[go: up one dir, main page]

JP7514142B2 - Plant disease control agent and plant disease control method - Google Patents

Plant disease control agent and plant disease control method Download PDF

Info

Publication number
JP7514142B2
JP7514142B2 JP2020137542A JP2020137542A JP7514142B2 JP 7514142 B2 JP7514142 B2 JP 7514142B2 JP 2020137542 A JP2020137542 A JP 2020137542A JP 2020137542 A JP2020137542 A JP 2020137542A JP 7514142 B2 JP7514142 B2 JP 7514142B2
Authority
JP
Japan
Prior art keywords
strain
culture
culture solution
ttcc2122
powdery mildew
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020137542A
Other languages
Japanese (ja)
Other versions
JP2022033569A (en
Inventor
将也 池澤
宗伸 西川
雅己 中島
Original Assignee
タカノフーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカノフーズ株式会社 filed Critical タカノフーズ株式会社
Priority to JP2020137542A priority Critical patent/JP7514142B2/en
Publication of JP2022033569A publication Critical patent/JP2022033569A/en
Application granted granted Critical
Publication of JP7514142B2 publication Critical patent/JP7514142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

NPMD NPMD NITE P-03227NITE P-03227 NPMD NPMD NITE P-03228NITE P-03228

本発明は、植物病害防除剤及び植物病害防除方法に関する。 The present invention relates to a plant disease control agent and a plant disease control method.

従来から、病害虫や病害菌による被害を最小限に抑え農作物の生産性を高めるために、効果や経済性の面で優れる化学合成農薬が使われてきた。しかしながら、近年、環境や人畜への影響等の観点から、生物そのものや生物由来の物質を有効成分とする生物農薬への関心が高まっている。 Traditionally, chemically synthesized pesticides have been used to minimize damage caused by pests and disease-causing bacteria and to increase crop productivity, as they are both effective and economical. However, in recent years, there has been growing interest in biological pesticides, which use living organisms or substances derived from living organisms as active ingredients, from the perspective of their impact on the environment and on humans and livestock.

生物農薬は、天敵昆虫、天敵線虫、微生物(ウイルス、細菌、糸状菌、原生動物等)、生物産生物質(フェロモン、ホルモン、酸性毒素、抽出物等)の4種類に大別される。中でも、微生物農薬は、農作物の病害を防除する微生物を利用した農薬であり、化学合成農薬に比べて環境への負担の軽減できること、さらに、化学合成農薬の耐性菌や耐性害虫の発生抑制効果が期待されている。 Biological pesticides are broadly divided into four types: natural enemy insects, natural enemy nematodes, microorganisms (viruses, bacteria, fungi, protozoans, etc.), and biologically produced substances (pheromones, hormones, acidic toxins, extracts, etc.). Among these, microbial pesticides are pesticides that use microorganisms to control crop diseases, and are expected to reduce the burden on the environment compared to chemically synthesized pesticides, and to suppress the emergence of bacteria and pests that are resistant to chemically synthesized pesticides.

例えば、バチルス・ズブチリス(Bacillus subtilis)は、植物病害をもたらす病原菌を直接攻撃する力は有しないが、ある種の病原菌と拮抗するため、野菜類等の灰色かび病、うどんこ病等の防除剤として農薬登録されている。 For example, Bacillus subtilis does not have the ability to directly attack pathogens that cause plant diseases, but because it is antagonistic to certain pathogens, it is registered as an agricultural chemical to control gray mold and powdery mildew on vegetables.

また、バチルス属細菌を用いた植物病害防除に関する技術として、特許文献4及び5には、バチルス・ズブチリスの特定の株を有効成分として含有する植物病害防除剤が開示されている。 As a technology for controlling plant diseases using Bacillus bacteria, Patent Documents 4 and 5 disclose a plant disease control agent that contains a specific strain of Bacillus subtilis as an active ingredient.

特開平5-51305号公報Japanese Patent Application Laid-Open No. 5-51305 特開平6-133763号公報Japanese Patent Application Laid-Open No. 6-133763

本発明は、上記事情に鑑みてなされたものであって、植物病害防除作用に優れる新規のバチルス属細菌、前記バチルス属細菌を含有する植物病害防除剤、及び前記植物病害防除剤を用いた植物病害防除方法を提供する。 The present invention has been made in consideration of the above circumstances, and provides a novel Bacillus bacterium having excellent plant disease control activity, a plant disease control agent containing the Bacillus bacterium, and a plant disease control method using the plant disease control agent.

すなわち、本発明は、以下の態様を含む。
(1) バチルス・エスピー(Bacillus sp.)TTCC2111株(NITE P-03227)及びバチルス・エスピー(Bacillus sp.)TTCC2122株(NITE P-03228)からなる群より選択される1種以上の枯草菌の菌体又は培養物を有効成分として含有する、植物病害防除剤。
(2) 植物病害が、灰色かび病、緑かび病、青かび病及びうどんこ病からなる群より選択される、請求項1に記載の植物病害防除剤。
(3) 請求項1又は2に記載の植物病害防除剤を対象植物に施用することを含む、植物病害防除方法。
(4) バチルス・エスピー(Bacillus sp.)TTCC2111株(NITE P-03227)。
(5) バチルス・エスピー(Bacillus sp.)TTCC2122株(NITE P-03228)。
That is, the present invention includes the following aspects.
(1) A plant disease control agent comprising, as an active ingredient, one or more types of Bacillus subtilis cells or cultures selected from the group consisting of Bacillus sp. TTCC2111 strain (NITE P-03227) and Bacillus sp. TTCC2122 strain (NITE P-03228).
(2) The plant disease control agent according to claim 1, wherein the plant disease is selected from the group consisting of gray mold, green mold, blue mold and powdery mildew.
(3) A method for controlling a plant disease, comprising applying the plant disease control agent according to claim 1 or 2 to a target plant.
(4) Bacillus sp. TTCC2111 strain (NITE P-03227).
(5) Bacillus sp. TTCC2122 strain (NITE P-03228).

上記態様の植物病害防除剤及び植物病害防除方法によれば、植物病害を有効に防除することができる。 The plant disease control agent and plant disease control method of the above aspect can effectively control plant diseases.

実施例3におけるミカンの病害発生率を示すグラフである。1 is a graph showing the disease incidence rate of mandarin oranges in Example 3. 実施例4におけるエンドウうどんこ病菌のコロニーあたりの平均胞子数を示すグラフである。1 is a graph showing the average number of spores per colony of Erysiphe pea powdery mildew in Example 4. 実施例4におけるエンドウうどんこ病菌の分生子の発芽率を示すグラフである。1 is a graph showing the germination rate of conidia of Erysiphe pea powdery mildew in Example 4. 実施例5におけるプリムラ花弁1cm当たりの病斑数を示すグラフである。1 is a graph showing the number of lesions per cm2 of primula petals in Example 5. 実施例6におけるキュウリうどんこ病の発病度を示すグラフである。1 is a graph showing the severity of cucumber powdery mildew in Example 6. 実施例7におけるキュウリうどんこ病の発病度を示すグラフである。1 is a graph showing the disease severity of cucumber powdery mildew in Example 7. 実施例8におけるキュウリうどんこ病の発病度を示すグラフである。1 is a graph showing the disease severity of cucumber powdery mildew in Example 8. 実施例10におけるキュウリ葉の病斑直径を示すグラフである。1 is a graph showing the diameter of lesions on cucumber leaves in Example 10. 実施例10におけるベゴニア葉の病斑直径を示すグラフである。1 is a graph showing the diameter of lesions on begonia leaves in Example 10.

<植物病害防除剤>
本発明の一実施形態に係る植物病害防除剤は、バチルス・エスピー(Bacillus sp.)TTCC2111株(NITE P-03227)(以下、単に「TTCC2111株」と称する場合がある)及びバチルス・エスピー(Bacillus sp.)TTCC2122株(NITE P-03228)以下、単に「TTCC2122株」と称する場合がある)からなる群より選択される1種以上の枯草菌の菌体又は培養物を有効成分として含有する。
<Plant disease control agents>
A plant disease control agent according to one embodiment of the present invention contains, as an active ingredient, one or more types of Bacillus subtilis cells or cultures selected from the group consisting of Bacillus sp. TTCC2111 strain (NITE P-03227) (hereinafter, sometimes simply referred to as "TTCC2111 strain") and Bacillus sp. TTCC2122 strain (NITE P-03228) (hereinafter, sometimes simply referred to as "TTCC2122 strain").

なお、本発明において、「枯草菌の菌体又は培養物を有効成分として含有する」とは、枯草菌の菌体又は培養物を、植物病害を防除する効果を奏する成分として含有することを意味する。 In the present invention, "containing Bacillus subtilis cells or a culture as an active ingredient" means containing Bacillus subtilis cells or a culture as an ingredient that has the effect of controlling plant diseases.

本実施形態の植物病害防除剤によれば、植物に病気を引き起こす幅広い病原菌の増殖や活動を効率的に抑制することができる。
本実施形態の植物病害防除剤は、植物に対する毒性や病原性がなく、植物病害に対して高い防除効果を有する。また、自然界に存在する細菌を有効成分とする微生物農薬であることから安全性が高く、化学農薬と比較して環境に対する影響が小さい。施用しても人畜への危険性や、環境汚染や農作物への残留等の問題もない。よって、消費者に安全で薬害のない農作物を提供することができる。また、化学農薬と比較して標的である病原菌の耐性菌出現率が非常に低い。
The plant disease control agent of this embodiment can efficiently suppress the proliferation and activity of a wide range of pathogenic bacteria that cause plant diseases.
The plant disease control agent of the present embodiment is not toxic or pathogenic to plants and has a high control effect against plant diseases. In addition, since it is a microbial pesticide that uses bacteria present in nature as an active ingredient, it is highly safe and has a small impact on the environment compared to chemical pesticides. Even if it is applied, there are no problems such as danger to humans and livestock, environmental pollution, or residues in agricultural crops. Therefore, it is possible to provide consumers with agricultural crops that are safe and free of chemical damage. In addition, the incidence of resistant bacteria of the target pathogen is very low compared to chemical pesticides.

後述する実施例に示すように、バチルス・エスピーTTCC2111株は、灰色かび病菌(Botrytis cinerea)に対する生育抑制作用を有する枯草菌のスクリーニングを行い、また、バチルス・エスピーTTCC2122株は、カンキツ緑かび病菌(Penicillium digitatum)に対する生育抑制作用を有する枯草菌のスクリーニングを行い、それぞれ灰色かび病菌に対する生育抑制作用を有する枯草菌、及び、カンキツ緑かび病菌に対する生育抑制作用を有する枯草菌として選抜された。 As shown in the examples described later, the Bacillus sp. TTCC2111 strain was screened for Bacillus subtilis having a growth-inhibiting effect against Botrytis cinerea, and the Bacillus sp. TTCC2122 strain was screened for Bacillus subtilis having a growth-inhibiting effect against Penicillium digitatum, and they were selected as Bacillus subtilis having a growth-inhibiting effect against Botrytis cinerea and Bacillus subtilis having a growth-inhibiting effect against Penicillium digitatum, respectively.

