[go: up one dir, main page]

JP7510752B2 - Substrate for display device, manufacturing method thereof, and resin composition solution for anti-reflection layer used therein - Google Patents

Substrate for display device, manufacturing method thereof, and resin composition solution for anti-reflection layer used therein Download PDF

Info

Publication number
JP7510752B2
JP7510752B2 JP2019225507A JP2019225507A JP7510752B2 JP 7510752 B2 JP7510752 B2 JP 7510752B2 JP 2019225507 A JP2019225507 A JP 2019225507A JP 2019225507 A JP2019225507 A JP 2019225507A JP 7510752 B2 JP7510752 B2 JP 7510752B2
Authority
JP
Japan
Prior art keywords
layer
light
resin composition
shielding
antireflection layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019225507A
Other languages
Japanese (ja)
Other versions
JP2020098334A (en
Inventor
悠樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2020098334A publication Critical patent/JP2020098334A/en
Application granted granted Critical
Publication of JP7510752B2 publication Critical patent/JP7510752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、表示装置用基板及びその製造方法、並びにそれらに用いる反射防止層用樹脂組成物溶液に関し、より詳しくは、遮光膜を備える表示装置用基板及びその製造方法、並びにそれらに用いる反射防止層用樹脂組成物溶液に関する。 The present invention relates to a substrate for a display device and a manufacturing method thereof, and a resin composition solution for an anti-reflection layer used therein, and more specifically, to a substrate for a display device having a light-shielding film and a manufacturing method thereof, and a resin composition solution for an anti-reflection layer used therein.

液晶ディスプレイ等の表示装置においては、コントラストの向上や光漏れの防止等を目的として、赤、緑、青等の各画素の境界に格子状、ストライプ状又はモザイク状のブラックマトリックス等の遮光膜が形成されている。このような遮光膜としては、黒色顔料等の遮光成分を含有する感光性樹脂組成物を用いて透明基板上に形成されたものが知られているが、このような遮光膜が表面に配置された透明基板を備える表示装置においては、透明基板側から入射した光が遮光膜の表面(透明基板との界面)で反射するため、周囲に置かれている物等が画面に映り込むという問題があった。 In display devices such as liquid crystal displays, light-shielding films such as black matrices in a grid, stripe or mosaic pattern are formed at the boundaries of each pixel of red, green, blue, etc., in order to improve contrast and prevent light leakage. Known light-shielding films of this type are formed on a transparent substrate using a photosensitive resin composition containing a light-shielding component such as a black pigment. However, in display devices that include a transparent substrate on whose surface such a light-shielding film is disposed, there is a problem in that light incident from the transparent substrate side is reflected by the surface of the light-shielding film (the interface with the transparent substrate), causing surrounding objects to be reflected on the screen.

そこで、このような映り込み等の問題を解決するために、遮光膜表面での光の反射を抑制する方法が検討されている。例えば、国際公開第2010/070929号(特許文献1)には、透明基板と遮光層とを備える表示パネル用基板において、透明基板上に遮光層として光学濃度が異なる2種類の遮光層を設け、かつ、透明基板と光学濃度が高い遮光層との間に前記光学濃度が高い遮光層よりも光学濃度が低い遮光層を配置することによって、遮光層表面での光の反射が抑制されることが記載されている。また、国際公開第2014/178149号(特許文献2)には、透明基板とブラックマトリックスとを備える表示装置用基板において、透明基板上にブラックマトリックスとして実効的な光学濃度が特定の範囲内にある反射率低減層と遮光層とを積層して設けることによって、ブラックマトリックス表面での光の反射が抑制されることが記載されている。 Therefore, in order to solve such problems as reflection, a method of suppressing the reflection of light on the surface of the light-shielding film has been studied. For example, International Publication No. 2010/070929 (Patent Document 1) describes that in a display panel substrate having a transparent substrate and a light-shielding layer, two types of light-shielding layers with different optical densities are provided as light-shielding layers on the transparent substrate, and a light-shielding layer with a lower optical density than the light-shielding layer with a higher optical density is disposed between the transparent substrate and the light-shielding layer with a higher optical density, thereby suppressing the reflection of light on the surface of the light-shielding layer. In addition, International Publication No. 2014/178149 (Patent Document 2) describes that in a display substrate having a transparent substrate and a black matrix, a reflectance-reducing layer and a light-shielding layer having an effective optical density within a specific range as a black matrix are laminated on the transparent substrate, thereby suppressing the reflection of light on the surface of the black matrix.

国際公開第2010/070929号International Publication No. 2010/070929 国際公開第2014/178149号International Publication No. 2014/178149

しかしながら、特許文献1及び2に記載の表示装置用基板においては、遮光膜(遮光層、ブラックマトリックス)表面での光の反射が必ずしも十分に抑制されておらず、コントラストを向上させたり、光漏れを防止したりするためには、遮光膜での光の反射を更に抑制する必要があった。 However, in the display device substrates described in Patent Documents 1 and 2, the reflection of light on the surface of the light-shielding film (light-shielding layer, black matrix) is not necessarily sufficiently suppressed, and in order to improve contrast and prevent light leakage, it is necessary to further suppress the reflection of light on the light-shielding film.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、光の反射が十分に抑制された遮光膜を備える表示装置用基板及びその製造方法を提供することを目的とする。 The present invention was made in consideration of the problems with the above-mentioned conventional technology, and aims to provide a display device substrate having a light-shielding film that sufficiently suppresses light reflection, and a manufacturing method thereof.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、透明基板及び遮光膜を備える表示装置用基板において、透明基板上に遮光膜として反射防止層と遮光層とからなり、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが特定の範囲にある遮光膜を設けることによって、遮光膜表面での光の反射が更に抑制されることを見出し、本発明を完成するに至った。 As a result of intensive research by the inventors to achieve the above object, they discovered that in a display device substrate having a transparent substrate and a light-shielding film, by providing a light-shielding film on a transparent substrate, which comprises an anti-reflection layer and a light-shielding layer as a light-shielding film, and in which the surface roughness of the anti-reflection layer at the interface between the anti-reflection layer and the light-shielding layer is within a specific range, reflection of light on the light-shielding film surface can be further suppressed, leading to the completion of the present invention.

すなわち、本発明の表示装置用基板は、透明基板、及び該透明基板上に配置され、屈折率が1.2~1.8の無機フィラーと透明樹脂硬化物とを含有する、平均厚さが0.01~1μmの反射防止層と、該反射防止層上に配置され、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と樹脂硬化物とを含有する、平均厚さが0.1~30μmの遮光層とからなり、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが40~200nmである遮光膜を備えていることを特徴とするものである。 That is, the display device substrate of the present invention is characterized in that it comprises a transparent substrate, an antireflection layer disposed on the transparent substrate, the antireflection layer containing an inorganic filler with a refractive index of 1.2 to 1.8 and a transparent resin cured product and having an average thickness of 0.01 to 1 μm, and a light-shielding layer disposed on the antireflection layer, the antireflection layer containing at least one light-shielding component selected from the group consisting of organic black pigments, inorganic black pigments, and mixed-color pseudo-black pigments and a resin cured product and having an average thickness of 0.1 to 30 μm, and the antireflection layer has a surface roughness of 40 to 200 nm at the interface between the antireflection layer and the light-shielding layer.

このような表示装置用基板においては、前記無機フィラーの平均粒子径が25~300nmであることが好ましく、また、前記無機フィラーの含有量が前記反射防止層全体に対して5~95質量%であることが好ましい。 In such a display device substrate, the inorganic filler preferably has an average particle size of 25 to 300 nm, and the content of the inorganic filler is preferably 5 to 95% by mass relative to the entire anti-reflection layer.

また、本発明の第一の表示装置用基板の製造方法は、透明基板、及び該透明基板上に配置されている、反射防止層と遮光層とからなる遮光膜を備えている表示装置用基板の製造方法であって、
前記透明基板上に、屈折率が1.2~1.8の無機フィラーと光硬化性透明樹脂とを含有し、平均厚さが0.01~1μmであり、表面粗さが40~200nmである反射防止層用樹脂組成物層を形成する工程と、
前記反射防止層用樹脂組成物層上に、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と光硬化性樹脂とを含有する遮光層用樹脂組成物層を形成する工程と、
前記反射防止層用樹脂組成物層及び前記遮光層用樹脂組成物層に一括で露光処理を施した後、一括で現像処理を施し、さらに、加熱処理(ポストベーク)を施して、前記無機フィラーと透明樹脂硬化物とを含有する反射防止層及び前記遮光成分と樹脂硬化物とを含有し、平均厚さが0.1~30μmである遮光層を形成する工程と、
を含むことを特徴とする方法である。
A first method for producing a substrate for a display device according to the present invention is a method for producing a substrate for a display device including a transparent substrate and a light-shielding film formed on the transparent substrate and including an antireflection layer and a light-shielding layer, the method comprising the steps of:
forming a resin composition layer for an antireflection layer on the transparent substrate, the resin composition layer containing an inorganic filler having a refractive index of 1.2 to 1.8 and a photocurable transparent resin, the resin composition layer having an average thickness of 0.01 to 1 μm and a surface roughness of 40 to 200 nm;
forming a resin composition layer for a light-shielding layer, the resin composition layer containing at least one light-shielding component selected from the group consisting of an organic black pigment, an inorganic black pigment, and a mixed color pseudo-black pigment, and a photocurable resin, on the resin composition layer for an antireflection layer;
a step of simultaneously subjecting the resin composition layer for an antireflection layer and the resin composition layer for a light-shielding layer to an exposure treatment, simultaneously subjecting the resin composition layer for an antireflection layer and the resin composition layer for a light-shielding layer to a development treatment, and further subjecting the resin composition layer to a heat treatment (post-baking) to form an antireflection layer containing the inorganic filler and a transparent cured resin and a light-shielding layer containing the light-shielding component and a cured resin and having an average thickness of 0.1 to 30 μm;
The method is characterized by comprising:

このような第一の表示装置用基板の製造方法においては、前記反射防止層用樹脂組成物層中の光硬化性透明樹脂及び前記遮光層用樹脂組成物層中の光硬化性樹脂がともにアルカリ可溶性であり、前記現像処理がアルカリ現像処理であることが好ましい。 In such a first method for manufacturing a substrate for a display device, it is preferable that both the photocurable transparent resin in the resin composition layer for the antireflection layer and the photocurable resin in the resin composition layer for the light-shielding layer are alkali-soluble, and the development treatment is an alkali development treatment.

さらに、本発明の第二の表示装置用基板の製造方法は、透明基板、及び該透明基板上に配置されている、反射防止層と遮光層とからなる遮光膜を備えている表示装置用基板の製造方法であって、
前記透明基板上に、屈折率が1.2~1.8の無機フィラーと熱硬化性透明樹脂及び熱硬化性単量体のうちの少なくとも1種とを含有する反射防止層用樹脂組成物に加熱硬化処理を施して、平均厚さが0.01~1μmであり、表面粗さが40~200nmである反射防止層を形成する工程と、
前記反射防止層上に、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と光硬化性樹脂とを含有する遮光層用樹脂組成物に露光処理を施した後、現像処理を施し、さらに、加熱処理(ポストベーク)を施して、平均厚さが0.1~30μmである遮光層を形成する工程と、
を含むことを特徴とする方法である。
Further, a second manufacturing method of a substrate for a display device of the present invention is a manufacturing method of a substrate for a display device including a transparent substrate and a light-shielding film formed of an antireflection layer and a light-shielding layer and disposed on the transparent substrate, the method comprising the steps of:
a step of subjecting a resin composition for an antireflection layer, which contains an inorganic filler having a refractive index of 1.2 to 1.8 and at least one of a thermosetting transparent resin and a thermosetting monomer, to a heat curing treatment to form an antireflection layer having an average thickness of 0.01 to 1 μm and a surface roughness of 40 to 200 nm on the transparent substrate;
a step of subjecting a resin composition for a light-shielding layer, which contains at least one light-shielding component selected from the group consisting of an organic black pigment, an inorganic black pigment, and a mixed color pseudo-black pigment, and a photocurable resin, to an exposure treatment, followed by a development treatment, and further a heat treatment (post-baking) to form a light-shielding layer having an average thickness of 0.1 to 30 μm on the antireflection layer;
The method is characterized by comprising:

このような第二の表示装置用基板の製造方法においては、前記遮光層用樹脂組成物中の光硬化性樹脂がアルカリ可溶性であり、前記現像処理がアルカリ現像処理であることが好ましい。 In such a second method for producing a substrate for a display device, it is preferable that the photocurable resin in the resin composition for a light-shielding layer is alkali-soluble, and the development treatment is an alkali development treatment.

また、本発明の第一の反射防止層用樹脂組成物溶液は光硬化性樹脂組成物及び有機溶媒を含有するものであり、
前記光硬化性樹脂組成物が、屈折率が1.2~1.8であり、平均粒子径が25~300nmである無機フィラーを樹脂組成物全体に対して5~95質量%と、光硬化性透明樹脂を樹脂組成物全体に対して1.54~95質量%と、光重合性モノマーを前記光硬化性透明樹脂と前記光重合性モノマーとの合計量に対して0~50質量%と、光重合開始剤を前記光硬化性透明樹脂と前記光重合性モノマーとの合計量100質量部に対して0~30質量部含有するものであり、
前記有機溶媒の含有量が、前記光硬化性樹脂組成物と前記有機溶媒との合計量に対して80~99.9質量%であり、
溶液粘度が1~4mPa・secであることを特徴とするものである。
The first resin composition solution for an antireflection layer of the present invention contains a photocurable resin composition and an organic solvent,
the photocurable resin composition contains 5 to 95 mass % of an inorganic filler having a refractive index of 1.2 to 1.8 and an average particle size of 25 to 300 nm, based on the entire resin composition; 1.54 to 95 mass % of a photocurable transparent resin, based on the entire resin composition; 0 to 50 mass % of a photopolymerizable monomer, based on the total amount of the photocurable transparent resin and the photopolymerizable monomer; and 0 to 30 mass parts of a photopolymerization initiator, based on 100 mass parts of the total amount of the photocurable transparent resin and the photopolymerizable monomer;
the content of the organic solvent is 80 to 99.9% by mass based on the total amount of the photocurable resin composition and the organic solvent;
The solution has a viscosity of 1 to 4 mPa·sec.

さらに、本発明の第二の反射防止層用樹脂組成物溶液は熱硬化性樹脂組成物及び有機溶媒を含有するものであり、
前記熱硬化性樹脂組成物が、屈折率が1.2~1.8であり、平均粒子径が25~300nmである無機フィラーを樹脂組成物全体に対して5~95質量%と、熱硬化性透明樹脂及び熱硬化性単量体のうちの少なくとも1種を樹脂組成物全体に対して3.2~94.06質量%と、熱硬化剤を前記熱硬化性透明樹脂と前記熱硬化性単量体との合計量100質量部に対して1~25質量部含有するものであり、
前記有機溶媒の含有量が、前記熱硬化性樹脂組成物と前記有機溶媒との合計量に対して80~99.9質量%であり、
溶液粘度が1~4mPa・secであることを特徴とするものである。
Further , the second resin composition solution for an antireflection layer of the present invention contains a thermosetting resin composition and an organic solvent,
the thermosetting resin composition contains 5 to 95 mass % of an inorganic filler having a refractive index of 1.2 to 1.8 and an average particle size of 25 to 300 nm, based on the entire resin composition; 3.2 to 94.06 mass % of at least one of a thermosetting transparent resin and a thermosetting monomer, based on the entire resin composition; and 1 to 25 mass parts of a heat curing agent, based on 100 mass parts of the total amount of the thermosetting transparent resin and the thermosetting monomer;
the content of the organic solvent is 80 to 99.9% by mass based on the total amount of the thermosetting resin composition and the organic solvent;
The solution has a viscosity of 1 to 4 mPa·sec.

本発明によれば、光の反射が十分に抑制された遮光膜を備える表示装置用基板を得ることが可能となる。 According to the present invention, it is possible to obtain a display device substrate having a light-shielding film in which light reflection is sufficiently suppressed.

以下、本発明をその好適な実施形態に即して詳細に説明する。 The present invention will be described in detail below with reference to preferred embodiments.

先ず、本発明の表示装置用基板について説明する。本発明の表示装置用基板は、透明基板、及びこの透明基板上に配置され、屈折率が特定の範囲内にある無機フィラーと透明樹脂硬化物を含有し、平均厚さが特定の範囲内にある反射防止層と、この反射防止層上に配置され、有機黒色顔料、混色擬似黒色顔料及び無機黒色顔料からなる群から選択される少なくとも1種の遮光成分と樹脂硬化物とを含有し、平均厚さが特定の範囲内にある遮光層とからなり、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが特定の範囲内にある遮光膜を備えるものである。 First, the display substrate of the present invention will be described. The display substrate of the present invention comprises a transparent substrate, an anti-reflection layer disposed on the transparent substrate, the anti-reflection layer containing an inorganic filler having a refractive index within a specific range and a transparent resin cured product, and an average thickness within a specific range, and a light-shielding layer disposed on the anti-reflection layer, the anti-reflection layer containing at least one light-shielding component selected from the group consisting of an organic black pigment, a mixed-color pseudo-black pigment, and an inorganic black pigment, and a resin cured product, the average thickness within a specific range, and a light-shielding layer having a surface roughness within a specific range at the interface between the anti-reflection layer and the light-shielding layer.

本発明に用いられる透明基板としては特に制限はなく、例えば、ガラス基板、透明樹脂フィルム(PETフィルム、PENフィルム、ポリカーボネートフィルム、ポリイミドフィルム等)を始め、公知の表示装置に用いられる透明基板が挙げられる。 There are no particular limitations on the transparent substrate used in the present invention, and examples include glass substrates, transparent resin films (PET films, PEN films, polycarbonate films, polyimide films, etc.), and transparent substrates used in known display devices.

