JP7513858B1 - Seismic control structure - Google Patents
Seismic control structure Download PDFInfo
- Publication number
- JP7513858B1 JP7513858B1 JP2024059238A JP2024059238A JP7513858B1 JP 7513858 B1 JP7513858 B1 JP 7513858B1 JP 2024059238 A JP2024059238 A JP 2024059238A JP 2024059238 A JP2024059238 A JP 2024059238A JP 7513858 B1 JP7513858 B1 JP 7513858B1
- Authority
- JP
- Japan
- Prior art keywords
- wooden
- section
- rigidity
- rigid frame
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000002955 isolation Methods 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 description 21
- 239000010959 steel Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 14
- 239000004567 concrete Substances 0.000 description 7
- 239000002023 wood Substances 0.000 description 7
- 239000011150 reinforced concrete Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
【課題】建物内の空間の有効利用につながる制震架構等を提供する。【解決手段】制震架構1は木質架構部2と高剛性架構部3を有する。木質架構部2は木質材を用いて形成され、構面を平面のx方向としたラーメン架構20を備える。高剛性架構部3は、構面をx方向としたラーメン架構30を備え、木質架構部2よりもx方向における剛性が高い。平面視でy方向に離隔した木質架構部2のラーメン架構20と高剛性架構部3のラーメン架構30とが、水平方向に設けられた水平ダンパ4を介して接続され、水平ダンパ4により、x方向の振動を、木質架構部2と高剛性架構部3のx方向の変位差を利用して吸収する。【選択図】図1[Problem] To provide a vibration-control structure that leads to effective use of space within a building. [Solution] Vibration-control structure 1 has a wooden structure section 2 and a high-rigidity structure section 3. Wooden structure section 2 is formed using wooden materials and includes a rigid frame structure 20 whose structural surface is in the x-direction of a plane. High-rigidity structure section 3 includes a rigid frame structure 30 whose structural surface is in the x-direction and has higher rigidity in the x-direction than wooden structure section 2. Rigid frame structure 20 of wooden structure section 2 and rigid frame structure 30 of high-rigidity structure section 3, which are separated in the y-direction in a plan view, are connected via a horizontal damper 4 installed in the horizontal direction, and horizontal damper 4 absorbs vibrations in the x-direction by utilizing the difference in displacement in the x-direction between wooden structure section 2 and high-rigidity structure section 3. [Selected Figure] Figure 1
Description
本発明は、制震架構等に関する。 The present invention relates to seismic control structures, etc.
木構造は、地球温暖化対策としてCO2排出量を削減するための手段として有効であり、木材を現しにして意匠性を向上させることもできる。ただし、剛性や耐力が小さいことから、従来木構造を大規模建築に適用するのは困難であった。しかしながら、昨今、大規模集成材が普及してきたことから、木構造が大規模建築に適用され始めており、その一例として、木質柱と木質梁を門型に組み合わせた木質ラーメン架構がある(例えば特許文献1など)。 Wooden structures are effective as a means of reducing CO2 emissions as a measure against global warming, and can also improve design by exposing the wood. However, due to their low rigidity and strength, it has traditionally been difficult to apply wooden structures to large-scale buildings. However, with the recent spread of large-scale laminated timber, wooden structures have begun to be applied to large-scale buildings, and one example is a wooden rigid frame structure that combines wooden columns and wooden beams in a gate shape (for example, Patent Document 1, etc.).
しかしながら、木質ラーメン架構は、RC造(鉄筋コンクリート造)やS造(鉄骨造)と比べて剛性や耐力が小さいため、建物の耐震要素として合理的かつ有効に活用するのが困難である。そのため、柱本数を増やしたり部材の断面を大きくしたりといった方策が採られているのが実情であり、これらの対策を講じる結果、建物内で柱や梁の占める部分が大きくなり、有効利用できる建物内の空間を減らしてしまう。 However, because wooden rigid frame structures have less rigidity and strength than RC (reinforced concrete) or S (steel frame) construction, it is difficult to rationally and effectively use them as earthquake-resistant elements in buildings. For this reason, measures such as increasing the number of columns and enlarging the cross-sections of components are currently adopted, but as a result of taking these measures, the area occupied by columns and beams inside the building increases, reducing the amount of space that can be effectively used inside the building.
本発明は上記の問題に鑑みてなされたものであり、建物内の空間の有効利用につながる制震架構等を提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a seismic control structure etc. that leads to effective use of the space inside a building.
前述した課題を解決するための第1の発明は、構面を平面の一方向としたラーメン架構を備える、木質材を用いて形成された木質架構部と、構面を前記一方向としたラーメン架構を備える、前記木質架構部よりも前記一方向における剛性が高い高剛性架構部と、を有し、平面視で前記一方向とは異なる方向に離隔した前記木質架構部の前記ラーメン架構と前記高剛性架構部の前記ラーメン架構とが、水平方向に設けられた水平ダンパを介して接続され、前記水平ダンパにより、前記一方向の振動を、前記木質架構部と前記高剛性架構部の前記一方向の変位差を利用して吸収することを特徴とする制震架構である。 The first invention for solving the above-mentioned problems is a seismic control structure that has a wooden structure section formed using wooden materials and that has a rigid frame structure with a structural surface in one direction in a plane, and a high-rigidity structure section that has a rigid frame structure with a structural surface in the one direction and has a higher rigidity in the one direction than the wooden structure section, and the rigid frame structure of the wooden structure section and the rigid frame structure of the high-rigidity structure section are separated in a direction different from the one direction in a plan view, and are connected via a horizontal damper installed in the horizontal direction, and the horizontal damper absorbs vibrations in the one direction by utilizing the displacement difference in the one direction between the wooden structure section and the high-rigidity structure section.