バチルス・エスピーTTCC2111株及びバチルス・エスピーTTCC2122株(以下、総じて「本実施形態の枯草菌」と称する場合がある)は、新規に単離同定された枯草菌であり、植物病害を防除する効果を有する非常に有用な新規枯草菌である。そこで、発明者らは、これらの枯草菌を、2020年5月28日付で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に新規菌株として寄託した。受託番号は、バチルス・エスピーTTCC2111株がNITE P-03227、バチルス・エスピーTTCC2122株がNITE P-03228である。 Bacillus sp. TTCC2111 strain and Bacillus sp. TTCC2122 strain (hereinafter collectively referred to as "Bacillus subtilis of this embodiment") are newly isolated and identified Bacillus subtilis, and are very useful novel Bacillus subtilis that have the effect of controlling plant diseases. Therefore, the inventors deposited these Bacillus subtilis as new strains at the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation (2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan) on May 28, 2020. The accession numbers are NITE P-03227 for Bacillus sp. TTCC2111 strain and NITE P-03228 for Bacillus sp. TTCC2122 strain.

本実施形態の枯草菌の菌体は、生菌であることが好ましい。なお、ここでいう「生菌」とは、細菌が代謝、分裂、増殖等が可能な状態をいう。そのため、枯草菌における芽胞も発芽力を有する限り、生菌に含まれる。但し、本実施形態の植物病害防除剤は、枯草菌の死菌を含んでいてもよい。 The Bacillus subtilis bacteria of this embodiment are preferably viable bacteria. Note that "viable bacteria" here refers to a state in which the bacteria are capable of metabolism, division, proliferation, etc. Therefore, spores of Bacillus subtilis are also included in viable bacteria as long as they have the ability to germinate. However, the plant disease control agent of this embodiment may contain dead Bacillus subtilis bacteria.

本実施形態の枯草菌の菌体は、菌末として用いることができる。菌末を調製する方法としては、特に限定されず、例えば、フリーズドライ(凍結乾燥)法、スプレードライ法、ドラムドライ法等の一般的に枯草菌の菌末を調製する方法から適宜選択することができる。生菌の状態で菌末とし得ることから、フリーズドライ法により調製することが好ましい。 The Bacillus subtilis cells of this embodiment can be used as a bacterial powder. The method for preparing the bacterial powder is not particularly limited and can be appropriately selected from methods commonly used for preparing Bacillus subtilis bacterial powder, such as freeze-drying (lyophilization), spray-drying, and drum-drying. Since the bacterial powder can be obtained in the form of live bacteria, it is preferable to prepare the bacterial powder by the freeze-drying method.

本実施形態の枯草菌の培養物は、枯草菌を培地中で培養して得られるものであれば特に限定されず、菌体を培地中で増殖させて得られる培養液であってもよく、培養液の上清(遠心分離処理等により培養液から菌体等の固形成分を除いたもの)であってもよく、培養液の濃縮物であってもよく、培養液に菌体破砕処理等を施したものであってもよく、培養液から菌体内成分を抽出したものであってもよい。すなわち、本実施形態の植物病害防除剤は、有効成分として、本実施形態の枯草菌の代謝物やその調製物(例えば、乾燥物、濃縮物、抽出物等)を含有していてもよい。なお、遠心分離処理、濃縮方法、菌体破砕処理、抽出方法、発酵方法等は、公知の方法から適宜選択して常法により行うことができる。 The culture of Bacillus subtilis in this embodiment is not particularly limited as long as it is obtained by culturing Bacillus subtilis in a medium, and may be a culture solution obtained by growing the cells in a medium, a supernatant of the culture solution (a culture solution from which solid components such as cells have been removed by centrifugation or the like), a concentrate of the culture solution, a culture solution subjected to a cell crushing treatment or the like, or a culture solution from which intracellular components have been extracted. That is, the plant disease control agent of this embodiment may contain, as an active ingredient, a metabolite of Bacillus subtilis in this embodiment or a preparation thereof (e.g., a dried product, a concentrate, an extract, etc.). The centrifugation treatment, the concentration method, the cell crushing treatment, the extraction method, the fermentation method, etc. can be appropriately selected from known methods and carried out by ordinary methods.

本実施形態の枯草菌を培養する培地は、各枯草菌が生育し得る培地であれば、特に限定されるものではなく、枯草菌の培養において一般的に用いられる培地やその改変培地等から適宜選択して用いることができる。具体的には、Tryptic Soy Agar平板培地、Potato Sucrose Broth(PSB)培地等が挙げられる。 The medium for culturing the Bacillus subtilis in this embodiment is not particularly limited as long as it is a medium in which each Bacillus subtilis can grow, and can be appropriately selected from media commonly used in culturing Bacillus subtilis and modified media thereof. Specific examples include Tryptic Soy Agar plate medium and Potato Sucrose Broth (PSB) medium.

培養形式は、特に限定されるものではなく、培養スケール、植物病害防除剤の剤形等を考慮して適宜決定することができる。例えば、寒天平板培地に塗布して培養してもよく、液体培地中で培養してもよい。液体培地における培養形式として、静置培養、回分培養等が挙げられる。例えば、継代培養の場合には、簡便であるため、寒天平板培地上で培養することや、適当な液体培地中で静置培養、回分培養することが好ましい。 The culture format is not particularly limited and can be appropriately determined taking into consideration the culture scale, the dosage form of the plant disease control agent, etc. For example, the culture may be applied to an agar plate medium or in a liquid medium. Examples of culture formats in liquid medium include stationary culture and batch culture. For example, in the case of subculture, it is preferable to culture on an agar plate medium or to culture stationarily or batch culture in an appropriate liquid medium, because this is simple.

本実施形態の枯草菌の培養条件は、特に限定されず、枯草菌を培養する場合に一般的に用いられる条件により培養することができる。例えば、培養温度は20℃以上40℃以下であることが好ましく、25℃以上37℃以下であることがより好ましい。また、培地のpHは3.5以上8.0以下であることが好ましく、4.0以上7.0以下であることがより好ましい。その他、本実施形態の枯草菌は、他の枯草菌と同様に好気的条件で培養することが好ましい。 The culture conditions for the Bacillus subtilis of this embodiment are not particularly limited, and the Bacillus subtilis can be cultured under conditions generally used for culturing Bacillus subtilis. For example, the culture temperature is preferably 20°C or higher and 40°C or lower, and more preferably 25°C or higher and 37°C or lower. The pH of the medium is preferably 3.5 or higher and 8.0 or lower, and more preferably 4.0 or higher and 7.0 or lower. In addition, the Bacillus subtilis of this embodiment is preferably cultured under aerobic conditions, like other Bacillus subtilis.

本実施形態の植物病害防除剤の有効成分である枯草菌の菌体又は培養物は、TTCC2111株及びTTCC2122株のいずれか1種類の枯草菌のみの菌体又は培養物からなるものであってもよく、これら2種類の枯草菌の菌体又は培養物の混合物であってもよい。中でも、より広範な植物病害への有効性が期待できることから、TTCC2122株単独の菌体又は培養物を有効成分とすることが好ましい。 The Bacillus subtilis fungus cells or cultures that are the active ingredient of the plant disease control agent of this embodiment may consist of the fungus cells or cultures of only one type of Bacillus subtilis, either the TTCC2111 strain or the TTCC2122 strain, or may be a mixture of the fungus cells or cultures of these two types of Bacillus subtilis. Of these, it is preferable to use the fungus cells or cultures of the TTCC2122 strain alone as the active ingredient, as this is expected to be effective against a wider range of plant diseases.

本実施形態の植物病害防除剤は、本実施形態の枯草菌の菌体又は培養物のみからなるものであってもよく、本実施形態の枯草菌の菌体又は培養物による植物病害に対する防除効果を阻害しない程度において、所望の剤形に応じて、その他の物質を更に含有する植物病害防除組成物(以下、単に「本実施形態の組成物」と称する場合がある)とすることができる。 The plant disease control agent of this embodiment may consist only of the fungus or culture of Bacillus subtilis of this embodiment, or may be a plant disease control composition (hereinafter sometimes simply referred to as the "composition of this embodiment") that further contains other substances according to the desired formulation to the extent that the control effect against plant diseases by the fungus or culture of Bacillus subtilis of this embodiment is not inhibited.

その他の物質としては、農薬製剤上許容可能な担体、界面活性剤、分散剤、補助剤、保護剤等が挙げられる。 Other substances include carriers, surfactants, dispersants, adjuvants, and protective agents that are acceptable for use in pesticide formulations.

「農薬製剤上許容可能な担体」とは、植物病害防除剤の施用を容易にし、枯草菌の生存や植物病原菌に対する拮抗作用又は抑制作用を維持する物質及び/又は植物病害防除剤の作用速度を制御する物質であって、土壌若しくは水質等の環境、及び/又は、動物(特にヒト)に対する有害性がない若しくは低い物質をいう。 "Carrier acceptable for agricultural chemical formulations" refers to a substance that facilitates the application of a plant disease control agent, maintains the survival of Bacillus subtilis and antagonistic or suppressive effects against plant pathogens, and/or controls the rate of action of the plant disease control agent, and is non-hazardous or has low toxicity to the environment, such as soil or water quality, and/or animals (especially humans).

このような担体として具体的には、例えば、タルク、ベントナイト、カオリン、クレー、珪藻土、ホワイトカーボン、バーミキュライト、消石灰、硫安、珪砂、尿素等の多孔質な固体担体;水、イソプロピルアルコール、メチルナフタレン、キシレン、シクロヘキサノン、アルキレングリコール等の液体担体等が挙げられる。 Specific examples of such carriers include porous solid carriers such as talc, bentonite, kaolin, clay, diatomaceous earth, white carbon, vermiculite, hydrated lime, ammonium sulfate, silica sand, and urea; and liquid carriers such as water, isopropyl alcohol, methylnaphthalene, xylene, cyclohexanone, and alkylene glycol.

界面活性剤及び分散剤としては、例えば、ジナフチルメタンスルホン酸塩、アルコール硫酸エステル塩、リグニンスルホン酸塩、アルキルアリールスルホン酸塩、ポリオキシエチレングリコールエーテル、ポリオキシエチレンソルビタンモノアルキレート、ポリオキシエチレンアルキルアリールエーテル等が挙げられる。 Examples of surfactants and dispersants include dinaphthyl methanesulfonate, alcohol sulfate, lignin sulfonate, alkylaryl sulfonate, polyoxyethylene glycol ether, polyoxyethylene sorbitan monoalkylate, polyoxyethylene alkylaryl ether, etc.

補助剤としては、例えば、カルボキシメチルセルロース、ポリエチレングリコール、プロピレングリコール、アラビアゴム、キサンタンガム等が挙げられる。
保護剤としては、例えば、スキムミルク、pH緩衝剤等が挙げられる。
Examples of the adjuvant include carboxymethylcellulose, polyethylene glycol, propylene glycol, gum arabic, and xanthan gum.
Examples of the protective agent include skim milk and pH buffers.

本実施形態の組成物は、有効成分の枯草菌に影響しない範囲において、他の薬理作用を有する有効成分、具体的には、除草剤、殺菌剤、殺虫剤、肥料(例えば、尿素、硝酸アンモニウム、過リン酸塩)等を更に含有することもできる。 The composition of this embodiment may further contain other active ingredients having pharmacological actions, specifically herbicides, fungicides, insecticides, fertilizers (e.g., urea, ammonium nitrate, superphosphates), etc., to the extent that they do not affect the active ingredient Bacillus subtilis.