本発明にかかる遮光膜は、反射防止層と遮光層とからなるものであり、本発明の表示装置用基板において、カラーフィルターやCMOSセンサー等のブラックマトリックス、タッチパネル用額縁(ベゼル)、ブラックカラムスペーサー、黒色隔壁(バンク材)等を構成するものである。また、このような遮光膜は前記透明基板上に配置されており、より詳細には、反射防止層が前記透明基板上に配置され、遮光層が前記反射防止層上に配置されている。 The light-shielding film of the present invention is composed of an anti-reflection layer and a light-shielding layer, and in the display device substrate of the present invention, it constitutes a color filter, a black matrix of a CMOS sensor, a frame (bezel) for a touch panel, a black column spacer, a black partition (bank material), etc. In addition, such a light-shielding film is disposed on the transparent substrate, and more specifically, an anti-reflection layer is disposed on the transparent substrate, and a light-shielding layer is disposed on the anti-reflection layer.

前記反射防止層は屈折率が1.2~1.8の無機フィラーを含有するものである。このような屈折率を有する無機フィラーは後述する遮光成分の屈折率より小さい屈折率を有するものである。このような屈折率の小さい無機フィラーを用いることにより、遮光膜の反射率が低減され、遮光膜での光の反射が抑制される。このような無機フィラーの屈折率としては、1.3~1.6が好ましく、1.4~1.5がより好ましい。 The anti-reflection layer contains an inorganic filler with a refractive index of 1.2 to 1.8. An inorganic filler with such a refractive index has a refractive index smaller than that of the light-shielding component described below. By using an inorganic filler with such a small refractive index, the reflectance of the light-shielding film is reduced, and the reflection of light at the light-shielding film is suppressed. The refractive index of such an inorganic filler is preferably 1.3 to 1.6, and more preferably 1.4 to 1.5.

このような屈折率を有する無機フィラーとしては、シリカ(屈折率:1.46)、フッ化マグネシウム(屈折率:1.38)、フッ化リチウム(屈折率:1.39)、フッ化カルシウム(屈折率:1.40)等が挙げられ、中でも、シリカ(屈折率:1.46)が特に好ましい。また、このような無機フィラー(特に、シリカ)は、有機溶媒中で分散可能なように製造又は表面処理されていることが好ましい。このような有機溶媒中で分散可能なように製造又は表面処理されたシリカとしては、ヒュームドシリカ、コロイダルシリカ、オルガノシリカゾルが挙げられ、例えば、日産化学株式会社製のオルガノシリカゾル、株式会社アドマテックス製のアドマファイン及びアドマナノ、扶桑化学工業株式会社製コロイダルシリカ、オルガノシリカゾル及びシリカナノパウダー、日本アエロジル株式会社製ヒュームドシリカ等の商品名で販売されているもののうち有機溶剤に分散可能なものを用いることができる。 Inorganic fillers having such a refractive index include silica (refractive index: 1.46), magnesium fluoride (refractive index: 1.38), lithium fluoride (refractive index: 1.39), calcium fluoride (refractive index: 1.40), etc., and among these, silica (refractive index: 1.46) is particularly preferred. In addition, such inorganic fillers (particularly silica) are preferably manufactured or surface-treated so as to be dispersible in an organic solvent. Examples of silica manufactured or surface-treated so as to be dispersible in such an organic solvent include fumed silica, colloidal silica, and organosilica sol. For example, products sold under the trade names of organosilica sol manufactured by Nissan Chemical Co., Ltd., Adma Fine and Admanano manufactured by Admatechs Co., Ltd., colloidal silica, organosilica sol, and silica nanopowder manufactured by Fuso Chemical Co., Ltd., and fumed silica manufactured by Nippon Aerosil Co., Ltd., which are dispersible in organic solvents, can be used.

前記無機フィラーの平均粒子径としては、25~300nmが好ましく、30~260nmがより好ましく、30~220nmが特に好ましい。前記無機フィラーの平均粒子径が前記下限未満になると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の下限未満となる傾向にあり、他方、前記上限を超えると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の上限を超える傾向にある。なお、無機フィラーの平均粒子径は動的光散乱法等を利用した粒度分布測定により求めることができる。 The average particle size of the inorganic filler is preferably 25 to 300 nm, more preferably 30 to 260 nm, and particularly preferably 30 to 220 nm. If the average particle size of the inorganic filler is less than the lower limit, the surface roughness of the antireflection layer at the interface between the antireflection layer and the light-shielding layer tends to be less than the lower limit of the specified range, while if it exceeds the upper limit, the surface roughness of the antireflection layer at the interface between the antireflection layer and the light-shielding layer tends to exceed the upper limit of the specified range. The average particle size of the inorganic filler can be determined by particle size distribution measurement using a dynamic light scattering method or the like.

前記無機フィラーの含有量としては、反射防止層全体に対して5~95質量%が好ましく、15~90質量%がより好ましく、25~85質量%が特に好ましい。前記無機フィラーの含有量が前記下限未満になると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の下限未満となる傾向にあり、他方、前記上限を超えると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の上限を超える傾向にある。 The content of the inorganic filler is preferably 5 to 95% by mass, more preferably 15 to 90% by mass, and particularly preferably 25 to 85% by mass, based on the total amount of the anti-reflection layer. If the content of the inorganic filler is less than the lower limit, the surface roughness of the anti-reflection layer at the interface between the anti-reflection layer and the light-shielding layer tends to be less than the lower limit of the specified range, whereas if the content of the inorganic filler is greater than the upper limit, the surface roughness of the anti-reflection layer at the interface between the anti-reflection layer and the light-shielding layer tends to exceed the upper limit of the specified range.

また、前記反射防止層は透明樹脂硬化物を含有するものである。このような透明樹脂硬化物としては特に制限はなく、例えば、後述する光硬化性透明樹脂や熱硬化性透明樹脂、熱硬化性単量体の硬化物が挙げられる。前記透明樹脂硬化物の含有量としては、反射防止層全体に対して4~95質量%が好ましく、9~85質量%がより好ましく、14~75質量%が特に好ましい。前記透明樹脂硬化物の含有量が前記下限未満になると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の上限を超える傾向にあり、他方、前記上限を超えると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の下限未満となる傾向にある。 The anti-reflection layer contains a transparent resin cured product. There are no particular limitations on the transparent resin cured product, and examples thereof include photocurable transparent resins, thermosetting transparent resins, and cured products of thermosetting monomers, which will be described later. The content of the transparent resin cured product is preferably 4 to 95% by mass, more preferably 9 to 85% by mass, and particularly preferably 14 to 75% by mass, based on the total amount of the anti-reflection layer. If the content of the transparent resin cured product is less than the lower limit, the surface roughness of the anti-reflection layer at the interface between the anti-reflection layer and the light-shielding layer tends to exceed the upper limit of a predetermined range, and on the other hand, if the content exceeds the upper limit, the surface roughness of the anti-reflection layer at the interface between the anti-reflection layer and the light-shielding layer tends to be less than the lower limit of a predetermined range.

本発明にかかる遮光膜において、前記反射防止層の平均厚さは0.01~1μmである。前記反射防止層の平均厚さが前記下限未満になると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の上限を超える傾向にあり、他方、前記上限を超えると、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが所定の範囲の下限未満となる傾向にある。このような反射防止層の平均厚さとしては、前記反射防止層の表面粗さが所定の範囲内になりやすいという観点から、0.02~0.5μmが好ましく、0.04~0.3μmがより好ましい。なお、反射防止層の平均厚さは、触針式段差形状測定装置を用いて反射防止層表面と透明基板表面との段差を測定し、これを平均することによって求めることができる。 In the light-shielding film according to the present invention, the average thickness of the anti-reflection layer is 0.01 to 1 μm. If the average thickness of the anti-reflection layer is less than the lower limit, the surface roughness of the anti-reflection layer at the interface between the anti-reflection layer and the light-shielding layer tends to exceed the upper limit of the specified range, and if the average thickness exceeds the upper limit, the surface roughness of the anti-reflection layer at the interface between the anti-reflection layer and the light-shielding layer tends to be less than the lower limit of the specified range. From the viewpoint that the surface roughness of the anti-reflection layer is likely to be within the specified range, the average thickness of the anti-reflection layer is preferably 0.02 to 0.5 μm, and more preferably 0.04 to 0.3 μm. The average thickness of the anti-reflection layer can be determined by measuring the step between the anti-reflection layer surface and the transparent substrate surface using a stylus-type step shape measuring device and averaging the steps.

前記遮光層は有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分を含有するものである。有機黒色顔料としては、ペリレンブラック、アニリンブラック、シアニンブラック、ラクタムブラック等が挙げられる。無機黒色顔料としては、カーボンブラック、酸化クロム、酸化鉄、チタンブラック等が挙げられる。混色擬似黒色顔料としては、赤、青、緑、紫、黄、シアニン、マゼンタ等のうちの2種以上の顔料を混合して疑似黒色化したものが挙げられる。これらの遮光成分は1種を単独で使用しても2種以上を併用してもよい。また、これらの遮光成分の中でも、遮光性、表面平滑性、分散安定性、樹脂との相溶性が良好であるという観点から、カーボンブラックが特に好ましい。 The light-shielding layer contains at least one light-shielding component selected from the group consisting of organic black pigments, inorganic black pigments, and mixed-color pseudo-black pigments. Examples of organic black pigments include perylene black, aniline black, cyanine black, and lactam black. Examples of inorganic black pigments include carbon black, chromium oxide, iron oxide, and titanium black. Examples of mixed-color pseudo-black pigments include those obtained by mixing two or more pigments selected from red, blue, green, purple, yellow, cyanine, magenta, and the like to produce a pseudo-black color. These light-shielding components may be used alone or in combination of two or more. Among these light-shielding components, carbon black is particularly preferred from the viewpoints of good light-shielding properties, surface smoothness, dispersion stability, and compatibility with resins.

前記遮光成分の平均粒子径としては、10~300nmが好ましく、30~250nmがより好ましく、50~220nmが特に好ましい。前記遮光成分の平均粒子径が前記下限未満になると、前記遮光層の遮光性が低下する傾向にあり、他方、前記上限を超えると、前記遮光層の表面平滑性、前記遮光成分の分散均一性が低下する傾向にある。なお、遮光成分の平均粒子径は動的光散乱法等を利用した粒度分布測定により求めることができる。 The average particle size of the light-shielding component is preferably 10 to 300 nm, more preferably 30 to 250 nm, and particularly preferably 50 to 220 nm. If the average particle size of the light-shielding component is less than the lower limit, the light-shielding properties of the light-shielding layer tend to decrease, while if it exceeds the upper limit, the surface smoothness of the light-shielding layer and the uniformity of dispersion of the light-shielding component tend to decrease. The average particle size of the light-shielding component can be determined by particle size distribution measurement using a dynamic light scattering method or the like.

前記遮光成分の含有量としては、遮光成分としてカーボンブラックを使用する場合には、遮光層全体に対して10~65質量%が好ましく、15~60質量%がより好ましく、20~55質量%が特に好ましい。また、遮光成分としてカーボンブラック以外のものを使用する場合には、遮光層全体に対して10~90質量%が好ましく、20~80質量%がより好ましく、30~70質量%が特に好ましい。前記遮光成分の含有量が前記下限未満になると、前記遮光層の遮光性が低下する傾向にあり、他方、前記上限を超えると、前記遮光層の表面平滑性、前記遮光成分の分散均一性が低下する傾向にある。 When carbon black is used as the light-shielding component, the content of the light-shielding component is preferably 10 to 65% by mass, more preferably 15 to 60% by mass, and particularly preferably 20 to 55% by mass, based on the entire light-shielding layer. When a light-shielding component other than carbon black is used as the light-shielding component, the content is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and particularly preferably 30 to 70% by mass, based on the entire light-shielding layer. If the content of the light-shielding component is less than the lower limit, the light-shielding properties of the light-shielding layer tend to decrease, while if the content exceeds the upper limit, the surface smoothness of the light-shielding layer and the uniformity of dispersion of the light-shielding component tend to decrease.

また、前記遮光層は樹脂硬化物を含有するものである。このような樹脂硬化物としては特に制限はなく、例えば、後述する光硬化性樹脂の硬化物が挙げられる。前記樹脂硬化物の含有量としては、遮光成分としてカーボンブラックを使用する場合には、遮光層全体に対して34~90質量%が好ましく、39~85質量%がより好ましく、44~80質量%が特に好ましい。また、遮光成分としてカーボンブラック以外のものを使用する場合には、遮光層全体に対して9~90質量%が好ましく、19~80質量%がより好ましく、29~70質量%が特に好ましい。前記樹脂硬化物の含有量が前記下限未満になると、前記遮光層の表面平滑性、前記遮光成分の分散均一性が低下する傾向にあり、他方、前記上限を超えると、前記遮光層の遮光性が低下する傾向にある。 The light-shielding layer contains a cured resin. There are no particular limitations on the type of cured resin, and examples include cured products of photocurable resins described below. When carbon black is used as the light-shielding component, the content of the cured resin is preferably 34 to 90% by mass, more preferably 39 to 85% by mass, and particularly preferably 44 to 80% by mass, based on the entire light-shielding layer. When a light-shielding component other than carbon black is used as the light-shielding component, the content is preferably 9 to 90% by mass, more preferably 19 to 80% by mass, and particularly preferably 29 to 70% by mass, based on the entire light-shielding layer. If the content of the cured resin is less than the lower limit, the surface smoothness of the light-shielding layer and the uniformity of the dispersion of the light-shielding component tend to decrease, while if the content exceeds the upper limit, the light-shielding properties of the light-shielding layer tend to decrease.

本発明にかかる遮光膜において、前記遮光層の平均厚さは0.1~30μmである。前記遮光層の平均厚さが前記下限未満になると、前記遮光層の遮光性が低下し、他方、前記上限を超えると、アルカリ現像に要する時間が長くなり、生産性が低下する。このような遮光層の平均厚さとしては、遮光性と生産性を両立させるという観点から、0.5~20μmが好ましく、1~10μmがより好ましい。なお、遮光層の平均厚さは、触針式段差形状測定装置を用いて遮光膜表面と透明基板表面との段差を測定し、これを平均して遮光膜の平均厚さを求め、この遮光膜の平均厚さから前記反射防止層の平均厚さを差引くことによって求めることができる。 In the light-shielding film of the present invention, the average thickness of the light-shielding layer is 0.1 to 30 μm. If the average thickness of the light-shielding layer is less than the lower limit, the light-shielding properties of the light-shielding layer are reduced, while if the average thickness exceeds the upper limit, the time required for alkaline development is increased, resulting in reduced productivity. From the viewpoint of achieving both light-shielding properties and productivity, the average thickness of the light-shielding layer is preferably 0.5 to 20 μm, and more preferably 1 to 10 μm. The average thickness of the light-shielding layer can be determined by measuring the step between the light-shielding film surface and the transparent substrate surface using a stylus-type step shape measuring device, averaging the steps to determine the average thickness of the light-shielding film, and subtracting the average thickness of the antireflection layer from the average thickness of the light-shielding film.

また、本発明にかかる遮光膜においては、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが40~200nmである。前記反射防止層の表面粗さが前記下限未満になると、遮光膜の反射率が十分に低減されず、遮光膜での光の反射を十分に防止することができない。他方、前記反射防止層の表面粗さが前記上限を超えると、遮光膜の平坦性を所望のレベルにすることが困難になる。このような反射防止層の表面粗さとしては、遮光膜の反射率が低くなり、遮光膜での光の反射が抑制され、また、遮光膜の平坦性を担保するという観点から、50~180nmが好ましく、80~160nmがより好ましい。 In addition, in the light-shielding film according to the present invention, the surface roughness of the antireflection layer at the interface between the antireflection layer and the light-shielding layer is 40 to 200 nm. If the surface roughness of the antireflection layer is less than the lower limit, the reflectance of the light-shielding film is not sufficiently reduced, and the reflection of light at the light-shielding film cannot be sufficiently prevented. On the other hand, if the surface roughness of the antireflection layer exceeds the upper limit, it becomes difficult to achieve the desired level of flatness of the light-shielding film. The surface roughness of such an antireflection layer is preferably 50 to 180 nm, more preferably 80 to 160 nm, from the viewpoints of reducing the reflectance of the light-shielding film, suppressing the reflection of light at the light-shielding film, and ensuring the flatness of the light-shielding film.

次に、本発明の表示装置用基板の製造方法について説明する。本発明の第一の表示装置用基板の製造方法は、透明基板、及びこの透明基板上に配置されている、反射防止層と遮光層とからなる遮光膜を備えている表示装置用基板の製造方法であって、
前記透明基板上に、屈折率が特定の範囲内にある無機フィラーと光硬化性透明樹脂とを含有し、平均厚さが0.01~1μmであり、表面粗さが40~200nmである反射防止層用樹脂組成物層を形成する工程と、
前記反射防止層用樹脂組成物層上に、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と光硬化性樹脂とを含有する遮光層用樹脂組成物層を形成する工程と、
前記反射防止層用樹脂組成物層及び前記遮光層用樹脂組成物層に一括で露光処理を施した後、一括で現像処理を施し、さらに、加熱処理(ポストベーク)を施して、前記無機フィラーと透明樹脂硬化物とを含有する反射防止層及び前記遮光成分と樹脂硬化物とを含有し、平均厚さが0.1~30μmである遮光層を形成する工程と、
を含む方法である。
Next, a method for producing a substrate for a display device of the present invention will be described. The first method for producing a substrate for a display device of the present invention is a method for producing a substrate for a display device including a transparent substrate and a light-shielding film formed of an antireflection layer and a light-shielding layer and disposed on the transparent substrate,
forming a resin composition layer for an antireflection layer on the transparent substrate, the resin composition layer containing an inorganic filler having a refractive index within a specific range and a photocurable transparent resin, the resin composition layer having an average thickness of 0.01 to 1 μm and a surface roughness of 40 to 200 nm;
forming a resin composition layer for a light-shielding layer, the resin composition layer containing at least one light-shielding component selected from the group consisting of an organic black pigment, an inorganic black pigment, and a mixed color pseudo-black pigment, and a photocurable resin, on the resin composition layer for an antireflection layer;
a step of simultaneously subjecting the resin composition layer for an antireflection layer and the resin composition layer for a light-shielding layer to an exposure treatment, simultaneously subjecting the resin composition layer for an antireflection layer and the resin composition layer for a light-shielding layer to a development treatment, and further subjecting the resin composition layer to a heat treatment (post-baking) to form an antireflection layer containing the inorganic filler and a transparent cured resin and a light-shielding layer containing the light-shielding component and a cured resin and having an average thickness of 0.1 to 30 μm;
The method includes:

また、本発明の第二の表示装置用基板の製造方法は、透明基板、及び該透明基板上に配置されている、反射防止層と遮光層とからなる遮光膜を備えている表示装置用基板の製造方法であって、
前記透明基板上に、屈折率が特定の範囲内にある無機フィラーと熱硬化性透明樹脂及び熱硬化性単量体のうちの少なくとも1種とを含有する反射防止層用樹脂組成物に加熱硬化処理を施して、平均厚さが0.01~1μmであり、表面粗さが40~200nmである反射防止層を形成する工程と、
前記反射防止層上に、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と光硬化性樹脂とを含有する遮光層用樹脂組成物に露光処理を施した後、現像処理を施し、さらに、加熱処理(ポストベーク)を施して、平均厚さが0.1~30μmである遮光層を形成する工程と、
を含む方法である。このような第二の表示装置用基板の製造方法においては、前記遮光層(遮光層パターン)を形成した後、必要に応じて、前記反射防止層のうち、上部に遮光層が形成されていない部分(現像処理において上部の遮光層用樹脂組成物層が除去された部分)の反射防止層をエッチング処理により除去して、反射防止層についてもパターンを形成してもよい。
A second method for producing a substrate for a display device according to the present invention is a method for producing a substrate for a display device including a transparent substrate and a light-shielding film formed on the transparent substrate and including an antireflection layer and a light-shielding layer, the method comprising the steps of:
a step of subjecting a resin composition for an antireflection layer, the resin composition containing an inorganic filler having a refractive index within a specific range and at least one of a thermosetting transparent resin and a thermosetting monomer, to a heat curing treatment to form an antireflection layer having an average thickness of 0.01 to 1 μm and a surface roughness of 40 to 200 nm on the transparent substrate;
a step of subjecting a resin composition for a light-shielding layer, which contains at least one light-shielding component selected from the group consisting of an organic black pigment, an inorganic black pigment, and a mixed color pseudo-black pigment, and a photocurable resin, to an exposure treatment, followed by a development treatment, and further a heat treatment (post-baking) to form a light-shielding layer having an average thickness of 0.1 to 30 μm on the antireflection layer;
In such a second method for producing a substrate for a display device, after the light-shielding layer (light-shielding layer pattern) is formed, if necessary, a portion of the antireflection layer where no light-shielding layer is formed thereon (a portion where the upper light-shielding layer resin composition layer has been removed in the development treatment) may be removed by etching to form a pattern on the antireflection layer as well.