本発明では、上記構成により、木質材を使用して環境面等に優れた建物を実現しつつ、木質材を用いたラーメン架構の弱点である低剛性・低耐力を逆に利用した水平ダンパによる制震架構とすることで、建物全体の耐震安全性を高めることができる。そのため、木質材を用いたラーメン架構の剛性や耐力の低さを補うために、柱を増やしたり、柱や梁の部材サイズを大きくしたり、耐震壁や鉛直ブレースを追加配置したりする必要が無く、建物内の空間の有効利用につながる。 In the present invention, the above-mentioned configuration allows for the use of wooden materials to create a building that is environmentally friendly, while at the same time improving the seismic safety of the entire building by using horizontal dampers to take advantage of the weaknesses of wooden rigid frame structures, namely their low rigidity and low strength. Therefore, there is no need to increase the number of columns, increase the size of the columns and beams, or add seismic walls or vertical braces to compensate for the low rigidity and strength of wooden rigid frame structures, which leads to more effective use of the space within the building.
前記木質架構部は、例えば建物の外周部に配置される。
これにより、建物のファサードを形成する構面に木質架構部を配置して建物の意匠性を向上させると共に、そのラーメン架構を構造部材としても有効に活用することができる。
The wooden frame section is arranged, for example, on the outer periphery of a building.
This allows the wooden structural components to be placed on the structural surfaces that form the building's facade, improving the design of the building, while also making effective use of the rigid frame structure as a structural member.
前記水平ダンパは、平面視において前記木質架構部の前記ラーメン架構と前記高剛性架構部の前記ラーメン架構の間で、床版の下に設けられることが望ましい。前記床版は、少なくとも前記木質架構部の前記ラーメン架構と前記高剛性架構部の前記ラーメン架構のいずれかに対して縁が切られている。
本発明では水平ダンパを床(または天井)の床版下に設けることで、建物の空間利用を阻害することが無く、建築空間をより自由に活用でき建築意匠の自由度も高めることが可能となる。また上記のように床版とラーメン架構との縁を切ることで、ラーメン架構同士の相対変位が床版によって阻害されるのを防ぐことができる。
The horizontal damper is preferably provided under the floor slab between the rigid frame of the wooden frame section and the rigid frame of the high-rigidity frame section in a plan view. The floor slab is edged with at least one of the rigid frame of the wooden frame section and the rigid frame of the high-rigidity frame section.
In this invention, by installing the horizontal damper under the floor (or ceiling) slab, the building space can be utilized more freely and the freedom of architectural design can be increased without impeding the spatial utilization of the building. Also, by cutting the edge between the floor slab and the rigid frame as described above, the relative displacement between the rigid frame structures can be prevented from being impeded by the floor slab.
前記木質架構部または前記高剛性架構部で設けられる床版が二重床となっており、上部床と下部床の間に免震装置とダンパが設けられることも望ましい。
これにより、建物の振動をさらに吸収でき、木質架構部に要求される剛性や耐力をさらに低減できる。
It is also preferable that the floor slab provided by the wooden frame section or the high-rigidity frame section is a double floor, and that a seismic isolation device and a damper are provided between the upper and lower floors.
This allows the vibrations of the building to be further absorbed, and the rigidity and strength required for the wooden structure can be further reduced.
前記水平ダンパは水平ブレースダンパであり、平面視において前記木質架構部の前記ラーメン架構と前記高剛性架構部の前記ラーメン架構の間で斜めに配置されることが望ましい。
これにより、簡易且つ省スペースな構成の水平ダンパで振動を吸収することができる。
It is desirable that the horizontal damper is a horizontal brace damper and is arranged diagonally between the rigid frame of the wood frame section and the rigid frame of the high-rigidity frame section in a plan view.
This allows vibrations to be absorbed by a horizontal damper having a simple and space-saving configuration.
本発明により、建物内の空間の有効利用につながる制震架構等を提供することができる。 This invention makes it possible to provide a seismic control structure that leads to effective use of the space inside a building.
以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 The following describes in detail a preferred embodiment of the present invention with reference to the drawings.
図1は本発明の実施形態に係る制震架構1の概略を示す図である。図1(a)は制震架構1の平面の概略図であり、図1(b)は図1(a)の制震架構1を矢印Iに示す方向から見た正面の概略図である。 Figure 1 is a diagram showing an outline of a vibration-damping structure 1 according to an embodiment of the present invention. Figure 1(a) is a schematic diagram of a plan view of the vibration-damping structure 1, and Figure 1(b) is a schematic diagram of a front view of the vibration-damping structure 1 in Figure 1(a) as seen from the direction indicated by the arrow I.
図1に示すように、制震架構1は建物の地上階の架構であり、木質架構部2と高剛性架構部3とを有する。 As shown in Figure 1, the seismic isolation structure 1 is a structure for the ground floor of a building, and has a wooden structure section 2 and a high-rigidity structure section 3.
木質架構部2は、木質材を用いて形成された架構であり、建物の外周部に配置される。木質架構部2は、構面を平面の一方向としたラーメン架構20を備える。図1の例では、上記方向がx方向(図1(a)の左右方向)に対応する。ラーメン架構20は、隣り合う柱21の頂部同士を梁22により接続した門型の架構からなり、柱21と梁22は木質材を用いて形成され、建物の各フロアに対応する高さで配置される。木質架構部2は、高剛性架構部3を挟んで一対配置される。木質架構部2は、建物のファサードに当たる位置に配置されることで、建物に優れた意匠性を与える。 The wooden frame 2 is a frame made of wooden materials and is arranged on the periphery of the building. The wooden frame 2 has a rigid frame 20 with a structural surface in one direction on the plane. In the example of FIG. 1, the direction corresponds to the x direction (left and right direction in FIG. 1(a)). The rigid frame 20 is a gate-shaped frame in which the tops of adjacent columns 21 are connected by beams 22, and the columns 21 and beams 22 are made of wooden materials and arranged at a height corresponding to each floor of the building. The wooden frame 2 is arranged in pairs, sandwiching the high-rigidity frame 3. The wooden frame 2 is arranged at a position that hits the facade of the building, giving the building excellent design.
