容器をMo溶液から引き抜き、AC細孔に残留しているAC非吸着性の99Moを水で洗浄除去した後、99mTcが吸着されているACをアルカリ溶液で処理することで、ACが捕集した99mTcを溶出させ、その溶液を強酸性陽イオン交換樹脂(IER)とアルミナ(AL)で精製することで高純度99mTcを回収する。 At a predetermined or arbitrary timing, the AC container is removed from the Mo solution, and the non-AC-adsorbed 99Mo remaining in the AC pores is washed away with water. The AC with adsorbed 99mTc is then treated with an alkaline solution to elute the 99mTc captured by the AC, and the solution is purified with a strongly acidic cation exchange resin (IER) and alumina (AL) to recover high-purity 99mTc .

以下、本発明の実施形態について図面を参照して詳細に説明する。なお、99mTcは、放射性核種テクネチウム99mであり、99Moは、放射性核種モリブデン99である。99Moが親核種で、99mTcが娘核種の関係にある。ACは、活性炭であり、IERは、イオン交換樹脂であり、ALは、アルミナ(酸化アルミニウム)である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 99m Tc is the radioactive nuclide technetium 99m, and 99 Mo is the radioactive nuclide molybdenum 99. 99 Mo is the parent nuclide, and 99m Tc is the daughter nuclide. AC is activated carbon, IER is ion exchange resin, and AL is alumina (aluminum oxide).

図1、3は、低比放射能モリブデン99からのテクネチウム99mの抽出方法、その方法を用いたテクネチウム99mを含む生理的食塩水溶液の生成方法、及び天然モリブデンからのテクネチウム99mの回収システムを示す図である。99Moを含むMo溶液をACカラムに通液させる方法に代えて、AC充填金属網状円筒容器でMo溶液中の99mTcを吸着捕集し、99mTcを精製回収する。 1 and 3 show a method for extracting technetium-99m from low specific activity molybdenum-99, a method for producing a physiological saline solution containing technetium-99m using the method, and a system for recovering technetium-99m from natural molybdenum. Instead of passing a Mo solution containing 99Mo through an AC column, 99mTc in the Mo solution is adsorbed and collected in an AC-filled metal mesh cylindrical container, and 99mTc is purified and recovered.

図2は、従来のモリブデン溶液を活性炭カラムに通液させる方法を示す図である。図4は、本発明である低比放射能モリブデン99からのテクネチウム99mの抽出方法と従来方法のプロセスを比較した図である。図5は、テクネチウム99mを含む生理的食塩水溶液の生成方法の短時間製造のプロセス条件を示す図である。 Figure 2 shows a conventional method of passing a molybdenum solution through an activated carbon column. Figure 4 shows a comparison between the method of extracting technetium-99m from low specific activity molybdenum-99 according to the present invention and the conventional process. Figure 5 shows the process conditions for short-time production of a physiological saline solution containing technetium-99m.

低比放射能モリブデン99からのテクネチウム99mの抽出方法は、比放射能の低いモリブデン99を含む高濃度モリブデン溶液中に含まれる、当該モリブデン99の崩壊により生成された娘核種テクネチウム99mを、活性炭で分離させて回収する。 The method for extracting technetium-99m from low specific activity molybdenum-99 involves separating and recovering the daughter nuclide technetium-99m produced by the decay of molybdenum-99 contained in a high-concentration molybdenum solution containing molybdenum-99 with low specific activity using activated carbon.

活性炭は、流量が制限されるカラムではない金属網状円筒容器内に充填され、撹拌により流動しているモリブデン溶液中に浸漬され、モリブデンの原子数の比が1016以上存在してもその中の微量なテクネチウム99mを選択的に吸着する。なお、モリブデン溶液は、天然同位体モリブデンの中性子捕獲(n,γ)反応により生成される放射性核種モリブデン99を含む。 The activated carbon is packed in a cylindrical metal mesh vessel that is not a column in which the flow rate is restricted, and is immersed in a molybdenum solution that is flowing by stirring, and selectively adsorbs minute amounts of technetium-99m in the solution even if the ratio of the number of molybdenum atoms is 10 16 or more. The molybdenum solution contains the radioactive nuclide molybdenum-99 produced by the neutron capture (n, γ) reaction of the natural isotope molybdenum.

テクネチウム99mを含む生理的食塩水溶液の生成方法は、低比放射能モリブデン99からのテクネチウム99mの回収方法で回収されたテクネチウム99mが吸着された活性炭の細孔中に残留するモリブデンを水洗し、その活性炭からアルカリ溶液で溶出させたテクネチウム99mを含む溶液を強酸性陽イオン交換樹脂が充填されたIERカラムに通液させてアルカリ成分を除去し、さらにアルミナを充填したALカラムに通液させてテクネチウム99mを捕捉し、アルミナカラムから生理食塩水を用いてテクネチウム99mを溶出させることで、不純物が除去されたテクネチウム99mを含む生理的食塩水溶液として精製する。 The method for producing a physiological saline solution containing technetium-99m involves washing with water the molybdenum remaining in the pores of the activated carbon to which technetium-99m recovered in the method for recovering technetium-99m from low specific activity molybdenum-99 has been adsorbed, passing the solution containing technetium-99m eluted from the activated carbon with an alkaline solution through an IER column packed with a strongly acidic cation exchange resin to remove the alkaline components, passing the solution through an AL column packed with alumina to capture technetium-99m, and eluting the technetium-99m from the alumina column using physiological saline to refine the solution into a physiological saline solution containing technetium-99m from which impurities have been removed.