本発明の第一及び第二の表示装置用基板の製造方法に用いられる透明基板、屈折率が特定の範囲内にある無機フィラー、及び遮光成分は、前述の本発明の表示装置用基板の説明において記載した透明基板、無機フィラー、及び遮光成分である。 The transparent substrate, inorganic filler having a refractive index within a specific range, and light-shielding component used in the first and second manufacturing methods of the display device substrate of the present invention are the transparent substrate, inorganic filler, and light-shielding component described above in the description of the display device substrate of the present invention.

本発明の第一の表示装置用基板の製造方法に用いられる反射防止層用樹脂組成物(以下、「第一の反射防止層用樹脂組成物」という)は前記無機フィラーと光硬化性透明樹脂とを含有するものである。この光硬化性透明樹脂としては、光照射(例えば、UV照射)により硬化する透明樹脂であれば特に制限はないが、現像性に優れているという観点から、アルカリ可溶性の光硬化性透明樹脂が好ましく、さらに、光硬化性、パターニング特性にも優れているという観点から、特開2017-72760号公報に記載された、重合性不飽和基含有アルカリ可溶性樹脂、すなわち、エポキシ基を2個以上有する化合物(より好ましくは、ビスフェノール類とエピハロヒドリンとを反応させて得られるエポキシ化合物)と(メタ)アクリル酸(「アクリル酸及び/又はメタアクリル酸」を意味する)との反応物に、さらに多価カルボン酸又はその酸無水物を反応させて得られるエポキシ(メタ)アクリレート酸付加物が好ましく、ビスフェノールフルオレン化合物から誘導されるエポキシアクリレート酸付加物が特に好ましい。 The resin composition for antireflection layer used in the first method for producing a display device substrate of the present invention (hereinafter referred to as "first resin composition for antireflection layer") contains the inorganic filler and a photocurable transparent resin. The photocurable transparent resin is not particularly limited as long as it is a transparent resin that is cured by light irradiation (for example, UV irradiation), but from the viewpoint of excellent developability, an alkali-soluble photocurable transparent resin is preferred, and from the viewpoint of excellent photocurability and patterning characteristics, an alkali-soluble resin containing a polymerizable unsaturated group described in JP 2017-72760 A, i.e., an epoxy (meth)acrylate acid adduct obtained by further reacting a reaction product of a compound having two or more epoxy groups (more preferably an epoxy compound obtained by reacting a bisphenol with an epihalohydrin) and (meth)acrylic acid (meaning "acrylic acid and/or methacrylic acid") with a polyvalent carboxylic acid or its acid anhydride, is preferred, and an epoxy acrylate acid adduct derived from a bisphenol fluorene compound is particularly preferred.

このような第一の反射防止層用樹脂組成物において、前記無機フィラーの含有量としては、第一の反射防止層用樹脂組成物全体に対して5~95質量%が好ましく、15~90質量%がより好ましく、25~85質量%が特に好ましい。また、前記光硬化性透明樹脂の含有量としては、第一の反射防止層用樹脂組成物全体に対して1.54~95質量%が好ましく、3.46~85質量%がより好ましく、5.38~75質量%が特に好ましい。前記無機フィラーの含有量が前記下限未満になると(或いは、前記光硬化性透明樹脂の含有量が前記上限を超えると)、形成される反射防止層と遮光層との界面における前記反射防止層の表面粗さが所定の範囲の下限未満となる傾向にあり、他方、前記無機フィラーの含有量が前記上限を超えると(或いは、前記光硬化性透明樹脂の含有量が前記下限未満になると)、形成される反射防止層と遮光層との界面における前記反射防止層の表面粗さが所定の範囲の上限を超える傾向にある。 In such a resin composition for the first antireflection layer, the content of the inorganic filler is preferably 5 to 95% by mass, more preferably 15 to 90% by mass, and particularly preferably 25 to 85% by mass, based on the entire resin composition for the first antireflection layer. The content of the photocurable transparent resin is preferably 1.54 to 95% by mass, more preferably 3.46 to 85% by mass, and particularly preferably 5.38 to 75% by mass, based on the entire resin composition for the first antireflection layer. When the content of the inorganic filler is less than the lower limit (or when the content of the photocurable transparent resin exceeds the upper limit), the surface roughness of the antireflection layer at the interface between the antireflection layer and the light-shielding layer formed tends to be less than the lower limit of a predetermined range, and on the other hand, when the content of the inorganic filler exceeds the upper limit (or when the content of the photocurable transparent resin is less than the lower limit), the surface roughness of the antireflection layer at the interface between the antireflection layer and the light-shielding layer formed tends to exceed the upper limit of a predetermined range.

また、このような第一の反射防止層用樹脂組成物には光重合性モノマーが含まれていてもよい。これにより、反射防止層を光加工する場合の感度を適正化したり、形成される反射防止層の表面硬度等の膜の機械物性を適正化したりすることが可能になる。このような光重合性モノマーとしては特に制限はなく、例えば、特開2017-72760号公報に記載された、少なくとも1個のエチレン性不飽和結合を有する光重合性モノマー(例えば、少なくとも1個のエチレン性不飽和結合を有する(メタ)アクリル酸エステル類)が挙げられる。このような光重合性モノマーの含有量としては、前記光硬化性透明樹脂と光重合性モノマーとの合計量に対して、0~50質量%が好ましく、0~40質量%がより好ましく、0~30質量%が特に好ましい。 In addition, such a resin composition for the first antireflection layer may contain a photopolymerizable monomer. This makes it possible to optimize the sensitivity when the antireflection layer is optically processed, and to optimize the mechanical properties of the film, such as the surface hardness, of the antireflection layer formed. There are no particular limitations on such photopolymerizable monomers, and examples thereof include photopolymerizable monomers having at least one ethylenically unsaturated bond (e.g., (meth)acrylic acid esters having at least one ethylenically unsaturated bond) described in JP 2017-72760 A. The content of such photopolymerizable monomers is preferably 0 to 50% by mass, more preferably 0 to 40% by mass, and particularly preferably 0 to 30% by mass, based on the total amount of the photocurable transparent resin and the photopolymerizable monomer.

さらに、前記第一の反射防止層用樹脂組成物には光重合開始剤が含まれていることが好ましい。このような光重合開始剤としては特に制限はなく、例えば、特開2017-72760号公報に記載された光重合開始剤が挙げられるが、これらの中でも、オキシムエステル系重合開始剤が特に好ましい。このような光重合開始剤の含有量は、前記第一の反射防止層用樹脂組成物の光硬化性等に応じて適宜設定することができ、例えば、光硬化性樹脂と光重合性モノマーとの合計量100質量部に対して0~30質量部であることが好ましく、0~25質量部であることがより好ましい。 Furthermore, the resin composition for the first antireflection layer preferably contains a photopolymerization initiator. Such photopolymerization initiators are not particularly limited, and examples thereof include the photopolymerization initiators described in JP 2017-72760 A, among which oxime ester-based polymerization initiators are particularly preferred. The content of such photopolymerization initiators can be appropriately set according to the photocurability of the resin composition for the first antireflection layer, and is preferably 0 to 30 parts by mass, and more preferably 0 to 25 parts by mass, per 100 parts by mass of the total amount of the photocurable resin and the photopolymerizable monomer.

また、透明基板の耐熱性が低く、現像後の加熱処理(ポストベーク)を150℃以下といった低温で行う場合には、前記第一の反射防止層用樹脂組成物にアゾ系重合開始剤が含まれていることが好ましい。これにより、現像後の加熱時(ポストベーク時)の前記第一の反射防止層用樹脂組成物の熱ラジカル重合性が向上する。このようなアゾ系重合開始剤としては特に制限はなく、例えば、特開2017-181976号公報に記載されたアゾ系重合開始剤が挙げられる。このようなアゾ系重合開始剤の含有量としては特に制限はなく、前記第一の反射防止層用樹脂組成物の熱ラジカル重合性等に応じて適宜設定することができる。 In addition, when the heat resistance of the transparent substrate is low and the heat treatment (post-baking) after development is performed at a low temperature such as 150°C or less, it is preferable that the resin composition for the first anti-reflection layer contains an azo-based polymerization initiator. This improves the thermal radical polymerizability of the resin composition for the first anti-reflection layer during heating after development (post-baking). There are no particular limitations on such azo-based polymerization initiators, and examples of such azo-based polymerization initiators include the azo-based polymerization initiators described in JP-A-2017-181976. There are no particular limitations on the content of such azo-based polymerization initiators, and the content can be appropriately set depending on the thermal radical polymerizability of the resin composition for the first anti-reflection layer, etc.

さらに、前記第一の反射防止層用樹脂組成物には、必要に応じて、分散剤、前記光重合開始剤及びアゾ系重合開始剤以外の重合開始剤、連鎖移動剤、増感剤、非感光性樹脂、硬化剤、硬化促進剤、酸化防止剤、可塑剤、充填材、カップリング剤、界面活性剤、染料等の各種添加剤を配合することができる。 Furthermore, the resin composition for the first antireflection layer may contain various additives, such as a dispersant, a polymerization initiator other than the photopolymerization initiator and the azo-based polymerization initiator, a chain transfer agent, a sensitizer, a non-photosensitive resin, a curing agent, a curing accelerator, an antioxidant, a plasticizer, a filler, a coupling agent, a surfactant, and a dye, as necessary.

また、前記第一の反射防止層用樹脂組成物は、溶液の状態で(すなわち、第一の反射防止層用樹脂組成物溶液として)使用することが好ましい。これにより、均一な反射防止層用樹脂組成物層を形成することができる。このような第一の反射防止層用樹脂組成物溶液に用いられる有機溶媒としては特に制限はなく、例えば、特開2017-72760号公報に記載された溶剤が挙げられる。このような有機溶媒は、前記第一の反射防止層用樹脂組成物と有機溶媒との合計量に対して有機溶媒量が80~99.9質量%となるように配合することが好ましく、前記第一の反射防止層用樹脂組成物溶液の溶液粘度(B型又はE型粘度計)が1~4mPa・secとなるように配合することがより好ましい。このような溶液粘度の好ましい範囲はコーティングの方法によって異なるため、前記有機溶媒量の好ましい範囲もコーティングの方法によって異なる。例えば、スピンコート法の場合には、前記有機溶媒量の好ましい範囲の下限値近くの80~85質量%が好ましく、スリットコート法の場合には、前記有機溶媒量の好ましい範囲の上限値付近の99.0~99.9質量%が好ましい。 In addition, the resin composition for the first antireflection layer is preferably used in the form of a solution (i.e., as a solution of the resin composition for the first antireflection layer). This allows a uniform resin composition layer for the antireflection layer to be formed. The organic solvent used in such a resin composition solution for the first antireflection layer is not particularly limited, and examples thereof include the solvents described in JP-A-2017-72760. It is preferable to mix such an organic solvent so that the amount of the organic solvent is 80 to 99.9% by mass with respect to the total amount of the resin composition for the first antireflection layer and the organic solvent, and it is more preferable to mix such that the solution viscosity (B-type or E-type viscometer) of the resin composition solution for the first antireflection layer is 1 to 4 mPa·sec. Since the preferable range of such a solution viscosity varies depending on the coating method, the preferable range of the amount of the organic solvent also varies depending on the coating method. For example, in the case of spin coating, the amount of organic solvent is preferably 80 to 85% by mass, which is near the lower limit of the preferred range of the amount of organic solvent, and in the case of slit coating, the amount of organic solvent is preferably 99.0 to 99.9% by mass, which is near the upper limit of the preferred range of the amount of organic solvent.

本発明の第一の反射防止層用樹脂組成物溶液として典型的な配合組成を有するものは、光硬化性樹脂組成物及び有機溶媒を含有する樹脂組成物溶液であって、
前記光硬化性樹脂組成物が、屈折率が1.2~1.8であり、平均粒子径が30~220nmであり、前記有機溶剤中で分散可能なシリカ粒子を樹脂組成物全体に対して25~85質量%と、エポキシ(メタ)アクリレート酸付加物を樹脂組成物全体に対して15~75質量%含有するものであり、
前記有機溶媒の含有量が、前記光硬化性樹脂組成物と前記有機溶媒の合計量に対して80~99.9質量%であり、
溶液粘度が1~4mPa・secである、樹脂組成物溶液である。このような第一の反射防止層用樹脂組成物溶液において、エポキシ(メタ)アクリレート酸付加物としては、ビスフェノールフルオレン化合物から誘導されるエポキシアクリレート酸付加物が特に好ましい。
The first resin composition solution for an antireflection layer according to the present invention has a typical composition, which is a resin composition solution containing a photocurable resin composition and an organic solvent,
the photocurable resin composition has a refractive index of 1.2 to 1.8, an average particle size of 30 to 220 nm, and contains 25 to 85 mass % of silica particles dispersible in the organic solvent based on the entire resin composition, and 15 to 75 mass % of an epoxy (meth)acrylate acid adduct based on the entire resin composition;
the content of the organic solvent is 80 to 99.9% by mass based on the total amount of the photocurable resin composition and the organic solvent;
The resin composition solution has a solution viscosity of 1 to 4 mPa·sec. In such a first antireflection layer resin composition solution, the epoxy (meth)acrylate acid adduct is particularly preferably an epoxy acrylate acid adduct derived from a bisphenol fluorene compound.

一方、本発明の第二の表示装置用基板の製造方法に用いられる反射防止層用樹脂組成物(以下、「第二の反射防止層用樹脂組成物」という)は前記無機フィラーと熱硬化性透明樹脂及び熱硬化性単量体のうちの少なくとも1種とを含有するものである。この熱硬化性透明樹脂及び熱硬化性単量体としては、加熱処理により硬化する透明樹脂及び単量体であれば特に制限はなく、例えば、特開2016-161926号公報に記載された、エチレン性不飽和二重結合又は環状反応性基を有する樹脂(エポキシ化合物、オキセタン化合物等)及びエチレン性不飽和二重結合又は環状反応性基を有する単量体が挙げられる。 On the other hand, the resin composition for an anti-reflection layer used in the second method for producing a display device substrate of the present invention (hereinafter referred to as the "second resin composition for an anti-reflection layer") contains the inorganic filler and at least one of a thermosetting transparent resin and a thermosetting monomer. There are no particular limitations on the thermosetting transparent resin and the thermosetting monomer as long as they are transparent resins and monomers that are cured by heat treatment, and examples of such resins include resins having an ethylenically unsaturated double bond or a cyclic reactive group (epoxy compounds, oxetane compounds, etc.) and monomers having an ethylenically unsaturated double bond or a cyclic reactive group, as described in JP 2016-161926 A.

このような第二の反射防止層用樹脂組成物において、前記無機フィラーの含有量としては、第二の反射防止層用樹脂組成物全体に対して5~95質量%が好ましく、15~90質量%がより好ましく、25~85質量%が特に好ましい。また、前記熱硬化性透明樹脂及び熱硬化性単量体のうちの少なくとも1種の含有量としては、第二の反射防止層用樹脂組成物全体に対して3.2~94.06質量%が好ましく、7.2~84.16質量%がより好ましく、11.2~74.26質量%が特に好ましい。前記無機フィラーの含有量が前記下限未満になると(或いは、前記熱硬化性透明樹脂の含有量が前記上限を超えると)、形成される反射防止層と遮光層との界面における前記反射防止層の表面粗さが所定の範囲の下限未満となる傾向にあり、他方、前記無機フィラーの含有量が前記上限を超えると(或いは、前記熱硬化性透明樹脂の含有量が前記下限未満になると)、形成される反射防止層と遮光層との界面における前記反射防止層の表面粗さが所定の範囲の上限を超える傾向にある。 In such a resin composition for the second antireflection layer, the content of the inorganic filler is preferably 5 to 95% by mass, more preferably 15 to 90% by mass, and particularly preferably 25 to 85% by mass, based on the entire resin composition for the second antireflection layer. The content of at least one of the thermosetting transparent resin and the thermosetting monomer is preferably 3.2 to 94.06% by mass, more preferably 7.2 to 84.16% by mass, and particularly preferably 11.2 to 74.26% by mass, based on the entire resin composition for the second antireflection layer. When the content of the inorganic filler is less than the lower limit (or when the content of the thermosetting transparent resin exceeds the upper limit), the surface roughness of the antireflection layer at the interface between the formed antireflection layer and the light-shielding layer tends to be less than the lower limit of the specified range, and on the other hand, when the content of the inorganic filler exceeds the upper limit (or when the content of the thermosetting transparent resin is less than the lower limit), the surface roughness of the antireflection layer at the interface between the formed antireflection layer and the light-shielding layer tends to exceed the upper limit of the specified range.