ラーメン架構20の柱21と梁22は、上記のように木質材を用いたものであり、その全体を木質材とするものの他、木質材とコンクリートや鉄骨などとの合成構造で表面の仕上げを木質材としたものでもよい。木質材は特に限定されないが、集成材や構造用合板、CLT(Cross Laminated Timber)やLVL(Laminated Veneer Lumber)などを用いることができる。ラーメン架構20における柱21と梁22の接合方法も特に限定されず、剛接合、ピン接合、またはそれらの併用とすることができる。 The columns 21 and beams 22 of the rigid frame structure 20 are made of wood as described above. In addition to being made entirely of wood, the structure may also be a composite structure of wood with concrete or steel frames, with the surface finished with wood. There are no particular limitations on the wood material, but laminated lumber, structural plywood, CLT (Cross Laminated Timber), LVL (Laminated Veneer Lumber), etc. can be used. There are also no particular limitations on the method of joining the columns 21 and beams 22 in the rigid frame structure 20, and they can be rigid joints, pin joints, or a combination of both.
高剛性架構部3は、建物の外周部の内側のコア部分に配置された高剛性の架構であり、構面を前記のx方向としたラーメン架構30を備える。ラーメン架構30は、柱31と梁32による門型の架構からなり、前記した一対の木質架構部2のラーメン架構20の内側にそれぞれ配置される。図1では高剛性架構部3がグレーで示されている。後述の図3、図5~8においても同様である。 The high-rigidity structural section 3 is a high-rigidity structural section arranged in the core part inside the perimeter of the building, and includes a rigid frame structure 30 whose structural surface is in the x-direction. The rigid frame structure 30 is a gate-shaped structure made of columns 31 and beams 32, and is arranged inside the rigid frame structures 20 of the pair of wooden structural sections 2. In Figure 1, the high-rigidity structural section 3 is shown in gray. This is the same in Figures 3 and 5 to 8 described below.
木質架構部2のラーメン架構20と高剛性架構部3のラーメン架構30は、前記のx方向と異なるy方向(図1(a)の上下方向)に離隔し、ラーメン架構30の柱31と、その外側のラーメン架構20の柱21とは、y方向の梁32によって連結される。以下、ラーメン架構20において隣り合う柱21と、これらの柱21と連結されるラーメン架構30の柱31で囲まれた矩形状の平面範囲aを「区画」ということがある。またx方向とy方向は平面において直交する。 The rigid frame structure 20 of the wooden structure section 2 and the rigid frame structure 30 of the high-rigidity structure section 3 are separated in the y direction (the up-down direction in FIG. 1(a)), which is different from the x direction, and the columns 31 of the rigid frame structure 30 and the columns 21 of the rigid frame structure 20 on the outside are connected by beams 32 in the y direction. Hereinafter, the rectangular planar area a surrounded by adjacent columns 21 in the rigid frame structure 20 and the columns 31 of the rigid frame structure 30 connected to these columns 21 may be referred to as a "section." The x direction and the y direction are also perpendicular on the plane.
高剛性架構部3のx方向における剛性は、木質架構部2よりも高い。その限りにおいて高剛性架構部3の構造形式は特に限定されず、柱31や梁32は木質材を用いないRC造やS造などとでき、柱31をRC造、梁32をS造とするなどしてこれらの構造形式を組み合わせてもよい。また柱31や梁32に木質材を用いてもよい。なお、S造には、柱31をCFT柱(コンクリート充填鋼管柱)とすることも含まれる。また、剛性の高低は、連続する一纏まりの木質架構部2を独立して見た時の剛性と、連続する一纏まりの高剛性架構部3を独立して見た時の剛性との比較によるものである。 The rigidity of the high-rigidity structural section 3 in the x-direction is higher than that of the wooden structural section 2. To that extent, the structural type of the high-rigidity structural section 3 is not particularly limited, and the columns 31 and beams 32 can be made of reinforced concrete or steel without using wooden materials, or a combination of these structural types can be used, such as making the columns 31 reinforced concrete and the beams 32 steel. Wooden materials can also be used for the columns 31 and beams 32. Note that steel construction also includes making the columns 31 into CFT columns (concrete-filled steel pipe columns). The level of rigidity is determined by comparing the rigidity of the continuous wooden structural section 2 when viewed independently with the rigidity of the continuous high-rigidity structural section 3 when viewed independently.
高剛性架構部3のラーメン架構30と、その外側の木質架構部2のラーメン架構20とは、水平方向に設けられた水平ダンパ4を介して接続される。水平ダンパ4により、平面のx方向の建物の振動を、木質架構部2と高剛性架構部3のx方向の変位差を利用して吸収することができる。 The rigid frame structure 30 of the high-rigidity structural section 3 and the rigid frame structure 20 of the wooden structural section 2 on the outside are connected via a horizontal damper 4 installed in the horizontal direction. The horizontal damper 4 can absorb vibrations of the building in the x-direction of the plane by utilizing the difference in displacement in the x-direction between the wooden structural section 2 and the high-rigidity structural section 3.
図2は、図1(a)の位置Aにおける水平ダンパ4の取付例を示す図である。水平ダンパ4は、1フロア分のラーメン架構20、30の上階の床となる床版6の下方で、平面視でラーメン架構20、30の間に設けられる。本実施形態では、平面積は大きいが高さが確保できない床下空間に設ける水平ダンパ4として、水平ブレースダンパが用いられる。水平ブレースダンパとしては、オイルダンパ、鋼製ダンパなどを用いることができる。ただし、水平ダンパ4としては、粘性壁ダンパを水平方向に配置して用いるなど水平ブレースダンパ以外のダンパを適用することもできる。 Figure 2 is a diagram showing an example of mounting the horizontal damper 4 at position A in Figure 1 (a). The horizontal damper 4 is installed between the rigid frame structures 20, 30 in plan view, below the floor slab 6 that forms the floor of the floor above the rigid frame structures 20, 30 for one floor. In this embodiment, a horizontal brace damper is used as the horizontal damper 4 to be installed in the underfloor space, which has a large planar area but cannot ensure height. As the horizontal brace damper, an oil damper, a steel damper, or the like can be used. However, as the horizontal damper 4, a damper other than a horizontal brace damper, such as a viscous wall damper arranged horizontally, can also be used.