天然モリブデンからのテクネチウム99mの回収システムは、天然同位体モリブデンの中性子捕獲(n,γ)反応により生成される比放射能の低いモリブデン99を含む高濃度モリブデン溶液を生成する手段、モリブデン溶液中にモリブデン99の崩壊によって娘核種テクネチウム99mを生成させる手段、流量が制限されるカラムではない金属網状円筒容器内に活性炭を充填し、撹拌により流動しているモリブデン溶液中に前記活性炭を浸漬させる手段、テクネチウム99mが吸着された活性炭から残留するモリブデン99を水洗する手段、水洗された活性炭からアルカリ溶液を用いてテクネチウム99mを溶出させ、それを強酸性陽イオン交換樹脂カラムに通液させてアルカリ成分を除去した後の溶液を、アルミナカラムに通液させてテクネチウム99mを捕捉する手段、及びアルミナカラムから生理食塩水を用いてテクネチウム99mを溶出させ、精製されたテクネチウム99mを回収する手段を有する。 The system for recovering technetium-99m from natural molybdenum includes a means for producing a high-concentration molybdenum solution containing molybdenum-99 with low specific activity produced by the neutron capture (n, gamma) reaction of the natural isotope molybdenum, a means for producing the daughter nuclide technetium-99m in the molybdenum solution by the decay of molybdenum-99, a means for filling a metal mesh cylindrical container that is not a column with a restricted flow rate with activated carbon and immersing the activated carbon in a molybdenum solution that is being stirred and flowing, a means for washing the remaining molybdenum-99 from the activated carbon to which technetium-99m has been adsorbed, a means for eluting technetium-99m from the washed activated carbon using an alkaline solution, passing the solution through a strong acid cation exchange resin column to remove the alkaline components, and passing the resulting solution through an alumina column to capture technetium-99m, and a means for eluting technetium-99m from the alumina column using physiological saline and recovering purified technetium-99m.

図1に示すように、Mo溶液を貯留したタンク100は、99Moの放射線量が高いため放射線を遮蔽するホットセル内に設置される。Mo溶液タンク100の内部には、溶液を撹拌する機能として撹拌機110を備え、ACを収容した金属網状円筒容器120を溶液中で保持するための支持具130も設ける。ホットセル内に複数のタンク100を設置しても良い。 As shown in Fig. 1, a tank 100 storing Mo solution is placed in a hot cell that is shielded from radiation because 99 Mo has a high radiation dose. A stirrer 110 is provided inside the Mo solution tank 100 to stir the solution, and a support 130 is also provided to hold a metal mesh cylindrical container 120 containing AC in the solution. A plurality of tanks 100 may be placed in the hot cell.

放射性医薬品原料99mTcを生成するために、放射性核種99Moを含んだMo溶液として、Na 99MoO溶液をタンク100に供給する。前もって原子炉で天然同位体MoOに中性子照射すると99Moが生成される。99Moが含まれるMoOをアルカリ(NaOH)溶液で溶解させると、pH中性のNa 99MoO溶液となる。 To produce the radiopharmaceutical raw material 99mTc , a Na299MoO4 solution is supplied to a tank 100 as a Mo solution containing the radioactive nuclide 99Mo . 99Mo is produced by irradiating natural isotope MoO3 with neutrons in a nuclear reactor in advance. When MoO3 containing 99Mo is dissolved in an alkaline (NaOH) solution, a pH- neutral Na299MoO4 solution is produced.

放射性99Moを含むMo溶液は、例えば、2L中に500gのMo(MoOとしては750g)を含む高濃度Mo溶液である。1回500Ci(キュリー)程度の99mTcを得るために、2L中に500gのMoを含む高濃度Mo溶液が必要となるが、その10分の1量の200mL中に50gのMo(MoOとしては75g)を含む高濃度Mo溶液や、又は10倍量の20L中に5kgのMo(MoOとしては7.5kg)を含む高濃度で大量のMo溶液でも良い。 The Mo solution containing radioactive 99Mo is, for example, a high-concentration Mo solution containing 500g of Mo (750g as MoO3 ) in 2L. To obtain about 500 Ci (curies) of 99mTc at one time, a high-concentration Mo solution containing 500g of Mo in 2L is required, but a high-concentration Mo solution containing 50g of Mo (75g as MoO3 ) in 200mL, which is one-tenth of that amount, or a high-concentration and large-volume Mo solution containing 5kg of Mo (7.5kg as MoO3 ) in 20L, which is ten times the amount, may also be used.