また、前記第二の反射防止層用樹脂組成物には熱硬化剤が含まれていることが好ましい。このような熱硬化剤としては、例えば、アミン系化合物、多価カルボン酸系化合物、フェノール樹脂、アミノ樹脂、ジシアンジアミド、ルイス酸錯化合物等のエポキシ化合物の熱硬化剤として用いられるものが挙げられ、中でも、多価カルボン酸系化合物が好ましい。このような多価カルボン酸系化合物としては、多価カルボン酸、多価カルボン酸の無水物、及び多価カルボン酸の熱分解性エステルが挙げられる。多価カルボン酸は1分子中に2つ以上のカルボキシ基を有する化合物であり、具体的には、コハク酸、マレイン酸、シクロヘキサン-1,2-ジカルボン酸、シクロヘキセン-1,2-ジカルボン酸、シクロヘキセン-4,5-ジカルボン酸、ノルボルナン-2,3-ジカルボン酸、フタル酸、3,6-ジヒドロフタル酸、1,2,3,6-テトラヒドロフタル酸、メチルテトラヒドロフタル酸、ベンゼン-1,2,4-トリカルボン酸、シクロヘキサン-1,2,4-トリカルボン酸、ベンゼン-1,2,4,5-テトラカルボン酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、ブタン-1,2,3,4-テトラカルボン酸等が挙げられる。多価カルボン酸の無水物としては上記に例示した多価カルボン酸の無水物が挙げられる。このような多価カルボン酸の無水物としては分子間酸無水物を用いてもよいが、一般には分子内で閉環した酸無水物が用いられる。多価カルボン酸の熱分解性エステルとしては、上記に例示した多価カルボン酸の熱分解性エステル(例えば、t-ブチルエステル、1-(アルキルオキシ)エチルエステル、1-(アルキルスルファニル)エチルエステル等〔ただし、前記アルキルは炭素数1~20の飽和又は不飽和の炭化水素基であり、この炭化水素基は直鎖状、分岐状、環状のいずれの構造を有していてもよく、また、任意の置換基を有していてもよい〕)が挙げられる。また、多価カルボン酸系化合物として、2つ以上のカルボキシ基を有する重合体又は共重合体を用いることもでき、そのカルボキシ基は無水物基又は熱分解性エステル基を形成していてもよい。このような2つ以上のカルボキシ基を有する重合体又は共重合体としては特に制限はないが、例えば、(メタ)アクリル酸を構成成分として含む重合体又は共重合体、無水マレイン酸を構成成分として含む共重合体、テトラカルボン酸二無水物をジアミンやジオールと反応させて酸無水物を開環させた化合物等が挙げられる。これらの多価カルボン酸系化合物の中でも、フタル酸、3,6-ジヒドロフタル酸、1,2,3,6-テトラヒドロフタル酸、メチルテトラヒドロフタル酸、ベンゼン-1,2,4-トリカルボン酸の各多価カルボン酸の無水物が好ましい。このような熱硬化剤の含有量は、前記第二の反射防止層用樹脂組成物の熱硬化性等に応じて適宜設定することができ、例えば、熱硬化性透明樹脂と熱硬化性単量体との合計量100質量部に対して1~25質量部であることが好ましい。 In addition, it is preferable that the resin composition for the second anti-reflection layer contains a heat curing agent. Examples of such heat curing agents include amine compounds, polycarboxylic acid compounds, phenolic resins, amino resins, dicyandiamide, Lewis acid complex compounds, and other heat curing agents for epoxy compounds, and among these, polycarboxylic acid compounds are preferred. Examples of such polycarboxylic acid compounds include polycarboxylic acids, anhydrides of polycarboxylic acids, and thermally decomposable esters of polycarboxylic acids. The polycarboxylic acid is a compound having two or more carboxy groups in one molecule, and specific examples thereof include succinic acid, maleic acid, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, cyclohexene-4,5-dicarboxylic acid, norbornane-2,3-dicarboxylic acid, phthalic acid, 3,6-dihydrophthalic acid, 1,2,3,6-tetrahydrophthalic acid, methyltetrahydrophthalic acid, benzene-1,2,4-tricarboxylic acid, cyclohexane-1,2,4-tricarboxylic acid, benzene-1,2,4,5-tetracarboxylic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, etc. Examples of the anhydrides of polycarboxylic acids include the anhydrides of the polycarboxylic acids exemplified above. As the anhydrides of such polycarboxylic acids, intermolecular acid anhydrides may be used, but generally, acid anhydrides that are ring-closed within the molecule are used. Examples of the thermally decomposable ester of a polycarboxylic acid include the thermally decomposable ester of a polycarboxylic acid exemplified above (for example, t-butyl ester, 1-(alkyloxy)ethyl ester, 1-(alkylsulfanyl)ethyl ester, etc. [wherein the alkyl is a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have any structure of a straight chain, branched or cyclic structure, and may have any substituent]). In addition, a polymer or copolymer having two or more carboxy groups can be used as the polycarboxylic acid compound, and the carboxy groups may form an anhydride group or a thermally decomposable ester group. There are no particular limitations on such a polymer or copolymer having two or more carboxy groups, but examples thereof include a polymer or copolymer containing (meth)acrylic acid as a constituent, a copolymer containing maleic anhydride as a constituent, and a compound obtained by reacting a tetracarboxylic dianhydride with a diamine or diol to open the ring of the acid anhydride. Among these polycarboxylic acid compounds, the anhydrides of the polycarboxylic acids phthalic acid, 3,6-dihydrophthalic acid, 1,2,3,6-tetrahydrophthalic acid, methyltetrahydrophthalic acid, and benzene-1,2,4-tricarboxylic acid are preferred. The content of such a thermosetting agent can be appropriately set depending on the thermosetting property of the resin composition for the second antireflection layer, and is preferably, for example, 1 to 25 parts by mass per 100 parts by mass of the total amount of the thermosetting transparent resin and the thermosetting monomer.

さらに、前記第二の反射防止層用樹脂組成物には、必要に応じて、分散剤、非熱硬化性樹脂、硬化促進剤、酸化防止剤、可塑剤、充填材、カップリング剤、界面活性剤、染料等の各種添加剤を配合することができる。 Furthermore, the resin composition for the second antireflection layer may contain various additives, such as dispersants, non-thermosetting resins, curing accelerators, antioxidants, plasticizers, fillers, coupling agents, surfactants, and dyes, as necessary.

また、前記第二の反射防止層用樹脂組成物は、溶液の状態で(すなわち、第二の反射防止層用樹脂組成物溶液として)使用することが好ましい。これにより、均一な反射防止層用樹脂組成物層を形成することができる。このような第二の反射防止層用樹脂組成物溶液に用いられる有機溶媒としては特に制限はなく、例えば、特開2016-161926号公報に記載された溶剤が挙げられる。このような有機溶媒は、前記第二の反射防止層用樹脂組成物と有機溶媒との合計量に対して有機溶媒量が80~99.9質量%となるように配合することが好ましく、前記第二の反射防止層用樹脂組成物溶液の溶液粘度(B型又はE型粘度計)が1~4mPa・secとなるように配合することがより好ましい。このような溶液粘度の好ましい範囲はコーティングの方法によって異なるため、前記有機溶媒量の好ましい範囲もコーティングの方法によって異なる。例えば、スピンコート法の場合には、前記有機溶媒量の好ましい範囲の下限値近くの80~85質量%が好ましく、スリットコート法の場合には、前記有機溶媒量の好ましい範囲の上限値付近の99.0~99.9質量%が好ましい。 In addition, the second anti-reflection layer resin composition is preferably used in the form of a solution (i.e., as a second anti-reflection layer resin composition solution). This allows a uniform anti-reflection layer resin composition layer to be formed. The organic solvent used in such a second anti-reflection layer resin composition solution is not particularly limited, and examples thereof include the solvents described in JP 2016-161926 A. It is preferable to mix such an organic solvent so that the amount of the organic solvent is 80 to 99.9% by mass with respect to the total amount of the second anti-reflection layer resin composition and the organic solvent, and it is more preferable to mix such that the solution viscosity (B-type or E-type viscometer) of the second anti-reflection layer resin composition solution is 1 to 4 mPa·sec. Since the preferable range of such a solution viscosity varies depending on the coating method, the preferable range of the amount of the organic solvent also varies depending on the coating method. For example, in the case of spin coating, the amount of organic solvent is preferably 80 to 85% by mass, which is near the lower limit of the preferred range of the amount of organic solvent, and in the case of slit coating, the amount of organic solvent is preferably 99.0 to 99.9% by mass, which is near the upper limit of the preferred range of the amount of organic solvent.

本発明の第二の反射防止層用樹脂組成物溶液として典型的な配合組成を有するものは、熱硬化性樹脂組成物及び有機溶媒を含有する樹脂組成物溶液であって、
前記熱硬化性樹脂組成物が、屈折率が1.2~1.8であり、平均粒子径が30~220nmであり、前記有機溶剤中で分散可能なシリカ粒子を樹脂組成物全体に対して25~85質量%と、エポキシ化合物を樹脂組成物全体に対して12~74.26質量%と、熱硬化剤を前記エポキシ化合物100質量部に対して1~25質量部含有するものであり、 前記有機溶媒の含有量が、前記熱硬化性樹脂組成物と前記有機溶媒の合計量に対して80~99.9質量%であり、
溶液粘度が1~4mPa・secである、樹脂組成物溶液である。
The second resin composition solution for an antireflection layer of the present invention has a typical composition, which is a resin composition solution containing a thermosetting resin composition and an organic solvent,
the thermosetting resin composition contains 25 to 85 mass% of silica particles having a refractive index of 1.2 to 1.8 and an average particle size of 30 to 220 nm and dispersible in the organic solvent, based on the entire resin composition; 12 to 74.26 mass% of an epoxy compound, based on the entire resin composition; and 1 to 25 mass parts of a heat curing agent, based on 100 mass parts of the epoxy compound; the content of the organic solvent is 80 to 99.9 mass% based on the total amount of the thermosetting resin composition and the organic solvent;
The resin composition solution has a solution viscosity of 1 to 4 mPa·sec.

本発明の第一及び第二の表示装置用基板の製造方法に用いられる遮光層用樹脂組成物は前記遮光成分と光硬化性樹脂とを含有するものである。この光硬化性樹脂としては、光照射(例えば、UV照射)により硬化する樹脂であれば特に制限はないが、現像性に優れているという観点から、アルカリ可溶性の光硬化性樹脂が好ましく、さらに、光硬化性、パターニング特性にも優れているという観点から、特開2017-72760号公報に記載された、重合性不飽和基含有アルカリ可溶性樹脂、すなわち、エポキシ基を2個以上有する化合物(より好ましくは、ビスフェノール類とエピハロヒドリンとを反応させて得られるエポキシ化合物)と(メタ)アクリル酸(「アクリル酸及び/又はメタアクリル酸」を意味する)との反応物に、さらに多価カルボン酸又はその酸無水物を反応させて得られるエポキシ(メタ)アクリレート酸付加物が好ましく、ビスフェノールフルオレン化合物から誘導されるエポキシアクリレート酸付加物が特に好ましい。 The resin composition for the light-shielding layer used in the first and second display device substrate manufacturing methods of the present invention contains the light-shielding component and a photocurable resin. The photocurable resin is not particularly limited as long as it is a resin that is cured by light irradiation (for example, UV irradiation), but from the viewpoint of excellent developability, an alkali-soluble photocurable resin is preferred, and from the viewpoint of excellent photocurability and patterning properties, an alkali-soluble resin containing a polymerizable unsaturated group described in JP 2017-72760 A, i.e., an epoxy (meth)acrylate acid adduct obtained by further reacting a reaction product of a compound having two or more epoxy groups (more preferably an epoxy compound obtained by reacting a bisphenol with an epihalohydrin) and (meth)acrylic acid (meaning "acrylic acid and/or methacrylic acid") with a polyvalent carboxylic acid or its acid anhydride, is preferred, and an epoxy acrylate acid adduct derived from a bisphenol fluorene compound is particularly preferred.

このような遮光層用樹脂組成物において、前記遮光成分の含有量としては、遮光層用樹脂組成物全体に対して10~90質量%が好ましく、20~80質量%がより好ましく、30~70質量%が特に好ましい。また、前記光硬化性樹脂の含有量としては、遮光層用樹脂組成物全体に対して5.54~90質量%が好ましく、11.7~80質量%がより好ましく、17.8~70質量%が特に好ましい。前記遮光成分の含有量が前記下限未満になると(或いは、前記光硬化性樹脂の含有量が前記上限を超えると)、形成される遮光層の遮光性が低下する傾向にあり、他方、前記遮光成分の含有量が前記上限を超えると(或いは、前記光硬化性樹脂の含有量が前記下限未満になると)、形成される遮光層の表面平滑性、前記遮光成分の分散安定性が低下する傾向にある。 In such a resin composition for a light-shielding layer, the content of the light-shielding component is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and particularly preferably 30 to 70% by mass, based on the entire resin composition for a light-shielding layer. The content of the photocurable resin is preferably 5.54 to 90% by mass, more preferably 11.7 to 80% by mass, and particularly preferably 17.8 to 70% by mass, based on the entire resin composition for a light-shielding layer. If the content of the light-shielding component is less than the lower limit (or if the content of the photocurable resin exceeds the upper limit), the light-shielding properties of the formed light-shielding layer tend to decrease, while if the content of the light-shielding component exceeds the upper limit (or if the content of the photocurable resin is less than the lower limit), the surface smoothness of the formed light-shielding layer and the dispersion stability of the light-shielding component tend to decrease.

また、このような遮光層用樹脂組成物には光重合性モノマーが含まれていてもよい。これにより、遮光層を光加工する場合の感度を適正化したり、形成される遮光層の表面硬度等の膜の機械物性を適正化したりすることが可能になる。このような光重合性モノマーとしては、特開2017-72760号公報に記載された、少なくとも1個のエチレン性不飽和結合を有する光重合性モノマー(例えば、少なくとも1個のエチレン性不飽和結合を有する(メタ)アクリル酸エステル類)が挙げられる。このような光重合性モノマーの含有量としては、前記光硬化性樹脂と光重合性モノマーとの合計量に対して、1~20質量%が好ましく、2~15質量%がより好ましく、3~10質量%が特に好ましい。 In addition, such a resin composition for a light-shielding layer may contain a photopolymerizable monomer. This makes it possible to optimize the sensitivity when the light-shielding layer is optically processed, and to optimize the mechanical properties of the film, such as the surface hardness, of the light-shielding layer that is formed. Examples of such photopolymerizable monomers include photopolymerizable monomers having at least one ethylenically unsaturated bond (e.g., (meth)acrylic acid esters having at least one ethylenically unsaturated bond) described in JP 2017-72760 A. The content of such photopolymerizable monomers is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, and particularly preferably 3 to 10% by mass, based on the total amount of the photocurable resin and the photopolymerizable monomer.

さらに、前記遮光層用樹脂組成物には光重合開始剤が含まれていることが好ましい。このような光重合開始剤としては特に制限はなく、例えば、特開2017-72760号公報に記載された光重合開始剤が挙げられるが、これらの中でも、オキシムエステル系重合開始剤が特に好ましい。このような光重合開始剤の含有量は、前記遮光層用樹脂組成物の光硬化性等に応じて適宜設定することができ、例えば、光硬化性樹脂及び光重合性モノマーの合計量100質量部に対して0.3~30質量部であることが好ましく、1~25質量部であることがより好ましい。 Furthermore, the resin composition for the light-shielding layer preferably contains a photopolymerization initiator. Such photopolymerization initiators are not particularly limited, and examples thereof include the photopolymerization initiators described in JP 2017-72760 A, among which oxime ester-based polymerization initiators are particularly preferred. The content of such photopolymerization initiators can be appropriately set according to the photocurability of the resin composition for the light-shielding layer, and is preferably 0.3 to 30 parts by mass, and more preferably 1 to 25 parts by mass, per 100 parts by mass of the total amount of the photocurable resin and the photopolymerizable monomer.

また、透明基板の耐熱性が低く、現像後の加熱処理(ポストベーク)を150℃以下といった低温で行う場合には、前記遮光層用樹脂組成物にアゾ系重合開始剤が含まれていることが好ましい。これにより、現像後の加熱時(ポストベーク時)の前記遮光層用樹脂組成物の熱ラジカル重合性が向上する。このようなアゾ系重合開始剤としては特に制限はなく、例えば、特開2017-181976号公報に記載されたアゾ系重合開始剤が挙げられる。このようなアゾ系重合開始剤の含有量としては特に制限はなく、前記遮光層用樹脂組成物の熱ラジカル重合性等に応じて適宜設定することができる。 In addition, when the heat resistance of the transparent substrate is low and the heat treatment (post-baking) after development is performed at a low temperature such as 150°C or less, it is preferable that the resin composition for the light-shielding layer contains an azo-based polymerization initiator. This improves the thermal radical polymerizability of the resin composition for the light-shielding layer during heating after development (post-baking). There are no particular limitations on such azo-based polymerization initiators, and examples of such azo-based polymerization initiators include the azo-based polymerization initiators described in JP-A-2017-181976. There are no particular limitations on the content of such azo-based polymerization initiators, and the content can be appropriately set depending on the thermal radical polymerizability of the resin composition for the light-shielding layer, etc.