図1(a)に示すように、水平ダンパ4(水平ブレースダンパ)は平面視でx方向およびy方向に対して斜めに配置される。 As shown in FIG. 1(a), the horizontal damper 4 (horizontal brace damper) is arranged diagonally with respect to the x and y directions in a plan view.
図2に示すように、水平ダンパ4の端部の接合は、例えば鋼板51とボルト(高力ボルト)52を用いて行われる。図2の梁32は、木質架構部2のラーメン架構20の柱21と高剛性架構部3のラーメン架構30の柱31を連結する梁32(y方向の梁32)であり、H形鋼による鉄骨梁となっている。そして、当該鉄骨梁のラーメン架構20側の端部から延ばした鉛直板321と、水平ダンパ4の端部の鉛直板41とが鋼板51によって表裏から挟み込まれ、これらの鋼板51がボルトやナットによる締結具52により鉛直板321、41を挟んで締め付けられる。同様に、鉄骨梁のラーメン架構20側の端部から延ばした水平板322と、水平ダンパ4の端部の水平板42が鋼板51によって表裏から挟み込まれ、これらの鋼板51が締結具52により水平板322、42を挟んで締め付けられる。 As shown in Figure 2, the end of the horizontal damper 4 is joined using, for example, a steel plate 51 and a bolt (high-strength bolt) 52. The beam 32 in Figure 2 is a beam 32 (y-direction beam 32) that connects the column 21 of the rigid frame structure 20 of the wooden frame section 2 to the column 31 of the rigid frame structure 30 of the high-rigidity frame section 3, and is a steel beam made of H-shaped steel. A vertical plate 321 extending from the end of the steel beam on the rigid frame structure 20 side and a vertical plate 41 at the end of the horizontal damper 4 are sandwiched between the steel plates 51 from the front and back, and these steel plates 51 are fastened by fasteners 52 consisting of bolts and nuts, sandwiching the vertical plates 321, 41. Similarly, the horizontal plate 322 extending from the end of the steel beam on the rigid frame structure 20 side and the horizontal plate 42 at the end of the horizontal damper 4 are sandwiched between steel plates 51 from the front and back, and these steel plates 51 are fastened by fasteners 52, sandwiching the horizontal plates 322 and 42.
このようにして、水平ダンパ4のラーメン架構20側の端部が、y方向の梁32のラーメン架構20側の端部に接合される。水平ダンパ4のラーメン架構30側の端部も、同様に鋼板51と締結具52を用いてy方向の別の梁32のラーメン架構30側の端部に接合される。これらの接合は剛接合となるが、水平ダンパ4の端部の接合方法は特に限定されない。例えば、水平ダンパ4の端部をガセットプレートとボルトを用いてピン接合してもよい。 In this way, the end of the horizontal damper 4 on the rigid frame structure 20 side is joined to the end of the beam 32 on the rigid frame structure 20 side in the y direction. The end of the horizontal damper 4 on the rigid frame structure 30 side is similarly joined to the end of another beam 32 on the rigid frame structure 30 side in the y direction using a steel plate 51 and a fastener 52. These connections are rigid, but the method of joining the ends of the horizontal damper 4 is not particularly limited. For example, the ends of the horizontal damper 4 may be pin-joined using a gusset plate and a bolt.
また図1の例では、一対の水平ダンパ4が、木質架構部2のラーメン架構20と高剛性架構部3のラーメン架構30の間の区画a内でX字状に交差するように配置される。しかしながら水平ダンパ4はこれに限らず、区画a内で図3(a)に示すように斜め方向に1本のみ設けたり、図3(b)に示すようにV字状に設けたりしてもよい。 In the example of FIG. 1, a pair of horizontal dampers 4 are arranged to intersect in an X-shape within section a between the rigid frame 20 of the wooden frame section 2 and the rigid frame 30 of the high-rigidity frame section 3. However, the horizontal dampers 4 are not limited to this, and may be arranged in a diagonal direction within section a as shown in FIG. 3(a), or in a V-shape as shown in FIG. 3(b).
また、水平ダンパ4は必ずしも建物の全フロアで設ける必要は無く、任意のフロアのみに設けても良い。例えば数フロアおきに分散配置したり、機械室階、屋外設備階、緑化テラス階などの特殊階や、建物用途切り替え階に集中配置してもよい。 Furthermore, horizontal dampers 4 do not necessarily need to be installed on all floors of a building, and may be installed only on any floor. For example, they may be distributed every few floors, or may be concentrated on special floors such as machine room floors, outdoor equipment floors, and green terrace floors, or on floors where the building's uses change.
また、図1の例ではラーメン架構20、30の間の全ての区画aに水平ダンパ4を設けているが、必ずしも全ての区画aに水平ダンパ4を設ける必要は無く、任意の区画aのみに設けても良い。例えば、EVシャフトや設備シャフトなどの鉛直シャフトが計画される区画aでは、水平ダンパ4の配置が省略される。 In addition, in the example of Figure 1, horizontal dampers 4 are provided in all sections a between the rigid frame structures 20 and 30, but it is not necessary to provide horizontal dampers 4 in all sections a, and they may be provided only in any section a. For example, in sections a where vertical shafts such as EV shafts and equipment shafts are planned, the placement of horizontal dampers 4 is omitted.