99Moを含むMo溶液を入れたタンク100の中に、ACを収容した金属網状円筒容器120を入れ、それを支持具130でMo溶液中に保持した状態で、撹拌機110や循環ポンプの水流などを用いてMo溶液を撹拌する。この状態を保つことで、Mo溶液中で生成された99mTcがACに吸着捕集される。 A metal mesh cylindrical container 120 containing AC is placed in a tank 100 containing a Mo solution containing 99 Mo, and the Mo solution is stirred using a stirrer 110 or a water flow from a circulating pump while the container is held in the Mo solution by a support 130. By maintaining this state, 99m Tc generated in the Mo solution is adsorbed and collected by the AC.

99Moから生成される99mTcは、約24時間で放射平衡状態となるため、その経過時間を待って、金属網状円筒容器120をMo溶液中から引き上げても良いし、放射平衡に至る前の任意のタイミングで引き上げても良い。金属網状円筒容器120をMo溶液中に浸漬してから引き上げるまでの間は、99mTcをACで吸着可能である。 Since 99m Tc generated from 99 Mo reaches a state of radiation equilibrium in about 24 hours, the metal mesh cylindrical container 120 may be pulled out of the Mo solution after waiting for that time to elapse, or may be pulled out at any time before reaching radiation equilibrium. 99m Tc can be adsorbed by AC during the period from when the metal mesh cylindrical container 120 is immersed in the Mo solution until it is pulled out.

図2に示すように、従来型のTcMM(テクネチウム99mマスターミルカー)は、Mo溶液中の99mTcをACに吸着させるために、Mo溶液を全量ACカラムに通液させる方式である。ACカラムは、筒状容器にACを充填させたもので、入口から出口まで筒内を液体が通過しながらACと接触する。この方式だと、ACカラム内を通過するMo溶液の流量が制限されるため、ACカラムがMo溶液を処理する能力が制限されることになり、半減期(寿命)が短時間である99mTcの回収技術としては問題がある。 As shown in Fig. 2, the conventional TcMM (Technetium-99m Master Milker) is a method in which the entire amount of Mo solution is passed through an AC column in order to adsorb 99m Tc in the Mo solution to AC. The AC column is a cylindrical container filled with AC, and the liquid comes into contact with the AC as it passes through the cylinder from the inlet to the outlet. In this method, the flow rate of the Mo solution passing through the AC column is limited, which limits the ability of the AC column to process the Mo solution, and this is problematic as a recovery technology for 99m Tc, which has a short half-life (lifetime).

図3に示すように、低比放射能Mo溶液から99mTcを高濃縮・精製回収するシステムは、高放射線を遮蔽するために厚い遮蔽壁で隔離されたホットセル140内に設置される。予め、放射化99MoOをアルカリで溶解させて99MoO溶液を生成しておく。ホットセル140内に複数設けた容量1~20Lの貯槽タンク100に99MoO溶液を供給して、99Moの放射能が500Ciの高濃度Mo溶液を貯留する。 As shown in Fig. 3, the system for highly concentrating, purifying and recovering 99m Tc from a low specific activity Mo solution is installed in a hot cell 140 isolated by a thick shielding wall to shield against high radiation. Activated 99 MoO3 is dissolved in alkali to generate a 99 MoO3 solution in advance. The 99 MoO3 solution is supplied to a plurality of storage tanks 100 with a capacity of 1 to 20 L provided in the hot cell 140 , and a high concentration Mo solution with a 99 Mo radioactivity of 500 Ci is stored.

ACを収容内蔵させた金属網状円筒容器120を、フック及びキャリー等を用いてタンク100内に入れ、支持具130で99Moを含むMo溶液中に保持する。なお、放射性99Moが崩壊することで99mTcに変化し、99mTcを含むMo溶液となる。 The metallic mesh cylindrical container 120 containing the AC is placed in the tank 100 using a hook, a carrier, or the like, and is held in the Mo solution containing 99 Mo by a support 130. The radioactive 99 Mo decays and changes to 99m Tc, forming a Mo solution containing 99m Tc.

金属網状円筒容器120がMo溶液に含侵されたら、撹拌機110でMo溶液を撹拌して、Mo溶液を効率的にACに接触させると良い。Mo溶液中に生成された99mTcがACに吸着捕集される。金属網状円筒容器120をタンク100から引き上げ、99mTcが吸着されているACを回収する。そして、ACをカラムに収容して水洗することで、ACに非吸着残留する99Mo等を洗浄除去する。 Once the metal mesh cylindrical container 120 has been immersed in the Mo solution, it is advisable to stir the Mo solution with the stirrer 110 to bring the Mo solution into efficient contact with the AC. 99m Tc produced in the Mo solution is adsorbed and collected by the AC. The metal mesh cylindrical container 120 is then lifted out of the tank 100, and the AC with 99m Tc adsorbed thereon is collected. The AC is then placed in a column and washed with water to remove 99 Mo and other elements remaining unadsorbed in the AC.

AC収容カラムに、アルカリ(NaOH)溶液を流量及び温度を調節しながら供給して通液させる。アルカリ溶液で処理することで、ACからアルカリ溶液に99mTcが溶出し、排出された99mTcを含むアルカリ溶液をIERカラム150に通液させる。IERカラム150で強酸性陽イオン交換樹脂にアルカリ成分が捕捉され、排出された99mTcを含む溶液をALカラム160に通液させる。 An alkaline (NaOH) solution is supplied to the AC-containing column while adjusting the flow rate and temperature, and passed through the column. By treating with the alkaline solution, 99m Tc is eluted from the AC into the alkaline solution, and the discharged alkaline solution containing 99m Tc is passed through the IER column 150. In the IER column 150, the alkaline component is captured by a strongly acidic cation exchange resin, and the discharged solution containing 99m Tc is passed through the AL column 160.