さらに、前記遮光層用樹脂組成物には、必要に応じて、分散剤、前記光重合開始剤及びアゾ系重合開始剤以外の重合開始剤、連鎖移動剤、増感剤、非感光性樹脂、硬化剤、硬化促進剤、酸化防止剤、可塑剤、充填材、カップリング剤、界面活性剤、色調整用顔料、染料等の各種添加剤を配合することができる。 Furthermore, the resin composition for the light-shielding layer may contain various additives, such as dispersants, polymerization initiators other than the photopolymerization initiators and azo-based polymerization initiators, chain transfer agents, sensitizers, non-photosensitive resins, curing agents, curing accelerators, antioxidants, plasticizers, fillers, coupling agents, surfactants, color-adjusting pigments, and dyes, as necessary.

また、前記遮光層用樹脂組成物は、溶液の状態で(すなわち、遮光層用樹脂組成物溶液として)使用することが好ましい。これにより、均一な遮光層用樹脂組成物層を形成することができる。このような遮光層用樹脂組成物溶液に用いられる有機溶媒としては特に制限はなく、例えば、特開2017-72760号公報に記載された溶剤が挙げられる。このような有機溶媒は、前記遮光層用樹脂組成物と有機溶媒との合計量に対して有機溶媒量が60~90質量%となるように配合することが好ましく、前記遮光層用樹脂組成物溶液の溶液粘度(B型又はE型粘度計)が1~30mPa・secとなるように配合することがより好ましい。 The resin composition for the light-shielding layer is preferably used in the form of a solution (i.e., as a solution of the resin composition for the light-shielding layer). This allows a uniform layer of the resin composition for the light-shielding layer to be formed. The organic solvent used in the resin composition solution for the light-shielding layer is not particularly limited, and examples thereof include the solvents described in JP-A-2017-72760. It is preferable to mix such an organic solvent so that the amount of the organic solvent is 60 to 90% by mass relative to the total amount of the resin composition for the light-shielding layer and the organic solvent, and it is more preferable to mix such that the solution viscosity of the resin composition for the light-shielding layer solution (B-type or E-type viscometer) is 1 to 30 mPa·sec.

本発明の第一の表示装置用基板の製造方法においては、先ず、前記透明基板上に、前記第一の反射防止層用樹脂組成物からなる層(以下、「第一の反射防止層用樹脂組成物層」という)を形成する。 In the first method for manufacturing a display device substrate of the present invention, first, a layer made of the first antireflection layer resin composition (hereinafter referred to as the "first antireflection layer resin composition layer") is formed on the transparent substrate.

前記第一の反射防止層用樹脂組成物層の平均厚さは0.01~1μmである。前記第一の反射防止層用樹脂組成物層の平均厚さが前記下限未満になると、前記第一の反射防止層用樹脂組成物層の表面粗さが所定の範囲の上限を超える傾向にあり、他方、前記上限を超えると、前記第一の反射防止層用樹脂組成物層の表面粗さが所定の範囲の下限未満となる傾向にある。このような第一の反射防止層用樹脂組成物層の平均厚さとしては、前記第一の反射防止層用樹脂組成物層の表面粗さが所定の範囲内になりやすいという観点から、0.02~0.5μmが好ましく、0.04~0.3μmがより好ましい。なお、第一の反射防止層用樹脂組成物層の平均厚さは、触針式段差形状測定装置を用いて第一の反射防止層用樹脂組成物層表面と透明基板表面との段差を測定し、これを平均することによって求めることができる。 The average thickness of the resin composition layer for the first antireflection layer is 0.01 to 1 μm. If the average thickness of the resin composition layer for the first antireflection layer is less than the lower limit, the surface roughness of the resin composition layer for the first antireflection layer tends to exceed the upper limit of the predetermined range, and if the average thickness exceeds the upper limit, the surface roughness of the resin composition layer for the first antireflection layer tends to be less than the lower limit of the predetermined range. The average thickness of the resin composition layer for the first antireflection layer is preferably 0.02 to 0.5 μm, more preferably 0.04 to 0.3 μm, from the viewpoint that the surface roughness of the resin composition layer for the first antireflection layer is likely to be within the predetermined range. The average thickness of the resin composition layer for the first antireflection layer can be obtained by measuring the step between the surface of the resin composition layer for the first antireflection layer and the surface of the transparent substrate using a stylus-type step shape measuring device and averaging the steps.

また、前記第一の反射防止層用樹脂組成物層の表面粗さは40~200nmである。前記第一の反射防止層用樹脂組成物層の表面粗さが前記下限未満になると、得られる遮光膜の反射率が十分に低減されず、遮光膜での光の反射を十分に防止することができない。他方、前記第一の反射防止層用樹脂組成物層の表面粗さが前記上限を超えると、得られる遮光膜の平坦性を所望のレベルにすることが困難になる。このような第一の反射防止層用樹脂組成物層の表面粗さとしては、得られる遮光膜の反射率が低くなり、遮光膜での光の反射が抑制され、また、遮光膜の平坦性を担保するという観点から、50~180nmが好ましく、80~160nmがより好ましい。なお、第一の反射防止層用樹脂組成物層の表面粗さは、触針式段差形状測定装置を用いて第一の反射防止層用樹脂組成物層表面の凹凸形状を測定して粗さ曲線を求め、この粗さ曲線において無作為に抽出した0.1mmの部分について粗さの算術平均値を求め、これを第一の反射防止層用樹脂組成物層の表面粗さとすることによって求めることができる。 The surface roughness of the first antireflection layer resin composition layer is 40 to 200 nm. If the surface roughness of the first antireflection layer resin composition layer is less than the lower limit, the reflectance of the obtained light-shielding film is not sufficiently reduced, and the reflection of light at the light-shielding film cannot be sufficiently prevented. On the other hand, if the surface roughness of the first antireflection layer resin composition layer exceeds the upper limit, it becomes difficult to achieve a desired level of flatness of the obtained light-shielding film. The surface roughness of such a first antireflection layer resin composition layer is preferably 50 to 180 nm, more preferably 80 to 160 nm, from the viewpoints of reducing the reflectance of the obtained light-shielding film, suppressing the reflection of light at the light-shielding film, and ensuring the flatness of the light-shielding film. The surface roughness of the resin composition layer for the first antireflection layer can be determined by measuring the uneven shape of the surface of the resin composition layer for the first antireflection layer using a stylus-type step shape measuring device to obtain a roughness curve, and then determining the arithmetic average value of roughness for 0.1 mm portions randomly selected from the roughness curve, and using this as the surface roughness of the resin composition layer for the first antireflection layer.

このような第一の反射防止層用樹脂組成物層を形成する方法としては、例えば、前記透明基板上に、前記第一の反射防止層用樹脂組成物溶液を塗布した後、加熱処理(プレベーク)を施すことにより有機溶媒を除去する方法が挙げられる。 As a method for forming such a first antireflection layer resin composition layer, for example, a method in which the first antireflection layer resin composition solution is applied onto the transparent substrate, and then the organic solvent is removed by performing a heat treatment (pre-baking) can be mentioned.

次に、このようにして形成した第一の反射防止層用樹脂組成物層上に、前記遮光層用樹脂組成物からなる層(以下、「遮光層用樹脂組成物層」という)を形成する。このような遮光層用樹脂組成物層を形成する方法としては、例えば、前記第一の反射防止層用樹脂組成物層上に、前記遮光層用樹脂組成物溶液を塗布した後、加熱処理(プレベーク)を施すことにより有機溶媒を除去する方法が挙げられる。 Next, a layer made of the resin composition for the light-shielding layer (hereinafter referred to as the "resin composition layer for the light-shielding layer") is formed on the first resin composition layer for the antireflection layer thus formed. As a method for forming such a resin composition layer for the light-shielding layer, for example, a method of applying the resin composition solution for the light-shielding layer onto the first resin composition layer for the antireflection layer, and then performing a heat treatment (pre-bake) to remove the organic solvent can be mentioned.

第一の反射防止層用樹脂組成物溶液を塗布する方法及び遮光層用樹脂組成物溶液を塗布する方法としては、例えば、公知の溶液浸漬法、スプレー法のほか、ローラーコーター、ランドコーター、スリットコーター、スピンコーター等を用いる方法が挙げられる。プレベークにおける加熱温度及び加熱時間は、使用する有機溶媒の種類等に応じて適宜設定することができ、例えば、加熱温度を60~110℃(前記透明基板の耐熱温度を超えないように設定)に、加熱時間を1~3分間に設定することができる。 Methods for applying the resin composition solution for the first antireflection layer and the resin composition solution for the light-shielding layer include, for example, the well-known solution immersion method, spray method, and methods using a roller coater, land coater, slit coater, spin coater, etc. The heating temperature and heating time in the pre-bake can be appropriately set according to the type of organic solvent used, etc., and for example, the heating temperature can be set to 60 to 110°C (set so as not to exceed the heat resistance temperature of the transparent substrate) and the heating time can be set to 1 to 3 minutes.

次に、このようにして形成した前記第一の反射防止層用樹脂組成物層及び前記遮光層用樹脂組成物層に、所望の遮光膜パターン形成用マスクを用いて一括で露光処理を施し、前記第一の反射防止層用樹脂組成物層の感光部分(露光部分)の光硬化性透明樹脂及び前記遮光層用樹脂組成物層の感光部分(露光部分)の光硬化性樹脂を光硬化させる。露光処理条件は、使用する光硬化性樹脂や光重合開始剤の種類等に応じて適宜設定することができる。 Next, the first antireflection layer resin composition layer and the light-shielding layer resin composition layer thus formed are subjected to a collective exposure process using a desired light-shielding film pattern forming mask, and the photocurable transparent resin in the light-sensitive portion (exposed portion) of the first antireflection layer resin composition layer and the photocurable resin in the light-sensitive portion (exposed portion) of the light-shielding layer resin composition layer are photocured. The exposure process conditions can be appropriately set depending on the type of photocurable resin and photopolymerization initiator used, etc.

次に、露光後の第一の反射防止層用樹脂組成物層及び遮光層用樹脂組成物層に一括で現像処理を施して、前記第一の反射防止層用樹脂組成物層及び前記遮光層用樹脂組成物層の未露光部分の樹脂組成物を除去することによって、前記無機フィラーと透明樹脂硬化物(前記第一の反射防止層用樹脂組成物の硬化物)とを含有する反射防止層及び前記遮光成分と樹脂硬化物(前記遮光層用樹脂組成物の硬化物)とを含有する遮光層が同時に形成される。さらに、前記反射防止層及び前記遮光層を十分に硬化させたり、現像液を十分に除去して前記透明基板と前記反射防止層との密着性を向上させたりするために、前記反射防止層及び前記遮光層に加熱処理(ポストベーク)を施すことによって、前記透明基板上に、前記反射防止層と前記遮光層とからなる遮光膜(遮光膜パターン)を備えている本発明の表示装置用基板を得ることができる。 Next, the first antireflection layer resin composition layer and the light-shielding layer resin composition layer after exposure are subjected to a development process at the same time to remove the resin composition in the unexposed parts of the first antireflection layer resin composition layer and the light-shielding layer resin composition layer, thereby simultaneously forming an antireflection layer containing the inorganic filler and a transparent resin cured product (cured product of the first antireflection layer resin composition) and a light-shielding layer containing the light-shielding component and a resin cured product (cured product of the light-shielding layer resin composition). Furthermore, in order to sufficiently cure the antireflection layer and the light-shielding layer or to sufficiently remove the developing solution to improve the adhesion between the transparent substrate and the antireflection layer, a heat treatment (post-bake) is performed on the antireflection layer and the light-shielding layer, thereby obtaining a display device substrate of the present invention having a light-shielding film (light-shielding film pattern) consisting of the antireflection layer and the light-shielding layer on the transparent substrate.

前記現像処理方法としては特に制限はなく、公知の現像方法を採用することができ、現像処理条件は、使用する光硬化性透明樹脂及び光硬化性樹脂の種類等に応じて適宜設定することができる。また、前記第一の反射防止層用樹脂組成物層中の光硬化性透明樹脂及び前記遮光層用樹脂組成物層中の光硬化性樹脂がアルカリ可溶性である場合には、アルカリ現像液を用いて現像処理(アルカリ現像処理)を行うことが好ましい。アルカリ現像液としては、アルカリ金属やアルカリ土類金属の炭酸塩や水酸化物の水溶液等の公知のアルカリ現像液を用いることができる。 The developing method is not particularly limited, and a known developing method can be used. The developing conditions can be appropriately set according to the types of photocurable transparent resin and photocurable resin used. In addition, when the photocurable transparent resin in the resin composition layer for the first antireflection layer and the photocurable resin in the resin composition layer for the light-shielding layer are alkali-soluble, it is preferable to carry out the developing process (alkaline developing process) using an alkaline developer. As the alkaline developer, a known alkaline developer such as an aqueous solution of carbonate or hydroxide of an alkali metal or alkaline earth metal can be used.

また、ポストベークにおける加熱温度及び加熱時間は、使用する透明基板や樹脂組成物の種類等に応じて適宜設定することができ、例えば、透明基板としてガラス基板等の耐熱性が十分なものを使用する場合には、加熱温度を180~250℃に、加熱時間を20~60分間に設定することができる。 The heating temperature and heating time in the post-bake can be set appropriately depending on the type of transparent substrate and resin composition used. For example, when using a transparent substrate with sufficient heat resistance such as a glass substrate, the heating temperature can be set to 180 to 250°C and the heating time can be set to 20 to 60 minutes.

このようにして形成された遮光層の平均厚さは0.1~30μmである。前記遮光層の平均厚さが前記下限未満になると、遮光性が低下し、他方、前記上限を超えると、前記アルカリ現像に要する時間が長くなり、生産性が低下する。このような遮光層の平均厚さとしては、遮光性と生産性を両立させるという観点から、0.5~20μmが好ましく、1~10μmがより好ましい。なお、遮光層の平均厚さは、触針式段差形状測定装置を用いて遮光層表面と透明基板表面との段差を測定し、これを平均して前記反射防止層と前記遮光層とからなる遮光膜の平均厚さを求め、この遮光膜の平均厚さから前記第一の反射防止層用樹脂組成物層の平均厚さを差引くことによって求めることができる。 The average thickness of the light-shielding layer thus formed is 0.1 to 30 μm. If the average thickness of the light-shielding layer is less than the lower limit, the light-shielding property is reduced, whereas if the average thickness exceeds the upper limit, the time required for the alkaline development is increased, resulting in reduced productivity. From the viewpoint of achieving both light-shielding property and productivity, the average thickness of the light-shielding layer is preferably 0.5 to 20 μm, more preferably 1 to 10 μm. The average thickness of the light-shielding layer can be determined by measuring the step between the light-shielding layer surface and the transparent substrate surface using a stylus-type step shape measuring device, averaging the steps to determine the average thickness of the light-shielding film consisting of the antireflection layer and the light-shielding layer, and subtracting the average thickness of the first antireflection layer resin composition layer from the average thickness of the light-shielding film.

このように、本発明の第一の表示装置用基板の製造方法においては、第一の反射防止層用樹脂組成物及び遮光層用樹脂組成物のいずれにも光硬化性樹脂を使用しているため、第一の反射防止層用樹脂組成物層及び遮光層用樹脂組成物層に対して露光処理及び現像処理を一括で行うことができる。 In this way, in the first method for manufacturing a display device substrate of the present invention, since a photocurable resin is used for both the first antireflection layer resin composition and the light-shielding layer resin composition, the exposure treatment and development treatment can be performed simultaneously on the first antireflection layer resin composition layer and the light-shielding layer resin composition layer.

一方、本発明の第二の表示装置用基板の製造方法においては、先ず、前記透明基板上に、前記第二の反射防止層用樹脂組成物に加熱硬化処理を施して、前記無機フィラーと透明樹脂硬化物(前記第二の反射防止層用樹脂組成物の硬化物)とを含有する反射防止層を形成する。 On the other hand, in the second method for manufacturing a display device substrate of the present invention, first, the resin composition for the second antireflection layer is subjected to a heat curing treatment on the transparent substrate to form an antireflection layer containing the inorganic filler and a transparent resin cured product (a cured product of the resin composition for the second antireflection layer).

前記反射防止層の平均厚さは0.01~1μmである。前記反射防止層の平均厚さが前記下限未満になると、前記反射防止層の表面粗さが所定の範囲の上限を超える傾向にあり、他方、前記上限を超えると、前記反射防止層の表面粗さが所定の範囲の下限未満となる傾向にある。このような反射防止層の平均厚さとしては、前記反射防止層の表面粗さが所定の範囲内になりやすいという観点から、0.02~0.5μmが好ましく、0.04~0.3μmがより好ましい。なお、反射防止層の平均厚さは、触針式段差形状測定装置を用いて反射防止層表面と透明基板表面との段差を測定し、これを平均することによって求めることができる。 The average thickness of the anti-reflective layer is 0.01 to 1 μm. If the average thickness of the anti-reflective layer is less than the lower limit, the surface roughness of the anti-reflective layer tends to exceed the upper limit of the specified range, and if the average thickness exceeds the upper limit, the surface roughness of the anti-reflective layer tends to be less than the lower limit of the specified range. From the viewpoint that the surface roughness of the anti-reflective layer is likely to be within the specified range, the average thickness of such an anti-reflective layer is preferably 0.02 to 0.5 μm, and more preferably 0.04 to 0.3 μm. The average thickness of the anti-reflective layer can be determined by measuring the step between the anti-reflective layer surface and the transparent substrate surface using a stylus-type step shape measuring device and averaging the steps.

また、前記反射防止層の表面粗さは40~200nmである。前記反射防止層の表面粗さが前記下限未満になると、得られる遮光膜の反射率が十分に低減されず、遮光膜での光の反射を十分に防止することができない。他方、前記反射防止層の表面粗さが前記上限を超えると、得られる遮光膜の平坦性を所望のレベルにすることが困難になる。このような反射防止層の表面粗さとしては、得られる遮光膜の反射率が更に低くなり、遮光膜での光の反射が更に抑制され、また、遮光膜の平坦性を担保するという観点から、50~180nmが好ましく、80~160nmがより好ましい。なお、反射防止層の表面粗さは、触針式段差形状測定装置を用いて反射防止層表面の凹凸形状を測定して粗さ曲線を求め、この粗さ曲線において無作為に抽出した0.1mmの部分について粗さの算術平均値を求め、これを反射防止層の表面粗さとすることによって求めることができる。 The surface roughness of the anti-reflection layer is 40 to 200 nm. If the surface roughness of the anti-reflection layer is less than the lower limit, the reflectance of the resulting light-shielding film is not sufficiently reduced, and the reflection of light at the light-shielding film cannot be sufficiently prevented. On the other hand, if the surface roughness of the anti-reflection layer exceeds the upper limit, it becomes difficult to achieve a desired level of flatness of the resulting light-shielding film. The surface roughness of such an anti-reflection layer is preferably 50 to 180 nm, more preferably 80 to 160 nm, from the viewpoint of further lowering the reflectance of the resulting light-shielding film, further suppressing the reflection of light at the light-shielding film, and ensuring the flatness of the light-shielding film. The surface roughness of the anti-reflection layer can be determined by measuring the uneven shape of the anti-reflection layer surface using a stylus-type step shape measuring device to obtain a roughness curve, and then calculating the arithmetic average value of roughness for 0.1 mm portions randomly selected from the roughness curve, and using this as the surface roughness of the anti-reflection layer.

このような反射防止層を形成する方法としては、例えば、前記透明基板上に、前記第二の反射防止層用樹脂組成物溶液を塗布した後、この第二の反射防止層用樹脂組成物に加熱硬化処理を施す方法が挙げられる。 One method for forming such an anti-reflection layer is, for example, to apply a solution of the resin composition for the second anti-reflection layer onto the transparent substrate, and then subject the resin composition for the second anti-reflection layer to a heat curing treatment.

第二の反射防止層用樹脂組成物溶液を塗布する方法としては、例えば、公知の溶液浸漬法、スプレー法のほか、ローラーコーター、ランドコーター、スリットコーター、スピンコーター等を用いる方法が挙げられる。 Methods for applying the second anti-reflection layer resin composition solution include, for example, the well-known solution immersion method and spray method, as well as methods using a roller coater, land coater, slit coater, spin coater, etc.

また、加熱硬化処理条件は、使用する透明基板や第二の反射防止層用樹脂組成物の種類等に応じて適宜設定することができ、例えば、透明基板としてガラス基板等の耐熱性が十分なものを使用する場合には、加熱温度を180~250℃に、加熱時間を20~60分間に設定することができる。 The heat curing treatment conditions can be set appropriately depending on the type of transparent substrate and the type of resin composition for the second anti-reflection layer used. For example, when a transparent substrate having sufficient heat resistance such as a glass substrate is used, the heating temperature can be set to 180 to 250°C and the heating time can be set to 20 to 60 minutes.

次に、このようにして形成した反射防止層上に、前記遮光層用樹脂組成物からなる層(以下、「遮光層用樹脂組成物層」という)を形成する。このような遮光層用樹脂組成物層を形成する方法としては、例えば、前記第二の反射防止層用樹脂組成物層上に、前記遮光層用樹脂組成物溶液を塗布した後、加熱処理(プレベーク)を施すことにより有機溶媒を除去する方法が挙げられる。 Next, a layer made of the resin composition for light-shielding layers (hereinafter referred to as a "resin composition layer for light-shielding layers") is formed on the anti-reflection layer thus formed. Examples of a method for forming such a resin composition layer for light-shielding layers include a method in which the resin composition solution for light-shielding layers is applied onto the second resin composition layer for anti-reflection layers, and then the organic solvent is removed by a heat treatment (pre-baking).

遮光層用樹脂組成物溶液を塗布する方法としては、例えば、公知の溶液浸漬法、スプレー法のほか、ローラーコーター、ランドコーター、スリットコーター、スピンコーター等を用いる方法が挙げられる。プレベークにおける加熱温度及び加熱時間は、使用する有機溶媒の種類等に応じて適宜設定することができ、例えば、加熱温度を60~110℃(前記透明基板の耐熱温度を超えないように設定)に、加熱時間を1~3分間に設定することができる。 Methods for applying the resin composition solution for the light-shielding layer include, for example, the well-known solution immersion method, spray method, and methods using a roller coater, land coater, slit coater, spin coater, etc. The heating temperature and heating time in the pre-bake can be appropriately set according to the type of organic solvent used, etc. For example, the heating temperature can be set to 60 to 110°C (set so as not to exceed the heat resistance temperature of the transparent substrate) and the heating time can be set to 1 to 3 minutes.

次に、このようにして形成した前記遮光層用樹脂組成物層に、所望の遮光膜パターン形成用マスクを用いて露光処理を施し、前記遮光層用樹脂組成物層の感光部分(露光部分)の光硬化性樹脂を光硬化させる。露光処理条件は、使用する光硬化性樹脂や光重合開始剤の種類等に応じて適宜設定することができる。 Next, the light-shielding layer resin composition layer thus formed is subjected to an exposure process using a desired light-shielding film pattern forming mask, and the photocurable resin in the light-sensitive portion (exposed portion) of the light-shielding layer resin composition layer is photocured. The exposure process conditions can be appropriately set depending on the type of photocurable resin and photopolymerization initiator used, etc.

次に、露光後の遮光層用樹脂組成物層に現像処理を施して、前記遮光層用樹脂組成物層の未露光部分の樹脂組成物を除去することによって、前記遮光成分と樹脂硬化物(前記遮光層用樹脂組成物の硬化物)とを含有する遮光層が形成される。さらに、前記遮光層を十分に硬化させたり、現像液を十分に除去するために、前記遮光層に加熱処理(ポストベーク)を施すことによって、前記透明基板上に、前記反射防止層と前記遮光層とからなる遮光膜(遮光膜パターン)を備えている本発明の表示装置用基板を得ることができる。 Next, the exposed resin composition layer for the light-shielding layer is subjected to a development process to remove the resin composition in the unexposed portion of the resin composition layer for the light-shielding layer, thereby forming a light-shielding layer containing the light-shielding component and a cured resin (a cured product of the resin composition for the light-shielding layer). Furthermore, the light-shielding layer is subjected to a heat treatment (post-baking) in order to sufficiently cure the light-shielding layer and sufficiently remove the developing solution, thereby obtaining a display device substrate of the present invention having a light-shielding film (light-shielding film pattern) consisting of the antireflection layer and the light-shielding layer on the transparent substrate.

前記現像処理方法としては特に制限はなく、公知の現像方法を採用することができ、現像処理条件は、使用する光硬化性樹脂の種類等に応じて適宜設定することができる。また、前記遮光層用樹脂組成物層中の光硬化性樹脂がアルカリ可溶性である場合には、アルカリ現像液を用いて現像処理(アルカリ現像処理)を行うことが好ましい。アルカリ現像液としては、アルカリ金属やアルカリ土類金属の炭酸塩や水酸化物の水溶液等の公知のアルカリ現像液を用いることができる。 There are no particular limitations on the developing method, and any known developing method can be used. The developing conditions can be appropriately set depending on the type of photocurable resin used, etc. In addition, when the photocurable resin in the light-shielding layer resin composition layer is alkali-soluble, it is preferable to carry out the developing process (alkaline developing process) using an alkaline developer. As the alkaline developer, known alkaline developers such as aqueous solutions of carbonates or hydroxides of alkali metals or alkaline earth metals can be used.

また、ポストベークにおける加熱温度及び加熱時間は、使用する透明基板や樹脂組成物の種類等に応じて適宜設定することができる。 The heating temperature and heating time for post-baking can be set appropriately depending on the type of transparent substrate and resin composition used, etc.

このようにして形成された遮光層の平均厚さは0.1~30μmである。前記遮光層の平均厚さが前記下限未満になると、遮光性が低下し、他方、前記上限を超えると、前記アルカリ現像に要する時間が長くなり、生産性が低下する。このような遮光層の平均厚さとしては、遮光性と生産性を両立させるという観点から、0.5~20μmが好ましく、1~10μmがより好ましい。なお、遮光層の平均厚さは、触針式段差形状測定装置を用いて遮光層表面と透明基板表面との段差を測定し、これを平均して前記反射防止層と前記遮光層とからなる遮光膜の平均厚さを求め、この遮光膜の平均厚さから前記反射防止層の平均厚さを差引くことによって求めることができる。 The average thickness of the light-shielding layer thus formed is 0.1 to 30 μm. If the average thickness of the light-shielding layer is less than the lower limit, the light-shielding properties are reduced, whereas if the average thickness exceeds the upper limit, the time required for the alkaline development is increased, resulting in reduced productivity. From the viewpoint of achieving both light-shielding properties and productivity, the average thickness of such a light-shielding layer is preferably 0.5 to 20 μm, more preferably 1 to 10 μm. The average thickness of the light-shielding layer can be determined by measuring the step between the light-shielding layer surface and the transparent substrate surface using a stylus-type step shape measuring device, averaging the steps to determine the average thickness of the light-shielding film consisting of the antireflection layer and the light-shielding layer, and subtracting the average thickness of the antireflection layer from the average thickness of the light-shielding film.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用した無機フィラー及び遮光成分の平均粒子径、反射防止層(又は反射防止層用樹脂組成物層)及び遮光層の平均厚さ、並びに反射防止層(又は反射防止層用樹脂組成物層)の表面粗さは以下の方法により測定した。 The present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited to the following examples. The average particle size of the inorganic filler and light-shielding component used in the examples and comparative examples, the average thickness of the antireflection layer (or the resin composition layer for the antireflection layer) and the light-shielding layer, and the surface roughness of the antireflection layer (or the resin composition layer for the antireflection layer) were measured by the following methods.

<無機フィラー及び遮光成分の平均粒子径測定>
無機フィラー又は遮光成分の粒子を、粒子濃度が0.1~0.5質量%となるように、樹脂組成物溶液に使用する有機溶媒に分散させた。得られた分散液中の粒子の粒度分布を、粒度分布計(大塚電子株式会社製「粒径アナライザーFPAR-1000」)を用いて動的光散乱法により測定し、得られた粒度分布をキュムラント法により解析して平均粒子径(平均二次粒子径)を求めた。
<Measurement of average particle size of inorganic filler and light-shielding component>
Particles of the inorganic filler or light-shielding component were dispersed in an organic solvent used for the resin composition solution so that the particle concentration was 0.1 to 0.5% by mass. The particle size distribution of the particles in the resulting dispersion was measured by dynamic light scattering using a particle size distribution meter (Otsuka Electronics Co., Ltd.'s "Particle Size Analyzer FPAR-1000"), and the resulting particle size distribution was analyzed by the cumulant method to determine the average particle size (average secondary particle size).

<反射防止層(又は反射防止層用樹脂組成物層)の平均厚さ測定>
触針式段差形状測定装置(ケーエルエー・テンコール社製「P-10」)を用い、測定範囲500μm、走査速度50μm/秒、サンプリングレート20Hzの条件で、ガラス基板表面と反射防止層表面(又は反射防止層用樹脂組成物層表面)との段差を測定し、その平均値を反射防止層(又は反射防止層用樹脂組成物層)の平均厚さとした。
<Measurement of Average Thickness of Antireflection Layer (or Resin Composition Layer for Antireflection Layer)>
Using a stylus-type step shape measuring device ("P-10" manufactured by KLA Tencor Corporation), the step between the glass substrate surface and the antireflection layer surface (or the antireflection layer resin composition layer surface) was measured under conditions of a measurement range of 500 μm, a scanning speed of 50 μm/sec, and a sampling rate of 20 Hz, and the average value was taken as the average thickness of the antireflection layer (or the antireflection layer resin composition layer).

<遮光層の平均厚さ測定>
触針式段差形状測定装置(ケーエルエー・テンコール社製「P-10」)を用い、測定範囲500μm、走査速度50μm/秒、サンプリングレート20Hzの条件で、ガラス基板表面と遮光層表面との段差を測定し、その平均値を反射防止層と遮光層とからなる遮光膜の平均厚さとした。この遮光膜の平均厚さから前記反射防止層(又は反射防止層用樹脂組成物層)の平均厚さを差引くことによって遮光層の平均厚さ(=遮光膜の平均厚さ-反射防止層(又は反射防止層用樹脂組成物層)の平均厚さ)を求めた。
<Measurement of average thickness of light-shielding layer>
Using a stylus-type step shape measuring device ("P-10" manufactured by KLA Tencor Corporation), the step between the glass substrate surface and the light-shielding layer surface was measured under conditions of a measurement range of 500 μm, a scanning speed of 50 μm/sec, and a sampling rate of 20 Hz, and the average value was taken as the average thickness of the light-shielding film consisting of the antireflection layer and the light-shielding layer. The average thickness of the light-shielding layer (=average thickness of the light-shielding film-average thickness of the antireflection layer (or the resin composition layer for the antireflection layer)) was calculated by subtracting the average thickness of the antireflection layer (or the resin composition layer for the antireflection layer) from the average thickness of the light-shielding film.

<反射防止層(又は反射防止層用樹脂組成物層)の表面粗さ測定>
触針式段差形状測定装置(ケーエルエー・テンコール社製「P-10」)を用い、測定範囲500μm、走査速度10μm/秒、サンプリングレート100Hzの条件で、反射防止層表面(又は反射防止層用樹脂組成物層表面)の凹凸形状を測定して粗さ曲線を求め、この粗さ曲線において無作為に抽出した長さ0.1mmの部分について粗さの算術平均値を求め、これを反射防止層(又は反射防止層用樹脂組成物層)の表面粗さとした。その結果を表1に示す。
<Measurement of Surface Roughness of Antireflection Layer (or Resin Composition Layer for Antireflection Layer)>
Using a stylus-type step shape measuring device ("P-10" manufactured by KLA Tencor Corporation), the uneven shape of the antireflection layer surface (or the surface of the resin composition layer for an antireflection layer) was measured under conditions of a measurement range of 500 μm, a scanning speed of 10 μm/sec, and a sampling rate of 100 Hz to obtain a roughness curve, and the arithmetic average value of roughness was obtained for portions of 0.1 mm length randomly sampled on this roughness curve, and this was taken as the surface roughness of the antireflection layer (or the resin composition layer for an antireflection layer). The results are shown in Table 1.

また、実施例及び比較例で使用したアルカリ可溶性の光硬化性透明樹脂は以下の方法により合成した。なお、合成例で使用した原料を以下に示す。
BPFE:ビスフェノールフルオレン型エポキシ化合物(9,9-ビス(4-ヒドロキシ
フェニル)フルオレンとクロロメチルオキシランとの反応物(エポキシ当量:
250g/eq)。
AA:アクリル酸。
PGMEA:プロピレングリコールモノメチルエーテルアセテート。
TEAB:臭化テトラエチルアンモニウム。
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物。
THPA:テトラヒドロ無水フタル酸。
BzMA:ベンジルメタクリレート。
DCPMA:ジシクロペンタニルメタクリレート。
GMA:グリシジルメタクリレート。
St:スチレン。
AIBN:アゾビスイソブチロニトリル。
TDMAMP:トリスジメチルアミノメチルフェノール。
HQ:ハイドロキノン。
TEA:トリエチルアミン。
The alkali-soluble photocurable transparent resins used in the Examples and Comparative Examples were synthesized by the following method: The raw materials used in the Synthesis Examples are shown below.
BPFE: Bisphenol fluorene type epoxy compound (9,9-bis(4-hydroxy
Reaction product of phenyl)fluorene with chloromethyloxirane (epoxy equivalent:
250 g/eq).
AA: acrylic acid.
PGMEA: propylene glycol monomethyl ether acetate.
TEAB: tetraethylammonium bromide.
BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride.
THPA: tetrahydrophthalic anhydride.
BzMA: benzyl methacrylate.
DCPMA: dicyclopentanyl methacrylate.
GMA: glycidyl methacrylate.
St: styrene.
AIBN: azobisisobutyronitrile.
TDMAMP: trisdimethylaminomethylphenol.
HQ: Hydroquinone.
TEA: triethylamine.

(合成例1)
還留冷却器付き四つ口フラスコ(容量500ml)中に、BPFE(114.4g(0.23モル))、AA(33.2g(0.46モル))、PGMEA(157g)及びTEAB(0.48g)を仕込み、100~105℃で20時間撹拌して反応させた。次いで、前記フラスコ内の反応生成物にBPDA(35.3g(0.12モル))及びTHPA(18.3g(0.12モル))を添加し、120~125℃で6時間撹拌して光硬化性カルド樹脂を含有する樹脂溶液を得た。この樹脂溶液の固形分濃度は56.1質量%であり、酸価(固形分換算)は103mgKOH/gであり、GPC分析によるMwは3600であった。
(Synthesis Example 1)
In a four-neck flask (volume 500 ml) equipped with a reflux condenser, BPFE (114.4 g (0.23 mol)), AA (33.2 g (0.46 mol)), PGMEA (157 g) and TEAB (0.48 g) were charged and reacted at 100 to 105° C. for 20 hours while stirring. Next, BPDA (35.3 g (0.12 mol)) and THPA (18.3 g (0.12 mol)) were added to the reaction product in the flask, and the mixture was stirred at 120 to 125° C. for 6 hours to obtain a resin solution containing a photocurable cardo resin. The solid content of this resin solution was 56.1% by mass, the acid value (solid content equivalent) was 103 mgKOH/g, and the Mw by GPC analysis was 3600.

(合成例2)
還留冷却器付き四つ口フラスコ(容量1L)中に、PGMEA(300g)を入れ、フラスコ内の気相を窒素で置換した後、120℃に昇温した。このフラスコ内にモノマー混合物(BzMA(35.2g(0.20モル))、DCPMA(77.1g(0.35モル))、GMA(49.8g(0.35モル))及びSt(10.4g(0.10モル))の液状混合物にAIBN(10g)を溶解した混合溶液)を滴下ロートから2時間かけて滴下し、その後、120℃で2時間撹拌して共重合体溶液を得た。
(Synthesis Example 2)
PGMEA (300 g) was placed in a four-neck flask (volume 1 L) equipped with a reflux condenser, and the gas phase in the flask was replaced with nitrogen, and then the temperature was raised to 120° C. A monomer mixture (a mixed solution obtained by dissolving AIBN (10 g) in a liquid mixture of BzMA (35.2 g (0.20 mol)), DCPMA (77.1 g (0.35 mol)), GMA (49.8 g (0.35 mol)), and St (10.4 g (0.10 mol))) was dropped into the flask from a dropping funnel over 2 hours, and then the mixture was stirred at 120° C. for 2 hours to obtain a copolymer solution.

次いで、フラスコ系内の気相を空気で置換した後、このフラスコ内の前記共重合体溶液にAA(24.0g(グリシジル基の95%))、TDMAMP(0.8g)及びHQ(0.15g)を添加し、120℃で6時間撹拌して重合性不飽和基含有共重合体溶液を得た。 Next, the gas phase in the flask system was replaced with air, and then AA (24.0 g (95% of glycidyl groups)), TDMAMP (0.8 g) and HQ (0.15 g) were added to the copolymer solution in the flask, and the mixture was stirred at 120°C for 6 hours to obtain a copolymer solution containing polymerizable unsaturated groups.

さらに、この重合性不飽和基含有共重合体溶液にTHPA(45.7g(AA添加モル数の90%))、TEA(0.5g)を添加し、120℃で4時間反応させて光硬化性アクリル樹脂を含有する樹脂溶液を得た。この樹脂溶液の固形分濃度は46質量%であり、酸価(固形分換算)は68mgKOH/gであり、GPC分析によるMwは7900であった。 THPA (45.7 g (90% of the moles of AA added) and TEA (0.5 g) were added to this polymerizable unsaturated group-containing copolymer solution, and the mixture was reacted at 120°C for 4 hours to obtain a resin solution containing a photocurable acrylic resin. The solids concentration of this resin solution was 46% by mass, the acid value (solids equivalent) was 68 mgKOH/g, and the Mw by GPC analysis was 7900.

さらに、実施例及び比較例で使用したその他の各成分を以下に示す。
(熱硬化性透明樹脂)
エポキシ樹脂:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(株式会社ダイセル有機合成カンパニー製「EHPE3150」)。
(光重合性モノマー)
DPHA:ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートとの混合物(日本化薬株式会社製「DPHA」)。
(硬化剤)
TMA:トリメリット酸。
(重合開始剤)
OXE02:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASFジャパン株式会社製「イルガキュアOXE02」)。
(無機フィラー)
シリカA:ヒュームドシリカ(日本アエロジル株式会社製「アエロジル」)、屈折率:1.46、平均粒子径(分布測定:動的光散乱法、分布解析:キュムラント法):170nm。
シリカB:オルガノシリカゾル(日産化学株式会社製「PMA―ST」)、屈折率:1.46、平均粒子径(分布測定:動的光散乱法、分布解析:キュムラント法):20nm。
(遮光成分)
カーボンブラック:カーボンブラック(三菱ケミカル株式会社製「MA14」)、平均粒子径(分布測定:動的光散乱法、分布解析:キュムラント法):150nm。
(有機溶媒)
PGMEA:プロピレングリコールモノメチルエーテルアセテート。
Further, other components used in the examples and comparative examples are shown below.
(Thermosetting transparent resin)
Epoxy resin: 1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct of 2,2-bis(hydroxymethyl)-1-butanol ("EHPE3150" manufactured by Daicel Organic Synthesis Company, Ltd.).
(Photopolymerizable monomer)
DPHA: a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate ("DPHA" manufactured by Nippon Kayaku Co., Ltd.).
(Hardening agent)
TMA: trimellitic acid.
(Polymerization initiator)
OXE02: Ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(O-acetyloxime) (manufactured by BASF Japan Ltd., "Irgacure OXE02").
(Inorganic filler)
Silica A: fumed silica ("Aerosil" manufactured by Nippon Aerosil Co., Ltd.), refractive index: 1.46, average particle size (distribution measurement: dynamic light scattering method, distribution analysis: cumulant method): 170 nm.
Silica B: organosilica sol ("PMA-ST" manufactured by Nissan Chemical Industries, Ltd.), refractive index: 1.46, average particle size (distribution measurement: dynamic light scattering method, distribution analysis: cumulant method): 20 nm.
(Light-shielding component)
Carbon black: carbon black ("MA14" manufactured by Mitsubishi Chemical Corporation), average particle size (distribution measurement: dynamic light scattering method, distribution analysis: cumulant method): 150 nm.
(Organic solvent)
PGMEA: propylene glycol monomethyl ether acetate.

(実施例1)
先ず、各成分が表1に示す含有量となるように、合成例1で得られた光硬化性カルド樹脂を含有する樹脂溶液、シリカA及びPGMEAを混合して反射防止層用樹脂組成物溶液を調製した。また、各成分が表1に示す含有量となるように、合成例1で得られた光硬化性カルド樹脂を含有する樹脂溶液、DPHA、カーボンブラック、OXE02及びPGMEAを混合して遮光層用樹脂組成物溶液を調製した。
Example 1
First, a resin composition solution for an antireflection layer was prepared by mixing the resin solution containing the photocurable cardo resin obtained in Synthesis Example 1, silica A, and PGMEA so that the contents of each component were as shown in Table 1. Also, a resin composition solution for a light-shielding layer was prepared by mixing the resin solution containing the photocurable cardo resin obtained in Synthesis Example 1, DPHA, carbon black, OXE02, and PGMEA so that the contents of each component were as shown in Table 1.

次に、ガラス基板上に、反射防止層用樹脂組成物溶液をスピンコーターを用いて塗布し、ホットプレートを用いて90℃で1分間加熱(プレベーク)して、平均厚さが80nmの反射防止層用樹脂組成物層を形成した。この反射防止層用樹脂組成物層の表面粗さは75nmであった。 Next, the anti-reflection layer resin composition solution was applied onto a glass substrate using a spin coater and heated (pre-baked) at 90°C for 1 minute using a hot plate to form an anti-reflection layer resin composition layer with an average thickness of 80 nm. The surface roughness of this anti-reflection layer resin composition layer was 75 nm.

この反射防止層用樹脂組成物層上に、遮光層用樹脂組成物溶液をスピンコーターを用いて塗布し、ホットプレートを用いて90℃で1分間加熱(プレベーク)して遮光層用樹脂組成物層を形成した。 A solution of the resin composition for the light-shielding layer was applied onto this resin composition layer for the anti-reflection layer using a spin coater, and then heated (pre-baked) at 90°C for 1 minute using a hot plate to form a resin composition layer for the light-shielding layer.

このようにして形成した反射防止層用樹脂組成物層と遮光層用樹脂組成物層とからなる積層塗膜に、露光ギャップを100μmに調整して、ライン/スペース=20μm/20μmの遮光膜パターン形成用マスクを被せ、i線強度30mW/cmの超高圧水銀ランプを用いて50mJ/cmの紫外線を照射して一括で露光を行い、感光部分の樹脂を光硬化させた。露光後の積層塗膜に、0.04%水酸化カリウム水溶液を用い、24℃、1kgf/cm圧の条件でシャワー現像を開始し、パターンが現れ始めた後、さらに20秒間シャワー現像を継続した。その後、5kgf/cm圧でスプレー水洗を行い、積層塗膜の未露光部分を除去して、反射防止層パターンと遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。その後、この遮光膜パターンに、熱風乾燥機を用いて230℃で30分間加熱処理(ポストベーク)を施した。なお、前記遮光層パターンの平均厚さは1.3μmであった。 The laminated coating film formed in this manner, consisting of the antireflection layer resin composition layer and the light-shielding layer resin composition layer, was covered with a light-shielding film pattern forming mask with a line/space of 20 μm/20 μm, and was exposed to ultraviolet light of 50 mJ/cm 2 using an ultra-high pressure mercury lamp with an i-line intensity of 30 mW/cm 2 , and the resin in the photosensitive portion was photocured. After the exposure, the laminated coating film was shower-developed at 24° C. and 1 kgf/cm 2 pressure using a 0.04% potassium hydroxide aqueous solution, and after the pattern began to appear, the shower development was continued for another 20 seconds. Thereafter, spray washing was performed at a pressure of 5 kgf/cm 2 to remove the unexposed portion of the laminated coating film, and a light-shielding film pattern in which the antireflection layer pattern and the light-shielding layer pattern were laminated in this order was formed on the glass substrate. Then, the light-shielding film pattern was subjected to a heat treatment (post-baking) at 230° C. for 30 minutes using a hot air dryer. The average thickness of the light-shielding layer pattern was 1.3 μm.

(実施例2~3)
反射防止層用樹脂組成物溶液において、各成分が表1に示す含有量となるように、合成例1で得られた光硬化性カルド樹脂の樹脂溶液及びシリカAの配合量を変更した以外は実施例1と同様にして、反射防止層パターンと遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。なお、実施例2で得られた反射防止層用樹脂組成物層の表面粗さは98nmであり、実施例3で得られた反射防止層用樹脂組成物層の表面粗さは142nmであった。
(Examples 2 to 3)
A light-shielding film pattern in which an antireflection layer pattern and a light-shielding layer pattern were laminated in this order was formed on a glass substrate in the same manner as in Example 1, except that the blending amounts of the resin solution of the photocurable cardo resin obtained in Synthesis Example 1 and Silica A were changed so that the contents of each component in the resin composition solution for antireflection layer were as shown in Table 1. The surface roughness of the resin composition layer for antireflection layer obtained in Example 2 was 98 nm, and the surface roughness of the resin composition layer for antireflection layer obtained in Example 3 was 142 nm.

(実施例4)
平均厚さが40nmの反射防止層用樹脂組成物層を形成した以外は実施例3と同様にして、反射防止層パターンと遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。なお、実施例4で得られた反射防止層用樹脂組成物層の表面粗さは150nmであった。
Example 4
A light-shielding film pattern in which an antireflection layer pattern and a light-shielding layer pattern were laminated in this order was formed on a glass substrate in the same manner as in Example 3, except that a resin composition layer for an antireflection layer having an average thickness of 40 nm was formed. The surface roughness of the resin composition layer for an antireflection layer obtained in Example 4 was 150 nm.

(実施例5)
平均厚さが200nmの反射防止層用樹脂組成物層を形成した以外は実施例3と同様にして、反射防止層パターンと遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。なお、実施例5で得られた反射防止層用樹脂組成物層の表面粗さは50nmであった。
Example 5
A light-shielding film pattern in which an antireflection layer pattern and a light-shielding layer pattern were laminated in this order was formed on a glass substrate in the same manner as in Example 3, except that a resin composition layer for an antireflection layer having an average thickness of 200 nm was formed. The surface roughness of the resin composition layer for an antireflection layer obtained in Example 5 was 50 nm.

(実施例6)
反射防止層用樹脂組成物溶液において、合成例1で得られた光硬化性カルド樹脂の樹脂溶液の代わりに合成例2で得られた光硬化性アクリル樹脂の樹脂溶液を用いた以外は実施例3と同様にして、反射防止層パターンと遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。なお、実施例6で得られた反射防止層用樹脂組成物層の表面粗さは131nmであった。
Example 6
A light-shielding film pattern in which an antireflection layer pattern and a light-shielding layer pattern were laminated in this order was formed on a glass substrate in the same manner as in Example 3, except that in the resin composition solution for antireflection layer, the resin solution of the photocurable acrylic resin obtained in Synthesis Example 2 was used instead of the resin solution of the photocurable cardo resin obtained in Synthesis Example 1. The surface roughness of the resin composition layer for antireflection layer obtained in Example 6 was 131 nm.

(実施例7)
先ず、各成分が表1に示す含有量となるように、合成例1で得られた光硬化性カルド樹脂の樹脂溶液、エポキシ樹脂、TMA、シリカA及びPGMEAを混合して反射防止層用樹脂組成物溶液を調製した。また、実施例1と同様にして遮光層用樹脂組成物溶液を調製した。
(Example 7)
First, a resin composition solution for an antireflection layer was prepared by mixing the resin solution of the photocurable cardo resin obtained in Synthesis Example 1, an epoxy resin, TMA, silica A, and PGMEA so that the contents of each component were as shown in Table 1. A resin composition solution for a light-shielding layer was also prepared in the same manner as in Example 1.

次に、ガラス基板上に、反射防止層用樹脂組成物溶液をスピンコーターを用いて塗布した後、熱風乾燥機を用いて230℃で30分間加熱硬化処理を施して、平均厚さが80nmの反射防止層を形成した。この反射防止層の表面粗さは65nmであった。 Next, the resin composition solution for the anti-reflection layer was applied onto a glass substrate using a spin coater, and then the substrate was subjected to a heat curing treatment at 230°C for 30 minutes using a hot air dryer to form an anti-reflection layer with an average thickness of 80 nm. The surface roughness of this anti-reflection layer was 65 nm.

この反射防止層上に、遮光層用樹脂組成物溶液をスピンコーターを用いて塗布し、ホットプレートを用いて90℃で1分間加熱(プレベーク)して遮光層用樹脂組成物層を形成した。 A resin composition solution for a light-shielding layer was applied onto this anti-reflection layer using a spin coater, and then heated (pre-baked) at 90°C for 1 minute using a hot plate to form a resin composition layer for a light-shielding layer.

このようにして形成した遮光層用樹脂組成物層に、露光ギャップを100μmに調整して、ライン/スペース=20μm/20μmの遮光膜パターン形成用マスクを被せ、i線強度30mW/cmの超高圧水銀ランプを用いて50mJ/cmの紫外線を照射して露光を行い、感光部分の樹脂を光硬化させた。露光後の遮光層用樹脂組成物層に、0.04%水酸化カリウム水溶液を用い、24℃、1kgf/cm圧の条件でシャワー現像を開始し、パターンが現れ始めた後、さらに20秒間シャワー現像を継続した。その後、5kgf/cm圧でスプレー水洗を行い、遮光層用樹脂組成物層の未露光部分を除去して、反射防止層と遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。その後、この遮光膜パターンに、熱風乾燥機を用いて230℃で30分間加熱処理(ポストベーク)を施した。なお、前記遮光層パターンの平均厚さは1.3μmであった。 The thus formed light-shielding layer resin composition layer was covered with a light-shielding film pattern forming mask with an exposure gap adjusted to 100 μm and a line/space of 20 μm/20 μm, and exposed to ultraviolet light of 50 mJ/cm 2 using an ultra-high pressure mercury lamp with an i-line intensity of 30 mW/cm 2 to photo-cure the resin in the photosensitive portion. After exposure, the light-shielding layer resin composition layer was shower-developed at 24° C. and 1 kgf/cm 2 pressure using a 0.04% potassium hydroxide aqueous solution, and after the pattern began to appear, the shower development was continued for another 20 seconds. Thereafter, spray water washing was performed at a pressure of 5 kgf/cm 2 to remove the unexposed portion of the light-shielding layer resin composition layer, and a light-shielding film pattern in which an antireflection layer and a light-shielding layer pattern were laminated in this order was formed on the glass substrate. Thereafter, the light-shielding film pattern was subjected to a heat treatment (post-baking) at 230° C. for 30 minutes using a hot air dryer. The average thickness of the light-shielding layer pattern was 1.3 μm.

(実施例8)
反射防止層用樹脂組成物溶液において、各成分が表1に示す含有量となるように、エポキシ樹脂、TMA、シリカA及びPGMEAを混合した以外は実施例7と同様にして、反射防止層と遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。なお、実施例8で得られた反射防止層の表面粗さは70nmであった。
(Example 8)
A light-shielding film pattern in which an antireflection layer and a light-shielding layer pattern were laminated in this order was formed on a glass substrate in the same manner as in Example 7, except that in the resin composition solution for antireflection layer, epoxy resin, TMA, silica A and PGMEA were mixed so that the contents of each component were as shown in Table 1. The surface roughness of the antireflection layer obtained in Example 8 was 70 nm.

(比較例1)
反射防止層を形成しなかった以外は実施例1と同様にして、遮光層パターンのみからなる遮光膜パターンをガラス基板上に形成した。
(Comparative Example 1)
A light-shielding film pattern consisting of only a light-shielding layer pattern was formed on a glass substrate in the same manner as in Example 1, except that no antireflection layer was formed.

(比較例2)
反射防止層用樹脂組成物溶液において、各成分が表1に示す含有量となるように、合成例1で得られた光硬化性カルド樹脂の樹脂溶液及びPGMEAを混合した以外は実施例1と同様にして、反射防止層パターンと遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。なお、比較例2で得られた反射防止層用樹脂組成物層の表面粗さは11nmであった。
(Comparative Example 2)
A light-shielding film pattern in which an antireflection layer pattern and a light-shielding layer pattern were laminated in this order was formed on a glass substrate in the same manner as in Example 1, except that the resin solution of the photocurable cardo resin obtained in Synthesis Example 1 and PGMEA were mixed so that the contents of each component in the resin composition solution for antireflection layer were as shown in Table 1. The surface roughness of the resin composition layer for antireflection layer obtained in Comparative Example 2 was 11 nm.

(比較例3)
平均粒子径が170nmのシリカAの代わりに平均粒子径が20nmのシリカBを用いた以外は実施例3と同様にして、反射防止層パターンと遮光層パターンとがこの順で積層されている遮光膜パターンをガラス基板上に形成した。なお、比較例3で得られた反射防止層用樹脂組成物層の表面粗さは30nmであった。
(Comparative Example 3)
A light-shielding film pattern in which an antireflection layer pattern and a light-shielding layer pattern were laminated in this order was formed on a glass substrate in the same manner as in Example 3, except that silica B having an average particle diameter of 20 nm was used instead of silica A having an average particle diameter of 170 nm. The surface roughness of the resin composition layer for antireflection layer obtained in Comparative Example 3 was 30 nm.

<遮光度(OD値)測定>
得られた遮光膜パターン付きガラス基板について、光学濃度計(サカタインクスエンジニアリング株式会社製「X-Rite361T(V)」)を用いて光学濃度(OD値)を測定し、これをガラス基板の光学濃度(OD値)で補正して遮光膜の遮光度(OD値)を求めた。その結果を表1に示す。
<Light blocking degree (OD value) measurement>
The optical density (OD value) of the obtained glass substrate with the light-shielding film pattern was measured using an optical densitometer ("X-Rite361T(V)" manufactured by Sakata Inx Engineering Corporation), and the optical density (OD value) was corrected with the optical density (OD value) of the glass substrate to obtain the light-shielding degree (OD value) of the light-shielding film. The results are shown in Table 1.

<反射率測定>
得られた遮光膜パターン付きガラス基板の遮光膜パターンが形成されていない面側から、分光測色計(株式会社日立ハイテクサイエンス製「UH4150」)を用いて、C光源、2°視野の条件で反射率[%]を測定した。その結果を表1に示す。
<Reflectance measurement>
The reflectance [%] of the obtained glass substrate with the light-shielding film pattern was measured from the side on which the light-shielding film pattern was not formed, using a spectrophotometer ("UH4150" manufactured by Hitachi High-Tech Science Corporation) under the conditions of a C light source and a 2° visual field. The results are shown in Table 1.

表1に示したように、特定の表面粗さを有する反射防止層用樹脂組成物層を硬化させることによって形成した反射防止層を備える遮光膜パターン(実施例1~6)及び特定の表面粗さを有する反射防止層を備える遮光膜パターン(実施例7~8)は、反射防止層のない遮光膜パターン(比較例1)、反射防止層に無機フィラーが含まれていない遮光膜パターン(比較例2)、及び表面粗さが小さい反射防止層用樹脂組成物層を硬化させることによって形成した反射防止層を備える遮光膜パターン(比較例3)に比べて、反射率が低減されることが確認された。 As shown in Table 1, it was confirmed that the light-shielding film pattern having an anti-reflection layer formed by curing a resin composition layer for an anti-reflection layer having a specific surface roughness (Examples 1 to 6) and the light-shielding film pattern having an anti-reflection layer having a specific surface roughness (Examples 7 to 8) had reduced reflectance compared to the light-shielding film pattern without an anti-reflection layer (Comparative Example 1), the light-shielding film pattern in which the anti-reflection layer does not contain an inorganic filler (Comparative Example 2), and the light-shielding film pattern having an anti-reflection layer formed by curing a resin composition layer for an anti-reflection layer having a small surface roughness (Comparative Example 3).

以上説明したように、本発明によれば、光の反射が十分に抑制された遮光膜を得ることが可能となる。したがって、本発明の表示装置用基板は、光の反射が十分に抑制された遮光膜を備えているため、液晶ディスプレイ、タッチパネル、有機ELディスプレイ、量子ドットディスプレイ等の表示装置に用いられる基板として有用である。 As described above, according to the present invention, it is possible to obtain a light-shielding film in which light reflection is sufficiently suppressed. Therefore, the display device substrate of the present invention has a light-shielding film in which light reflection is sufficiently suppressed, and is therefore useful as a substrate for use in display devices such as liquid crystal displays, touch panels, organic EL displays, and quantum dot displays.

Claims (9)

透明基板、及び
該透明基板上に配置され、屈折率が1.2~1.8の無機フィラーと透明樹脂硬化物とを含有する、平均厚さが0.01~1μmの反射防止層と、該反射防止層上に配置され、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と樹脂硬化物とを含有する、平均厚さが0.1~30μmの遮光層とからなり、前記反射防止層と前記遮光層との界面における前記反射防止層の表面粗さが40~200nmである遮光膜
を備えていることを特徴とする表示装置用基板。
A substrate for a display device, comprising: a transparent substrate; and an antireflection layer disposed on the transparent substrate, the antireflection layer having an average thickness of 0.01 to 1 μm, the antireflection layer containing an inorganic filler having a refractive index of 1.2 to 1.8 and a transparent resin cured product; and a light-shielding layer disposed on the antireflection layer, the light-shielding layer having an average thickness of 0.1 to 30 μm, the antireflection layer containing at least one light-shielding component selected from the group consisting of an organic black pigment, an inorganic black pigment, and a mixed-color pseudo-black pigment, and a resin cured product, the antireflection layer having a surface roughness of 40 to 200 nm at the interface between the antireflection layer and the light-shielding layer.
前記無機フィラーの平均粒子径が25~300nmであることを特徴とする請求項1に記載の表示装置用基板。 The display device substrate according to claim 1, characterized in that the inorganic filler has an average particle size of 25 to 300 nm. 前記無機フィラーの含有量が前記反射防止層全体に対して5~95質量%であることを特徴とする請求項1又は2に記載の表示装置用基板。 The display device substrate according to claim 1 or 2, characterized in that the content of the inorganic filler is 5 to 95% by mass relative to the entire anti-reflection layer. 透明基板、及び該透明基板上に配置されている、反射防止層と遮光層とからなる遮光膜を備えている表示装置用基板の製造方法であって、
前記透明基板上に、屈折率が1.2~1.8の無機フィラーと光硬化性透明樹脂とを含有し、平均厚さが0.01~1μmであり、表面粗さが40~200nmである反射防止層用樹脂組成物層を形成する工程と、
前記反射防止層用樹脂組成物層上に、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と光硬化性樹脂とを含有する遮光層用樹脂組成物層を形成する工程と、
前記反射防止層用樹脂組成物層及び前記遮光層用樹脂組成物層に一括で露光処理を施した後、一括で現像処理を施し、さらに、加熱処理(ポストベーク)を施して、前記無機フィラーと透明樹脂硬化物とを含有する反射防止層及び前記遮光成分と樹脂硬化物とを含有し、平均厚さが0.1~30μmである遮光層を形成する工程と、
を含むことを特徴とする表示装置用基板の製造方法。
A method for manufacturing a substrate for a display device, comprising: a transparent substrate; and a light-shielding film, which is formed on the transparent substrate and is composed of an antireflection layer and a light-shielding layer, the method comprising the steps of:
forming a resin composition layer for an antireflection layer on the transparent substrate, the resin composition layer containing an inorganic filler having a refractive index of 1.2 to 1.8 and a photocurable transparent resin, the resin composition layer having an average thickness of 0.01 to 1 μm and a surface roughness of 40 to 200 nm;
forming a resin composition layer for a light-shielding layer, the resin composition layer containing at least one light-shielding component selected from the group consisting of an organic black pigment, an inorganic black pigment, and a mixed color pseudo-black pigment, and a photocurable resin, on the resin composition layer for an antireflection layer;
a step of simultaneously subjecting the resin composition layer for an antireflection layer and the resin composition layer for a light-shielding layer to an exposure treatment, simultaneously subjecting the resin composition layer for an antireflection layer and the resin composition layer for a light-shielding layer to a development treatment, and further subjecting the resin composition layer to a heat treatment (post-baking) to form an antireflection layer containing the inorganic filler and a transparent cured resin and a light-shielding layer containing the light-shielding component and a cured resin and having an average thickness of 0.1 to 30 μm;
A method for manufacturing a substrate for a display device, comprising:
前記反射防止層用樹脂組成物層中の光硬化性透明樹脂及び前記遮光層用樹脂組成物層中の光硬化性樹脂がともにアルカリ可溶性であり、前記現像処理がアルカリ現像処理であることを特徴とする請求項4に記載の表示装置用基板の製造方法。 The method for manufacturing a display device substrate according to claim 4, characterized in that the photocurable transparent resin in the antireflection layer resin composition layer and the photocurable resin in the light-shielding layer resin composition layer are both alkali-soluble, and the development treatment is an alkali development treatment. 透明基板、及び該透明基板上に配置されている、反射防止層と遮光層とからなる遮光膜を備えている表示装置用基板の製造方法であって、
前記透明基板上に、屈折率が1.2~1.8の無機フィラーと熱硬化性透明樹脂及び熱硬化性単量体のうちの少なくとも1種とを含有する反射防止層用樹脂組成物に加熱硬化処理を施して、平均厚さが0.01~1μmであり、表面粗さが40~200nmである反射防止層を形成する工程と、
前記反射防止層上に、有機黒色顔料、無機黒色顔料及び混色擬似黒色顔料からなる群から選択される少なくとも1種の遮光成分と光硬化性樹脂とを含有する遮光層用樹脂組成物に露光処理を施した後、現像処理を施し、さらに、加熱処理(ポストベーク)を施して、平均厚さが0.1~30μmである遮光層を形成する工程と、
を含むことを特徴とする表示装置用基板の製造方法。
A method for manufacturing a substrate for a display device, comprising: a transparent substrate; and a light-shielding film, which is disposed on the transparent substrate and is composed of an antireflection layer and a light-shielding layer, the method comprising the steps of:
a step of subjecting a resin composition for an antireflection layer, which contains an inorganic filler having a refractive index of 1.2 to 1.8 and at least one of a thermosetting transparent resin and a thermosetting monomer, to a heat curing treatment to form an antireflection layer having an average thickness of 0.01 to 1 μm and a surface roughness of 40 to 200 nm on the transparent substrate;
a step of subjecting a resin composition for a light-shielding layer, which contains at least one light-shielding component selected from the group consisting of an organic black pigment, an inorganic black pigment, and a mixed color pseudo-black pigment, and a photocurable resin, to an exposure treatment, followed by a development treatment, and further a heat treatment (post-baking) to form a light-shielding layer having an average thickness of 0.1 to 30 μm on the antireflection layer;
A method for manufacturing a substrate for a display device, comprising:
前記遮光層用樹脂組成物中の光硬化性樹脂がアルカリ可溶性であり、前記現像処理がアルカリ現像処理であることを特徴とする請求項6に記載の表示装置用基板の製造方法。 The method for manufacturing a display device substrate according to claim 6, characterized in that the photocurable resin in the resin composition for the light-shielding layer is alkali-soluble, and the development treatment is an alkali development treatment. 光硬化性樹脂組成物及び有機溶媒を含有する反射防止層用樹脂組成物溶液であって
前記光硬化性樹脂組成物が、屈折率が1.2~1.8であり、平均粒子径が170~300nmである無機フィラーを樹脂組成物全体に対して5~95質量%と、光硬化性透明樹脂を樹脂組成物全体に対して1.54~95質量%と、光重合性モノマーを前記光硬化性透明樹脂と前記光重合性モノマーとの合計量に対して0~50質量%と、光重合開始剤を前記光硬化性透明樹脂と前記光重合性モノマーとの合計量100質量部に対して0~30質量部含有するものであり、
前記有機溶媒の含有量が、前記光硬化性樹脂組成物と前記有機溶媒との合計量に対して80~99.9質量%であり、
溶液粘度が1~4mPa・secであることを特徴とする反射防止層用樹脂組成物溶液。
A resin composition solution for an antireflection layer, comprising a photocurable resin composition and an organic solvent,
the photocurable resin composition contains 5 to 95 mass % of an inorganic filler having a refractive index of 1.2 to 1.8 and an average particle size of 170 to 300 nm, based on the entire resin composition; 1.54 to 95 mass % of a photocurable transparent resin, based on the entire resin composition; 0 to 50 mass % of a photopolymerizable monomer, based on the total amount of the photocurable transparent resin and the photopolymerizable monomer; and 0 to 30 mass parts of a photopolymerization initiator, based on 100 mass parts of the total amount of the photocurable transparent resin and the photopolymerizable monomer;
the content of the organic solvent is 80 to 99.9% by mass based on the total amount of the photocurable resin composition and the organic solvent;
A resin composition solution for an antireflection layer, the solution having a viscosity of 1 to 4 mPa·sec.
熱硬化性樹脂組成物及び有機溶媒を含有する反射防止層用樹脂組成物溶液であって
前記熱硬化性樹脂組成物が、屈折率が1.2~1.8であり、平均粒子径が170~300nmである無機フィラーを樹脂組成物全体に対して5~95質量%と、熱硬化性透明樹脂及び熱硬化性単量体のうちの少なくとも1種を樹脂組成物全体に対して3.2~94.06質量%と、熱硬化剤を前記熱硬化性透明樹脂と前記熱硬化性単量体との合計量100質量部に対して1~25質量部含有するものであり、
前記有機溶媒の含有量が、前記熱硬化性樹脂組成物と前記有機溶媒との合計量に対して80~99.9質量%であり、
溶液粘度が1~4mPa・secであることを特徴とする反射防止層用樹脂組成物溶液。
A resin composition solution for an antireflection layer, comprising a thermosetting resin composition and an organic solvent,
the thermosetting resin composition contains 5 to 95 mass % of an inorganic filler having a refractive index of 1.2 to 1.8 and an average particle size of 170 to 300 nm, based on the entire resin composition; 3.2 to 94.06 mass % of at least one of a thermosetting transparent resin and a thermosetting monomer, based on the entire resin composition; and 1 to 25 mass parts of a heat curing agent, based on 100 mass parts of the total amount of the thermosetting transparent resin and the thermosetting monomer;
the content of the organic solvent is 80 to 99.9% by mass based on the total amount of the thermosetting resin composition and the organic solvent;
A resin composition solution for an antireflection layer, the solution having a viscosity of 1 to 4 mPa·sec.
JP2019225507A 2018-12-14 2019-12-13 Substrate for display device, manufacturing method thereof, and resin composition solution for anti-reflection layer used therein Active JP7510752B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018234382 2018-12-14
JP2018234382 2018-12-14

Publications (2)

Publication Number Publication Date
JP2020098334A JP2020098334A (en) 2020-06-25
JP7510752B2 true JP7510752B2 (en) 2024-07-04

Family

ID=71105929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019225507A Active JP7510752B2 (en) 2018-12-14 2019-12-13 Substrate for display device, manufacturing method thereof, and resin composition solution for anti-reflection layer used therein

Country Status (4)

Country Link
JP (1) JP7510752B2 (en)
KR (1) KR20200074039A (en)
CN (1) CN111323951B (en)
TW (1) TW202104131A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262530A (en) * 2022-01-06 2022-04-01 山西日盛达太阳能科技股份有限公司 Antireflection coating solution, preparation method, photovoltaic glass and preparation method thereof
JP7421583B2 (en) * 2022-03-10 2024-01-24 ソマール株式会社 Fixtures for viewing items, etc.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156801A (en) 2003-11-25 2005-06-16 Konica Minolta Opto Inc Glare-proof antireflection film, polarizing plate and display device
JP2005300576A (en) 2004-04-06 2005-10-27 Konica Minolta Opto Inc Glare-proof antireflection film, polarizing plate and display device
JP2016161926A (en) 2015-03-05 2016-09-05 新日鉄住金化学株式会社 Black resin composition for light blocking films, substrate with light blocking film obtained by curing composition, color filter having substrate with light blocking film, and touch panel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929546B2 (en) * 1996-09-20 2007-06-13 ソマール株式会社 Anti-reflection camera and anti-reflection film used therefor
JP3902827B2 (en) * 1997-03-31 2007-04-11 ソマール株式会社 Antireflection film
JP2006162942A (en) * 2004-12-07 2006-06-22 Ulvac Seimaku Kk Blanks and its formation method, and black matrix using the blanks and its formation method
CN102257426B (en) 2008-12-19 2014-04-02 夏普株式会社 Substrate, and display panel provided with substrate
JP5704262B1 (en) 2013-04-30 2015-04-22 凸版印刷株式会社 DISPLAY DEVICE SUBSTRATE, DISPLAY DEVICE SUBSTRATE MANUFACTURING METHOD, AND DISPLAY DEVICE
CN106233164A (en) * 2014-04-15 2016-12-14 三菱化学株式会社 Substrate with light screening material, color filter, liquid crystal indicator and for forming the colored resin composition of this light screening material
JP6790831B2 (en) * 2014-12-26 2020-11-25 Agc株式会社 Optical filter and imaging device
JP6414173B2 (en) * 2016-09-30 2018-10-31 Jnc株式会社 Antiglare antireflection hard coat film, image display device, and method for producing antiglare antireflection hard coat film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156801A (en) 2003-11-25 2005-06-16 Konica Minolta Opto Inc Glare-proof antireflection film, polarizing plate and display device
JP2005300576A (en) 2004-04-06 2005-10-27 Konica Minolta Opto Inc Glare-proof antireflection film, polarizing plate and display device
JP2016161926A (en) 2015-03-05 2016-09-05 新日鉄住金化学株式会社 Black resin composition for light blocking films, substrate with light blocking film obtained by curing composition, color filter having substrate with light blocking film, and touch panel

Also Published As

Publication number Publication date
TW202104131A (en) 2021-02-01
CN111323951A (en) 2020-06-23
KR20200074039A (en) 2020-06-24
JP2020098334A (en) 2020-06-25
CN111323951B (en) 2025-01-21

Similar Documents

Publication Publication Date Title
KR102733864B1 (en) Photosensitive resin composition for light-shielding film with the role of spacer, light-shielding film thereof, lcd with that film, and manufacturing process for them
KR101112521B1 (en) Black composition, black coating composition, resin black matrix, color filter for liquid crystal display and liquid crystal display
US9557444B2 (en) Alkali-soluble resin, photosensitive resin composition, color filter, method for manufacturing the same, and liquid crystal display apparatus
TW200424773A (en) Photosensitive composition, photosensitive colored compositions, color filters, and liquid crystal displays
TWI709818B (en) Photosensitive resin composition for light-sielding film with the role of spacer, light-sielding film, liquid crystal display device, method for producing photosensitive resin composition for light-sielding film with the role of spacer, method for producing light-sielding film and method for producing liquid crystal display device
TWI738750B (en) Curable resin composition and protective film
JP2024022626A (en) Photosensitive resin composition for light-shielding film, light-shielding film, liquid crystal display device, method for producing light-shielding film having spacer function, and method for producing liquid crystal display device
JP7275579B2 (en) Coloring composition, color filter substrate and display device using the same
JP7510752B2 (en) Substrate for display device, manufacturing method thereof, and resin composition solution for anti-reflection layer used therein
TW202340861A (en) Photosensitive resin composition, cured film obtained by curing photosensitive resin composition, substrate with cured film, and method for manufacturing substrate with cured film
JP7568413B2 (en) Photosensitive resin composition, cured film obtained by curing the same, and display device having the cured film
WO2023048016A1 (en) Resin composition, light-shielding film, and substrate with partitioning wall
TWI412885B (en) Photosensitive resin composition, and black matrix, color filter and liquid crystal display element made by using the composition
JP2010230979A (en) Method for manufacturing color filter substrate
CN105278244A (en) Photosensitive resin composition for color filter and application thereof
TWI785791B (en) Green photosensitive resin composition, and color filter formed therefrom
JP2023051765A (en) Photosensitive resin composition, cured film, color filter, touch panel and display device
CN106200270A (en) Photosensitive resin composition for color filter and application thereof
JP2019164341A (en) Negative photosensitive resin composition, and photospacer and image display device including the same
CN118732390A (en) Photosensitive resin composition, cured film, substrate with cured film, and method for producing substrate with cured film
KR20230072261A (en) Photosensitive resin composition, photosensitive resin layer using the same and color filter
KR20200132516A (en) Red colored photosensitive resin composition, color filter and image display device produced using the same
CN106200265A (en) Photosensitive resin composition, color filter and preparation method thereof, and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240624

R150 Certificate of patent or registration of utility model

Ref document number: 7510752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150