図4は、図1(a)の位置Bにおける床面の概略図である。図4の例では、木質架構部2の柱21が、木質材211による外郭部分の内側にコンクリート212を打設した合成構造柱であり、梁22が木梁である。前記したy方向の梁32の端部は、柱21のコンクリート212内に埋設される。 Figure 4 is a schematic diagram of the floor surface at position B in Figure 1(a). In the example of Figure 4, the pillars 21 of the wooden frame 2 are composite structural pillars in which concrete 212 is poured inside the outer shell made of wooden material 211, and the beams 22 are wooden beams. The end of the beam 32 in the y direction is embedded in the concrete 212 of the pillars 21.
図4の床版6は、平面視において木質架構部2のラーメン架構20とその内側の高剛性架構部3のラーメン架構30の間に設けられる。床版6はコンクリート製のプレキャスト部材により乾式工法で施工され、平面視で床版6とラーメン架構20の間にはクリアランス61が設けられる。こうして床版6とラーメン架構20の間で縁が切られることにより、床版6が木質架構部2のラーメン架構20と高剛性架構部3のラーメン架構30のx方向の相対変位を阻害しない収まりとなっている。床版6はコンクリート製のプレキャスト部材に限らず、グレーチングなどの鋼製部材であってもよい。 The floor slab 6 in FIG. 4 is provided between the rigid frame 20 of the wooden frame section 2 and the rigid frame 30 of the high-rigidity frame section 3 inside it in plan view. The floor slab 6 is constructed using a dry construction method using concrete precast members, and a clearance 61 is provided between the floor slab 6 and the rigid frame 20 in plan view. By cutting the edge between the floor slab 6 and the rigid frame 20 in this way, the floor slab 6 fits in such a way that it does not impede the relative displacement in the x direction between the rigid frame 20 of the wooden frame section 2 and the rigid frame 30 of the high-rigidity frame section 3. The floor slab 6 is not limited to a concrete precast member, and may be a steel member such as a grating.
なお本実施形態では、床版6と高剛性架構部3のラーメン架構30との間でも同様にクリアランスが設けられ、床版6とラーメン架構30の間でも縁が切られる。ただし、床版6は、ラーメン架構20、30のいずれか一方に対して縁が切られるものとしてもよい。また本実施形態ではラーメン架構20、30の間の区画aごとに床版6が配置され、x方向に隣り合う床版6の間も、クリアランス62を設けることで縁が切られている。 In this embodiment, a clearance is also provided between the floor slab 6 and the rigid frame structure 30 of the high-rigidity structural section 3, and the floor slab 6 and the rigid frame structure 30 are also separated from each other. However, the floor slab 6 may be separated from either one of the rigid frame structures 20, 30. In this embodiment, the floor slab 6 is arranged in each section a between the rigid frame structures 20, 30, and the floor slabs 6 adjacent to each other in the x direction are separated from each other by providing a clearance 62.
なお、クリアランス61、62を設けるかわりに、床版6とラーメン架構20、30の相対移動や床版6同士の相対移動を許容する接合方法で接合を行ってもよい。高剛性架構部3の柱31で囲まれた範囲に関しては、従来工法で現場打ちのコンクリートにより床版6を形成し、これらの柱31に床版6を固定しても問題ない。 In addition, instead of providing clearances 61 and 62, the joining may be performed using a joining method that allows relative movement between the deck 6 and the rigid frame structures 20 and 30, and between the decks 6 themselves. For the area surrounded by the columns 31 of the high-rigidity structural section 3, there is no problem in forming the deck 6 using cast-in-place concrete using conventional construction methods and fixing the deck 6 to these columns 31.
以上説明したように、本実施形態の制震架構1では、木質架構部2と高剛性架構部3を建物の地上階平面において併用し、木質架構部2のx方向のラーメン架構20と高剛性架構部3のx方向のラーメン架構30をy方向に分離配置する。そして、両ラーメン架構20、30を水平ダンパ4によって接続し、地震時の木質架構部2と高剛性架構部3のx方向の変位差を利用して振動を減衰させる。 As explained above, in the vibration control structure 1 of this embodiment, the wooden structure 2 and the high-rigidity structure 3 are used together on the ground floor of the building, and the rigid frame structure 20 in the x direction of the wooden structure 2 and the rigid frame structure 30 in the x direction of the high-rigidity structure 3 are arranged separately in the y direction. The rigid frame structures 20, 30 are then connected by a horizontal damper 4, and the difference in displacement in the x direction between the wooden structure 2 and the high-rigidity structure 3 during an earthquake is used to damp vibrations.
これにより、木質材を使用して環境面等に優れた建物を実現しつつ、木質材を用いたラーメン架構20の弱点である低剛性・低耐力を逆に利用した水平ダンパ4による制震架構1とすることで、建物全体の耐震安全性を高めることができる。そのため、ラーメン架構20の剛性や耐力の低さを補うために、柱21を増やしたり、柱21や梁22の部材サイズを大きくしたり、耐震壁や鉛直ブレースを追加配置したりする必要が無く、建物内の空間の有効利用につながる。 This allows the use of wooden materials to create a building with excellent environmental performance, while at the same time improving the seismic safety of the entire building by using horizontal dampers 4 to create a seismic control structure 1 that takes advantage of the weaknesses of the rigid frame structure 20 made of wooden materials, namely its low rigidity and low strength. Therefore, there is no need to increase the number of columns 21, increase the component size of the columns 21 and beams 22, or place additional seismic walls or vertical braces to compensate for the low rigidity and strength of the rigid frame structure 20, which leads to more effective use of the space within the building.
また本実施形態では木質架構部2が建物の外周部に配置されており、建物のファサードを形成する構面に木質架構部2を配置して建物の意匠性を向上させると共に、構造部材としてもラーメン架構20を有効に活用することができる。 In this embodiment, the wooden structural frame 2 is arranged on the outer periphery of the building, and the wooden structural frame 2 is arranged on the structural surface that forms the building's façade, improving the design of the building and allowing the rigid frame 20 to be effectively used as a structural member.