ALカラム160でアルミナに99mTcが捕捉され、不純物は排出される。その後、ALカラム160にNaCl濃度0.9%程度の生理食塩水を通液させることで、アルミナから生理食塩水に99mTcが溶出する。99mTcO溶液となって生理食塩水とともに排出されるので、それを高純度に精製された99mTcを含む生理的食塩水溶液として回収することで、放射性医薬品や標識化合物の原料となる。 In the AL column 160, 99m Tc is captured by alumina, and impurities are discharged. Then, physiological saline with a NaCl concentration of about 0.9% is passed through the AL column 160, whereby 99m Tc is eluted from the alumina into the physiological saline. This is discharged as a 99m TcO4 solution together with the physiological saline, and can be recovered as a physiological saline solution containing highly purified 99m Tc to serve as a raw material for radiopharmaceuticals and labeled compounds.

高濃度Mo溶液から高純度99mTcを精製回収する過程で生じる廃棄物や廃液については、それらに付着した放射能を自然減衰させて低レベル化してから固化処理などを行えば良い。それに伴い生じる様々な放射性・非放射性の廃棄物等を保管収容するスペースをホットセル140等に設けても良い。 Regarding the waste and waste liquid generated in the process of purifying and recovering high-purity 99m Tc from the high-concentration Mo solution, the radioactivity attached thereto may be naturally attenuated to a low level, and then solidification treatment, etc. may be performed. A space for storing and accommodating various radioactive and non-radioactive wastes, etc., generated in the process may be provided in the hot cell 140, etc.

ACを収容する容器(金属網状円筒容器120、ACを水洗するためのAC収容カラム)、IERカラム150、ALカラム160については、オートクレーブ(121℃、2気圧)滅菌処理が可能な材質及び内容物(AC、IER、AL)とするのが好ましい。 The container that contains the AC (metal mesh cylindrical container 120, AC containing column for washing the AC with water), the IER column 150, and the AL column 160 are preferably made of materials and have contents (AC, IER, AL) that can be sterilized in an autoclave (121°C, 2 atm).

図4に示すように、従来方式と本発明のプロセスを対比する。従来方式は、ACカラムに通液させてMo溶液に含まれる99mTcを吸着捕集するフロー方式のTcMMである。本発明は、Mo溶液をACカラムに通液させるのではなく、ACを収容内蔵させた金属網状円筒容器120を高濃度Mo溶液が流動している中に浸漬させることで、Mo溶液中に生成された99mTcをACに吸着させるバッチ方式の改良型TcMMである。 As shown in Fig. 4, the conventional method and the process of the present invention are compared. The conventional method is a flow-type TcMM in which 99m Tc contained in a Mo solution is adsorbed and collected by passing the solution through an AC column. The present invention is an improved batch-type TcMM in which, instead of passing the Mo solution through an AC column, a metallic mesh cylindrical container 120 containing an AC is immersed in a flowing high-concentration Mo solution, so that 99m Tc generated in the Mo solution is adsorbed by the AC.

従来方式では、Mo溶液をACカラムに通液させてMo溶液に含まれる99mTcを完全に吸着捕集するには、Mo溶液を流すためにACカラムに流量制限を設ける必要があった。具体的には、低比放射能Mo溶液では、99Moの濃度が低いため、目的とする量の99mTcを回収するには、多量のMo溶液をACカラムに通液させる必要がある。例えば、ACカラムに通液させる単位時間あたりの流量が最大50~100mL/分とした場合、2.0LのMo溶液を通液させるには、20~40分以上の時間を要し、短半減期の99mTcを短時間で回収して診断利用するには作業効率が良くない。 In the conventional method, in order to completely adsorb and collect 99m Tc contained in the Mo solution by passing the Mo solution through the AC column, it was necessary to provide a flow rate restriction in the AC column to allow the Mo solution to flow. Specifically, since the concentration of 99 Mo is low in the low specific activity Mo solution, in order to recover the desired amount of 99m Tc, it is necessary to pass a large amount of Mo solution through the AC column. For example, when the flow rate per unit time for passing the solution through the AC column is set to a maximum of 50 to 100 mL/min, it takes 20 to 40 minutes or more to pass 2.0 L of Mo solution through the AC column, which is not efficient in terms of recovering 99m Tc with a short half-life in a short time for diagnostic use.

しかも、低濃度Mo溶液の場合は、より低濃度の99mTcになるため、99mTcをACカラムで吸着捕集する際に、より多量のMo溶液をACカラムに通液させることになる。例えば、Mo溶液の量が5~20Lになると、ACカラムへの通液に2~5時間以上要することになり、回収した99mTcが変質して99gTcになり、医薬品原料として使用できなくなるおそれがある。 Moreover, in the case of a low-concentration Mo solution, the concentration of 99m Tc becomes even lower, so that when 99m Tc is adsorbed and collected by the AC column, a larger amount of Mo solution must be passed through the AC column. For example, when the amount of Mo solution is 5 to 20 L, it takes 2 to 5 hours or more to pass the solution through the AC column, and the recovered 99m Tc may be altered to 99 g Tc, making it unusable as a pharmaceutical raw material.