剤形としては、有効成分である枯草菌を生菌の状態で保持できれば、特に限定されず、例えば、液体状態、固体状態又はその組み合わせとすることができる。
液体状態としては、例えば、顆粒水和剤、水和剤、水溶剤、懸濁製剤、乳剤等が挙げられる。液体状態の場合における菌体を懸濁する溶剤としては、例えば、水(滅菌水、脱イオン水、超純水を含む)、生理食塩水、緩衝液(リン酸緩衝液、炭酸緩衝液を含む)、その細菌の培地等が挙げられる。
固体状態としては、例えば、粒剤、粉剤、ゲル剤等が挙げられる。
The dosage form is not particularly limited as long as it can maintain the active ingredient Bacillus subtilis in a viable state, and can be, for example, in a liquid state, a solid state, or a combination thereof.
Examples of liquid forms include water dispersible granules, wettable powders, water-soluble agents, suspension preparations, emulsions, etc. Examples of solvents for suspending the bacterial cells in liquid forms include water (including sterilized water, deionized water, and ultrapure water), physiological saline, buffer solutions (including phosphate buffer solutions and carbonate buffer solutions), and culture media for the bacteria.
Examples of the solid form include granules, powders, gels, and the like.

本実施形態の植物病害防除剤の所定量あたりにおける枯草菌の菌体又は培養物の含有量は、各枯草菌の種類やその組み合わせ、施用対象植物の種類、剤形、及び施用方法等の諸条件によって異なる。通常は、本実施形態の植物病害防除剤を施用する際に枯草菌が植物病原菌に対する拮抗作用又は抑制作用を発揮する上で十分な量を含んでいることが好ましい。この含有量は、当該分野の技術常識の範囲において枯草菌の菌体又は培養物が施用後に施用対象植物の処理対象領域の所定の面積あたりに所望の(存在)量となるように各条件を勘案し、決定すればよい。本実施形態の植物病害防除剤における枯草菌の含有量は、例えば、菌体濃度として10cfu/g以上1011cfu/g以下程度の範囲とすることができる。或いは、本実施形態の植物病害防除剤が液体状態である場合に、枯草菌の含有量は、例えば、菌体濃度として、10cells/mL以上1010cells/mL以下程度の範囲とすることができる。この場合、必要に応じて施用時に、水、生理食塩水、緩衝液等で2倍以上1000倍以下に希釈することもできる。 The content of the Bacillus subtilis fungus or culture per a given amount of the plant disease control agent of this embodiment varies depending on various conditions such as the type of each Bacillus subtilis or its combination, the type of the target plant to be applied, the formulation, and the application method. Usually, it is preferable that the Bacillus subtilis is contained in an amount sufficient for exerting an antagonistic or suppressive effect against plant pathogens when the plant disease control agent of this embodiment is applied. This content may be determined by taking into consideration each condition so that the Bacillus subtilis fungus or culture is a desired (abundant) amount per a given area of the target plant to be treated after application within the scope of technical common knowledge in the field. The content of Bacillus subtilis in the plant disease control agent of this embodiment can be, for example, in the range of about 10 9 cfu/g or more and 10 11 cfu/g or less in terms of fungus concentration. Alternatively, when the plant disease control agent of the present embodiment is in a liquid state, the content of Bacillus subtilis can be, for example, in terms of cell concentration, in the range of about 106 cells/mL to 1010 cells/mL. In this case, the agent can be diluted 2-fold to 1000-fold with water, physiological saline, a buffer solution, or the like at the time of application, as necessary.

<植物病害防除方法>
本発明の一実施形態に係る植物病害防除方法は、上述した植物病害防除剤を対象植物に施用すること(以下、「施用工程」と称する場合がある)を含む。
<Plant disease control method>
A plant disease control method according to one embodiment of the present invention includes applying the above-mentioned plant disease control agent to a target plant (hereinafter, sometimes referred to as the "application step").

本明細書において、「対象植物」とは、植物病害防除剤の施用対象となる植物を示す。対象植物は、病原菌の感染によって病害を発病し得る植物であれば、その種類は問わない。被子植物又は裸子植物のいずれであってもよい。被子植物としては、双子葉植物であってもよく、単子葉植物であってもよい。
単子葉植物としては、例えば、イネ科(Poaceae)植物等が挙げられる。
双子葉植物としては、例えば、ヒルガオ科(Convolvulaceae)、バラ科(Rosaceae)植物、セリ科(Apiaceae)、ナス科(Solanaceae)植物、ユリ科(Liliaceae)、マメ科(Fabaceae)植物、ウリ科(Cucurbitaceae)植物、アブラナ科(Brassicaceae)植物等が挙げられる。
In this specification, the term "target plant" refers to a plant to which a plant disease control agent is applied. The target plant may be of any type, so long as it is a plant that can develop a disease due to infection with a pathogen. The target plant may be either an angiosperm or a gymnosperm. The angiosperm may be either a dicotyledonous plant or a monocotyledonous plant.
Examples of monocotyledonous plants include plants of the Poaceae family.
Examples of dicotyledonous plants include plants of the Convolvulaceae family, the Rosaceae family, the Apiaceae family, the Solanaceae family, the Liliaceae family, the Fabaceae family, the Cucurbitaceae family, and the Brassicaceae family.

具体的な対象植物としては、例えば、エンドウ(Pisum sativum)、キュウリ(Cucumis sativus)、ピーマン(Capsicum annuum Group)、トマト(Solanum lycopersicum)、ナス(Solanum melongena)、イチゴ(Fragaria ananassa)、ミカン(Citrus unshiu)、ベゴニア(Begonia)、プリムラ(Primula)等が挙げられる。 Specific target plants include, for example, peas (Pisum sativum), cucumbers (Cucumis sativus), peppers (Capsicum annuum Group), tomatoes (Solanum lycopersicum), eggplants (Solanum melongena), strawberries (Fragaria ananassa), mandarin oranges (Citrus unshiu), begonias, and primulas.

[施用工程]
施用工程では、上述した植物病害防除剤を対象植物に施用する。
植物病害防除剤をそのまま直接施用してもよく、或いは、水等の溶剤に希釈して使用してもよい。植物病害防除剤の施用方法として具体的には、例えば、直接植物に散布する方法、土壌に散布する方法、植物の種子に直接塗布する方法、植物や土壌に添加する水や肥料に添加する方法等が挙げられる。植物病害防除剤の施用量及び施用回数は、対象病害、対象作物、施用方法、発生傾向、被害の程度、環境条件、使用する剤形等によって、適宜調整することができる。また、植物病害防除剤の施用時期についても、特に限定されず、病害発生前に防除作用を発揮させることを目的として施用してもよく、或いは、病害発生後に病原菌の増殖を抑制し、病害を治療することを目的として施用してもよい。
[Application process]
In the application step, the above-mentioned plant disease control agent is applied to a target plant.
The plant disease control agent may be directly applied as it is, or may be diluted in a solvent such as water before use. Specific examples of the application method of the plant disease control agent include a method of directly spraying the plant, a method of spraying the soil, a method of directly applying the agent to the seeds of the plant, and a method of adding the agent to water or fertilizer added to the plant or soil. The application amount and number of applications of the plant disease control agent can be appropriately adjusted depending on the target disease, the target crop, the application method, the tendency of occurrence, the degree of damage, the environmental conditions, the formulation used, and the like. The application time of the plant disease control agent is not particularly limited, and the agent may be applied for the purpose of exerting a control effect before the occurrence of the disease, or may be applied for the purpose of suppressing the growth of pathogens and treating the disease after the occurrence of the disease.

本実施形態の植物病害防除剤は、広範囲の種類の細菌及び糸状菌に対して、優れた防除効果を発揮する。本実施形態の植物病害防除剤により防除可能な植物の病原菌としては、例えば、「カンキツ」の黒点病菌(Diaporthe citri)、そうか病菌(Elsinoe fawcettii)、褐色腐敗病菌(Phytophthora citrophthora)、緑かび病菌(Penicillium digitatum)、青かび病菌(Penicillium italicum);
「ウリ類」のうどんこ病菌(Sphaerotheca fuliginea)、つる枯病菌(Didymella bryoniae)、炭そ病菌(Colletotrichum lagenarium);
「トマト」の輪紋病菌(Alternaria solani)、葉かび病菌(Cladosporium fulvum)、うどんこ病菌(Oidium neolycopersici、Oidiopsis sp.、Leveillula taurica);
「ナス」の褐紋病菌(Phomopsis vexans)、うどんこ病菌(Erysiphe cichoracearum);
「イチゴ」のうどんこ病菌(Sphaerotheca humuli)、炭そ病菌(Glomerella cingulata);
「ピーマン」のうどんこ病菌(Oidiopsis sicula);
「エンドウ」のうどんこ病菌(Erysiphe pisi);
「種々の作物」の灰色かび病菌(Botrytis cinerea)等が挙げられ、これらに限定されない。
The plant disease control agent of the present embodiment has an excellent control effect against a wide variety of bacteria and fungi. Examples of plant pathogens that can be controlled by the plant disease control agent of the present embodiment include black spot disease fungus (Diaporthe citri), common scab disease fungus (Elsinoe fawcettii), brown rot disease fungus (Phytophthora citrophthora), green mold disease fungus (Penicillium digitatum), and blue mold disease fungus (Penicillium italicum);
"Cucurbits" powdery mildew (Sphaerotheca fuliginea), vine wilt (Didymella bryoniae), anthracnose (Colletotrichum lagenarium);
"Tomato" leaf spot fungus (Alternaria solani), leaf mold fungus (Cladosporium fulvum), powdery mildew fungus (Oidium neolycopersici, Oidiopsis sp., Leveillula taurica);
Brown spot disease fungus (Phomopsis vexans) and powdery mildew fungus (Erysiphe cichoracearum) of eggplant;
"Strawberry" powdery mildew (Sphaerotheca humuli), anthracnose (Glomerella cingulata);
Powdery mildew fungus (Oidiopsis sicula) on bell pepper;
"Pea" powdery mildew (Erysiphe pisi);
"Various crops" include, but are not limited to, Botrytis cinerea.

以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.

[実施例1]
(緑かび病を防除する納豆菌の選抜)
1.納豆菌培養液の調製
納豆菌としては、タカノフーズ株式会社が保有する納豆菌720菌株を用いた。納豆菌培養液は、以下の方法を用いて調製した。まず、各菌株はTrypticase Soy Agar(TSA)平板培地を用いて37℃で16時間培養したものを白金耳でTrypticase Soy Broth(TSB)培地に懸濁し、28℃、105rpmで24時間振とう培養した。培養後、納豆菌を遠心分離(3000rcf、8分間、22℃)により集菌し、上清を除去した後に滅菌水に懸濁した。この作業を3回繰り返して培地成分を除去した後に、分光光度計を用いて培養液濃度をOD600=1となるように調整し、実験に供試した。
[Example 1]
(Selection of natto bacteria that control green mold disease)
1. Preparation of natto bacteria culture solution As the natto bacteria, the natto bacteria 720 strain owned by Takano Foods Co., Ltd. was used. The natto bacteria culture solution was prepared using the following method. First, each strain was cultured on a Trypticase Soy Agar (TSA) plate medium at 37°C for 16 hours, suspended in a Trypticase Soy Broth (TSB) medium with a platinum loop, and cultured with shaking at 28°C and 105 rpm for 24 hours. After culturing, the natto bacteria were collected by centrifugation (3000rcf, 8 minutes, 22°C), and the supernatant was removed and then suspended in sterilized water. This operation was repeated three times to remove the medium components, and the culture solution concentration was adjusted to OD600 = 1 using a spectrophotometer and used for the experiment.