また本実施形態では水平ダンパ4を床(または天井)下に設けることで、建物の空間利用を阻害することが無く、建築空間をより自由に活用でき建築意匠の自由度も高めることが可能となる。また床版6とラーメン架構20、30との縁を切ることで、ラーメン架構20、30同士の相対変位が床版6によって阻害されるのを防ぐことができる。 In addition, in this embodiment, by installing the horizontal damper 4 under the floor (or ceiling), the spatial utilization of the building is not hindered, and the architectural space can be utilized more freely, allowing for greater freedom in architectural design. In addition, by cutting the edge between the floor slab 6 and the rigid frame structures 20, 30, the relative displacement between the rigid frame structures 20, 30 can be prevented from being hindered by the floor slab 6.
また本実施形態の水平ダンパ4はラーメン架構20、30の間で斜めに配置される水平ブレースダンパであり、簡易且つ省スペースな構成の水平ダンパ4で振動を吸収することができる。 In addition, the horizontal damper 4 in this embodiment is a horizontal brace damper that is arranged diagonally between the rigid frame structures 20 and 30, and the horizontal damper 4 has a simple and space-saving configuration that can absorb vibrations.
しかしながら、本発明は上記の実施形態に限定されない。例えば木質架構部2と高剛性架構部3の配置パターンは図1で説明したものに限らない。例えば本実施形態では木質架構部2を高剛性架構部3を挟んだ両側に設けたが、図5(a)に示すように、木質架構部2を高剛性架構部3の片側にのみ設けてもよい。 However, the present invention is not limited to the above embodiment. For example, the arrangement pattern of the wooden structural member 2 and the high-rigidity structural member 3 is not limited to that described in FIG. 1. For example, in this embodiment, the wooden structural member 2 is provided on both sides of the high-rigidity structural member 3, but as shown in FIG. 5(a), the wooden structural member 2 may be provided on only one side of the high-rigidity structural member 3.
また図5(b)に示すように、木質架構部2を建物の外周部の全周に亘って配置し、木質架構部2と高剛性架構部3の双方が、y方向(平面の一方向)のラーメン架構20、30を備えるようにしてもよい。水平ダンパ4はこれらのラーメン架構20、30の間にも設けられ、制震架構1は、x方向だけでなく、地震時のy方向の木質架構部2と高剛性架構部3の変位差によっても振動を吸収できる。高剛性架構部3の剛性は、x方向だけでなくy方向においても木質架構部2より高くなっている。 Also, as shown in FIG. 5(b), the wooden structure 2 may be arranged around the entire perimeter of the building, and both the wooden structure 2 and the high-rigidity structure 3 may have rigid frame structures 20, 30 in the y direction (one direction on a plane). Horizontal dampers 4 are also provided between these rigid frame structures 20, 30, and the vibration control structure 1 can absorb vibrations not only in the x direction, but also due to the difference in displacement between the wooden structure 2 and the high-rigidity structure 3 in the y direction during an earthquake. The rigidity of the high-rigidity structure 3 is higher than that of the wooden structure 2 not only in the x direction but also in the y direction.
また図5(c)に示すように、図1とは逆に、木質架構部2を挟んだ両側に高剛性架構部3を設けてもよい。その他、図5(b)とは逆に、高剛性架構部3を建物の外周部の全周に亘って配置し、その内側に木質架構部2を位置させてもよい。 As shown in Fig. 5(c), high-rigidity structural members 3 may be provided on both sides of the wooden structural member 2, as opposed to Fig. 1. Alternatively, the high-rigidity structural members 3 may be arranged around the entire perimeter of the building, and the wooden structural member 2 may be located inside of them, as opposed to Fig. 5(b).
また図6(a)に示すように、木質架構部2のx方向の長さを高剛性架構部3よりも短くしてもよい。この場合、高剛性架構部3のx方向の一部分のラーメン架構30と木質架構部2のラーメン架構20との間に水平ダンパ4が配置される。 Also, as shown in FIG. 6(a), the length of the wooden structure 2 in the x direction may be shorter than that of the high-rigidity structure 3. In this case, the horizontal damper 4 is disposed between the rigid frame 30 of a portion of the high-rigidity structure 3 in the x direction and the rigid frame 20 of the wooden structure 2.
一方、図6(b)は、木質架構部2を高剛性架構部3の両側に設けた場合において、高剛性架構部3のx方向の長さを木質架構部2よりも短くしたものであり、図6(c)は、高剛性架構部3を木質架構部2の両側に設けた場合において、木質架構部2のx方向の長さを高剛性架構部3より短くしたものである。図6(b)の例では木質架構部2のx方向の端部にy方向のラーメン架構20が存在し、このラーメン架構20と高剛性架構部3のy方向のラーメン架構30との間に水平ダンパ4が配置されることで、建物のy方向の振動も木質架構部2と高剛性架構部3のy方向の変位差により吸収できる構成となっている。 On the other hand, FIG. 6(b) shows a case where the wooden frame section 2 is provided on both sides of the high-rigidity frame section 3, and the x-direction length of the high-rigidity frame section 3 is shorter than that of the wooden frame section 2, and FIG. 6(c) shows a case where the high-rigidity frame section 3 is provided on both sides of the wooden frame section 2, and the x-direction length of the wooden frame section 2 is shorter than that of the high-rigidity frame section 3. In the example of FIG. 6(b), a rigid frame structure 20 in the y direction is present at the x-direction end of the wooden frame section 2, and a horizontal damper 4 is placed between this rigid frame structure 20 and the y-direction rigid frame structure 30 of the high-rigidity frame section 3, so that vibrations in the y direction of the building can also be absorbed by the difference in displacement in the y direction between the wooden frame section 2 and the high-rigidity frame section 3.