それに対し、本発明では、金属網状円筒容器120に収容させるACが、放射性99Moを含む高濃度Mo溶液中で99Moの崩壊により生じた娘核種である99mTcに対して99Moの原子数の比が1016以上存在していても、その中の微量な99mTcを選択的に分離して回収可能である。 In contrast, in the present invention, even if the AC contained in the metallic mesh cylindrical container 120 contains a high-concentration Mo solution containing radioactive 99Mo and the ratio of the number of 99Mo atoms to 99mTc , which is a daughter nuclide produced by the decay of 99Mo , is 1016 or more, it is possible to selectively separate and recover a trace amount of 99mTc therein.

Mo溶液中にACを内蔵した金属網状円筒容器120を浸漬させ、Mo溶液を撹拌して金属網状円筒容器120の周囲を流動させることで、Mo溶液中の99mTcがACに吸着されやすくなる。ACカラムに通液させるためにMo溶液の流量を調整する必要はなく、常に金属網状円筒容器120の周囲に存在するMo溶液全体から99mTcがACに吸着されるため、短時間で99mTcを捕集することが可能となる。 99m Tc in the Mo solution is easily adsorbed by the AC by immersing the metal mesh cylindrical container 120 containing the AC in the Mo solution and stirring the Mo solution to flow around the metal mesh cylindrical container 120. There is no need to adjust the flow rate of the Mo solution to pass it through the AC column, and 99m Tc is always adsorbed by the AC from the entire Mo solution present around the metal mesh cylindrical container 120, making it possible to collect 99m Tc in a short time.

図5に示すように、Mo溶液中にACを収容内蔵した金属網状円筒容器120を浸漬させ、99mTcを吸着捕集したACから医薬品原料として精製した99mTcを回収するステップ毎の所要時間は、従来方式より大幅に短縮される。Mo溶液量や99Moの放射能の多少に関わらず、ACが常時99mTcを吸着捕集するので、それに要するプロセス時間はゼロである。その後、ACから99mTcを精製して回収する時間は約10分であり、常に一定時間と同じプロセスで操作可能となるため、厳格な品質や出荷態勢が要求される医薬品原料製造技術として最適の方法である。 As shown in Fig. 5, the time required for each step of immersing a metallic mesh cylindrical container 120 containing AC in a Mo solution and recovering purified 99m Tc as a pharmaceutical raw material from the AC that has adsorbed and collected 99m Tc is significantly shorter than that of the conventional method. Since the AC always adsorbs and collects 99m Tc , regardless of the amount of Mo solution or the radioactivity of 99Mo , the process time required is zero. Thereafter, it takes about 10 minutes to purify and recover 99m Tc from the AC, and since it is possible to operate in the same process at a constant time, this is an optimal method as a pharmaceutical raw material manufacturing technology that requires strict quality and shipping arrangements.

非常に多量のMo(2,500g)を含むMoO(3,750g)を、6M(モル濃度mol/L)のNaOH(1.75~1.8L)で溶解した後、HOを添加してpH8~9のMo溶液(10L)を作製した。そのMo溶液を15L容量のビーカーに入れて、99mTc(500Ci)の代替元素としてRe(レニウム)0.1mgを添加し、そのMo溶液にAC(4.5g)が充填されたステンレス網の金属網状円筒容器(直径1.6cm、長さ6cm、容量12cc)を浸漬させ、撹拌機の回転羽をMo溶液中で6時間回転(30rpm)させて撹拌した。撹拌後、金属網状円筒容器をMo容器から取り出し、水洗してACの細孔に非吸着で残留しているMoを洗浄除去し、1.3MのNaOH(30mL)でACに吸着されているReをACから溶出させた。その溶液を強酸性陽イオン交換樹脂が充填されたIERカラムに通液させ、さらに活性アルミナ(6g)が収容されたALカラムに通液させ、Reをアルミナに吸着させて捕捉した。Reが吸着されているALカラムに生理食塩水(0.9%のNaCl)20mLを通液させ、Reを含む生理的食塩水溶液(pH4.8~5.2)を回収した。 MoO 3 (3,750 g) containing a very large amount of Mo (2,500 g) was dissolved in 6 M (molar concentration mol/L) NaOH (1.75-1.8 L), and then H 2 O was added to prepare a Mo solution (10 L) with a pH of 8-9. The Mo solution was placed in a 15 L beaker, and 0.1 mg of Re (rhenium) was added as a substitute for 99m Tc (500 Ci). A stainless steel metal mesh cylindrical container (diameter 1.6 cm, length 6 cm, capacity 12 cc) filled with AC (4.5 g) was immersed in the Mo solution, and the rotor blade of the stirrer was rotated (30 rpm) in the Mo solution for 6 hours to stir. After stirring, the metal mesh cylindrical container was removed from the Mo container and washed with water to remove the Mo remaining in the pores of the AC without adsorption, and the Re adsorbed on the AC was eluted from the AC with 1.3 M NaOH (30 mL). The solution was passed through an IER column packed with a strongly acidic cation exchange resin, and further passed through an AL column containing activated alumina (6 g), and Re was adsorbed and captured by the alumina. 20 mL of physiological saline (0.9% NaCl) was passed through the AL column to which Re was adsorbed, and a physiological saline solution (pH 4.8 to 5.2) containing Re was collected.

なお、99Moの半減期は65.94時間であり、99mTcの半減期は6.01時間である。99Mo(500Ci)の量は1.04mgで、Mo(500g)に対して50万分の1であり、99mTc(500Ci)の量は0.095mgで、Mo(500g)に対して500万分の1であった。μCiテストレベルにおいて、99Moの放射能は5×10Bq(ベクレル)未満で、Mo(500g)に対する重量比は6e-15未満であり、99mTcの放射能は6×10Bq(ベクレル)未満で、Mo(500g)に対する重量比は6e-16未満であった。μCiレベルから80Ciレベルの高範囲な放射能試験と500Ci相当の非放射能試験(Mo500g以上)のTcMM試験の結果、ACによるMoとTcの分離係数(Tcの選択吸着)は10e16以上であった。 The half-life of 99 Mo is 65.94 hours, and the half-life of 99m Tc is 6.01 hours. The amount of 99 Mo (500 Ci) was 1.04 mg, which is 1/500,000 relative to Mo (500 g), and the amount of 99m Tc (500 Ci) was 0.095 mg, which is 1/5,000,000 relative to Mo (500 g). At the μCi test level, the activity of 99 Mo was less than 5×10 4 Bq (Becquerels), with a weight ratio to Mo (500 g) of less than 6e -15 , and the activity of 99m Tc was less than 6×10 4 Bq (Becquerels), with a weight ratio to Mo (500 g) of less than 6e -16 . As a result of radioactivity tests in the high range from μCi level to 80 Ci level and non-radioactivity tests equivalent to 500 Ci (Mo 500 g or more) TcMM tests, the separation factor of Mo and Tc by AC (selective adsorption of Tc) was 10e16 or more.

Reの回収量は0.092~0.096mgであり、Reの回収率は約94%であった。99mTc(500Ci)相当のReであることから、ACが充填された金属網状円筒容器をMo溶液中に浸漬させて99mTcをACで吸着捕集する場合も同様の結果が得られると考えられる。この結果は、高濃度Mo溶液中に99Moの崩壊により生じる娘核種99mTcに対して99Moの原子数の比が1016以上存在していても、その中の微量な99mTcをACが選択的に吸着することを示している。 The amount of Re recovered was 0.092-0.096 mg, and the recovery rate of Re was about 94%. Since this is equivalent to 99m Tc (500 Ci), it is considered that similar results would be obtained when a cylindrical metal mesh container filled with AC is immersed in a Mo solution to adsorb and collect 99m Tc with AC. This result shows that even if the ratio of the number of 99 Mo atoms to the daughter nuclide 99m Tc generated by the decay of 99 Mo is 10 16 or more in a high-concentration Mo solution, AC selectively adsorbs a small amount of 99m Tc in the solution.

本発明によれば、放射性99Moを含む高濃度Mo溶液を生成し、24時間程度放置することで99Moから99mTcが生成され放射平衡(親核種と娘核種の放射能の比が一定に釣り合っている)で混在している状態とし、従来のようにACカラムに通液させるのではなく、撹拌流動しているMo溶液中にAC充填金属網状円筒容器を浸漬させることで、常時99mTcをACに吸着させて捕捉することができる。 According to the present invention, a high-concentration Mo solution containing radioactive 99Mo is produced and left for about 24 hours, whereby 99mTc is produced from 99Mo and mixed in a state of radioactive equilibrium (the ratio of the radioactivities of the parent and daughter nuclides is constantly balanced). Instead of passing the solution through an AC column as in the conventional method, an AC-filled metal mesh cylindrical container is immersed in the stirred and flowing Mo solution, whereby 99mTc can be constantly adsorbed and captured by the AC.

高濃度Mo溶液の量が、例えば、0.1Lと少量であっても5~20Lと大量であっても、99Moから99mTcが生成され放射平衡になる経過時間又は希望する99mTc量が生成される時間において、目的量の99mTcがACへ選択的に吸着捕集されるので、特に短時間の半減期(6時間)の99mTcの回収には有効である。 Whether the amount of high-concentration Mo solution is as small as 0.1 L or as large as 5 to 20 L, the desired amount of 99m Tc is selectively adsorbed and collected by AC during the time it takes for 99m Tc to be produced from 99 Mo and reach radioactive equilibrium or the time the desired amount of 99m Tc is produced, and this method is particularly effective for recovering 99m Tc with a short half-life (6 hours).

金属網状円筒容器中のACに吸着捕集された99mTcを脱着処理する際に、ACに非吸着残留するMo(99Mo)も99mTcと同時に溶脱してくるが、99mTc回収液をアルミナカラムに通液させることで、Mo(99Mo)など放射能不純物の混入なく、医薬品原料として高純度の99mTcを精製回収することができる。 When 99m Tc adsorbed and collected on AC in a cylindrical metal mesh container is desorbed, the Mo ( 99 Mo) remaining unadsorbed on the AC is also leached out at the same time as 99m Tc. However, by passing the 99m Tc recovery solution through an alumina column, it is possible to purify and recover high-purity 99m Tc for use as a pharmaceutical raw material without contamination with radioactive impurities such as Mo ( 99 Mo).

以上、本発明の実施例を述べたが、これらに限定されるものではない。 The above describes examples of the present invention, but the invention is not limited to these.

100:Mo溶液タンク
110:撹拌機
120:金属網状円筒容器
130:支持具
140:ホットセル
150:IERカラム
160:ALカラム
100: Mo solution tank 110: Stirrer 120: Metal mesh cylindrical container 130: Support 140: Hot cell 150: IER column 160: AL column

Claims (5)

比放射能の低いモリブデン99を含む高濃度モリブデン溶液中に含まれる、当該モリブデン99の崩壊により生成された娘核種テクネチウム99mを、活性炭で分離させて回収する方法であって、
前記活性炭は、流量が制限されるカラムではない金属網状円筒容器内に充填され、撹拌により流動している前記モリブデン溶液中に浸漬されることで、その中の微量なテクネチウム99mを選択的に吸着する、
ことを特徴とする低比放射能モリブデン99からのテクネチウム99mの回収方法。
A method for recovering technetium-99m, a daughter nuclide produced by decay of molybdenum-99 contained in a high-concentration molybdenum solution containing molybdenum-99 with low specific activity, by separating the daughter nuclide with activated carbon, comprising:
The activated carbon is packed in a cylindrical metal mesh container that is not a column in which the flow rate is restricted, and is immersed in the molybdenum solution that is being stirred to flow, thereby selectively adsorbing trace amounts of technetium-99m in the solution.
A method for recovering technetium-99m from low specific activity molybdenum-99.
前記モリブデン溶液は、天然同位体モリブデンの中性子捕獲(n,γ)反応により生成される放射性核種モリブデン99を含む、
ことを特徴とする請求項1に記載の低比放射能モリブデン99からのテクネチウム99mの回収方法。
The molybdenum solution contains the radionuclide molybdenum-99 produced by the neutron capture (n, gamma) reaction of the natural isotope of molybdenum;
2. The method for recovering technetium-99m from low specific activity molybdenum-99 according to claim 1.
請求項1又は2に記載の低比放射能モリブデン99からのテクネチウム99mの回収方法で回収されたテクネチウム99mが吸着された活性炭の細孔中に残留するモリブデンを水洗し、
その活性炭からアルカリ溶液で溶出させたテクネチウム99mを含む溶液を強酸性陽イオン交換樹脂が充填されたIERカラムに通液させてアルカリ成分を除去し、
さらにアルミナを充填したALカラムに通液させてテクネチウム99mを捕捉し、
前記アルミナカラムから生理食塩水を用いてテクネチウム99mを溶出させることで、不純物が除去されたテクネチウム99mを含む生理的食塩水溶液として精製する、
ことを特徴とするテクネチウム99mを含む生理的食塩水溶液の生成方法。
3. The method for recovering technetium-99m from low specific activity molybdenum-99 according to claim 1 or 2, further comprising the step of washing with water the molybdenum remaining in the pores of the activated carbon to which the technetium-99m recovered has been adsorbed;
The solution containing technetium-99m eluted from the activated carbon with an alkaline solution is passed through an IER column packed with a strongly acidic cation exchange resin to remove the alkaline components;
The mixture is then passed through an AL column packed with alumina to capture technetium-99m.
eluting technetium-99m from the alumina column using physiological saline, thereby purifying the technetium-99m into a physiological saline solution containing technetium-99m from which impurities have been removed;
A method for producing a physiological saline solution containing technetium-99m, comprising the steps of:
前記活性炭を収容する容器、前記IERカラム、及び前記ALカラムは、オートクレーブ滅菌処理可能な材質を用いる、
ことを特徴とする請求項3に記載のテクネチウム99mを含む生理的食塩水溶液の生成方法。
The container for accommodating the activated carbon, the IER column, and the AL column are made of materials that can be sterilized by autoclave.
4. The method for producing a physiological saline solution containing Technetium-99m according to claim 3 .
天然同位体モリブデンの中性子捕獲(n,γ)反応により生成される比放射能の低いモリブデン99を含む高濃度モリブデン溶液を生成する手段と、
前記モリブデン溶液中にモリブデン99の崩壊によって娘核種テクネチウム99mを生成させる手段と、
流量が制限されるカラムではない金属網状円筒容器内に活性炭を充填し、撹拌により流動している前記モリブデン溶液中に前記活性炭を浸漬させる手段と、
テクネチウム99mが吸着された前記活性炭から残留するモリブデン99を水洗する手段と、
水洗された前記活性炭からアルカリ溶液を用いてテクネチウム99mを溶出させ、それを強酸性陽イオン交換樹脂カラムに通液させてアルカリ成分を除去した後の溶液を、アルミナカラムに通液させてテクネチウム99mを捕捉する手段と、
前記アルミナカラムから生理食塩水を用いてテクネチウム99mを溶出させ、精製されたテクネチウム99mを回収する手段と、を有する、
ことを特徴とする天然モリブデンからのテクネチウム99mの回収システム。
A means for producing a high-concentration molybdenum solution containing molybdenum-99 having a low specific activity produced by a neutron capture (n, γ) reaction of the natural isotope of molybdenum;
means for generating a daughter nuclide, technetium-99m, in the molybdenum solution by decay of molybdenum-99;
a means for filling activated carbon in a cylindrical metal mesh vessel, which is not a column in which the flow rate is restricted, and immersing the activated carbon in the molybdenum solution which is being stirred and flowing;
a means for washing the remaining molybdenum-99 from the activated carbon on which the technetium-99m has been adsorbed;
a means for eluting technetium-99m from the water-washed activated carbon using an alkaline solution, passing the solution through a strongly acidic cation exchange resin column to remove the alkaline components, and then passing the resulting solution through an alumina column to capture technetium-99m;
and a means for eluting the technetium-99m from the alumina column with saline to recover purified technetium-99m.
A system for recovering technetium-99m from natural molybdenum.
JP2024075307A 2024-05-07 2024-05-07 Method for extracting technetium-99m from low specific activity molybdenum-99, method for producing physiological saline solution containing technetium-99m using said method, and system for recovering technetium-99m from natural molybdenum Active JP7515815B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024075307A JP7515815B1 (en) 2024-05-07 2024-05-07 Method for extracting technetium-99m from low specific activity molybdenum-99, method for producing physiological saline solution containing technetium-99m using said method, and system for recovering technetium-99m from natural molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024075307A JP7515815B1 (en) 2024-05-07 2024-05-07 Method for extracting technetium-99m from low specific activity molybdenum-99, method for producing physiological saline solution containing technetium-99m using said method, and system for recovering technetium-99m from natural molybdenum

Publications (1)

Publication Number Publication Date
JP7515815B1 true JP7515815B1 (en) 2024-07-16

Family

ID=91895858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024075307A Active JP7515815B1 (en) 2024-05-07 2024-05-07 Method for extracting technetium-99m from low specific activity molybdenum-99, method for producing physiological saline solution containing technetium-99m using said method, and system for recovering technetium-99m from natural molybdenum

Country Status (1)

Country Link
JP (1) JP7515815B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427483B2 (en) 2009-06-19 2014-02-26 株式会社化研 Concentration, elution recovery method, and system of radiotechnetium as a raw material for radiopharmaceuticals and their labeled compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427483B2 (en) 2009-06-19 2014-02-26 株式会社化研 Concentration, elution recovery method, and system of radiotechnetium as a raw material for radiopharmaceuticals and their labeled compounds

Similar Documents

Publication Publication Date Title
JP5427483B2 (en) Concentration, elution recovery method, and system of radiotechnetium as a raw material for radiopharmaceuticals and their labeled compounds
JP4342729B2 (en) Method and system for production and extraction of molybdenum-99
JP4618732B2 (en) Method and apparatus for manufacturing radioactive molybdenum
JP5461435B2 (en) Method and apparatus for producing radioisotopes or treating nuclear waste
JP2014525038A (en) Method for generating Tc-99m
JP5817977B2 (en) Method for producing technetium-99m solution having high concentration and high radioactivity
CN106198165B (en) A kind of fast separation device and method of activation products americium uranium gallium
JP7515815B1 (en) Method for extracting technetium-99m from low specific activity molybdenum-99, method for producing physiological saline solution containing technetium-99m using said method, and system for recovering technetium-99m from natural molybdenum
Tatenuma et al. A mass-production process of a highly pure medical use 99mTc from natural isotopic Mo (n, γ) 99Mo without using uranium
JP5598900B2 (en) High purity 99mTc concentration method and concentration apparatus
WO2012039038A1 (en) Method for production/extraction of tc-99m utilizing mo-99, and mo-99/tc-99m liquid generator
US20240428961A1 (en) Fission product extraction system and methods of use thereof
CN117095848B (en) 99Mo-99mTc color layer generator99mPreparation method of Tc isotope
Tatenuma et al. Generator of Highly Concentrated Pure 99mTc from Low Specific Activity 99Mo Produced by Reactor and/or Electron Linear Accelerator
Saptiama et al. Evaluation of the technetium-99m (99mtc) separation from low specific activity molybdenum-99 (99mo) based on liquid solid extraction
Mushtaq et al. Separation of fission Iodine-131
JP5916084B2 (en) Purified Mo solution preparation method for preparation and purified Mo solution preparation apparatus for preparation
Remez et al. The practice of cesium radionuclide removal from milk in the Bryansk region farms using the BIFEZh sorbent
Miao et al. Fission 99 Mo production technology
Levakov et al. Determination of the content of radioactive elements in irradiated beryllium
Zengxing et al. Fission {sup 99} Mo production technology
KUDO et al. A. IGUCHI, E. SHIKATA
JP2018091708A (en) Technetium production device, technetium production method and radioactive medicine production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240507

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240624

R150 Certificate of patent or registration of utility model

Ref document number: 7515815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150