[go: up one dir, main page]

JP7515241B2 - Ferrite powder for bonded magnets and its manufacturing method - Google Patents

Ferrite powder for bonded magnets and its manufacturing method Download PDF

Info

Publication number
JP7515241B2
JP7515241B2 JP2019153865A JP2019153865A JP7515241B2 JP 7515241 B2 JP7515241 B2 JP 7515241B2 JP 2019153865 A JP2019153865 A JP 2019153865A JP 2019153865 A JP2019153865 A JP 2019153865A JP 7515241 B2 JP7515241 B2 JP 7515241B2
Authority
JP
Japan
Prior art keywords
ferrite powder
bonded magnets
mass
bonded
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019153865A
Other languages
Japanese (ja)
Other versions
JP2020038963A (en
Inventor
智也 山田
禅 坪井
一志 上村
拓行 馬場
泰信 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa F Tec Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa F Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa F Tec Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to PCT/JP2019/033932 priority Critical patent/WO2020045573A1/en
Priority to KR1020217008719A priority patent/KR102532582B1/en
Priority to CN201980054640.1A priority patent/CN112585706B/en
Priority to EP19854341.5A priority patent/EP3832677A4/en
Publication of JP2020038963A publication Critical patent/JP2020038963A/en
Application granted granted Critical
Publication of JP7515241B2 publication Critical patent/JP7515241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、ボンド磁石用フェライト粉末およびその製造方法に関し、特に、フェライトの粗粒と微粒を含むボンド磁石用フェライト粉末およびその製造方法に関する。 The present invention relates to ferrite powder for bonded magnets and a manufacturing method thereof, and in particular to ferrite powder for bonded magnets that contains coarse and fine ferrite particles and a manufacturing method thereof.

従来、AV機器、OA機器、自動車電装部品などに使用される小型モータや、複写機のマグネットロールなどに使用される磁石のような高磁力の磁石として、フェライト系焼結磁石が使用されている。しかし、フェライト系焼結磁石は、欠け割れが発生したり、研磨が必要なために生産性に劣るという問題があることに加えて、複雑な形状への加工が困難であるという問題がある。 Conventionally, ferrite-based sintered magnets have been used as high-magnetic magnets, such as those used in small motors for AV equipment, office automation equipment, and automotive electrical components, and in magnet rolls for copying machines. However, ferrite-based sintered magnets have problems such as poor productivity due to the risk of chipping and the need for polishing, as well as the difficulty of machining them into complex shapes.

そのため、近年では、AV機器、OA機器、自動車電装部品などに使用される小型モータなどの高磁力の磁石として、希土類磁石のボンド磁石が使用されている。しかし、希土類磁石は、フェライト系焼結磁石の約20倍のコストがかかり、また、錆び易いという問題があるため、フェライト系焼結磁石の代わりにフェライト系ボンド磁石を使用することが望まれている。 For this reason, in recent years, rare earth bonded magnets have been used as high magnetic force magnets for small motors used in AV equipment, office automation equipment, automotive electrical components, etc. However, rare earth magnets cost about 20 times as much as ferrite sintered magnets, and have the problem of being prone to rust, so it is desirable to use ferrite bonded magnets instead of ferrite sintered magnets.

このようなボンド磁石用フェライト粉末として、組成が(Sr1-x)O・n[(Fe1-y-zCoZn](但し、AはLa、La-Nd、La-Pr又はLa-Nd-Pr、n=5.80~6.10、x=0.1~0.5、y=0.0083~0.042、0≦z<0.0168)であって、飽和磁化値σsが73Am/kg(73emu/g)以上である平均粒径が1.0~3.0μmのマグネトプランバイト型ストロンチウムフェライト粒子粉末であり、且つマグネトプランバイト型ストロンチウムフェライト粒子粉末中に板状粒子を個数割合で60%以上含んでいる、ボンド磁石用ストロンチウムフェライト粒子粉末が提案されている(例えば、特許文献1参照)。 The ferrite powder for such bonded magnets has a composition of (Sr 1-x A x )O.n[(Fe 1-y-z Co y Zn z ) 2 O 3 ] (where A is La, La-Nd, La-Pr or La-Nd-Pr, n=5.80 to 6.10, x=0.1 to 0.5, y=0.0083 to 0.042, 0≦z<0.0168) and a saturation magnetization value σs of 73 Am 2 A magnetoplumbite-type strontium ferrite particle powder for bonded magnets has been proposed, which is a magnetoplumbite-type strontium ferrite particle powder having an average particle size of 1.0 to 3.0 μm and a molecular weight of 73 emu/g or more, and which contains plate-like particles at a ratio of 60% or more by number in the magnetoplumbite-type strontium ferrite particle powder (see, for example, Patent Document 1).

特開2002-175907号公報(段落番号0025)JP 2002-175907 A (paragraph number 0025)

しかし、特許文献1のボンド磁石用ストロンチウムフェライト粒子粉末は、板状粒子を多く含有しているため、磁場配向により粒子粉末を磁場方向に揃えようとすると、板状粒子同士が互いに配向を阻害するため、高い配向性を有するボンド磁石を作製するのが困難であった。 However, the strontium ferrite particles for bonded magnets in Patent Document 1 contain a large number of plate-shaped particles, and when attempting to align the particles in the magnetic field direction by magnetic field orientation, the plate-shaped particles inhibit each other's orientation, making it difficult to produce a bonded magnet with high orientation.

したがって、本発明は、このような従来の問題点に鑑み、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができる、ボンド磁石用フェライト粉末およびその製造方法を提供することを目的とする。 Therefore, in consideration of these conventional problems, the present invention aims to provide a ferrite powder for bonded magnets and a manufacturing method thereof that can produce bonded magnets with high remanent magnetization Br through magnetic field orientation.

本発明者らは、上記課題を解決するために鋭意研究した結果、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄とを混合して造粒した後、焼成することにより、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができることを見出し、本発明を完成するに至った。 As a result of intensive research into solving the above problems, the inventors discovered that by mixing a powder of a composite oxide of iron, strontium, lanthanum, and cobalt with iron oxide, granulating the mixture, and then sintering it, it is possible to obtain a bonded magnet with high remanent magnetization Br through magnetic field orientation, which led to the completion of the present invention.

すなわち、本発明によるボンド磁石用フェライト粉末の製造方法は、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄とを混合して造粒した後、焼成することを特徴とする。 In other words, the method for producing ferrite powder for bonded magnets according to the present invention is characterized by mixing a powder of a composite oxide of iron, strontium, lanthanum, and cobalt with iron oxide, granulating the mixture, and then sintering it.

このボンド磁石用フェライト粉末の製造方法において、焼成により得られた焼成物を粗粉砕して得られた粗粉砕粉を粉砕した後、アニールするのが好ましい。また、複合酸化物の粉末が、炭酸ストロンチウムと酸化ランタンと酸化鉄と酸化コバルトとを混合して造粒した後、1000~1250℃で焼成して得られた焼成物を粉砕することにより得られるのが好ましい。また、複合酸化物の粉末と酸化鉄とを混合して造粒した後の焼成が1100~1400℃で行われるのが好ましい。さらに、複合酸化物の粉末と酸化鉄を混合する際に、SrとLaの合計に対する酸化鉄中のFeのモル比Fe/(Sr+La)が4.5~11.7になるように複合酸化物の粉末と酸化鉄を混合するのが好ましい。 In this method for producing ferrite powder for bonded magnets, it is preferable to coarsely crush the sintered product obtained by sintering, crush the resulting coarsely crushed powder, and then anneal it. It is also preferable that the composite oxide powder is obtained by mixing strontium carbonate, lanthanum oxide, iron oxide, and cobalt oxide, granulating the mixture, and then sintering the mixture at 1000 to 1250°C, and crushing the resulting sintered product. It is also preferable that the composite oxide powder and iron oxide are mixed, granulated, and then sintered at 1100 to 1400°C. It is also preferable that when mixing the composite oxide powder and iron oxide, the composite oxide powder and iron oxide are mixed so that the molar ratio of Fe in the iron oxide to the total of Sr and La, Fe/(Sr+La), is 4.5 to 11.7.

また、本発明によるボンド磁石用フェライト粉末は、(Sr1-xLa)・(Fe1-yCo19-z(但し、0<x≦0.5、0<y≦0.04、10.0≦n≦12.5、-1.0≦z≦3.5の組成を有し、平均粒径が1.3~2.5μmであることを特徴とする。 The ferrite powder for bonded magnets according to the present invention is characterized in that it has a composition of (Sr1 -xLax ) ·( Fe1- yCoy ) nO19 -z (where 0<x≦0.5, 0<y≦0.04, 10.0≦n≦12.5, -1.0≦z≦3.5) and has an average particle size of 1.3 to 2.5 μm.

このボンド磁石用フェライト粉末は、比表面積が1.0~2.1m/gであるのが好ましく、長軸長が1.0μm以上の粒子の短軸長に対する長軸長の比(長軸長/短軸長)の平均値が1.55以下であるのが好ましい。また、ボンド磁石用フェライト粉末90.0質量部と、シランカップリング剤0.8質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂8.4質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石を作製し、このボンド磁石の残留磁化Brを測定磁場10kOeで測定したときに、残留磁化Brが2950G以上であるのが好ましい。さらに、上記のボンド磁石の最大エネルギー積BHmaxを測定磁場10kOeで測定したときに、最大エネルギー積BHmaxが2.15MGOe以上であるのが好ましい。 The ferrite powder for bonded magnets preferably has a specific surface area of 1.0 to 2.1 m 2 /g, and the average ratio of the major axis length to the minor axis length (major axis length/minor axis length) of particles with a major axis length of 1.0 μm or more is preferably 1.55 or less. In addition, 90.0 parts by mass of ferrite powder for bonded magnets, 0.8 parts by mass of silane coupling agent, 0.8 parts by mass of lubricant, and 8.4 parts by mass of powdered polyamide resin are filled into a mixer and mixed to obtain a mixture, which is kneaded at 230 ° C. to produce a kneaded pellet with an average diameter of 2 mm, and this kneaded pellet is injection molded in a magnetic field of 9.7 kOe at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 to produce a cylindrical bonded magnet with a diameter of 15 mm and a height of 8 mm (the orientation direction of the magnetic field is along the central axis of the cylinder), and when the residual magnetization Br of this bonded magnet is measured in a measurement magnetic field of 10 kOe, it is preferable that the residual magnetization Br is 2950 G or more. Furthermore, when the maximum energy product BH max of the above bonded magnet is measured in a measurement magnetic field of 10 kOe, it is preferable that the maximum energy product BH max is 2.15 MGOe or more.