また図7に示すように、木質架構部2のx方向の設置範囲を高剛性架構部3と異ならせてもよい。この場合も、高剛性架構部3のx方向のラーメン架構30と木質架構部2のx方向のラーメン架構20との間に水平ダンパ4を配置して建物のx方向の振動を吸収できる。図7の例では、図6(b)と同様、木質架構部2のx方向の端部にy方向のラーメン架構20が存在し、このラーメン架構20と高剛性架構部3のy方向のラーメン架構30との間に水平ダンパ4が配置されることで、建物のy方向の振動も吸収できる。 Also, as shown in Figure 7, the installation range in the x direction of the wooden structure section 2 may be different from that of the high-rigidity structure section 3. In this case, too, a horizontal damper 4 can be placed between the rigid frame structure 30 in the x direction of the high-rigidity structure section 3 and the rigid frame structure 20 in the x direction of the wooden structure section 2 to absorb vibrations in the x direction of the building. In the example of Figure 7, as in Figure 6(b), a rigid frame structure 20 in the y direction exists at the end of the wooden structure section 2 in the x direction, and a horizontal damper 4 is placed between this rigid frame structure 20 and the rigid frame structure 30 in the y direction of the high-rigidity structure section 3 to absorb vibrations in the y direction of the building.
さらに、図8に示すように、高剛性架構部3のx方向のラーメン架構30と木質架構部2のx方向のラーメン架構20とを接続するy方向の梁を設けずに、ラーメン架構20、30の間に配置したオイルダンパや鋼製ダンパなどの水平ダンパ4aによってラーメン架構20、30を接続してもよい。この場合も、地震時の木質架構部2と高剛性架構部3のx方向の変位差を利用して振動を減衰させることができる。木質架構部2はファサードとして用いる。ラーメン架構20、30の間はバルコニーや設備シャフトなどに利用でき、この場合、ラーメン架構20、30の相対変位を可能とする床端部のディテールも簡単な構成で実現できる。高剛性架構部3の床版6も、ラーメン架構20、30の相対変位には影響しないので、その納まりは楽である。 Furthermore, as shown in FIG. 8, instead of providing a y-direction beam connecting the rigid frame 30 in the x-direction of the high-rigidity frame 3 and the rigid frame 20 in the x-direction of the wooden frame 2, the rigid frame 20 and 30 may be connected by a horizontal damper 4a, such as an oil damper or a steel damper, placed between the rigid frame 20 and 30. In this case, too, the vibration can be attenuated by utilizing the difference in x-direction displacement between the wooden frame 2 and the high-rigidity frame 3 during an earthquake. The wooden frame 2 is used as a facade. The space between the rigid frame 20 and 30 can be used for a balcony or equipment shaft, and in this case, the details of the floor end that allow the relative displacement of the rigid frame 20 and 30 can be realized with a simple configuration. The floor slab 6 of the high-rigidity frame 3 does not affect the relative displacement of the rigid frame 20 and 30, so it is easy to install.
これらの配置パターンの組み合わせにより、本発明は、様々な用途、機能、平面形状、意匠を有する建物に適用することが可能になる。建物の平面サイズ、高さなども特に限定されない。例えば図5(c)や図6(c)のパターンは、耐候性に劣る木質架構部2を建物の内部に配置することで、メンテナンス性に優れる。一方で、建物のファサードの意匠性向上というメリットは得られないものの、光が届きにくい内部の居住空間等を木質空間として快適性を高めることができる。 By combining these arrangement patterns, the present invention can be applied to buildings with various uses, functions, plan shapes, and designs. There are no particular limitations on the plan size or height of the building. For example, the patterns in Figures 5(c) and 6(c) are excellent in maintainability by arranging the wooden frame 2, which has poor weather resistance, inside the building. On the other hand, although there is no benefit of improving the design of the building's façade, it is possible to increase comfort by turning interior living spaces, where light is difficult to reach, into wooden spaces.
また水平ダンパ4、4aに加え、図9に示すように、高剛性架構部3に設けられる床版6aを二重床とし、下部床60-1と上部床60-2の間に水平ダンパ7と免震装置8を配置して、TMD(Tuned Mass Damper:同調質量ダンパー)と同様、下部床60-1に対する上部床60-2の相対変位によって建物の振動をさらに吸収できるようにしてもよい。これにより、木質架構部2に要求される剛性や耐力をさらに低減できる。水平ダンパ7は、床版6aのx方向、y方向の各辺に沿って配置し、x方向、y方向の振動をバランス良く吸収できるようにする。以上の構成は、木質架構部2に床版が設けられる場合にその床版に適用することも可能である。 In addition to the horizontal dampers 4 and 4a, as shown in FIG. 9, the floor slab 6a provided on the high-rigidity structural member 3 may be a double floor, with a horizontal damper 7 and a seismic isolation device 8 arranged between the lower floor 60-1 and the upper floor 60-2, so that the vibrations of the building can be further absorbed by the relative displacement of the upper floor 60-2 with respect to the lower floor 60-1, as in the case of a Tuned Mass Damper (TMD). This further reduces the rigidity and strength required of the wooden structural member 2. The horizontal dampers 7 are arranged along each side of the floor slab 6a in the x and y directions, so that vibrations in the x and y directions can be absorbed in a balanced manner. The above configuration can also be applied to the floor slab when a floor slab is provided on the wooden structural member 2.