2.分生子懸濁液の調製
カンキツにおける緑かび病菌Penicillium digitatumは、茨城大学農学部で保存しているIUPd2株を用いた。分生子形成は、本菌をPotato Sucrose Agar(PSA)平板培地で3日間培養後、ブラックライトブルーランプを3日間照射し、その後3日間暗所に置くことで誘導した。培地上の分生子は滅菌水に懸濁した後に、滅菌ティッシュペーパーでろ過することで菌糸を除去した、分生子を遠心分離(1700rcf、5分間、22℃)により回収し、上澄みを除去した後に滅菌水に再懸濁した。この作業を3回繰り返すことで分生子を洗浄した。分生子懸濁液は血球計算盤を用いて濃度を1.0×10conidia/mLに調製し、実験に供試した。
2. Preparation of conidial suspension Penicillium digitatum, a green mold pathogen in citrus, was used as the IUPd2 strain stored at the Ibaraki University Faculty of Agriculture. Conidial formation was induced by culturing the fungus on a Potato Sucrose Agar (PSA) plate medium for 3 days, irradiating it with a black light blue lamp for 3 days, and then placing it in the dark for 3 days. The conidia on the medium were suspended in sterilized water, and then filtered with sterilized tissue paper to remove the mycelium. The conidia were collected by centrifugation (1700rcf, 5 minutes, 22°C), and the supernatant was removed and then resuspended in sterilized water. This process was repeated three times to wash the conidia. The conidial suspension was prepared to a concentration of 1.0 x 10 5 conidia/mL using a hemocytometer and used in the experiment.

3.対峙培養試験
PSA平板培地にP. digitatum分生子懸濁液を100μL滴下し、コンラージ棒で塗布した後、納豆菌培養液に浸漬したペーパーディスク(径5mm)を平板培地の中央に置床した。これを25℃の暗所で3日間培養後、ペーパーディスクの周囲に形成された阻止円の直径を測定した。試験は2反復行った。
3. Confrontation culture test 100 μL of P. digitatum conidial suspension was dropped onto a PSA plate medium and spread with a conlarger stick, after which a paper disk (diameter 5 mm) soaked in Bacillus subtilis natto culture solution was placed in the center of the plate medium. After culturing this in a dark place at 25°C for 3 days, the diameter of the inhibition zone formed around the paper disk was measured. The test was repeated twice.

対峙培養試験の結果、供試した全ての菌株でP. digitatumの菌糸生育に対する抑制効果が見られ、中でも、TTCC2122株が他の株と比べて強い抑制効果を示した。
なお、優れた抑制効果が確かめられたTTCC2122株は、独立行政法人産業技術総合研究所特許微生物寄託センター(住所:日本国千葉県木更津市かずさ鎌足2-5-8)に2020年5月28日付けで、受託番号NITE P-03228として寄託されているものである。
As a result of the dual culture test, all the tested strains showed an inhibitory effect on the mycelial growth of P. digitatum, and among them, the TTCC2122 strain showed a stronger inhibitory effect than the other strains.
The TTCC2122 strain, which has been confirmed to have an excellent inhibitory effect, was deposited at the National Institute of Advanced Industrial Science and Technology (Address: 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan) on May 28, 2020 under the accession number NITE P-03228.

[実施例2]
(灰色かび病を防除する納豆菌の選抜)
1.納豆菌培養液の調製
実施例1の「1.」と同様の方法を用いて、720種の納豆菌について納豆菌培養液を調製した。
[Example 2]
(Selection of natto bacteria that control gray mold)
1. Preparation of Bacillus subtilis natto culture solution Using the same method as in "1." of Example 1, Bacillus subtilis natto culture solutions were prepared for 720 species of Bacillus subtilis natto.

2.分生子懸濁液の調製
灰色かび病菌Botrytis cinereaは、茨城大学農学部で保存しているTV335株を用いた。実施例1の「2.」と同様の方法を用いて、分生子懸濁液を調製した。
2. Preparation of conidial suspension The gray mold fungus Botrytis cinerea used was the TV335 strain stored at the Faculty of Agriculture, Ibaraki University. A conidial suspension was prepared using the same method as in "2." of Example 1.

3.対峙培養試験
PSA平板培地にB. cinerea分生子懸濁液を100μL滴下し、コンラージ棒で塗布した後、納豆菌培養液に浸漬したペーパーディスク(径5mm)を平板培地の中央に置床した。これを25℃の暗所で3日間培養後、ペーパーディスクの周囲に形成された阻止円の直径を測定した。試験は2反復行った。
3. Confrontation culture test 100 μL of B. cinerea conidial suspension was dropped onto a PSA plate medium and spread with a cone-large stick, after which a paper disk (diameter 5 mm) soaked in Bacillus subtilis natto culture solution was placed in the center of the plate medium. After culturing this in a dark place at 25°C for 3 days, the diameter of the inhibition zone formed around the paper disk was measured. The test was repeated twice.

対峙培養試験の結果、供試した全ての菌株でB. cinereaの菌糸生育に対する抑制効果が見られ、中でも、TTCC2111株が他の株と比べて強い抑制効果を示した。
なお、優れた抑制効果が確かめられたTTCC2111株は、独立行政法人産業技術総合研究所特許微生物寄託センター(住所:日本国千葉県木更津市かずさ鎌足2-5-8)に2020年5月28日付けで、受託番号NITE P-03227として寄託されているものである。
As a result of the dual culture test, all the tested strains showed an inhibitory effect on the mycelial growth of B. cinerea, and among them, the TTCC2111 strain showed a stronger inhibitory effect than the other strains.
The TTCC2111 strain, which has been confirmed to have an excellent inhibitory effect, was deposited at the National Institute of Advanced Industrial Science and Technology (Address: 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan) on May 28, 2020 under the accession number NITE P-03227.

[実施例3]
(貯蔵時のみかんにおける保存性向上確認試験)
実施例1の「1.」と同様の方法を用いて、TTCC2122株の培養液(菌体濃度:1×10cells/mL)を調製した。参考として茨城大学で保有していた納豆菌No.2株についても同様に培養液(菌体濃度:1×10cells/mL)を調製した。また、カンキツにおける緑かび病菌P. digitatum分生子懸濁液(1.0×10conidia/mL)についても、実施例1の「2.」と同様の方法を用いて、準備した。さらに、カンキツにおける青かび病菌P. italicum(茨城大学農学部で保存、IUPi1株)についても同様に、分生子懸濁液(1.0×10conidia/mL)を調製した。
[Example 3]
(Test to confirm improvement of preservation quality of mandarin oranges during storage)
A culture solution (cell concentration: 1×10 8 cells/mL) of the TTCC2122 strain was prepared using the same method as in "1." of Example 1. For reference, a culture solution (cell concentration: 1×10 8 cells/mL) was also prepared for the Bacillus subtilis natto No. 2 strain held at Ibaraki University. A conidial suspension (1.0×10 5 conidia/mL) of P. digitatum, the green mold pathogen of citrus, was also prepared using the same method as in "2." of Example 1. A conidial suspension (1.0×10 5 conidia/mL) of P. italicum, the blue mold pathogen of citrus (preserved at the Faculty of Agriculture, Ibaraki University, IUPi1 strain), was also prepared.

次いで、みかんの表面に4か所の深さ1mm、幅3mmの傷を付け、TTCC2122株の培養液を1か所あたり15μl滴下処理した。処理16時間後、P. digitatum及びP. italicum(茨城大学農学部で保存、IUPi1株)の分生子懸濁液(1.0×10conidia/mL)をそれぞれ傷1か所あたり15μl滴下接種した。分生子の接種から4日後にみかんの表面を観察し、接種試験に供したみかんの傷に対する、かびが観察された傷の割合(百分率)を病害発生率(%)として算出した。結果を図1に示す。なお、図1において「コントロール」群は、TTCC2122株の培養液の滴下処理を行なわずに、緑かび病菌(P. digitatum)又は青かび病菌(P. italicum)を接種したみかんである。 Next, four wounds of 1 mm depth and 3 mm width were made on the surface of the mandarin orange, and 15 μl of the culture solution of the TTCC2122 strain was dropped per wound. 16 hours after the treatment, 15 μl of a conidial suspension (1.0×10 5 conidia/mL) of P. digitatum and P. italicum (stored at the Faculty of Agriculture, Ibaraki University, IUPi1 strain) was dropped and inoculated into each wound. Four days after the inoculation of the conidia, the surface of the mandarin orange was observed, and the ratio (percentage) of the wounds on which mold was observed to the wounds on the mandarin orange subjected to the inoculation test was calculated as the disease incidence rate (%). The results are shown in FIG. 1. In FIG. 1, the "control" group is mandarin oranges inoculated with P. digitatum or P. italicum without being subjected to the dropwise treatment of the culture solution of the TTCC2122 strain.

図1に示すように、TTCC2122株の培養液による滴下処理を施した傷では、緑かび病菌(P. digitatum)又は青かび病菌(P. italicum)のいずれを接種した場合においても病害発生率が顕著に抑制されていた。この抑制効果は、参考として使用した納豆菌No.2株と比較しても顕著であった。 As shown in Figure 1, in the wounds treated with the culture solution of the TTCC2122 strain, the disease incidence rate was significantly suppressed regardless of whether the green mold pathogen (P. digitatum) or blue mold pathogen (P. italicum) was inoculated. This suppressive effect was also significant in comparison with the Bacillus subtilis natto No. 2 strain used as a reference.

[実施例4]
(納豆菌培養液のエンドウうどんこ病に対する治療効果及び防除効果確認試験)
TTCC2111株及びTTCC2122株はTrypticase Soy Agar(TSA)平板培地を用いて37℃で16時間培養したものを白金耳でPotato Sucrose Broth(PSB)培地に懸濁した。これらを28℃、105rpmで24時間振とう培養し、TTCC2111株の培養液及びTTCC2122株の培養液(各菌体濃度:1×10cells/mL)を調製した。
[Example 4]
(Test to confirm the therapeutic and control effects of Bacillus subtilis natto culture solution against pea powdery mildew)
The TTCC2111 and TTCC2122 strains were cultured on a Trypticase Soy Agar (TSA) plate medium at 37°C for 16 hours, and then suspended in Potato Sucrose Broth (PSB) medium using a platinum loop. These were cultured at 28°C and 105 rpm for 24 hours with shaking to prepare culture solutions of the TTCC2111 strain and the TTCC2122 strain (each bacterial cell concentration: 1 x 108 cells/mL).

予めうどんこ病菌を2週間前に接種したエンドウ葉から多くの分生子を形成している葉を選び、絵筆を用いて葉面上の分生子を掃い落とした。次いで、調製したTTCC2122株の培養液をスプレーで噴霧した。培養液の噴霧量は、エンドウ葉1枚当たり0.3mL以上0.5mL以下程度であった。コントロールには、培養液の代わりに滅菌水を噴霧処理した。噴霧処理から2日後に、エンドウ葉を固定液に浸漬させて固定した。固定液としては、FAA(Formalin/Acetic acid/Alcohol)固定液を用いた。FAA固定液の組成は、容量比でホルマリン:酢酸:エタノール=1:1:1である。次いで、固定後のエンドウ葉についてエンドウうどんこ病菌の菌体をメチルブルーで染色した。葉1枚当たり10コロニーをランダムに選び、コロニー当たりに形成された分生子数を数えた。結果を図2に示す。 From the pea leaves inoculated with powdery mildew two weeks before, leaves with many conidia were selected, and the conidia on the leaf surface were swept off with a paintbrush. The prepared culture solution of the TTCC2122 strain was then sprayed with a sprayer. The amount of culture solution sprayed was about 0.3 mL to 0.5 mL per pea leaf. For the control, sterilized water was sprayed instead of the culture solution. Two days after the spraying treatment, the pea leaves were immersed in a fixative and fixed. FAA (Formalin/Acetic acid/Alcohol) fixative was used as the fixative. The composition of the FAA fixative is formalin: acetic acid: ethanol = 1:1:1 by volume. Next, the bodies of the powdery mildew fungus on the fixed pea leaves were stained with methyl blue. Ten colonies per leaf were randomly selected, and the number of conidia formed per colony was counted. The results are shown in Figure 2.

図2に示すように、TTCC2122株の培養液の噴霧処理群では、コントロール群と比較して、形成された分生子数の減少が確認された。また、TTCC2122株の培養液を噴霧処理した葉におけるエンドウうどんこ病菌の菌糸を観察したところ、細胞死様の染色箇所が見られた(図示せず)。
以上のことから、TTCC2122株の培養液は、エンドウうどんこ病に対する治療効果を有することが示唆された。
As shown in Fig. 2, a decrease in the number of conidia formed was confirmed in the group sprayed with the culture solution of the TTCC2122 strain, compared to the control group. Furthermore, when the hyphae of the pea powdery mildew fungus on the leaves sprayed with the culture solution of the TTCC2122 strain were observed, stained areas resembling cell death were observed (not shown).
From the above, it was suggested that the culture solution of the TTCC2122 strain has a therapeutic effect against pea powdery mildew.

次いで、1週齢のエンドウ葉表面に、調製したTTCC2111株の培養液及びTTCC2122株の培養液をそれぞれスプレーで噴霧した。培養液の噴霧量は、エンドウ葉1枚当たり0.3mL以上0.5mL以下程度であった。コントロールには、培養液の代わりに滅菌水を噴霧処理した。翌日、充分にエンドウ葉表面を乾かした後、罹病エンドウ葉に形成された分生子を絵筆で処理葉全体に乗せて接種した。接種から3日後に接種葉をFAA固定液で固定した後、エンドウうどんこ病菌の菌体をメチルブルーで染色した。分生子よりも長い発芽管を形成したものを「発芽」とした。分生子数に対する発芽数の割合(百分率)を発芽率(%)として算出した。結果を図3に示す。図3において、各群について独立した試験を2回行った結果を示している。 Next, the prepared culture solution of TTCC2111 strain and the culture solution of TTCC2122 strain were sprayed on the surface of one-week-old pea leaves. The amount of culture solution sprayed was about 0.3 mL to 0.5 mL per pea leaf. For the control, sterilized water was sprayed instead of the culture solution. The next day, the surface of the pea leaves was thoroughly dried, and then the conidia formed on the diseased pea leaves were placed on the entire treated leaves with a paintbrush for inoculation. Three days after inoculation, the inoculated leaves were fixed with FAA fixative, and the pea powdery mildew fungus bodies were stained with methyl blue. Those that formed germ tubes longer than the conidia were considered to have "germinated." The ratio (percentage) of the number of germinations to the number of conidia was calculated as the germination rate (%). The results are shown in Figure 3. Figure 3 shows the results of two independent tests performed on each group.

図3に示すように、TTCC2111株の培養液及びTTCC2122株の培養液の噴霧処理群では、コントロール群と比較して、発芽率の減少が確認された。また、TTCC2122株の培養液の噴霧処理した葉におけるエンドウうどんこ病菌の発芽管を観察したところ、細胞死様の染色箇所が見られた(図示せず)。
以上のことから、TTCC2111株の培養液及びTTCC2122株の培養液は、エンドウうどんこ病に対する防除効果を有することが示唆された。
As shown in Fig. 3, a decrease in the germination rate was confirmed in the groups sprayed with the culture solution of the TTCC2111 strain and the culture solution of the TTCC2122 strain, compared to the control group. Furthermore, when observing the germ tubes of powdery mildew fungus in the leaves sprayed with the culture solution of the TTCC2122 strain, stained areas resembling cell death were observed (not shown).
From the above, it was suggested that the culture solutions of the TTCC2111 strain and the TTCC2122 strain have a control effect against pea powdery mildew.

[実施例5]
(納豆菌培養液のプリムラ花弁での灰色かび病に対する発病抑制効果確認試験)
実施例1の「1.」と同様の方法を用いて、TTCC2111株の培養液及びTTCC2122株の培養液(各菌体濃度:1×10cells/mL)を調製した。次いで、プリムラ花弁の表面に、調製したTTCC2111株の培養液及びTTCC2122株の培養液をそれぞれスプレーで噴霧した。各培養液の噴霧量は、プリムラ花弁1枚当たり0.3mL以上0.5mL以下程度であった。コントロールには、培養液の代わりに滅菌水を噴霧処理した。噴霧処理から16時間後に、灰色かび病菌の分生子懸濁液(1×10conidia/mL)を用いて噴霧接種した。接種から24時間後に形成されたプリムラ花弁1cm当たりの病斑数(個)を算出した。結果を図4に示す。
[Example 5]
(Test to confirm the effect of natto culture solution on suppressing gray mold disease in primula petals)
Using the same method as in "1." of Example 1, a culture solution of TTCC2111 strain and a culture solution of TTCC2122 strain (each fungus cell concentration: 1 x 10 8 cells/mL) were prepared. Next, the prepared culture solution of TTCC2111 strain and the culture solution of TTCC2122 strain were sprayed on the surface of Primula petals by spraying. The amount of each culture solution sprayed was about 0.3 mL to 0.5 mL per Primula petal. For the control, sterilized water was sprayed instead of the culture solution. 16 hours after the spraying treatment, a conidial suspension of Botrytis cinerea (1 x 10 5 conidia/mL) was sprayed and inoculated. The number of lesions (pieces) per 1 cm 2 of Primula petals formed 24 hours after inoculation was calculated. The results are shown in FIG. 4.

図4に示すように、TTCC2111株の培養液及びTTCC2122株の培養液の噴霧処理群では、灰色かび病の発病抑制効果がみられた。その効果はやや弱いものであったが、これは、花弁表面が疎水性であることから、培養液が一様に広がらないことが原因であるものと推察された。灰色かび病菌による感染行動を観察したところ、TTCC2111株の培養液及びTTCC2122株の培養液の噴霧処理群では、発芽菌糸の伸長が抑制されていることが確認された(図示せず)。よって、培養液の組成及び処理方法を改善することで、灰色かび病の発病抑制効果を向上できるものと考えられる。 As shown in Figure 4, the group sprayed with culture solution from strain TTCC2111 and culture solution from strain TTCC2122 showed a disease suppression effect on gray mold. The effect was somewhat weak, but this was presumably due to the fact that the culture solution did not spread evenly due to the hydrophobic nature of the petal surface. When the infection behavior of the gray mold fungus was observed, it was confirmed that the extension of germinating hyphae was suppressed in the group sprayed with culture solution from strain TTCC2111 and culture solution from strain TTCC2122 (not shown). Therefore, it is believed that the disease suppression effect on gray mold can be improved by improving the composition of the culture solution and the treatment method.

[実施例6]
(納豆菌培養液のキュウリうどんこ病に対する発病抑制効果確認試験)
実施例4と同様の方法を用いて、TTCC2111株の培養液及びTTCC2122株の培養液(各菌体濃度:1×10cells/mL)を調製した。次いで、2週齢のキュウリ苗の子葉に培養液をそのまま噴霧処理した。各培養液の噴霧量は、子葉全体が培養液で覆われるまで行った。コントロールには、培養液の代わりに滅菌水を噴霧処理した。噴霧処理から24時間後に、うどんこ病菌の胞子を絵筆で処理葉全体に乗せて、接種を行った。接種後のキュウリ苗は25℃で栽培した。接種から2週間後に各子葉に発生したコロニー数及び面積を調査し、以下に示す基準によって発病指数を判定した。コロニー面積はimageJソフトを用いて計測した。
[Example 6]
(Test to confirm the effect of Bacillus subtilis culture on suppressing cucumber powdery mildew)
Using the same method as in Example 4, culture solutions of TTCC2111 strain and TTCC2122 strain (each fungus concentration: 1 x 108 cells/mL) were prepared. Next, the culture solutions were directly sprayed onto the cotyledons of 2-week-old cucumber seedlings. The amount of each culture solution sprayed was such that the entire cotyledon was covered with the culture solution. For the control, sterilized water was sprayed instead of the culture solution. 24 hours after the spraying treatment, spores of powdery mildew were placed on the entire treated leaf with a paintbrush to perform inoculation. The inoculated cucumber seedlings were cultivated at 25°C. Two weeks after the inoculation, the number and area of colonies generated on each cotyledon were investigated, and the disease index was judged according to the following criteria. The colony area was measured using imageJ software.

(基準)
0:発病なし
1:コロニーが1個以上2個以下認められる
2:コロニーが葉面積の1/4未満を占める
3:コロニーが葉面積の1/4以上1/2未満を占める
4:コロニーが葉面積の1/2以上を占める
(standard)
0: No disease 1: 1 to 2 colonies observed 2: Colonies occupy less than 1/4 of the leaf area 3: Colonies occupy 1/4 to 1/2 of the leaf area 4: Colonies occupy 1/2 or more of the leaf area

次いで、判定した発病指数に基づいて、次の式を用いて発病度を算出した。結果を図5に示す。なお、各群の調査葉数(N)は10枚である。 Then, based on the determined disease index, the disease severity was calculated using the following formula. The results are shown in Figure 5. The number of leaves surveyed (N) for each group was 10.

発病度=[Σ{(発病指数)×(葉数)}/{4×(調査葉数)}]×100 Disease severity = [Σ{(disease index) x (number of leaves)}/{4 x (number of leaves surveyed)}] x 100

図5に示すように、TTCC2111株の培養液及びTTCC2122株の培養液の噴霧処理群では、キュウリうどんこ病の発病抑制効果がみられた。特に、TTCC2122株の培養液の噴霧処理群では、キュウリうどんこ病の発病抑制効果が顕著であった。 As shown in Figure 5, the groups sprayed with the culture solution of the TTCC2111 strain and the culture solution of the TTCC2122 strain showed a disease-suppressing effect on cucumber powdery mildew. In particular, the group sprayed with the culture solution of the TTCC2122 strain showed a significant disease-suppressing effect on cucumber powdery mildew.

[実施例7]
(納豆菌培養液のキュウリうどんこ病に対する発病抑制効果確認試験2)
実施例4と同様の方法を用いて、TTCC2111株の培養液及びTTCC2122株の培養液(各菌体濃度:1×10cells/mL)を調製した。また、参考として、市販のバチルス属菌製剤の1000倍希釈液(推奨希釈率、推定菌体濃度:1×10cells/mL)も準備した。次いで、これらを用いて、実施例6と同様の方法で、キュウリうどんこ病に対する発病抑制効果確認試験を行った。各群の調査葉数(N)は10枚である。結果を図6に示す。
[Example 7]
(Test 2 to confirm the effect of Bacillus subtilis culture on the suppression of cucumber powdery mildew)
Using the same method as in Example 4, culture solutions of TTCC2111 strain and TTCC2122 strain (each with a bacterial cell concentration of 1 x 108 cells/mL) were prepared. In addition, for reference, a 1000-fold dilution of a commercially available Bacillus preparation (recommended dilution rate, estimated bacterial cell concentration: 1 x 108 cells/mL) was also prepared. Next, using these, a disease suppression effect confirmation test against cucumber powdery mildew was performed using the same method as in Example 6. The number of leaves (N) surveyed in each group was 10. The results are shown in Figure 6.

図6に示すように、TTCC2111株の培養液及びTTCC2122株の培養液の噴霧処理群では、キュウリうどんこ病の発病抑制効果がみられた。一方で、市販のバチルス属菌製剤の希釈液を噴霧処理した群では、コントロール群と比べて、大きな差が見られず、キュウリうどんこ病の発病抑制効果が確認できなかった。
また、TTCC2111株の培養液及びTTCC2122株の培養液を噴霧処理した葉、並びに、滅菌水を噴霧処理した葉(コントロール群)をFAA固定液で固定した後、キュウリうどんこ病菌の菌体をメチルブルーで染色した。これら葉におけるキュウリうどんこ病菌の発芽管を光学顕微鏡で観察したところ、TTCC2111株の培養液及びTTCC2122株の培養液の噴霧処理群では、分生子の発芽が抑制されていることが確認された(図示せず)。
以上のことから、TTCC2111株の培養液及びTTCC2122株の培養液は、キュウリうどんこ病に対する発病抑制効果を有することが示唆された。
As shown in Figure 6, the groups sprayed with the culture solution of the TTCC2111 strain and the culture solution of the TTCC2122 strain showed an inhibitory effect on the onset of powdery mildew on cucumbers. On the other hand, no significant difference was observed compared to the control group in the group sprayed with a diluted solution of a commercially available Bacillus preparation, and the inhibitory effect on the onset of powdery mildew on cucumbers could not be confirmed.
In addition, leaves sprayed with culture fluid of TTCC2111 strain and culture fluid of TTCC2122 strain, and leaves sprayed with sterilized water (control group) were fixed with FAA fixative, and the mycelium of powdery mildew was stained with methyl blue. When the germ tubes of powdery mildew in these leaves were observed under an optical microscope, it was confirmed that conidial germination was suppressed in the groups sprayed with culture fluid of TTCC2111 strain and culture fluid of TTCC2122 strain (not shown).
From the above, it was suggested that the culture solutions of the TTCC2111 strain and the TTCC2122 strain have a disease suppressing effect against cucumber powdery mildew.

[実施例8]
(納豆菌培養液及び培養上清のキュウリうどんこ病に対する発病抑制効果確認試験)
実施例4と同様の方法を用いて、得られた培養液をTTCC2122株の培養液(菌体含有、菌体濃度:1×10cells/mL)として、培養上清をTTCC2122株の培養上清(菌体不含)として用いた。また、参考として、市販のバチルス属菌製剤の1000倍希釈液(推奨希釈率、推定菌体濃度:1×10cells/mL)も準備した。次いで、2週齢のキュウリ苗の第一本葉に培養液(菌体含有)又は培養上清(菌体不含)をそのまま噴霧処理した。各処理液の噴霧量は、葉全体が培養液で覆われるまで行った。コントロールには、培養液の代わりに滅菌水を噴霧処理した。噴霧処理から24時間後及び1週間後に、うどんこ病菌の胞子を絵筆で処理葉全体に乗せて、接種を行った。接種後のキュウリ苗は25℃で栽培した。接種から2週間後に各子葉に発生したコロニー数及び面積を調査し、実施例6と同様の方法を用いて、発病度を算出した。各群の調査葉数(N)は10枚である。結果を図7に示す。
[Example 8]
(Test to confirm the inhibitory effect of Bacillus subtilis natto culture fluid and culture supernatant on cucumber powdery mildew)
Using the same method as in Example 4, the obtained culture solution was used as the culture solution of the TTCC2122 strain (containing bacteria, bacteria concentration: 1 x 10 8 cells/mL), and the culture supernatant was used as the culture supernatant of the TTCC2122 strain (containing no bacteria). In addition, for reference, a 1000-fold dilution of a commercially available Bacillus preparation (recommended dilution rate, estimated bacteria concentration: 1 x 10 8 cells/mL) was also prepared. Next, the culture solution (containing bacteria) or the culture supernatant (containing no bacteria) was directly sprayed onto the first true leaves of 2-week-old cucumber seedlings. The amount of each treatment solution sprayed was until the entire leaf was covered with the culture solution. For the control, sterilized water was sprayed instead of the culture solution. 24 hours and one week after the spraying treatment, powdery mildew spores were placed on the entire treated leaf with a paintbrush, and inoculation was performed. The inoculated cucumber seedlings were cultivated at 25°C. Two weeks after inoculation, the number and area of colonies developed on each cotyledon were examined, and the disease severity was calculated using the same method as in Example 6. The number of examined leaves (N) for each group was 10. The results are shown in Figure 7.

図7に示すように、TTCC2122株の培養液(菌体含有)及びTTCC2122株の培養上清(菌体不含)の噴霧処理群では、いずれにおいてもキュウリうどんこ病の発病抑制効果がみられた。噴霧処理から1週間後にうどんこ病菌を接種した場合も、噴霧処理から24時間後に接種した場合と同様に、キュウリうどんこ病の発病抑制効果がみられた。特に、噴霧処理から1週間後にうどんこ病菌を接種した場合において、TTCC2122株の培養上清(菌体不含)の噴霧処理群では、キュウリうどんこ病の発病抑制効果が顕著であった。 As shown in Figure 7, the group sprayed with the culture solution (containing fungus cells) of the TTCC2122 strain and the culture supernatant (not containing fungus cells) both showed an inhibitory effect on the onset of powdery mildew on cucumbers. When the powdery mildew fungus was inoculated one week after the spraying treatment, an inhibitory effect on the onset of powdery mildew on cucumbers was also observed, as in the case of inoculation 24 hours after the spraying treatment. In particular, when the powdery mildew fungus was inoculated one week after the spraying treatment, the group sprayed with the culture supernatant (not containing fungus cells) of the TTCC2122 strain showed a remarkable inhibitory effect on the onset of powdery mildew on cucumbers.

[実施例9]
(納豆菌培養液のキュウリうどんこ病に対する発病抑制効果確認試験3)
実施例4と同様の方法を用いて、TTCC2122株の培養液(菌体濃度:1×10cells/mL)を調製した。調製した培養液に滅菌水を加えて、5倍、10倍及び20倍希釈液を調製した。これらを用いて、実施例6と同様の方法で、キュウリうどんこ病に対する発病抑制効果確認試験を行った。また、防除価を次の式を用いて算出した。結果を表1に示す。
[Example 9]
(Test 3 to confirm the effect of Bacillus subtilis culture on the suppression of cucumber powdery mildew)
A culture solution of the TTCC2122 strain (cell concentration: 1 x 108 cells/mL) was prepared using the same method as in Example 4. Sterile water was added to the prepared culture solution to prepare 5-fold, 10-fold and 20-fold diluted solutions. Using these, a disease suppression effect confirmation test against cucumber powdery mildew was carried out using the same method as in Example 6. The control value was calculated using the following formula. The results are shown in Table 1.

防除価={1-(噴霧処理群での発病度の平均)/(無処理(コントロール)群での発病度の平均)}×100 Control value = {1 - (average disease severity in spray-treated group) / (average disease severity in untreated (control) group)} x 100

Figure 0007514142000001
Figure 0007514142000001

表1に示すように、TTCC2122株の培養液(原液)、5倍希釈液、10倍希釈液及び20倍希釈液の噴霧処理群において、防除価が35.5以上であり、キュウリうどんこ病の発病抑制効果がみられた。 As shown in Table 1, the control value was 35.5 or more in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, 10-fold diluted solution, and 20-fold diluted solution of TTCC2122 strain, demonstrating the effect of suppressing the onset of cucumber powdery mildew.

[実施例10]
(納豆菌培養液のキュウリ及びベゴニアでの灰色かび病に対する発病抑制効果確認試験)
実施例4と同様の方法を用いて、TTCC2122株の培養液(菌体濃度:1×10cells/mL)を調製した。調製した培養液に滅菌水を加えて、5倍、10倍及び20倍希釈液を調製した。また、参考として、市販のバチルス属菌製剤の1000倍希釈液(推奨希釈率、推定菌体濃度:1×10cells/mL)も準備した。次いで、これらを3週齢のキュウリ第一本葉及びベゴニアの切り葉にスプレーを用いて噴霧処理した。各液の噴霧量は、液が葉から滴るまで行った。コントロールには、培養液及び希釈液の代わりに滅菌水を噴霧処理した。噴霧処理後、25℃の人工気象器内で維持し、キュウリは噴霧処理から24時間後に処理葉を切り取った。これら処理葉にPSA平板培地で2日間培養したB. cinereaの菌叢プラグ(径5mm)を処理葉1枚あたり2箇所に接種した。接種葉は、イオン交換水で湿らせたペーパータオルを敷いたプラスチックボックスに入れて22℃で維持し、接種から2日後に病斑直径を測定した。試験には各処理群について3葉を用い、同様の試験を3反復行った。結果を図8(キュウリでの病斑直径)及び図9(ベゴニアでの病斑直径)に示す。
[Example 10]
(Test to confirm the effect of natto culture on suppressing gray mold disease in cucumber and begonia)
A culture solution (cell concentration: 1×10 8 cells/mL) of the TTCC2122 strain was prepared using the same method as in Example 4. Sterile water was added to the prepared culture solution to prepare 5-fold, 10-fold and 20-fold dilutions. For reference, a 1000-fold dilution (recommended dilution rate, estimated cell concentration: 1×10 8 cells/mL) of a commercially available Bacillus preparation was also prepared. These were then sprayed onto the first true leaves of 3-week-old cucumbers and cut leaves of begonias using a sprayer. The amount of each solution sprayed was until the liquid dripped from the leaves. For the control, sterilized water was sprayed instead of the culture solution and dilution solution. After spraying, the cucumbers were kept in an artificial climate chamber at 25° C., and the treated leaves were cut off 24 hours after spraying. B. difficile, which had been cultured on PSA plate medium for 2 days, was then sprayed onto these treated leaves. A mycelium plug (diameter 5 mm) of A. cinerea was inoculated into two places on each treated leaf. The inoculated leaves were kept at 22°C in a plastic box covered with paper towels moistened with ion-exchanged water, and the lesion diameter was measured two days after inoculation. Three leaves were used for each treatment group in the test, and the same test was repeated three times. The results are shown in Figure 8 (lesion diameter on cucumber) and Figure 9 (lesion diameter on begonia).

図8に示すように、TTCC2122株の培養液(原液)、5倍希釈液、10倍希釈液及び20倍希釈液の噴霧処理群では、コントロール群と比べて、病斑直径の大きさが抑えられており、キュウリ灰色かび病に対する発病抑制効果が見られた。一方で、市販のバチルス属菌製剤の希釈液を噴霧処理した群では、コントロール群と比べて、病斑直径の大きさに差が見られず、キュウリ灰色かび病に対する発病抑制効果が確認できなかった。また、TTCC2122株の培養液(原液)、5倍希釈液及び10倍希釈液の噴霧処理群において、キュウリ灰色かび病に対する発病抑制効果が特に顕著であった。 As shown in Figure 8, the lesion diameter was reduced in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, 10-fold diluted solution, and 20-fold diluted solution of the TTCC2122 strain compared to the control group, demonstrating a disease-suppressing effect against cucumber gray mold. On the other hand, in the group sprayed with a diluted solution of a commercially available Bacillus preparation, no difference was observed in the lesion diameter compared to the control group, and a disease-suppressing effect against cucumber gray mold could not be confirmed. Also, the disease-suppressing effect against cucumber gray mold was particularly remarkable in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, and 10-fold diluted solution of the TTCC2122 strain.

図9に示すように、TTCC2122株の培養液(原液)、5倍希釈液、10倍希釈液及び20倍希釈液の噴霧処理群では、コントロール群と比べて、病斑直径の大きさが抑えられており、ベゴニア灰色かび病に対する発病抑制効果が見られた。一方で、市販のバチルス属菌製剤の希釈液を噴霧処理した群では、コントロール群と比べて、病斑直径の大きさに差が見られず、ベゴニア灰色かび病に対する発病抑制効果が確認できなかった。また、TTCC2122株の培養液(原液)、5倍希釈液、10倍希釈液及び20倍希釈液の噴霧処理群いずれにおいても、ベゴニア灰色かび病に対する発病抑制効果が顕著であった。 As shown in Figure 9, the lesion diameter was reduced in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, 10-fold diluted solution, and 20-fold diluted solution of the TTCC2122 strain compared to the control group, demonstrating a disease-suppressing effect against begonia gray mold. On the other hand, in the group sprayed with a diluted solution of a commercially available Bacillus preparation, no difference was observed in the lesion diameter compared to the control group, and a disease-suppressing effect against begonia gray mold could not be confirmed. In addition, the disease-suppressing effect against begonia gray mold was remarkable in all groups sprayed with the culture solution (undiluted), 5-fold diluted solution, 10-fold diluted solution, and 20-fold diluted solution of the TTCC2122 strain.

[実施例11]
(納豆菌培養液のイチゴうどんこ病に対する発病抑制効果確認試験)
実施例4と同様の方法を用いて、TTCC2122株の培養液(菌体濃度:1×10cells/mL)を調製した。調製した培養液に滅菌水を加えて、5倍及び10倍希釈液を調製した。これらをイチゴ(品種:ローズベリーレッド)の小葉裏面にスプレーを用いて噴霧処理した。小葉はイチゴ苗の展葉後間もない(1週間から2週間程度)複葉から切り取って実験に供試した。各液の噴霧量は、小葉裏面を処理液が覆うまで行った。コントロールには、培養液及び希釈液の代わりに滅菌水を噴霧処理した。噴霧処理から24時間後に、イチゴうどんこ病罹病葉の病斑から分生胞子を絵筆で払い落とし、処理葉全体に接種を行った。接種後のイチゴ葉は湿らせた濾紙を敷いたプラスチックトレイ内に並べて密閉し、20℃、蛍光灯照明下(1日当たり12時間の照明)に維持した。接種から2週間後に葉に発生したコロニー数及び面積を実体顕微鏡下で調査し、実施例6と同様の方法で、発病度を算出し、実施例9と同様の方法で、防除価を算出した。結果を表2に示す。
[Example 11]
(Test to confirm the effect of Bacillus subtilis culture on suppressing strawberry powdery mildew)
A culture solution (cell concentration: 1×10 8 cells/mL) of the TTCC2122 strain was prepared using the same method as in Example 4. Sterile water was added to the prepared culture solution to prepare 5-fold and 10-fold diluted solutions. These were sprayed onto the underside of leaflets of strawberry (variety: Roseberry Red) using a spray. Leaflets were cut from compound leaves of strawberry seedlings shortly after leaf-expansion (about 1 to 2 weeks) and used for the experiment. The amount of each solution sprayed was until the underside of the leaflets was covered with the treatment solution. For the control, sterilized water was sprayed instead of the culture solution and the dilution solution. 24 hours after the spray treatment, conidia were brushed off from the lesions of leaves infected with strawberry powdery mildew with a paintbrush, and the entire treated leaves were inoculated. The inoculated strawberry leaves were arranged in a plastic tray covered with moist filter paper, sealed, and maintained at 20° C. under fluorescent lighting (12 hours of lighting per day). Two weeks after the inoculation, the number and area of colonies developed on the leaves were examined under a stereomicroscope, and the disease severity was calculated in the same manner as in Example 6, and the control titer was calculated in the same manner as in Example 9. The results are shown in Table 2.

Figure 0007514142000002
Figure 0007514142000002

表2に示すように、TTCC2122株の培養液(原液)、5倍希釈液及び10倍希釈液の噴霧処理群において、防除価が54.2以上であり、十分なイチゴうどんこ病の発病抑制効果がみられた。 As shown in Table 2, the control value was 54.2 or more in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, and 10-fold diluted solution of TTCC2122 strain, demonstrating sufficient disease suppression effect against strawberry powdery mildew.

また、各処理群の葉の裏面を実体顕微鏡で観察したところ、5倍希釈液の噴霧処理群及び10倍希釈液の噴霧処理群の葉面には毛茸の下にうどんこ病菌のコロニーが観察できるが、それらは、滅菌水の噴霧処理群(コントロール群)で見られるコロニーよりも菌糸密度が低いことが明らかとなった(図示せず)。 Furthermore, when the undersides of the leaves in each treatment group were observed under a stereomicroscope, colonies of powdery mildew fungi could be observed under the trichomes on the leaf surfaces of the groups sprayed with a 5-fold dilution and the groups sprayed with a 10-fold dilution, but it was clear that these had a lower mycelial density than the colonies seen in the group sprayed with sterilized water (control group) (not shown).

[実施例12]
(納豆菌培養液のピーマンうどんこ病に対する発病抑制効果確認試験)
実施例4と同様の方法を用いて、TTCC2122株の培養液(菌体濃度:1×10cells/mL)を調製した。調製した培養液に滅菌水を加えて、5倍及び10倍希釈液を調製した。これらをピーマンうどんこ病菌に感受性であるシシトウ葉の裏面にスプレーを用いて噴霧処理した。シシトウの葉は播種後8週齢の苗から切り取って実験に供試した。各液の噴霧量は、葉面を処理液が覆うまで行った。コントロールには、培養液及び希釈液の代わりに滅菌水を噴霧処理した。噴霧処理から24時間後に、ピーマンうどんこ病罹病葉の病斑から分生胞子を絵筆でかき取り、処理葉全体になすりつけて接種を行った。接種後のシシトウ葉は湿らせた濾紙を敷いたプラスチックトレイ内に並べて密閉し、21℃、蛍光灯照明下(1日当たり12時間の照明)に維持した。接種から3週間後に葉に発生したコロニー数及び面積を実体顕微鏡下で調査し、実施例6と同様の方法で、発病度を算出し、実施例9と同様の方法で、防除価を算出した。結果を表3に示す。
[Example 12]
(Test to confirm the effect of Bacillus subtilis culture on suppressing the development of powdery mildew on peppers)
A culture solution (cell concentration: 1×10 8 cells/mL) of the TTCC2122 strain was prepared using the same method as in Example 4. Sterile water was added to the prepared culture solution to prepare 5-fold and 10-fold diluted solutions. These were sprayed onto the underside of sweet pepper leaves, which are susceptible to bell pepper powdery mildew, using a spray. The sweet pepper leaves were cut from seedlings 8 weeks after sowing and used in the experiment. The amount of each solution sprayed was such that the leaf surface was covered with the treatment solution. For the control, sterilized water was sprayed instead of the culture solution and the dilution solution. 24 hours after the spray treatment, conidia were scraped off from the lesions of the sweet pepper powdery mildew-infected leaves with a paintbrush and rubbed over the entire treated leaves for inoculation. The inoculated sweet pepper leaves were arranged in a plastic tray covered with moist filter paper, sealed, and maintained at 21° C. under fluorescent lighting (12 hours of lighting per day). Three weeks after inoculation, the number and area of colonies developed on the leaves were examined under a stereomicroscope, and the disease severity was calculated in the same manner as in Example 6, and the control value was calculated in the same manner as in Example 9. The results are shown in Table 3.

Figure 0007514142000003
Figure 0007514142000003

表3に示すように、TTCC2122株の培養液(原液)及び5倍希釈液の噴霧処理群において、防除価が38.6以上であり、ピーマンうどんこ病の発病抑制効果がみられた。一方で、10倍希釈液の噴霧処理群では、ピーマンうどんこ病の発病抑制効果がみられなかった。 As shown in Table 3, the control value was 38.6 or more in the group sprayed with the culture solution (undiluted) and 5-fold diluted solution of TTCC2122 strain, and the disease suppression effect on pepper powdery mildew was observed. On the other hand, the disease suppression effect on pepper powdery mildew was not observed in the group sprayed with the 10-fold diluted solution.

また、各処理群の葉の裏面を実体顕微鏡で観察したところ、各処理群に形成されたコロニーに顕著な違いは見られなかった(図示せず)。これは、他のうどんこ病菌が表面寄生性であるのに対し、本菌が内部寄生性であるためと推察された。 Furthermore, when the undersides of the leaves in each treatment group were observed under a stereomicroscope, no significant differences were found in the colonies formed in each treatment group (not shown). This was presumably because this fungus is endoparasitic, whereas other powdery mildew fungi are surface parasitic.

[実施例13]
(納豆菌培養液のトマトうどんこ病に対する発病抑制効果確認試験)
実施例4と同様の方法を用いて、TTCC2122株の培養液(菌体濃度:1×10cells/mL)を調製した。調製した培養液に滅菌水を加えて、5倍及び10倍希釈液を調製した。これらを3週齢のトマト(品種:ポンテローザ)の本葉にスプレーを用いて噴霧処理した。各液の噴霧量は、葉面を処理液が覆うまで行った。コントロールには、培養液及び希釈液の代わりに滅菌水を噴霧処理した。噴霧処理から24時間後に、トマトうどんこ病罹病葉の病斑から分生胞子を絵筆でかき取り、処理葉全体になすりつけて接種を行った。接種後のトマト苗は25℃で栽培した。接種から10日後に葉に発生したコロニー数及び面積を実体顕微鏡下で調査し、実施例6と同様の方法で、発病度を算出し、実施例9と同様の方法で、防除価を算出した。結果を表4に示す。
[Example 13]
(Test to confirm the effect of Bacillus subtilis culture on the suppression of tomato powdery mildew)
A culture solution (cell concentration: 1×10 8 cells/mL) of the TTCC2122 strain was prepared using the same method as in Example 4. Sterile water was added to the prepared culture solution to prepare 5-fold and 10-fold diluted solutions. These were sprayed onto the primary leaves of 3-week-old tomatoes (variety: Ponterosa) using a sprayer. The amount of each solution was sprayed until the leaf surface was covered with the treatment solution. For the control, sterilized water was sprayed instead of the culture solution and the dilution solution. 24 hours after the spray treatment, conidia were scraped off from the lesions of the tomato powdery mildew-infected leaves with a paintbrush and rubbed onto the entire treated leaves for inoculation. The tomato seedlings after inoculation were cultivated at 25° C. Ten days after inoculation, the number and area of colonies occurring on the leaves were examined under a stereomicroscope, the disease severity was calculated using the same method as in Example 6, and the control value was calculated using the same method as in Example 9. The results are shown in Table 4.

Figure 0007514142000004
Figure 0007514142000004

表4に示すように、TTCC2122株の培養液(原液)、5倍希釈液及び10倍希釈液の噴霧処理群において、防除価が36.4以上であり、トマトうどんこ病の発病抑制効果がみられた。 As shown in Table 4, the control value was 36.4 or more in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, and 10-fold diluted solution of TTCC2122 strain, demonstrating the effect of suppressing the onset of tomato powdery mildew.

また、各処理群の接種葉の表面におけるトマトうどんこ病菌の分生子及び菌糸の形態を目視で観察したところ、TTCC2122株の培養液(原液)の噴霧処理群ではコントロール群と比べて顕著な発芽抑制効果が見られた(図示せず)。また、5倍希釈液の噴霧処理群では、コントロール群に比べてコロニーを形成する菌糸の密度が薄くなっていた(図示せず)。10倍希釈液の噴霧処理群ではコントロール群との差異は見られなかった(図示せず)。 In addition, visual observation of the morphology of conidia and hyphae of tomato powdery mildew on the surface of inoculated leaves in each treatment group revealed that the group sprayed with culture solution (undiluted) of TTCC2122 strain showed a significant germination inhibitory effect compared to the control group (not shown). In addition, the group sprayed with a 5-fold diluted solution showed a lower density of hyphae forming colonies compared to the control group (not shown). No difference was observed between the group sprayed with a 10-fold diluted solution and the control group (not shown).

[実施例14]
(納豆菌培養液のナスうどんこ病に対する発病抑制効果確認試験)
実施例4と同様の方法を用いて、TTCC2122株の培養液(菌体濃度:1×10cells/mL)を調製した。調製した培養液に滅菌水を加えて、5倍及び10倍希釈液を調製した。これらを3週齢のナス(品種:千両二号)の本葉にスプレーを用いて噴霧処理した。各液の噴霧量は、葉面を処理液が覆うまで行った。コントロールには、培養液及び希釈液の代わりに滅菌水を噴霧処理した。噴霧処理から24時間後にナスうどんこ病罹病葉の病斑から分生胞子を絵筆でかき取り、処理葉全体になすりつけて接種を行った。接種後のナス苗は25℃で栽培した。接種から10日後に葉に発生したコロニー数及び面積を調査し、実施例6と同様の方法で、発病度を算出し、実施例9と同様の方法で、防除価を算出した。結果を表5に示す。
[Example 14]
(Test to confirm the effect of Bacillus subtilis culture solution on suppressing eggplant powdery mildew)
A culture solution (cell concentration: 1×10 8 cells/mL) of the TTCC2122 strain was prepared using the same method as in Example 4. Sterile water was added to the prepared culture solution to prepare 5-fold and 10-fold diluted solutions. These were sprayed onto the primary leaves of 3-week-old eggplants (variety: Senryo 2-go) using a sprayer. The amount of each solution was sprayed until the leaf surface was covered with the treatment solution. For the control, sterilized water was sprayed instead of the culture solution and the dilution solution. 24 hours after the spray treatment, conidia were scraped off from the lesions of the eggplant powdery mildew-infected leaves with a paintbrush and rubbed over the entire treated leaves for inoculation. The inoculated eggplant seedlings were cultivated at 25° C. 10 days after inoculation, the number and area of colonies occurring on the leaves were investigated, the disease severity was calculated using the same method as in Example 6, and the control value was calculated using the same method as in Example 9. The results are shown in Table 5.

Figure 0007514142000005
Figure 0007514142000005

表5に示すように、TTCC2122株の培養液(原液)、5倍希釈液及び10倍希釈液の噴霧処理群において、防除価が25.4以上であり、ナスうどんこ病の発病抑制効果がみられた。 As shown in Table 5, the control value was 25.4 or more in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, and 10-fold diluted solution of TTCC2122 strain, demonstrating the effect of suppressing the onset of eggplant powdery mildew.

また、各処理群の接種葉の表面におけるナスうどんこ病菌の分生子及び菌糸の形態を目視で観察したところ、ナスうどんこ病菌は他のうどんこ病菌に比べて感染率が低く、コロニーも他に比べて進展しないものであった。また、TTCC2122株の培養液(原液)、5倍希釈液及び10倍希釈液の噴霧処理群において、ナスうどんこ病の発病抑制効果は見られたものの、これまで検定した他の植物種のうどんこ病菌に対する発病抑制効果に比べて低く見えた。これは、上述したように、ナスうどんこ病菌は他のうどんこ病菌に比べて感染率が低いことから、コントロール群との差異が見にくかったためであると推察された。 In addition, visual observation of the morphology of conidia and hyphae of eggplant powdery mildew on the surface of inoculated leaves in each treatment group revealed that the infection rate of eggplant powdery mildew was lower than that of other powdery mildew fungi, and colonies did not develop as well as other fungi. In addition, although the effect of suppressing eggplant powdery mildew was observed in the groups sprayed with the culture solution (undiluted), 5-fold diluted solution, and 10-fold diluted solution of TTCC2122 strain, it appeared to be lower than the effect of suppressing disease on powdery mildew fungi of other plant species that have been tested so far. This is presumably because, as mentioned above, eggplant powdery mildew has a lower infection rate than other powdery mildew fungi, making it difficult to see the difference from the control group.

以上のことから、TTCC2111株及びTTCC2122株は、各種植物病害に対する防除効果を有することが明らかとなった。 From the above, it has become clear that strains TTCC2111 and TTCC2122 have a control effect against various plant diseases.

本実施形態の植物病害防除剤及び植物病害防除方法によれば、植物病害を有効に防除することができる。 The plant disease control agent and plant disease control method of this embodiment can effectively control plant diseases.

Claims (5)

バチルス・エスピー(Bacillus sp.)TTCC2111株(NITE P-03227)及びバチルス・エスピー(Bacillus sp.)TTCC2122株(NITE P-03228)からなる群より選択される1種以上の枯草菌の菌体又は培養物を有効成分として含有する、植物病害防除剤。 A plant disease control agent containing as an active ingredient one or more types of Bacillus subtilis cells or cultures selected from the group consisting of Bacillus sp. TTCC2111 strain (NITE P-03227) and Bacillus sp. TTCC2122 strain (NITE P-03228). 植物病害が、灰色かび病、緑かび病、青かび病及びうどんこ病からなる群より選択される、請求項1に記載の植物病害防除剤。 The plant disease control agent according to claim 1, wherein the plant disease is selected from the group consisting of gray mold, green mold, blue mold, and powdery mildew. 請求項1又は2に記載の植物病害防除剤を対象植物に施用することを含む、植物病害防除方法。 A method for controlling plant diseases, comprising applying the plant disease control agent according to claim 1 or 2 to a target plant. バチルス・エスピー(Bacillus sp.)TTCC2111株(NITE P-03227)。 Bacillus sp. TTCC2111 strain (NITE P-03227). バチルス・エスピー(Bacillus sp.)TTCC2122株(NITE P-03228)。 Bacillus sp. TTCC2122 strain (NITE P-03228).
JP2020137542A 2020-08-17 2020-08-17 Plant disease control agent and plant disease control method Active JP7514142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020137542A JP7514142B2 (en) 2020-08-17 2020-08-17 Plant disease control agent and plant disease control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020137542A JP7514142B2 (en) 2020-08-17 2020-08-17 Plant disease control agent and plant disease control method

Publications (2)

Publication Number Publication Date
JP2022033569A JP2022033569A (en) 2022-03-02
JP7514142B2 true JP7514142B2 (en) 2024-07-10

Family

ID=80375415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020137542A Active JP7514142B2 (en) 2020-08-17 2020-08-17 Plant disease control agent and plant disease control method

Country Status (1)

Country Link
JP (1) JP7514142B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079580A1 (en) 2004-02-23 2005-09-01 Nippon Soda Co., Ltd. Pland disease controlling composition and microorganism
WO2012161160A1 (en) 2011-05-26 2012-11-29 株式会社エス・ディー・エス バイオテック Strain belonging to bacillus genus, microbiological agent, and plant cultivation method
WO2015056666A1 (en) 2013-10-17 2015-04-23 出光興産株式会社 Novel microorganism and use thereof
JP2019201598A (en) 2018-05-24 2019-11-28 多木化学株式会社 Novel bacillus bacterial strain
JP2022501395A (en) 2018-09-28 2022-01-06 エフ エム シー コーポレーションFmc Corporation Bacillus amyloliquefaciens FCC1256 composition and method for controlling phytopathogens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079580A1 (en) 2004-02-23 2005-09-01 Nippon Soda Co., Ltd. Pland disease controlling composition and microorganism
WO2012161160A1 (en) 2011-05-26 2012-11-29 株式会社エス・ディー・エス バイオテック Strain belonging to bacillus genus, microbiological agent, and plant cultivation method
WO2015056666A1 (en) 2013-10-17 2015-04-23 出光興産株式会社 Novel microorganism and use thereof
JP2019201598A (en) 2018-05-24 2019-11-28 多木化学株式会社 Novel bacillus bacterial strain
JP2022501395A (en) 2018-09-28 2022-01-06 エフ エム シー コーポレーションFmc Corporation Bacillus amyloliquefaciens FCC1256 composition and method for controlling phytopathogens

Also Published As

Publication number Publication date
JP2022033569A (en) 2022-03-02

Similar Documents

Publication Publication Date Title
US10273445B2 (en) Isolated strain of Clonostachys rosea for use as a biological control agent
RU2127521C1 (en) Actinomyces strain streptomyces lydicus for plant protection against fungal infection, composition for plant protection against fungal infection (variants), method of decrease of sensitivity of plant to fungal infection (variants)
RU2143199C1 (en) Composition and method of control of plant sicknesses
JP2016534737A5 (en)
MX2015001976A (en) Bacillus sp. strain with antifungal, antibacterial and growth promotion activity.
US20100234224A1 (en) Compositions of increasing microbial populations on surfaces and their uses
RU2653885C2 (en) Composition for plant processing containing dispersed calcium silicate and clonostachys rosea and its application
AU2015289827A1 (en) Clonostachys rosea inoculated plant materials with fungicides and adjuvants
CA2296943A1 (en) Biological control of purple loosestrife
RU2689530C2 (en) Novel bacteria of bacillus kind and using thereof
JPH10109913A (en) Agricultural and horticultural fungicide composition
JP4090197B2 (en) Microbial pesticides
JP2929497B2 (en) Trichoderma sp-35 / 84, fungicide, and method for controlling fungi
EP1774854A1 (en) Microbial pesticide inhibiting the outbreak of plant disease damage
CN111094544B (en) Bacterial strain belonging to genus Sonchus and microbial pesticide using the same
JP3554592B2 (en) Bacillus spore fraction and plant disease control method using the spore fraction
JP7514142B2 (en) Plant disease control agent and plant disease control method
JPH08175920A (en) Agro-horticultural fungicide composition
JP2004143102A (en) Microbial preparations containing actinomycetes
JP2010070538A (en) Controlling agent for plant disease injury
WO2008032693A1 (en) Material for control of soil-borne disease in plant utilizing novel filamentous bacterium
JP5001518B2 (en) Plant disease control agent using Fusarium strain and control method using the same
CN117165463A (en) Siamese bacillus, bacillus belicus, serratia marcescens, microbial agent, pesticide and application thereof
CN117126757A (en) Serratia marcescens, microbial agent, pesticide and application thereof
JP2003277211A (en) Plant disease controlling agent comprising genus pseudomonas bacteria and controlling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240628

R150 Certificate of patent or registration of utility model

Ref document number: 7514142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150