また、本発明によるボンド磁石は、上記のボンド磁石用フェライト粉末と、バインダとを備えたことを特徴とする。 The bonded magnet according to the present invention is characterized by comprising the above-mentioned ferrite powder for bonded magnets and a binder.

本発明によれば、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができる、ボンド磁石用フェライト粉末を製造することができる。 According to the present invention, it is possible to produce ferrite powder for bonded magnets, which can produce bonded magnets with high remanent magnetization Br through magnetic field orientation.

実施例1で得られたボンド磁石用フェライト粉末についての粉末X線回折法(XRD)による測定結果を示す図である。FIG. 2 is a diagram showing the measurement results of the ferrite powder for bonded magnets obtained in Example 1 by powder X-ray diffraction (XRD). 実施例1で得られたボンド磁石の断面の走査型電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of a cross section of the bonded magnet obtained in Example 1. 比較例1で得られたボンド磁石の断面のSEM写真である。1 is a SEM photograph of a cross section of the bonded magnet obtained in Comparative Example 1.

本発明によるボンド磁石用フェライト粉末の製造方法の実施の形態では、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄(好ましくはヘマタイト(α-Fe))とを(SrとLaの合計に対する酸化鉄中のFe/(Sr+La)が好ましくは4.5~11.7、さらに好ましくは9.0~11.0になるように)混合して造粒した後、(好ましくは1100~1400℃、さらに好ましくは1100~1300℃、最も好ましくは1150~1250℃で)焼成し、この焼成により得られた焼成物を粗粉砕して得られた粗粉砕粉を粉砕した後、(好ましくは950~1000℃で)アニールする。 In an embodiment of the method for manufacturing ferrite powder for bonded magnets according to the present invention, a powder of a composite oxide of iron, strontium, lanthanum and cobalt is mixed with iron oxide (preferably hematite (α-Fe 2 O 3 )) (so that the Fe/(Sr+La) ratio in the iron oxide relative to the sum of Sr and La is preferably 4.5 to 11.7, more preferably 9.0 to 11.0), granulated, and then fired (preferably at 1100 to 1400°C, more preferably 1100 to 1300°C, most preferably 1150 to 1250°C), the fired product obtained by this firing is coarsely ground to obtain a coarsely ground powder, which is then annealed (preferably at 950 to 1000°C).

上記の鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末は、炭酸ストロンチウムと酸化ランタンと酸化鉄と酸化コバルトとを混合して造粒した後、好ましくは1000~1250℃、さらに好ましくは1050~1200℃、最も好ましくは1050~1150℃で焼成して得られた焼成物を粉砕することにより得ることができる。 The above-mentioned powder of composite oxide of iron, strontium, lanthanum and cobalt can be obtained by mixing and granulating strontium carbonate, lanthanum oxide, iron oxide and cobalt oxide, and then sintering the mixture at a temperature of preferably 1000 to 1250°C, more preferably 1050 to 1200°C, and most preferably 1050 to 1150°C, and pulverizing the sintered product.

上記の粗粉砕粉を湿式のアトライターなどにより(好ましくは20~80分間)粉砕処理(湿式粉砕処理)し、得られたスラリーをろ過して得られた固形物を乾燥させ、得られた乾燥ケーキをミキサーで解砕して得られた解砕物を振動ボールミルなどにより解砕した後、アニール処理を行うのが好ましい。 The coarsely pulverized powder is then pulverized (wet pulverization) using a wet attritor or the like (preferably for 20 to 80 minutes), the resulting slurry is filtered, the solid matter obtained is dried, the resulting dried cake is crushed in a mixer, and the crushed matter obtained is crushed using a vibrating ball mill or the like, and then the annealing process is preferably performed.

このようにして、(Sr1-xLa)・(Fe1-yCo19-z(但し、0<x≦0.5、0<y≦0.04、10.0≦n≦12.5、-1.0≦z≦3.5)で示される組成のボンド磁石用フェライト粉末を製造することができる。 In this manner, it is possible to produce ferrite powder for bonded magnets having a composition represented by (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19-z (where 0<x≦0.5, 0<y≦0.04, 10.0≦n≦12.5, −1.0≦z≦3.5).

また、本発明によるボンド磁石用フェライト粉末の実施の形態は、(Sr1-xLa)・(Fe1-yCo19-z(但し、0<x≦0.5(好ましくは0.03≦x≦0.5、さらに好ましくは0.1≦x≦0.5)、0<y≦0.04(好ましくは0.004≦y≦0.04)、10.0≦n≦12.5(好ましくは10.0≦n≦12.0)、-1.0≦z≦3.5(好ましくは-0.5≦z≦3.5))の組成を有し、平均粒径が1.3~2.5μm(好ましくは1.3~2.0μm)である。 Moreover, an embodiment of the ferrite powder for bonded magnets according to the present invention has a composition of (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z (wherein 0<x≦0.5 (preferably 0.03≦x≦0.5, more preferably 0.1≦x≦0.5), 0<y≦0.04 (preferably 0.004≦y≦0.04), 10.0≦n≦12.5 (preferably 10.0≦n≦12.0), -1.0≦z≦3.5 (preferably -0.5≦z≦3.5)) and an average particle size of 1.3 to 2.5 μm (preferably 1.3 to 2.0 μm).

このボンド磁石用フェライト粉末の比表面積は、好ましくは1.0~2.1m/g、さらに好ましくは1.2~2.0m/gである。 The specific surface area of this ferrite powder for bonded magnets is preferably 1.0 to 2.1 m 2 /g, and more preferably 1.2 to 2.0 m 2 /g.

また、ボンド磁石用フェライト粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮したときのボンド磁石用フェライト粉末の密度をボンド磁石用フェライト粉末の圧縮密度(CD)として測定すると、圧縮密度(CD)は、好ましくは3.0~4.0g/cmであり、さらに好ましくは3.2~3.6g/cmである。 Furthermore, when 10 g of the ferrite powder for bonded magnets is filled into a cylindrical mold having an inner diameter of 2.54 cmφ and then compressed at a pressure of 1 ton/ cm2 , and the density of the ferrite powder for bonded magnets is measured as the compressed density (CD) of the ferrite powder for bonded magnets, the compressed density (CD) is preferably 3.0 to 4.0 g/ cm3 , and more preferably 3.2 to 3.6 g/ cm3 .

また、ボンド磁石用フェライト粉末8gとポリエステル樹脂0.4ccを乳鉢中で混練し、得られた混練物7gを内径15mmφの金型に充填し、2トン/cmの圧力で60秒間圧縮して得られた成形品を金型から抜き取り、150℃で30分間乾燥させて圧粉体を作製し、この圧粉体の磁気特性として、BHトレーサーを使用して、測定磁場10kOeで圧粉体の保磁力iHcおよび残留磁化Brを測定すると、保磁力iHcは、好ましくは2000~4000Oe、さらに好ましくは2300~3500Oeであり、残留磁化Brは、好ましくは1700~2000G、さらに好ましくは1800~1950Gである。 In addition, 8 g of ferrite powder for bonded magnets and 0.4 cc of polyester resin are mixed in a mortar, 7 g of the resulting mixture is filled into a metal mold having an inner diameter of 15 mm and compressed at a pressure of 2 tons/ cm2 for 60 seconds. The resulting molded product is removed from the metal mold and dried at 150°C for 30 minutes to produce a green compact. The magnetic properties of this green compact are measured using a BH tracer to determine the coercive force iHc and residual magnetization Br of the green compact in a measuring magnetic field of 10 kOe. The coercive force iHc is preferably 2000 to 4000 Oe, and more preferably 2300 to 3500 Oe, and the residual magnetization Br is preferably 1700 to 2000 G, and more preferably 1800 to 1950 G.

一般に、マグネトプランバイト型の結晶構造を有するフェライト磁性材料は、残留磁化Brが負の温度係数で保磁力Hcが正の温度係数であり、保磁力Hcの温度係数が0.2~0.3%/℃程度であることが知られている。すなわち、マグネトプランバイト型の結晶構造を有するフェライト磁性材料は、低温になる程、保磁力Hcが低下するため、ボンド磁石に使用する場合には、保磁力Hcが必要以上に高いフェライト磁性材料を使用しないと、低温から高温の温度サイクルにより不可逆的な減磁(低温減磁)が発生する問題がある。このようなフェライト磁性材料の低温減磁は、屋外で気温の変動を大きく受けるエアコン用の室外機や自動車などのモータに使用するボンド磁石の材料としてフェライト磁性材料を使用する場合には、特に問題になる。そのため、ボンド磁石用フェライト粉末20mgとパラフィン10mgを測定用セルに詰めて、60℃で10分間保持した後に冷却することによりボンド磁石用フェライト粉末を測定用セル中に固定し、このボンド磁石用フェライト粉末の保磁力を5T(10,000Oe)まで磁場を印加したフルループ(掃印加速度200Oe/秒)により-25℃と0℃と25℃の3点で測定し、その保磁力Hcの変化率から算出したボンド磁石用フェライト粉末の保磁力Hcの温度係数が0.1%/℃以下であるのが好ましい。 In general, it is known that ferrite magnetic materials with a magnetoplumbite crystal structure have a negative temperature coefficient for residual magnetization Br and a positive temperature coefficient for coercivity Hc, with the temperature coefficient of coercivity Hc being approximately 0.2 to 0.3%/°C. In other words, the lower the temperature, the lower the coercivity Hc of ferrite magnetic materials with a magnetoplumbite crystal structure. Therefore, when used in bonded magnets, unless a ferrite magnetic material with a higher coercivity H than necessary is used, there is a problem of irreversible demagnetization (low-temperature demagnetization) occurring due to temperature cycles from low to high temperatures. Such low-temperature demagnetization of ferrite magnetic materials is particularly problematic when the ferrite magnetic material is used as a material for bonded magnets used in outdoor units for air conditioners and motors for automobiles, which are subject to large changes in temperature outdoors. Therefore, 20 mg of ferrite powder for bonded magnets and 10 mg of paraffin are packed into a measurement cell, held at 60°C for 10 minutes, and then cooled to fix the ferrite powder for bonded magnets in the measurement cell. The coercive force of this ferrite powder for bonded magnets is measured at three points, -25°C, 0°C, and 25°C, using a full loop (sweeping speed 200 Oe/sec) in which a magnetic field of up to 5T (10,000 Oe) is applied, and the temperature coefficient of the coercive force Hc of the ferrite powder for bonded magnets calculated from the rate of change in the coercive force Hc is preferably 0.1%/°C or less.

また、ボンド磁石用フェライト粉末90.0質量部と、シランカップリング剤0.8質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂8.4質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石を作製し、このボンド磁石の保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定磁場10kOeで測定すると、保磁力iHcは、2200~3700Oe、さらに好ましくは2400~3500Oeであり、残留磁化Brは、好ましくは2950G以上、さらに好ましくは2970G以上であり、最大エネルギー積BHmaxは、好ましくは2.15MGOe以上、さらに好ましくは2.2~2.5MGOeである。 In addition, 90.0 parts by mass of ferrite powder for bonded magnets, 0.8 parts by mass of silane coupling agent, 0.8 parts by mass of lubricant, and 8.4 parts by mass of powdered polyamide resin were charged into a mixer and mixed, and the resulting mixture was kneaded at 230°C to produce kneaded pellets with an average diameter of 2 mm. These kneaded pellets were injection molded in a magnetic field of 9.7 kOe at a temperature of 300°C and a molding pressure of 8.5 N/ mm2 to produce cylindrical bonded magnets (the magnetic field was oriented along the central axis of the cylinder) with a diameter of 15 mm and a height of 8 mm. The coercive force iHc, residual magnetization Br, and maximum energy product BH of this bonded magnet were measured. When measured in a measuring magnetic field of 10 kOe, the coercive force iHc is 2200 to 3700 Oe, more preferably 2400 to 3500 Oe, the residual magnetization Br is preferably 2950 G or more, more preferably 2970 G or more, and the maximum energy product BH max is preferably 2.15 MGOe or more, more preferably 2.2 to 2.5 MGOe.

さらに、上記のボンド磁石を印加磁場方向に対して平行に切断し、電子顕微鏡により粒子の形状を2000倍で観察し、得られた電子顕微鏡写真を2値化することにより、粒子の形状指数として、長軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離(平行な2本の直線に対して垂直に引いた線分の長さ)の最大値)が1.0μm以上の粒子の短軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離の最小値)に対する長軸長の比(長軸長/短軸長)(アスペクト比)を求める(各粒子を板状の粒子と仮定し、体積を長軸長×長軸長×短軸長として、体積で重みづけした体積平均アスペクト比を算出する)と、アスペクト比は、1.55以下であるのが好ましい。アスペクト比が1.55以下であれば、磁場配向によりボンド磁石用フェライト粉末の粒子を磁場方向に揃え易くなって、粒子の配向性が高く残留磁化Brや最大エネルギー積BHmaxが高いボンド磁石を作製し易くなる。 Furthermore, the above bonded magnet is cut parallel to the direction of the applied magnetic field, and the particle shape is observed at 2000 times with an electron microscope. The obtained electron microscope photograph is then digitized to determine the particle shape index, and the ratio (long axis length/short axis length) of the long axis length (the maximum distance between two parallel lines when one particle is sandwiched between them (the length of a line segment drawn perpendicular to the two parallel lines)) of particles having a long axis length of 1.0 μm or more to the short axis length (the minimum distance between two parallel lines when one particle is sandwiched between them) is determined (long axis length/short axis length) (aspect ratio) (each particle is assumed to be a plate-like particle, and the volume-average aspect ratio weighted by the volume is calculated as long axis length x long axis length x short axis length). The aspect ratio is preferably 1.55 or less. If the aspect ratio is 1.55 or less, the particles of the ferrite powder for bonded magnets can be easily aligned in the magnetic field direction by magnetic field orientation, making it easier to produce bonded magnets with high particle orientation and high remanence Br and maximum energy product BH max .

以下、本発明によるボンド磁石用フェライト粉末およびその製造方法の実施例について詳細に説明する。 Below, we will explain in detail the examples of the ferrite powder for bonded magnets and the manufacturing method thereof according to the present invention.

[実施例1]
(粗粉砕粉の製造)
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)と(酸化鉄としての)ヘマタイト(α-Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.70:0.30:0.70:0.30になるように秤量して混合し、この混合物にパンペレタイザー中で水を加えながら造粒し、得られた直径3~10mmの球状の造粒物を内燃式のロータリーキルンに投入し、大気雰囲気中において1100℃で20分間焼成(一次焼成)して焼成物を得た。この焼成物をローラーミルで粉砕して、鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末を得た。この複合酸化物の粉末の比表面積を比表面積測定装置(カンタクローム社製のモノソーブ)を使用してBET一点法によって測定したところ、比表面積は3.5m/gであった。
[Example 1]
(Production of coarsely ground powder)
Strontium carbonate ( SrCO3 , specific surface area 5.8 m2 /g), lanthanum oxide ( La2O3 , specific surface area 3.8 m2 /g), hematite (as iron oxide) (α - Fe2O3 , specific surface area 5.3 m2 /g), and cobalt oxide (Co3O4 , specific surface area 3.3 m2 /g) were weighed and mixed to a molar ratio of Sr:La:Fe:Co = 0.70:0.30:0.70:0.30, and this mixture was granulated in a pan pelletizer while adding water. The resulting spherical granules with a diameter of 3 to 10 mm were placed in an internal combustion rotary kiln and fired in the air at 1100°C for 20 minutes (primary firing) to obtain a fired product. The fired product was pulverized in a roller mill to obtain a powder of a composite oxide of iron, strontium, lanthanum, and cobalt. The specific surface area of the composite oxide powder was measured by a BET single point method using a specific surface area measuring device (Monosorb, manufactured by Quantachrome Corporation), and was found to be 3.5 m2 /g.

この複合酸化物の粉末と(酸化鉄としての)ヘマタイト(α-Fe、比表面積5.3m/g)を、SrとLaの合計に対する酸化物中のモル比(Fe/(Sr+La))=10.0になるように秤量して混合し、この混合物に対して(添加剤として)0.17質量%のホウ酸と2.3質量%の塩化カリウムを加えて混合した後、水を加えて造粒し、得られた直径3~10mmの球状の造粒物を内燃式のロータリーキルンに投入し、大気中において1250℃(焼成温度)で20分間焼成(二次焼成)して得られた焼成物をローラーミルで粉砕して、粗粉砕粉を得た。 This composite oxide powder and hematite (as iron oxide) (α-Fe 2 O 3 , specific surface area 5.3 m 2 /g) were weighed and mixed so that the molar ratio in the oxide to the sum of Sr and La (Fe/(Sr+La)) = 10.0. 0.17 mass% boric acid and 2.3 mass% potassium chloride (as additives) were added to this mixture and mixed, after which water was added to granulate. The resulting spherical granules with a diameter of 3 to 10 mm were placed in an internal combustion rotary kiln and fired in air at 1250°C (firing temperature) for 20 minutes (secondary firing). The fired product was then pulverized in a roller mill to obtain a coarsely pulverized powder.

(ボンド磁石用フェライト粉末の製造)
得られた粗粉砕粉100質量部と水150質量部とを湿式のアトライターに投入し、20分間粉砕処理を行ってスラリーを得た。このスラリーをろ過して得られた固形物を大気中において150℃で10時間乾燥させて、乾燥ケーキを得た。この乾燥ケーキをミキサーで解砕して得られた解砕物を、振動ボールミル(株式会社村上精機工作所製のUras Vibrator KEC-8-YH)により、媒体として直径12mmのスチール製ボールを使用して、回転数1800rpm、振幅8mmで20分間粉砕処理を行った。このようにして得られた粉砕物を電気炉により大気中において985℃で30分間アニール(焼鈍)して、ボンド磁石用フェライト粉末を得た。
(Manufacturing ferrite powder for bonded magnets)
The obtained coarsely pulverized powder (100 parts by mass) and water (150 parts by mass) were put into a wet attritor and pulverized for 20 minutes to obtain a slurry. The solid matter obtained by filtering the slurry was dried in air at 150°C for 10 hours to obtain a dried cake. The dried cake was pulverized in a mixer, and the pulverized matter obtained was pulverized for 20 minutes at 1800 rpm and 8 mm amplitude using a steel ball having a diameter of 12 mm as a medium in a vibration ball mill (Uras Vibrator KEC-8-YH manufactured by Murakami Seiki Kogyosho Co., Ltd.). The pulverized matter thus obtained was annealed in air at 985°C for 30 minutes in an electric furnace to obtain a ferrite powder for bonded magnets.

このボンド磁石用フェライト粉末について、蛍光X線分析装置(株式会社リガク製のZSX100e)を使用して、ファンダメンタル・パラメータ法(FP法)により、各元素の成分量を算出することにより、組成分析を行った。この組成分析では、ボンド磁石用フェライト粉末を測定用セルに詰め、10トン/cmの圧力を20秒間加えて成型し、測定モードをEZスキャンモード、測定径を30mm、試料形態を酸化物、測定時間を標準時間とし、真空雰囲気中において、定性分析を行った後に、検出された構成元素に対して定量分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.3質量%のFeと、2.4質量%のCoと、6.8質量%のSrOと、0.1質量%のBaOと、4.9質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも酸化物換算0.3質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.026、n=11.5、z=0.79であった。なお、zは、Srの価数を+2、Laの価数を+3、Feの価数を+3、Coの価数を+2、Oの価数を-2として、化学式の価数の合計が0(ゼロ)になるように算出した。 A compositional analysis was performed on this ferrite powder for bonded magnets by calculating the amount of each element by the fundamental parameter method (FP method) using an X-ray fluorescence analyzer (ZSX100e manufactured by Rigaku Corporation). In this compositional analysis, the ferrite powder for bonded magnets was packed into a measurement cell, and molded by applying a pressure of 10 tons/ cm2 for 20 seconds. The measurement mode was EZ scan mode, the measurement diameter was 30 mm, the sample form was oxide, and the measurement time was standard time. After performing a qualitative analysis in a vacuum atmosphere, a quantitative analysis was performed on the detected constituent elements. As a result, the ferrite powder for bonded magnets contained 0.1 mass% Cr2O3 , 0.3 mass% MnO, 85.3 mass% Fe2O3 , 2.4 mass% Co2O3 , 6.8 mass% SrO, 0.1 mass% BaO, and 4.9 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. Elements such as Cr, Mn , and Ba , which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.3 mass% in terms of oxide. These trace amounts (1.0 mass% or less in terms of oxides) of elements were regarded as impurities, and the chemical formula of the ferrite powder for bonded magnets was expressed as (Sr1 -xLax ) (Fe1 -yCoy ) nO19 -z from the analysis values of the main components Sr, La, Fe, and Co. The values of x, y, n, and z were calculated to be x = 0.32, y = 0.026, n = 11.5, and z = 0.79. Note that z was calculated so that the valence of Sr was +2, the valence of La was +3, the valence of Fe was +3, the valence of Co was +2, and the valence of O was -2, so that the sum of the valences of the chemical formula was 0 (zero).

また、このボンド磁石用フェライト粉末について、粉末X線回折装置(株式会社リガク製のMiniflex600)を使用して、管電圧を40kV、管電流を15mA、測定範囲を15°~60°、スキャン速度を1°/分、スキャン幅を0.02°として、粉末X線回折法(XRD)による測定を行った。その測定結果を図1に示す。なお、図1の下側には、一般的なM型フェライト構造を有するSrFe1219のピーク位置が記載されている。図1から、すべてのピークがSrFe1219と同じ位置に観測され、本実施例のボンド磁石用フェライト粉末がM型フェライト構造を有することが確認された。この結果は、以下に説明する実施例2~8および比較例1~3でも同様であった。 In addition, this ferrite powder for bonded magnets was measured by powder X-ray diffraction (XRD) using a powder X-ray diffractometer (Miniflex 600 manufactured by Rigaku Corporation) with a tube voltage of 40 kV, a tube current of 15 mA, a measurement range of 15° to 60°, a scan speed of 1°/min, and a scan width of 0.02°. The measurement results are shown in FIG. 1. The peak positions of SrFe 12 O 19 , which has a general M-type ferrite structure, are shown at the bottom of FIG. 1. From FIG. 1, all peaks were observed at the same positions as SrFe 12 O 19 , and it was confirmed that the ferrite powder for bonded magnets of this embodiment has an M-type ferrite structure. This result was similar to that of Examples 2 to 8 and Comparative Examples 1 to 3 described below.

また、ボンド磁石用フェライト粉末の平均粒径(APD)を比表面積測定装置(株式会社島津製作所製のSS-100)を用いて空気浸透法により測定したところ、平均粒径は1.72μmであった。また、このボンド磁石用フェライト粉末の比表面積を上記と同様の方法により測定したところ、比表面積は1.47m/gであった。 The average particle size (APD) of the ferrite powder for bonded magnets was measured by the air permeation method using a specific surface area measuring device (SS-100 manufactured by Shimadzu Corporation) and was found to be 1.72 μm. The specific surface area of this ferrite powder for bonded magnets was measured by the same method as above and was found to be 1.47 m2 /g.

また、ボンド磁石用フェライト粉末10gを内径2.54cmφの円筒形の金型に充填した後に1トン/cmの圧力で圧縮したときのボンド磁石用フェライト粉末の密度をボンド磁石用フェライト粉末の圧縮密度(CD)として測定したところ、3.45g/cmであった。 In addition, 10 g of the ferrite powder for bonded magnets was filled into a cylindrical mold with an inner diameter of 2.54 cmφ and then compressed at a pressure of 1 ton/ cm2 . The density of the ferrite powder for bonded magnets was measured as the compressed density (CD) of the ferrite powder for bonded magnets, and was found to be 3.45 g/ cm3 .

また、ボンド磁石用フェライト粉末8gとポリエステル樹脂(日本地科学社製のP-レジン)0.4ccを乳鉢中で混練し、得られた混練物7gを内径15mmφの金型に充填し、2トン/cmの圧力で60秒間圧縮して得られた成形品を金型から抜き取り、150℃で30分間乾燥させて圧粉体を得た。この圧粉体の磁気特性として、BHトレーサー(東英工業株式会社製のTRF-5BH)を使用して、測定磁場10kOeで圧粉体の保磁力iHcおよび残留磁化Brを測定したところ、保磁力iHcは3060Oeであり、残留磁化Brは1870Gであった。 In addition, 8 g of ferrite powder for bonded magnets and 0.4 cc of polyester resin (P-resin manufactured by Nihon Chikagaku Co., Ltd.) were mixed in a mortar, and 7 g of the mixture was filled into a mold having an inner diameter of 15 mmφ, compressed for 60 seconds at a pressure of 2 tons/cm2, and the molded product obtained was removed from the mold and dried for 30 minutes at 150°C to obtain a green compact. As the magnetic properties of this green compact, the coercive force iHc and residual magnetization Br of the green compact were measured in a measuring magnetic field of 10 kOe using a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.), and the coercive force iHc was 3060 Oe and the residual magnetization Br was 1870 G.

また、ボンド磁石用フェライト粉末20mgとパラフィン10mgを測定用セルに詰めて、60℃で10分間保持した後に冷却することによりボンド磁石用フェライト粉末を測定用セル中に固定し、振動試料型磁力計(東英工業株式会社製のVSM-5HSC)を用いて、このボンド磁石用フェライト粉末の保磁力を5T(10,000Oe)まで磁場を印加したフルループ(掃印加速度200Oe/秒)により-25℃と0℃と25℃の3点で測定し、その保磁力Hcの変化率から、保磁力Hcの温度係数を算出した。その結果、このボンド磁石用フェライト粉末の保磁力Hcの温度係数は、-0.024%/℃であった。なお、この温度係数は、保磁力Hcをyとし、温度をxとして、yとxの関係式を最小二乗法により求めて、その関係式の傾きとして算出した。 20 mg of ferrite powder for bonded magnets and 10 mg of paraffin were packed into a measurement cell, and the ferrite powder for bonded magnets was fixed in the measurement cell by holding it at 60°C for 10 minutes and then cooling it. Using a vibration sample magnetometer (VSM-5HSC manufactured by Toei Kogyo Co., Ltd.), the coercive force of this ferrite powder for bonded magnets was measured at three points, -25°C, 0°C, and 25°C, using a full loop (sweeping speed 200 Oe/sec) in which a magnetic field of up to 5T (10,000 Oe) was applied. The temperature coefficient of the coercive force Hc was calculated from the rate of change in the coercive force Hc. As a result, the temperature coefficient of the coercive force Hc of this ferrite powder for bonded magnets was -0.024%/°C. This temperature coefficient was calculated as the slope of the relational equation between y and x, where y is the coercive force Hc and x is the temperature, and the relational equation between y and x was found using the least squares method.

(ボンド磁石の製造)
得られたボンド磁石用フェライト粉末90.0質量部と、シランカップリング剤(東レダウコーニング株式会社製のZ-6094N)0.8質量部と、滑剤(ヘンケル社製のVPN-212P)0.8質量部と、粉末状のポリアミド樹脂(宇部興産株式会社製のP-1011F)8.4質量部とを秤量し、ミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを得た。この混練ペレットを射出成形機(住友重機械工業株式会社製)に装填して、9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石(F.C.90.0質量%、9.7kOe)を得た。
(Manufacturing of bonded magnets)
The obtained bonded magnet ferrite powder (90.0 parts by mass), silane coupling agent (Z-6094N manufactured by Toray Dow Corning Co., Ltd.) 0.8 parts by mass, lubricant (VPN-212P manufactured by Henkel Co., Ltd.) 0.8 parts by mass, and powdered polyamide resin (P-1011F manufactured by Ube Industries, Ltd.) 8.4 parts by mass were weighed, filled into a mixer and mixed to obtain a mixture, which was kneaded at 230 ° C. to obtain kneaded pellets with an average diameter of 2 mm. The kneaded pellets were loaded into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.) and injection molded at a temperature of 300 ° C. and a molding pressure of 8.5 N / mm 2 in a magnetic field of 9.7 kOe to obtain a bonded magnet (F.C. 90.0 mass%, 9.7 kOe) of a cylindrical shape (the magnetic field orientation direction is along the central axis of the cylinder) with a diameter of 15 mm x height of 8 mm.

このボンド磁石の磁気特性として、BHトレーサー(東英工業株式会社製のTRF-5BH)を使用して、測定磁場10kOeでボンド磁石の保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定したところ、保磁力iHcは3017Oe、残留磁化Brは3069G、最大エネルギー積BHmaxは2.33MGOeであった。 As the magnetic properties of this bonded magnet, a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) was used to measure the coercive force iHc, residual magnetization Br and maximum energy product BH max of the bonded magnet in a measuring magnetic field of 10 kOe. The coercive force iHc was 3017 Oe, the residual magnetization Br was 3069 G, and the maximum energy product BH max was 2.33 MGOe.

また、このボンド磁石を印加磁場方向に対して平行に切断し、走査型電子顕微鏡(SEM)により粒子の形状を2000倍で観察し、得られたSEM写真を2値化することにより、粒子の形状指数として、SEM写真中の200個以上の粒子(SEM写真の1以上の視野内に外縁部全体が観察される長軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離の最大値)が1.0μm以上の200個以上の粒子)について、短軸長(1粒子を平行な2本の直線で挟み込んだときの直線間距離の最小値)に対する長軸長の比(長軸長/短軸長)の平均値(アスペクト比)を求めたところ、1.43であった。なお、このアスペクト比として、各粒子を板状の粒子と仮定し、体積を長軸長×長軸長×短軸長として、体積で重みづけした体積平均アスペクト比を算出した。 The bonded magnet was cut parallel to the applied magnetic field direction, and the particle shapes were observed at 2000x magnification using a scanning electron microscope (SEM). The SEM photographs were then binarized to obtain the particle shape index. The average value (aspect ratio) of the ratio of the long axis length to the short axis length (the minimum distance between two parallel lines when a particle is sandwiched between two parallel lines) (long axis length/short axis length) was calculated for 200 or more particles in the SEM photograph (200 or more particles with a long axis length (the maximum distance between two parallel lines when a particle is sandwiched between two parallel lines) of 1.0 μm or more, the entire outer edge of which is observed within one or more fields of view in the SEM photograph). The average value was 1.43. Note that the aspect ratio was calculated by assuming each particle to be a plate-like particle, and the volume was weighted by the volume as long axis length x long axis length x short axis length.

[実施例2]
湿式のアトライターによる粉砕処理時間を40分間とした以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 2]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that the pulverization time using the wet attritor was 40 minutes.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、85.1質量%のFeと、2.5質量%のCoと、0.1質量%のZnOと、6.7質量%のSrOと、0.1質量%のBaOと、4.9質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.028、n=11.6、z=0.64であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 85.1% by mass of Fe2O3 , 2.5% by mass of Co2O3 , 0.1 % by mass of ZnO , 6.7% by mass of SrO, 0.1% by mass of BaO, and 4.9% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn, Zn, and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all of them were only a small amount of 0.4% by mass in terms of oxide. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analytical values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.32, y = 0.028, n = 11.6, and z = 0.64.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.62μm、比表面積は1.62m/g、圧縮密度(CD)は3.40g/cm、圧粉体の保磁力iHcは3130Oe、残留磁化Brは1870Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.62 μm, specific surface area 1.62 m2 /g, pressed density (CD) 3.40 g/ cm3 , coercive force iHc of the green compact 3130 Oe, and residual magnetization Br 1870 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3052Oe、残留磁化Brは3038G、最大エネルギー積BHmaxは2.28MGOeであり、アスペクト比は1.54であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 3052 Oe, the residual magnetization Br was 3038 G, the maximum energy product BH max was 2.28 MGOe, and the aspect ratio was 1.54.

[実施例3]
湿式のアトライターによる粉砕処理時間を80分間とした以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 3]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that the pulverization time using the wet attritor was 80 minutes.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、85.0質量%のFeと、2.5質量%のCoと、0.1質量%のZnOと、6.7質量%のSrOと、0.1質量%のBaOと、5.0質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.028、n=11.5、z=0.79であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 85.0% by mass of Fe2O3 , 2.5% by mass of Co2O3 , 0.1 % by mass of ZnO , 6.7% by mass of SrO, 0.1% by mass of BaO, and 5.0% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn, Zn, and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all of them were only a trace amount of 0.4% by mass in terms of oxide. Considering these trace amounts (1.0 mass% or less in terms of oxide) of elements as impurities and based on the analytical values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.32, y = 0.028, n = 11.5, and z = 0.79.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.42μm、比表面積は1.96m/g、圧縮密度(CD)は3.42g/cm、圧粉体の保磁力iHcは3310Oe、残留磁化Brは1870Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.42 μm, specific surface area 1.96 m2 /g, pressed density (CD) 3.42 g/ cm3 , coercive force iHc of the green compact 3310 Oe, and residual magnetization Br 1870 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3193Oe、残留磁化Brは3036G、最大エネルギー積BHmaxは2.28MGOeであり、アスペクト比は1.50であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 3193 Oe, the residual magnetization Br was 3036 G, the maximum energy product BH max was 2.28 MGOe, and the aspect ratio was 1.50.

[実施例4]
二次焼成の温度を1150℃とした以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 4]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that the secondary firing temperature was 1150°C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、85.0質量%のFeと、2.6質量%のCoと、6.8質量%のSrOと、0.1質量%のBaOと、4.9質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.31、y=0.029、n=11.5、z=0.83であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 85.0% by mass of Fe2O3 , 2.6% by mass of Co2O3 , 6.8% by mass of SrO , 0.1% by mass of BaO, and 4.9% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn, and Ba , which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.4% by mass in terms of oxide. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The calculations of x, y, n, and z give the following: x = 0.31, y = 0.029, n = 11.5, and z = 0.83.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.53μm、比表面積は1.65m/g、圧縮密度(CD)は3.29g/cm、圧粉体の保磁力iHcは3410Oe、残留磁化Brは1820Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.53 μm, specific surface area 1.65 m2 /g, pressed density (CD) 3.29 g/ cm3 , coercive force iHc of the green compact 3410 Oe, and residual magnetization Br 1820 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3407Oe、残留磁化Brは2985G、最大エネルギー積BHmaxは2.21MGOeであり、アスペクト比は1.54であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 3407 Oe, the residual magnetization Br was 2985 G, the maximum energy product BH max was 2.21 MGOe, and the aspect ratio was 1.54.

[実施例5]
実施例1と同様の複合酸化物の粉末と(酸化鉄としての)ヘマタイト(α-Fe、比表面積5.3m/g)を、SrとLaの合計に対する酸化鉄中のFeのモル比(Fe/(Sr+La))=10.4になるように秤量して混合した以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 5]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that a composite oxide powder similar to that in Example 1 and hematite (as iron oxide) (α-Fe 2 O 3 , specific surface area 5.3 m 2 /g) were weighed and mixed so that the molar ratio of Fe in the iron oxide to the sum of Sr and La (Fe/(Sr+La)) = 10.4.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.4質量%のMnOと、85.7質量%のFeと、2.4質量%のCoと、0.1質量%のZnOと、6.5質量%のSrOと、0.1質量%のBaOと、4.7質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるMn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.4質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.31、y=0.026、n=12.0、z=-0.04であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.4 mass% MnO, 85.7 mass% Fe2O3 , 2.4 mass% Co2O3 , 0.1 mass% ZnO , 6.5 mass% SrO, 0.1 mass% BaO, and 4.7 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Mn, Zn , and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.4 mass% in terms of oxide. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The calculations of x, y, n, and z give the following: x = 0.31, y = 0.026, n = 12.0, z = -0.04.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.70μm、比表面積は1.56m/g、圧縮密度(CD)は3.40g/cm、圧粉体の保磁力iHcは2780Oe、残留磁化Brは1890Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.70 μm, specific surface area 1.56 m2 /g, pressed density (CD) 3.40 g/ cm3 , coercive force iHc of the green compact 2780 Oe, and residual magnetization Br 1890 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2546Oe、残留磁化Brは3009G、最大エネルギー積BHmaxは2.23MGOeであり、アスペクト比は1.53であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2546 Oe, the residual magnetization Br was 3009 G, the maximum energy product BH max was 2.23 MGOe, and the aspect ratio was 1.53.

[実施例6]
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)とヘマタイト(α-Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.70:0.30:0.85:0.15になるように秤量して混合した以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 6]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that strontium carbonate (SrCO 3 , specific surface area 5.8 m 2 /g), lanthanum oxide (La 2 O 3 , specific surface area 3.8 m 2 /g), hematite (α-Fe 2 O 3 , specific surface area 5.3 m 2 /g), and cobalt oxide (Co 3 O 4 , specific surface area 3.3 m 2 /g) were weighed and mixed in a molar ratio of Sr:La:Fe:Co = 0.70:0.30:0.85:0.15.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、86.4質量%のFeと、1.2質量%のCoと、6.7質量%のSrOと、0.1質量%のBaOと、5.0質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも酸化物換算0.3質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.014、n=11.5、z=0.73であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1 mass % Cr2O3 , 0.3 mass% MnO, 86.4 mass% Fe2O3 , 1.2 mass% Co2O3 , 6.7 mass% SrO, 0.1 mass% BaO , and 5.0 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn , and Ba , which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.3 mass% in terms of oxide. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.32, y = 0.014, n = 11.5, and z = 0.73.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.87μm、比表面積は1.27m/g、圧縮密度(CD)は3.43g/cm、圧粉体の保磁力iHcは2650Oe、残留磁化Brは1880Gであった。また、実施例1と同様の方法により、ボンド磁石用フェライト粉末の保磁力Hcを測定し、その保磁力Hcの温度係数を算出したところ、-0.063%/℃であった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same method as in Example 1. The results were that the average particle size was 1.87 μm, the specific surface area was 1.27 m 2 /g, the pressed density (CD) was 3.43 g/cm 3 , the coercive force iHc of the green compact was 2650 Oe, and the residual magnetization Br was 1880 G. The coercive force Hc of the ferrite powder for bonded magnets was also measured using the same method as in Example 1, and the temperature coefficient of the coercive force Hc was calculated to be -0.063%/°C.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2724Oe、残留磁化Brは3038G、最大エネルギー積BHmaxは2.29MGOeであり、アスペクト比は1.52であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2724 Oe, the residual magnetization Br was 3038 G, the maximum energy product BH max was 2.29 MGOe, and the aspect ratio was 1.52.

[実施例7]
二次焼成の温度を1300℃とした以外は、実施例6と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 7]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 6, except that the secondary firing temperature was 1300°C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、86.5質量%のFeと、1.2質量%のCoと、6.7質量%のSrOと、0.1質量%のBaOと、5.0質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも酸化物換算0.3質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.013、n=11.5、z=0.61であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1 mass% Cr2O3 , 0.3 mass% MnO, 86.5 mass% Fe2O3 , 1.2 mass% Co2O3 , 6.7 mass% SrO, 0.1 mass% BaO , and 5.0 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn , and Ba , which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.3 mass% in terms of oxide. Considering these trace amounts (1.0 mass% or less in terms of oxide) of elements as impurities and based on the analytical values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.32, y = 0.013, n = 11.5, and z = 0.61.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.84μm、比表面積は1.36m/g、圧縮密度(CD)は3.49g/cm、圧粉体の保磁力iHcは2390Oe、残留磁化Brは1910Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.84 μm, specific surface area 1.36 m2 /g, pressed density (CD) 3.49 g/ cm3 , coercive force iHc of the green compact 2390 Oe, and residual magnetization Br 1910 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2473Oe、残留磁化Brは3043G、最大エネルギー積BHmaxは2.29MGOeであり、アスペクト比は1.49であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2473 Oe, the residual magnetization Br was 3043 G, the maximum energy product BH max was 2.29 MGOe, and the aspect ratio was 1.49.

[実施例8]
二次焼成の温度を1200℃とした以外は、実施例6と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 8]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 6, except that the secondary firing temperature was 1200°C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.3質量%のMnOと、86.2質量%のFeと、1.3質量%のCoと、0.2質量%のZnOと、6.8質量%のSrOと、0.1質量%のBaOと、5.0質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるMn、Zn、Baなどの元素も検出されたが、いずれも酸化物換算0.3質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.014、n=11.4、z=0.85であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.3 mass% MnO , 86.2 mass% Fe2O3 , 1.3 mass% Co2O3 , 0.2 mass% ZnO , 6.8 mass% SrO, 0.1 mass% BaO, and 5.0 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Mn, Zn , and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.3 mass% in terms of oxide. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The calculations of x, y, n, and z give x = 0.32, y = 0.014, n = 11.4, and z = 0.85.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.71μm、比表面積は1.49m/g、圧縮密度(CD)は3.40g/cm、圧粉体の保磁力iHcは2870Oe、残留磁化Brは1870Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.71 μm, specific surface area 1.49 m2 /g, pressed density (CD) 3.40 g/ cm3 , coercive force iHc of the green compact 2870 Oe, and residual magnetization Br 1870 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2865Oe、残留磁化Brは3061G、最大エネルギー積BHmaxは2.32MGOeであり、アスペクト比は1.47であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2865 Oe, the residual magnetization Br was 3061 G, the maximum energy product BH max was 2.32 MGOe, and the aspect ratio was 1.47.

[実施例9]
複合酸化物の粉末と(酸化鉄としての)ヘマタイトを、SrとLaの合計に対する酸化物中のモル比(Fe/(Sr+La))=9.8になるように秤量して混合した以外は、実施例6と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 9]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 6, except that the composite oxide powder and hematite (as iron oxide) were weighed and mixed so that the molar ratio in the oxide to the sum of Sr and La (Fe/(Sr+La)) = 9.8.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には0.1質量%のCrと、0.4質量%のMnOと、85.7質量%のFeと、1.3質量%のCoと、6.9質量%のSrOと、0.1質量%のBaOと、5.3質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるMn、Zn、Baなどの元素も検出されたが、いずれも微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.33、y=0.015、n=11.0、z=1.46であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 85.7% by mass of Fe2O3 , 1.3% by mass of Co2O3 , 6.9% by mass of SrO , 0.1% by mass of BaO, and 5.3% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Mn, Zn, and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all were in trace amounts. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.33, y = 0.015, n = 11.0, and z = 1.46.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.90μm、比表面積は1.32m/g、圧縮密度(CD)は3.41g/cm、圧粉体の保磁力iHcは2840Oe、残留磁化Brは1840Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.90 μm, specific surface area 1.32 m2 /g, pressed density (CD) 3.41 g/ cm3 , coercive force iHc of the green compact 2840 Oe, and residual magnetization Br 1840 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3038Oe、残留磁化Brは3004G、最大エネルギー積BHmaxは2.23MGOeであり、アスペクト比は1.50であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 3038 Oe, the residual magnetization Br was 3004 G, the maximum energy product BH max was 2.23 MGOe, and the aspect ratio was 1.50.

[実施例10]
複合酸化物の粉末と(酸化鉄としての)ヘマタイトを、SrとLaの合計に対する酸化物中のモル比(Fe/(Sr+La))=10.4になるように秤量して混合した以外は、実施例6と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 10]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 6, except that the composite oxide powder and hematite (as iron oxide) were weighed and mixed so that the molar ratio in the oxide to the sum of Sr and La (Fe/(Sr+La)) was 10.4.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.4質量%のMnOと、86.5質量%のFeと、1.2質量%のCoと、0.2質量%のZnOと、6.7質量%のSrOと、0.1質量%のBaOと、4.8質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるMn、Zn、Baなどの元素も検出されたが、いずれも微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.31、y=0.014、n=11.7、z=0.41であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.4 mass% MnO, 86.5 mass% Fe2O3 , 1.2 mass% Co2O3 , 0.2 mass% ZnO , 6.7 mass% SrO, 0.1 mass% BaO, and 4.8 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Mn, Zn , and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all were in trace amounts. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.31, y = 0.014, n = 11.7, and z = 0.41.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.97μm、比表面積は1.21m/g、圧縮密度(CD)は3.39g/cm、圧粉体の保磁力iHcは2540Oe、残留磁化Brは1870Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.97 μm, specific surface area 1.21 m2 /g, pressed density (CD) 3.39 g/ cm3 , coercive force iHc of the green compact 2540 Oe, and residual magnetization Br 1870 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2564Oe、残留磁化Brは3013G、最大エネルギー積BHmaxは2.24MGOeであり、アスペクト比は1.51であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2564 Oe, the residual magnetization Br was 3013 G, the maximum energy product BH max was 2.24 MGOe, and the aspect ratio was 1.51.

[実施例11]
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)とヘマタイト(α-Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.80:0.20:0.80:0.20になるように秤量して混合した以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 11]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that strontium carbonate (SrCO 3 , specific surface area 5.8 m 2 /g), lanthanum oxide (La 2 O 3 , specific surface area 3.8 m 2 /g), hematite (α-Fe 2 O 3 , specific surface area 5.3 m 2 /g), and cobalt oxide (Co 3 O 4 , specific surface area 3.3 m 2 /g) were weighed and mixed in a molar ratio of Sr:La:Fe:Co = 0.80:0.20:0.80:0.20.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、86.5質量%のFeと、1.6質量%のCoと、7.7質量%のSrOと、0.2質量%のBaOと、3.5質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.22、y=0.018、n=11.5、z=0.67であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 86.5% by mass of Fe2O3 , 1.6% by mass of Co2O3 , 7.7% by mass of SrO , 0.2% by mass of BaO, and 3.5% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn , and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all were in trace amounts. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) (Fe1 -yCoy ) nO19 -z. The calculations of x, y, n, and z give x = 0.22, y = 0.018, n = 11.5, and z = 0.67.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.98μm、比表面積は1.20m/g、圧縮密度(CD)は3.40g/cm、圧粉体の保磁力iHcは2600Oe、残留磁化Brは1870Gであった。また、実施例1と同様の方法により、ボンド磁石用フェライト粉末の保磁力Hcを測定し、その保磁力Hcの温度係数を算出したところ、0.020%/℃であった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same method as in Example 1. The results were that the average particle size was 1.98 μm, the specific surface area was 1.20 m 2 /g, the pressed density (CD) was 3.40 g/cm 3 , the coercive force iHc of the green compact was 2600 Oe, and the residual magnetization Br was 1870 G. The coercive force Hc of the ferrite powder for bonded magnets was also measured using the same method as in Example 1, and the temperature coefficient of the coercive force Hc was calculated to be 0.020%/°C.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2748Oe、残留磁化Brは3031G、最大エネルギー積BHmaxは2.26MGOeであり、アスペクト比は1.49であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2748 Oe, the residual magnetization Br was 3031 G, the maximum energy product BH max was 2.26 MGOe, and the aspect ratio was 1.49.

[実施例12]
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)とヘマタイト(α-Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.80:0.20:0.90:0.10になるように秤量して混合した以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 12]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that strontium carbonate (SrCO 3 , specific surface area 5.8 m 2 /g), lanthanum oxide (La 2 O 3 , specific surface area 3.8 m 2 /g), hematite (α-Fe 2 O 3 , specific surface area 5.3 m 2 /g), and cobalt oxide (Co 3 O 4 , specific surface area 3.3 m 2 /g) were weighed and mixed in a molar ratio of Sr:La:Fe:Co = 0.80:0.20:0.90:0.10.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、87.2質量%のFeと、0.9質量%のCoと、7.9質量%のSrOと、0.2質量%のBaOと、3.2質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.20、y=0.010、n=11.5、z=0.74であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 87.2% by mass of Fe2O3 , 0.9% by mass of Co2O3 , 7.9% by mass of SrO , 0.2% by mass of BaO, and 3.2% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn, and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all were in trace amounts. Considering these trace amounts (1.0 mass% or less in terms of oxide) of elements as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.20, y = 0.010, n = 11.5, and z = 0.74.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は2.11μm、比表面積は1.11m/g、圧縮密度(CD)は3.45g/cm、圧粉体の保磁力iHcは2340Oe、残留磁化Brは1890Gであった。また、実施例1と同様の方法により、ボンド磁石用フェライト粉末の保磁力Hcを測定し、その保磁力Hcの温度係数を算出したところ、0.052%/℃であった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same method as in Example 1. The results were that the average particle size was 2.11 μm, the specific surface area was 1.11 m 2 /g, the pressed density (CD) was 3.45 g/cm 3 , the coercive force iHc of the green compact was 2340 Oe, and the residual magnetization Br was 1890 G. The coercive force Hc of the ferrite powder for bonded magnets was also measured using the same method as in Example 1, and the temperature coefficient of the coercive force Hc was calculated to be 0.052%/°C.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2371Oe、残留磁化Brは3064G、最大エネルギー積BHmaxは2.31MGOeであり、アスペクト比は1.43であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2371 Oe, the residual magnetization Br was 3064 G, the maximum energy product BH max was 2.31 MGOe, and the aspect ratio was 1.43.

[実施例13]
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)とヘマタイト(α-Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.90:0.10:0.90:0.10になるように秤量して混合した以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 13]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that strontium carbonate (SrCO 3 , specific surface area 5.8 m 2 /g), lanthanum oxide (La 2 O 3 , specific surface area 3.8 m 2 /g), hematite (α-Fe 2 O 3 , specific surface area 5.3 m 2 /g), and cobalt oxide (Co 3 O 4 , specific surface area 3.3 m 2 /g) were weighed and mixed in a molar ratio of Sr:La:Fe:Co = 0.90:0.10:0.90:0.10.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、87.6質量%のFeと、0.9質量%のCoと、8.3質量%のSrOと、0.2質量%のBaOと、2.4質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.15、y=0.010、n=11.6、z=0.53であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 87.6% by mass of Fe2O3 , 0.9% by mass of Co2O3 , 8.3 % by mass of SrO , 0.2% by mass of BaO, and 2.4% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn, and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all were in trace amounts. Considering these trace amounts (1.0 mass% or less in terms of oxide) of elements as impurities and based on the analytical values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.15, y = 0.010, n = 11.6, and z = 0.53.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は2.01μm、比表面積は1.09m/g、圧縮密度(CD)は3.39g/cm、圧粉体の保磁力iHcは2290Oe、残留磁化Brは1920Gであった。また、実施例1と同様の方法により、ボンド磁石用フェライト粉末の保磁力Hcを測定し、その保磁力Hcの温度係数を算出したところ、0.056%/℃であった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same method as in Example 1. The results were that the average particle size was 2.01 μm, the specific surface area was 1.09 m2 /g, the pressed density (CD) was 3.39 g/ cm3 , the coercive force iHc of the green compact was 2290 Oe, and the residual magnetization Br was 1920 G. The coercive force Hc of the ferrite powder for bonded magnets was also measured using the same method as in Example 1, and the temperature coefficient of the coercive force Hc was calculated to be 0.056%/°C.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2414Oe、残留磁化Brは3038G、最大エネルギー積BHmaxは2.27MGOeであり、アスペクト比は1.44であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2414 Oe, the residual magnetization Br was 3038 G, the maximum energy product BH max was 2.27 MGOe, and the aspect ratio was 1.44.

[実施例14]
一次焼成の温度を1200℃とした以外は、実施例6と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 14]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 6, except that the temperature of the primary sintering was 1200°C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、86.2質量%のFeと、1.3質量%のCoと、6.8質量%のSrOと、0.1質量%のBaOと、5.0質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.32、y=0.014、n=11.3、z=0.90であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 86.2% by mass of Fe2O3 , 1.3% by mass of Co2O3 , 6.8% by mass of SrO , 0.1% by mass of BaO, and 5.0% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn, and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all were in trace amounts. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.32, y = 0.014, n = 11.3, and z = 0.90.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.62μm、比表面積は1.53m/g、圧縮密度(CD)は3.40g/cm、圧粉体の保磁力iHcは3010Oe、残留磁化Brは1570Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.62 μm, specific surface area 1.53 m2 /g, pressed density (CD) 3.40 g/ cm3 , coercive force iHc of the green compact 3010 Oe, and residual magnetization Br 1570 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3298Oe、残留磁化Brは2999G、最大エネルギー積BHmaxは2.24MGOeであり、アスペクト比は1.49であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 3298 Oe, the residual magnetization Br was 2999 G, the maximum energy product BH max was 2.24 MGOe, and the aspect ratio was 1.49.

[実施例15]
一次焼成の温度を1050℃とした以外は、実施例6と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Example 15]
Ferrite powder for bonded magnets was obtained in the same manner as in Example 6, except that the temperature of the primary sintering was 1050°C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.4質量%のMnOと、86.4質量%のFeと、1.3質量%のCoと、6.5質量%のSrOと、0.1質量%のBaOと、5.1質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mn、Baなどの元素も検出されたが、いずれも微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.34、y=0.014、n=11.7、z=0.40であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1% by mass of Cr2O3 , 0.4% by mass of MnO, 86.4% by mass of Fe2O3 , 1.3% by mass of Co2O3 , 6.5% by mass of SrO , 0.1% by mass of BaO, and 5.1% by mass of La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr, Mn , and Ba, which are thought to be derived from impurities in the raw materials, were also detected, but all were in trace amounts. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.34, y = 0.014, n = 11.7, and z = 0.40.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.88μm、比表面積は1.21m/g、圧縮密度(CD)は3.41g/cm、圧粉体の保磁力iHcは2950Oe、残留磁化Brは1850Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.88 μm, specific surface area 1.21 m2 /g, pressed density (CD) 3.41 g/ cm3 , coercive force iHc of the green compact 2950 Oe, and residual magnetization Br 1850 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2880Oe、残留磁化Brは2998G、最大エネルギー積BHmaxは2.23MGOeであり、アスペクト比は1.53であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2880 Oe, the residual magnetization Br was 2998 G, the maximum energy product BH max was 2.23 MGOe, and the aspect ratio was 1.53.

[比較例1]
炭酸ストロンチウム(SrCO、比表面積5.8m/g)と酸化ランタン(La、比表面積3.8m/g)とヘマタイト(α-Fe、比表面積5.3m/g)と酸化コバルト(Co、比表面積3.3m/g)をモル比Sr:La:Fe:Co=0.70:0.30:11.70:0.30になるように秤量して混合し、一次焼成の温度を1100℃から1250℃に変更して、二次焼成を行わなかった以外は、実施例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Comparative Example 1]
Strontium carbonate ( SrCO3 , specific surface area 5.8 m2/g), lanthanum oxide (La2O3 , specific surface area 3.8 m2 /g), hematite (α-Fe2O3 , specific surface area 5.3 m2 /g) and cobalt oxide (Co3O4 , specific surface area 3.3 m2 /g) were weighed and mixed to a molar ratio of Sr:La:Fe:Co = 0.70:0.30:11.70:0.30, and ferrite powder for bonded magnets was obtained in the same manner as in Example 1, except that the primary firing temperature was changed from 1100°C to 1250°C and no secondary firing was performed.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.3質量%のFeと、2.4質量%のCoと、7.0質量%のSrOと、4.9質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mnなどの元素も検出されたが、いずれも酸化物換算0.3質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.31、y=0.026、n=11.3、z=1.12であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1 mass% Cr2O3 , 0.3 mass% MnO, 85.3 mass% Fe2O3 , 2.4 mass% Co2O3 , 7.0 mass% SrO , and 4.9 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr and Mn , which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.3 mass% in terms of oxide. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The calculations of x, y, n, and z give the following: x = 0.31, y = 0.026, n = 11.3, and z = 1.12.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.26μm、比表面積は2.19m/g、圧縮密度(CD)は3.34g/cm、圧粉体の保磁力iHcは3590Oe、残留磁化Brは1830Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.26 μm, specific surface area 2.19 m2 /g, pressed density (CD) 3.34 g/ cm3 , coercive force iHc of the green compact 3590 Oe, and residual magnetization Br 1830 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3332Oe、残留磁化Brは2882G、最大エネルギー積BHmaxは2.04MGOeであり、アスペクト比は1.56であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 3332 Oe, the residual magnetization Br was 2882 G, the maximum energy product BH max was 2.04 MGOe, and the aspect ratio was 1.56.

[比較例2]
一次焼成の温度を1200℃とした以外は、比較例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Comparative Example 2]
Ferrite powder for bonded magnets was obtained in the same manner as in Comparative Example 1, except that the temperature of the primary sintering was 1200°C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.3質量%のFeと、2.4質量%のCoと、7.1質量%のSrOと、4.7質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mnなどの元素も検出されたが、いずれも酸化物換算0.3質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.30、y=0.026、n=11.3、z=1.09であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1 mass% Cr2O3 , 0.3 mass% MnO, 85.3 mass% Fe2O3 , 2.4 mass% Co2O3 , 7.1 mass% SrO , and 4.7 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co, were detected. In addition, elements such as Cr and Mn , which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.3 mass% in terms of oxide. Considering these trace amounts (1.0 mass% or less in terms of oxide) of elements as impurities and based on the analysis values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The values of x, y, n, and z are calculated to be x = 0.30, y = 0.026, n = 11.3, and z = 1.09.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.25μm、比表面積は2.21m/g、圧縮密度(CD)は3.26g/cm、圧粉体の保磁力iHcは3950Oe、残留磁化Brは1790Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.25 μm, specific surface area 2.21 m2 /g, pressed density (CD) 3.26 g/ cm3 , coercive force iHc of the green compact 3950 Oe, and residual magnetization Br 1790 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは3609Oe、残留磁化Brは2867G、最大エネルギー積BHmaxは2.02MGOeであり、アスペクト比は1.62であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 3609 Oe, the residual magnetization Br was 2867 G, the maximum energy product BH max was 2.02 MGOe, and the aspect ratio was 1.62.

[比較例3]
一次焼成の温度を1300℃とした以外は、比較例1と同様の方法により、ボンド磁石用フェライト粉末を得た。
[Comparative Example 3]
Ferrite powder for bonded magnets was obtained in the same manner as in Comparative Example 1, except that the temperature of the primary sintering was 1300°C.

このボンド磁石用フェライト粉末について、実施例1と同様の方法により、組成分析を行った。その結果、ボンド磁石用フェライト粉末中には、0.1質量%のCrと、0.3質量%のMnOと、85.4質量%のFeと、2.4質量%のCoと、7.0質量%のSrOと、4.7質量%のLaが含まれており、ボンド磁石用フェライト粉末の主成分であるSr、La、Fe、Coが検出された。なお、原料中の不純物由来と考えられるCr、Mnなどの元素も検出されたが、いずれも酸化物換算0.3質量%と微量であった。これらの微量(酸化物換算で1.0質量%以下)の元素を不純物とみなし、主成分であるSr、La、Fe、Coの分析値から、ボンド磁石用フェライト粉末の化学式を(Sr1-xLa)・(Fe1-yCo19-zと表記した場合のx、y、n、zを算出すると、x=0.30、y=0.026、n=11.4、z=0.95であった。 The composition of this ferrite powder for bonded magnets was analyzed by the same method as in Example 1. As a result, the ferrite powder for bonded magnets contained 0.1 mass% Cr2O3 , 0.3 mass% MnO, 85.4 mass% Fe2O3 , 2.4 mass% Co2O3 , 7.0 mass% SrO , and 4.7 mass% La2O3 , and the main components of the ferrite powder for bonded magnets, Sr, La, Fe, and Co , were detected. In addition, elements such as Cr and Mn , which are thought to be derived from impurities in the raw materials, were also detected, but each was a trace amount of 0.3 mass% in terms of oxide. Considering these trace elements (1.0 mass% or less in terms of oxide) as impurities and based on the analytical values of the main components Sr, La, Fe, and Co, the chemical formula of the ferrite powder for bonded magnets is expressed as (Sr1 -xLax ) ·(Fe1 -yCoy ) nO19 -z. The calculations of x, y, n, and z give x = 0.30, y = 0.026, n = 11.4, and z = 0.95.

また、このボンド磁石用フェライト粉末について、実施例1と同様の方法により、平均粒径、比表面積、圧縮密度(CD)、圧粉体の保磁力iHcおよび残留磁化Brを測定した。その結果、平均粒径は1.22μm、比表面積は2.41m/g、圧縮密度(CD)は3.42g/cm、圧粉体の保磁力iHcは3140Oe、残留磁化Brは1800Gであった。 The average particle size, specific surface area, pressed density (CD), coercive force iHc of the green compact, and residual magnetization Br of this ferrite powder for bonded magnets were measured using the same methods as in Example 1. The results were: average particle size 1.22 μm, specific surface area 2.41 m2 /g, pressed density (CD) 3.42 g/ cm3 , coercive force iHc of the green compact 3140 Oe, and residual magnetization Br 1800 G.

また、このボンド磁石用フェライト粉末を使用して、実施例1と同様の方法により、ボンド磁石を得た。このボンド磁石について、実施例1と同様の方法により、保磁力iHc、残留磁化Brおよび最大エネルギー積BHmaxを測定し、アスペクト比を算出したところ、保磁力iHcは2885Oe、残留磁化Brは2930G、最大エネルギー積BHmaxは2.11MGOeであり、アスペクト比は1.58であった。 Furthermore, this ferrite powder for bonded magnets was used to obtain a bonded magnet in the same manner as in Example 1. For this bonded magnet, the coercive force iHc, residual magnetization Br, and maximum energy product BH max were measured and the aspect ratio was calculated in the same manner as in Example 1. The coercive force iHc was 2885 Oe, the residual magnetization Br was 2930 G, the maximum energy product BH max was 2.11 MGOe, and the aspect ratio was 1.58.

これらの実施例および比較例の結果を表1~表4に示す。また、実施例1および比較例1で得られたボンド磁石の断面の走査型電子顕微鏡(SEM)写真をそれぞれ図2および図3に示す。 The results of these examples and comparative examples are shown in Tables 1 to 4. Scanning electron microscope (SEM) photographs of the cross sections of the bonded magnets obtained in Example 1 and Comparative Example 1 are shown in Figures 2 and 3, respectively.

Figure 0007515241000001
Figure 0007515241000001

Figure 0007515241000002
Figure 0007515241000002

Figure 0007515241000003
Figure 0007515241000003

Figure 0007515241000004
Figure 0007515241000004

実施例1~15および比較例1~3の結果から、実施例1~15では、磁場配向により高い残留磁化Brを有するボンド磁石を得ることができる、ボンド磁石用フェライト粉末を製造することができることがわかる。 The results of Examples 1 to 15 and Comparative Examples 1 to 3 show that in Examples 1 to 15, it is possible to produce ferrite powder for bonded magnets, which allows the production of bonded magnets with high remanent magnetization Br through magnetic field orientation.

また、実施例1、6及び11~13のボンド磁石用フェライト粉末は、保磁力Hcの温度係数が0.1%/℃以下と極めて低く、低温減磁の影響を受け難いボンド磁石用フェライト粉末であることがわかる。特に、実施例1および6のボンド磁石用フェライト粉末は、保磁力Hcの温度係数が負の温度係数であり、低温減磁の影響を極めて受け難い優れたボンド磁石用フェライト粉末であることがわかる。

Furthermore, the ferrite powders for bonded magnets of Examples 1, 6, and 11 to 13 have an extremely low temperature coefficient of coercivity Hc of 0.1%/°C or less, and are therefore ferrite powders for bonded magnets that are not easily affected by low-temperature demagnetization. In particular, the ferrite powders for bonded magnets of Examples 1 and 6 have a negative temperature coefficient of coercivity Hc, and are therefore excellent ferrite powders for bonded magnets that are extremely resistant to the effects of low-temperature demagnetization.

Claims (11)

鉄とストロンチウムとランタンとコバルトの複合酸化物の粉末と、酸化鉄とを、SrとLaの合計に対する酸化鉄中のFeのモル比Fe/(Sr+La)が9.8~10.4になるように混合して造粒した後、焼成することを特徴とする、ボンド磁石用フェライト粉末の製造方法。 A method for producing ferrite powder for bonded magnets, comprising mixing a powder of a composite oxide of iron, strontium, lanthanum, and cobalt with iron oxide so that the molar ratio of Fe in the iron oxide to the total of Sr and La, Fe/(Sr+La), is 9.8 to 10.4, granulating the mixture, and then sintering the mixture. 前記焼成により得られた焼成物を粗粉砕して得られた粗粉砕粉を粉砕した後、アニールすることを特徴とする、請求項1に記載のボンド磁石用フェライト粉末の製造方法。 The method for producing ferrite powder for bonded magnets according to claim 1, characterized in that the sintered product obtained by the sintering is coarsely pulverized to obtain a coarsely pulverized powder, which is then pulverized and annealed. 前記複合酸化物の粉末が、炭酸ストロンチウムと酸化ランタンと酸化鉄と酸化コバルトとを混合して造粒した後、1000~1250℃で焼成して得られた焼成物を粉砕することにより得られることを特徴とする、請求項1または2に記載のボンド磁石用フェライト粉末の製造方法。 The method for producing ferrite powder for bonded magnets according to claim 1 or 2, characterized in that the composite oxide powder is obtained by mixing and granulating strontium carbonate, lanthanum oxide, iron oxide and cobalt oxide, and then sintering the mixture at 1000 to 1250°C to obtain a sintered product, and grinding the sintered product. 前記複合酸化物の粉末と前記酸化鉄とを混合して造粒した後の焼成が1100~1400℃で行われることを特徴とする、請求項1乃至3のいずれかに記載のボンド磁石用フェライト粉末の製造方法。 A method for producing ferrite powder for bonded magnets according to any one of claims 1 to 3, characterized in that the composite oxide powder and the iron oxide are mixed and granulated, and then sintered at 1100 to 1400°C. (Sr1-xLa)・(Fe1-yCo19-z(但し、0.15≦x≦0.34、0.010≦y≦0.029、11.0≦n≦12.0、-0.04≦z≦1.46)の組成を有し、平均粒径が1.42~2.11μmであることを特徴とする、ボンド磁石用フェライト粉末。 A ferrite powder for bonded magnets, characterized in that it has a composition of (Sr1 - xLax )·(Fe1 -yCoy ) nO19 -z (where 0.15≦x≦0.34, 0.010≦y≦0.029, 11.0≦n≦12.0, -0.04≦z≦1.46) and has an average particle size of 1.42 to 2.11 μm. 前記ボンド磁石用フェライト粉末の比表面積が1.09~1.96m/gであることを特徴とする、請求項に記載のボンド磁石用フェライト粉末。 6. The ferrite powder for bonded magnets according to claim 5 , wherein the specific surface area of the ferrite powder for bonded magnets is 1.09 to 1.96 m 2 /g. 前記ボンド磁石用フェライト粉末の長軸長が1.0μm以上の粒子の短軸長に対する長軸長の比(長軸長/短軸長)の平均値が1.55以下であることを特徴とする、請求項またはに記載のボンド磁石用フェライト粉末。 The ferrite powder for bonded magnets according to claim 5 or 6 , characterized in that the average ratio of the major axis length to the minor axis length (major axis length/minor axis length) of particles of the ferrite powder for bonded magnets having a major axis length of 1.0 μm or more is 1.55 or less. 前記ボンド磁石用フェライト粉末90.0質量部と、シランカップリング剤0.8質量部と、滑剤0.8質量部と、粉末状のポリアミド樹脂8.4質量部とをミキサーに充填して混合して得られた混合物を230℃で混練して、平均径2mmの混練ペレットを作製し、この混練ペレットを9.7kOeの磁場中において温度300℃、成形圧力8.5N/mmで射出形成して、直径15mm×高さ8mmの円柱形(磁場の配向方向は円柱の中心軸に沿った方向)のボンド磁石を作製し、このボンド磁石の残留磁化Brを測定磁場10kOeで測定したときに、残留磁化Brが2950G以上であることを特徴とする、請求項乃至のいずれかに記載のボンド磁石用フェライト粉末。 The ferrite powder for bonded magnets according to any one of claims 5 to 7, characterized in that 90.0 parts by mass of the ferrite powder for bonded magnets, 0.8 parts by mass of a silane coupling agent, 0.8 parts by mass of a lubricant, and 8.4 parts by mass of a powdered polyamide resin are filled into a mixer and mixed to obtain a mixture, which is kneaded at 230°C to produce a kneaded pellet with an average diameter of 2 mm, and this kneaded pellet is injection molded in a magnetic field of 9.7 kOe at a temperature of 300°C and a molding pressure of 8.5 N/ mm2 to produce a cylindrical bonded magnet (the magnetic field is oriented along the central axis of the cylinder) with a diameter of 15 mm and a height of 8 mm, and the residual magnetization Br of this bonded magnet is measured in a measuring magnetic field of 10 kOe, and the residual magnetization Br is 2950 G or more. 前記ボンド磁石の最大エネルギー積BHmaxを測定磁場10kOeで測定したときに、最大エネルギー積BHmaxが2.15MGOe以上であることを特徴とする、請求項に記載のボンド磁石用フェライト粉末。 The ferrite powder for bonded magnets according to claim 8 , characterized in that the maximum energy product BH max of the bonded magnet is 2.15 MGOe or more when measured in a magnetic field of 10 kOe. 前記ボンド磁石用フェライト粉末の保磁力Hcの温度係数が0.1%/℃以下であることを特徴とする、請求項乃至のいずれかに記載のボンド磁石用フェライト粉末。 10. The ferrite powder for bonded magnets according to claim 5 , wherein the temperature coefficient of coercivity Hc of said ferrite powder for bonded magnets is 0.1%/[deg.] C. or less. 請求項乃至10のいずれかに記載のボンド磁石用フェライト粉末と、バインダとを備えたことを特徴とする、ボンド磁石。 A bonded magnet comprising the ferrite powder for bonded magnets according to any one of claims 5 to 10 and a binder.
JP2019153865A 2018-08-31 2019-08-26 Ferrite powder for bonded magnets and its manufacturing method Active JP7515241B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/033932 WO2020045573A1 (en) 2018-08-31 2019-08-29 Ferrite powder for bond magnet and production method therefor
KR1020217008719A KR102532582B1 (en) 2018-08-31 2019-08-29 Ferrite powder for bonded magnets and method for producing the same
CN201980054640.1A CN112585706B (en) 2018-08-31 2019-08-29 Ferrite powder for bonded magnet and method for producing same
EP19854341.5A EP3832677A4 (en) 2018-08-31 2019-08-29 FERRITE POWDER FOR BOND MAGNET AND METHOD FOR PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163374 2018-08-31
JP2018163374 2018-08-31

Publications (2)

Publication Number Publication Date
JP2020038963A JP2020038963A (en) 2020-03-12
JP7515241B2 true JP7515241B2 (en) 2024-07-12

Family

ID=69738303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153865A Active JP7515241B2 (en) 2018-08-31 2019-08-26 Ferrite powder for bonded magnets and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7515241B2 (en)
KR (1) KR102532582B1 (en)
CN (1) CN112585706B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157939A (en) 2015-02-23 2016-09-01 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet and method for producing the same, and ferrite bonded magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1684315A3 (en) * 1997-12-25 2009-05-27 Hitachi Metals, Ltd. Ferrite magnet and method for producing same
JP4697366B2 (en) 2000-12-07 2011-06-08 戸田工業株式会社 Strontium ferrite particle powder for bonded magnet and bonded magnet using the strontium ferrite particle powder
JP5218716B2 (en) * 2006-04-28 2013-06-26 Tdk株式会社 Ferrite magnetic material
JP5626211B2 (en) * 2009-07-08 2014-11-19 Tdk株式会社 Ferrite magnetic material
WO2017200091A1 (en) * 2016-05-20 2017-11-23 Tdk株式会社 Ferrite magnet
CN107337447B (en) * 2017-07-06 2020-02-18 横店集团东磁股份有限公司 Low-cost permanent magnetic ferrite and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157939A (en) 2015-02-23 2016-09-01 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet and method for producing the same, and ferrite bonded magnet

Also Published As

Publication number Publication date
JP2020038963A (en) 2020-03-12
CN112585706A (en) 2021-03-30
CN112585706B (en) 2024-02-23
KR102532582B1 (en) 2023-05-12
KR20210041088A (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP4367649B2 (en) Ferrite sintered magnet
US9401235B2 (en) Sintered ferrite magnet and its production method
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
JP4078566B2 (en) Oxide magnetic material and manufacturing method thereof, ferrite sintered magnet and manufacturing method thereof
US20100295643A1 (en) Ferrite powders for bonded magnet, process for the production of the powders, and bonded magnet made by using the same
US9601248B2 (en) Calcined ferrite, sintered ferrite magnet and its production method
WO1999016087A1 (en) Magnet powder, sintered magnet, method of manufacturing these materials, bonded magnet, motor, and magnetic recording medium
US9536646B2 (en) Sintered ferrite magnet and its production method
JP7405648B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP7515241B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP7082033B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP7111150B2 (en) Calcined ferrite body, sintered ferrite magnet and method for producing the same
JP3835729B2 (en) Ferrite sintered magnet and manufacturing method thereof
WO2020045573A1 (en) Ferrite powder for bond magnet and production method therefor
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JP7367581B2 (en) ferrite sintered magnet
JP5499329B2 (en) Ferrite sintered magnet and manufacturing method thereof
JP2006203260A (en) Ferrite magnet
JP2023014477A (en) Ferrite powder for bonded magnet and its production method
JP2021150620A (en) Ferrite sintered magnet
JP2023134239A (en) Hexagonal crystal ferrite magnetic powder for bonded magnet and method for manufacturing the same, and bonded magnet and method for manufacturing the same
WO2019093508A1 (en) Ferrite powder for bonded magnets and method for producing same
JP2022156380A (en) Hexagonal ferrite magnetic powder for bonded magnet and method for producing the same, and bonded magnet and method for producing the same
KR20210119290A (en) Calcined ferrite, and sintered ferrite magnet and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230914

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240702

R150 Certificate of patent or registration of utility model

Ref document number: 7515241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150