なお、本発明では木質架構部2と高剛性架構部3を組み合わせて制震架構1とするが、これとは異なる構成として、木質架構部2に代えて、木質材を使用しない、高剛性架構部3よりも低剛性の架構部を適用することもできる。この場合も、当該架構部は柱と梁によるラーメン架構を備えるが、柱や梁は、木質材を用いないRC造やS造による構造形式とされる。柱をRC造、梁をS造とするなどしてこれらの構造形式を組み合わせてもよい。 In the present invention, the seismic control structure 1 is formed by combining the wooden structural section 2 and the high-rigidity structural section 3, but as a different configuration, a structural section that does not use wooden materials and has lower rigidity than the high-rigidity structural section 3 can be applied instead of the wooden structural section 2. In this case, the structural section also has a rigid frame structure with columns and beams, but the columns and beams are of a structural type of reinforced concrete or steel that does not use wooden materials. These structural types may also be combined, for example by using reinforced concrete for the columns and steel for the beams.
以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The above describes preferred embodiments of the present invention with reference to the attached drawings, but the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the technical ideas disclosed in this application, and it is understood that these also naturally fall within the technical scope of the present invention.
1:制震架構
2:木質架構部
3:高剛性架構部
4、4a、7:水平ダンパ
6、6a:床版
8:免震装置
20、30:ラーメン架構
1: Seismic control structure 2: Wooden structure 3: High-rigidity structure 4, 4a, 7: Horizontal dampers 6, 6a: Floor slab 8: Seismic isolation device 20, 30: Rigid frame structure
Claims (6)
構面を前記一方向としたラーメン架構を備える、前記木質架構部よりも前記一方向における剛性が高い高剛性架構部と、
を有し、
平面視で前記一方向とは異なる方向に離隔した前記木質架構部の前記ラーメン架構と前記高剛性架構部の前記ラーメン架構とが、水平方向に設けられた水平ダンパを介して接続され、前記水平ダンパにより、前記一方向の振動を、前記木質架構部と前記高剛性架構部の前記一方向の変位差を利用して吸収することを特徴とする制震架構。 A wooden frame section formed using wooden materials, the wooden frame section having a rigid frame with a structural surface in one direction;
A high-rigidity frame section having a rigid frame structure with a structural surface in the one direction and having a higher rigidity in the one direction than the wooden frame section;
having
A seismic control structure characterized in that the rigid frame structure of the wooden structure section and the rigid frame structure of the high-rigidity structure section, which are separated in a direction different from the one direction in a plan view, are connected via a horizontal damper installed in the horizontal direction, and the horizontal damper absorbs vibrations in the one direction by utilizing the displacement difference in the one direction between the wooden structure section and the high-rigidity structure section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024059238A JP7513858B1 (en) | 2024-04-01 | 2024-04-01 | Seismic control structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024059238A JP7513858B1 (en) | 2024-04-01 | 2024-04-01 | Seismic control structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP7513858B1 true JP7513858B1 (en) | 2024-07-09 |
Family
ID=91802769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024059238A Active JP7513858B1 (en) | 2024-04-01 | 2024-04-01 | Seismic control structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7513858B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005146757A (en) | 2003-11-19 | 2005-06-09 | Shimizu Corp | Seismic control connection structure |
JP2010185260A (en) | 2009-02-13 | 2010-08-26 | Ohbayashi Corp | Vibration controlled building and method for controlling vibration of building |
JP2011132690A (en) | 2009-12-22 | 2011-07-07 | Shimizu Corp | Vibration control structure |
JP2013147930A (en) | 2013-04-18 | 2013-08-01 | Ohbayashi Corp | Vibration control building |
-
2024
- 2024-04-01 JP JP2024059238A patent/JP7513858B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005146757A (en) | 2003-11-19 | 2005-06-09 | Shimizu Corp | Seismic control connection structure |
JP2010185260A (en) | 2009-02-13 | 2010-08-26 | Ohbayashi Corp | Vibration controlled building and method for controlling vibration of building |
JP2011132690A (en) | 2009-12-22 | 2011-07-07 | Shimizu Corp | Vibration control structure |
JP2013147930A (en) | 2013-04-18 | 2013-08-01 | Ohbayashi Corp | Vibration control building |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110029726A (en) | A kind of assembled steel bamboo and wood combined structure system of suitable multi-rise building | |
KR102462310B1 (en) | Modular unit for construction, modular building using same, and construction method thereof | |
EP3347535B1 (en) | Building system with a load-resisting frame made of reinforced concrete or steel integrated with wooden infill panels | |
JP7175534B2 (en) | Exterior wall structure of building, heat insulation structure and heat insulation method | |
JP2988470B2 (en) | Reinforcement structure of existing structure and reinforcement structure | |
JP7513858B1 (en) | Seismic control structure | |
JP3884645B2 (en) | Damping wall | |
JP7030754B2 (en) | Wall structure and how to build the wall structure | |
JP5596338B2 (en) | Reinforcing brackets for wooden buildings and methods for reinforcing wooden buildings | |
JPH07331923A (en) | Construction of rigidity adjustable panel and fitting method thereof | |
JP2011157728A (en) | Damper and wood construction using the same | |
JP2005155312A (en) | Method for constructing floor structure and floor structure | |
WO2022018883A1 (en) | Fire-resistant structure, fire-resistant panel, and method for constructing fire-resistant structure | |
JP5475054B2 (en) | Seismic shelter reinforcement method and seismic shelter with high seismic strength | |
JPWO2013015316A1 (en) | Masonry building and construction method of masonry building | |
JP2001098688A (en) | Floor structure and floor panel of building | |
JP7364267B2 (en) | wooden building structure | |
Kaufmann et al. | Structures and support structures | |
JP2767073B2 (en) | Lightweight cellular concrete slab structure for wooden frame | |
JP6667908B2 (en) | Seismic isolation structure and seismic isolation wooden building | |
JPH06136833A (en) | Floor panel with ceiling, and room unit equipped with the panel | |
JP2001279949A (en) | Damping structure | |
JPH1018491A (en) | Composite light-weight floor board and manufacture and installation method therefor | |
JP7401377B2 (en) | wooden building floor panels | |
JP6029722B1 (en) | Ceiling floor member and building having ceiling floor member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 7513858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |