[go: up one dir, main page]

JP7506509B2 - Covering material - Google Patents

Covering material Download PDF

Info

Publication number
JP7506509B2
JP7506509B2 JP2020062518A JP2020062518A JP7506509B2 JP 7506509 B2 JP7506509 B2 JP 7506509B2 JP 2020062518 A JP2020062518 A JP 2020062518A JP 2020062518 A JP2020062518 A JP 2020062518A JP 7506509 B2 JP7506509 B2 JP 7506509B2
Authority
JP
Japan
Prior art keywords
weight
epoxy resin
coating
coating material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020062518A
Other languages
Japanese (ja)
Other versions
JP2021161184A (en
Inventor
育恵 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bec Co Ltd
Original Assignee
Bec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bec Co Ltd filed Critical Bec Co Ltd
Priority to JP2020062518A priority Critical patent/JP7506509B2/en
Publication of JP2021161184A publication Critical patent/JP2021161184A/en
Application granted granted Critical
Publication of JP7506509B2 publication Critical patent/JP7506509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Description

本発明は、新規な被覆材に関するものである。 The present invention relates to a novel coating material.

建築物、土木構築物等に対し塗装を施す場合は、これらを構成する基材に対し、密着性等を確保するために被覆材として下塗材を施した後に、上塗材を塗装している。 When painting buildings, civil engineering structures, etc., a primer is applied as a covering material to ensure adhesion to the base material that constitutes them, and then a topcoat is applied.

また最近は、経年劣化した既存塗膜面(旧塗膜面)に対して塗装を施す場合が多くなっている。このような場合、既存塗膜面の劣化状態等に合わせ、密着性等を確保するために下塗材を選定して施した後に、上塗材を塗装している。 Recently, there have been many cases of painting existing coating surfaces (old coating surfaces) that have deteriorated over time. In such cases, a primer is selected and applied to ensure adhesion according to the deterioration state of the existing coating surface, and then a topcoat is applied.

ここで使用される下塗材は、基材や既存塗膜面等(以下、これらを総称して「下地」ともいう)と、上塗材の密着性等を高める大きな役割を担う。 The primer used here plays a major role in improving the adhesion of the topcoat to the substrate and existing coating surface (hereinafter collectively referred to as the "base").

従来、このような下塗材としては、下地の種類や状態に合わせて適切な下塗材が選定されてきた。例えば、特許文献1、2に記載されているようなエポキシ系下塗材は汎用的に使用されてきた下塗材の一つである。 Traditionally, an appropriate undercoat material has been selected according to the type and condition of the base. For example, the epoxy-based undercoat material described in Patent Documents 1 and 2 is one of the undercoat materials that has been widely used.

特開2000-319582号公報JP 2000-319582 A 特開平11-199648号公報Japanese Patent Application Laid-Open No. 11-199648

しかし近年、建築物、土木構築物等の多種多様化に合わせて、下地の種類も増加しており、例えば硬質ないし弾性の種々の下地に対応する必要が生じている状況であり、下塗材の選定も煩雑化してきている。さらに、高耐久性や汚染防止性等の高機能を有する塗膜面も登場し、既存の下塗材では、これらの塗膜面に対応しきれなくなってきている。 However, in recent years, the variety of base materials has increased in line with the diversification of buildings and civil engineering structures, and it has become necessary to deal with a variety of base materials, from hard to elastic, for example, making the selection of primers more complicated. Furthermore, coating surfaces with high functionality, such as high durability and stain resistance, have appeared, and existing primers are no longer able to handle these coating surfaces.

本発明者は、このような問題に対し鋭意検討した結果、エポキシ樹脂、アミン硬化剤に加え、顔料及び非水系溶剤を特定条件で含み、さらに特定の耐屈曲性を具備する被覆材に想到し、本発明を完成させた。 As a result of extensive research into these problems, the inventors came up with the idea of a coating material that contains, in addition to an epoxy resin and an amine curing agent, a pigment and a non-aqueous solvent under specific conditions, and that also has specific bending resistance, and thus completed the present invention.

すなわち、本発明は、以下の特徴を有するものである。
1.エポキシ樹脂、アミン硬化剤、顔料、及び非水系溶剤を含有する被覆材であって、
前記エポキシ樹脂が、ダイマー酸変性エポキシ樹脂を固形分換算で70~100重量%含み、
前記アミン硬化剤は、活性水素当量(固形分当たり)40~120g/eqであり、
前記エポキシ樹脂と前記アミン硬化剤との配合比が、[(アミン硬化剤の配合量/アミン硬化剤の活性水素当量)/(エポキシ樹脂の配合量/エポキシ樹脂のエポキシ当量)]で、0.3~1.0であり、
前記非水系溶剤が、アニリン点12~70℃の非水系溶剤を含み、当該非水系溶剤は、ミネラルスピリット、石油エーテル、石油ナフサ、ソルベントナフサ、ケロシンから選ばれる1種以上であり、
顔料体積濃度が1~19%であり、
円筒形マンドレル法による耐屈曲性試験においてマンドレル直径5mm以下の耐屈曲性を示す
ことを特徴とする被覆材。
2.不揮発分が30~90重量%であることを特徴とする1.記載の被覆材。
That is, the present invention has the following features.
1. A coating material containing an epoxy resin, an amine curing agent, a pigment, and a non-aqueous solvent,
The epoxy resin contains a dimer acid-modified epoxy resin in an amount of 70 to 100% by weight in terms of solid content,
The amine curing agent has an active hydrogen equivalent (based on solid content) of 40 to 120 g/eq.
a compounding ratio of the epoxy resin to the amine curing agent, expressed as [(amount of the amine curing agent/active hydrogen equivalent of the amine curing agent)/(amount of the epoxy resin/epoxy equivalent of the epoxy resin)], is 0.3 to 1.0;
The non-aqueous solvent includes a non-aqueous solvent having an aniline point of 12 to 70° C., and the non-aqueous solvent is at least one selected from mineral spirits, petroleum ether, petroleum naphtha, solvent naphtha, and kerosene;
The pigment volume concentration is 1 to 19%,
A coating material characterized by exhibiting bending resistance in a bending resistance test using a cylindrical mandrel having a mandrel diameter of 5 mm or less.
2. The coating material according to 1., characterized in that the non-volatile content is 30 to 90% by weight.

本発明の被覆材は、多種多様な下地に対し、優れた密着性等の適性を示す。 The coating material of the present invention exhibits excellent adhesion and other suitability for a wide variety of substrates.

本発明被覆材は、エポキシ樹脂、アミン硬化剤、顔料、及び非水系溶剤を含有する。 The coating material of the present invention contains an epoxy resin, an amine curing agent, a pigment, and a non-aqueous solvent.

エポキシ樹脂とアミン硬化剤は、塗膜形成時に硬化反応を生じ、樹脂成分として作用するものである。このうち、エポキシ樹脂としては、例えば、可とう性エポキシ樹脂、硬質エポキシ樹脂等が挙げられ、本発明では、少なくとも可とう性エポキシ樹脂を含む態様が望ましい。 The epoxy resin and amine curing agent undergo a curing reaction during coating formation and act as resin components. Among these, examples of epoxy resins include flexible epoxy resins and rigid epoxy resins, and in the present invention, an embodiment that includes at least flexible epoxy resin is preferable.

可とう性エポキシ樹脂としては、例えば、脂肪族変性エポキシ樹脂、ブタジエン系エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、チオール系エポキシ樹脂、アミン変性エポキシ樹脂、ゴム変性エポキシ樹脂、ウレタン変性エポキシ樹脂、ポリオール変性エポキシ樹脂、脂肪酸変性エポキシ樹脂等が挙げられる。これらは、1種または2種以上で使用できる。この中でも、脂肪酸変性エポキシ樹脂が好適である。 Examples of flexible epoxy resins include aliphatic modified epoxy resins, butadiene-based epoxy resins, ε-caprolactone modified epoxy resins, thiol-based epoxy resins, amine modified epoxy resins, rubber modified epoxy resins, urethane modified epoxy resins, polyol modified epoxy resins, and fatty acid modified epoxy resins. These can be used alone or in combination of two or more. Of these, fatty acid modified epoxy resins are preferred.

本発明被覆材のエポキシ樹脂中に占める可とう性エポキシ樹脂の比率(固形分換算)は、下地への追従性、密着性等の観点から、好ましくは50重量%以上、より好ましくは70~100重量%である。 The ratio of flexible epoxy resin in the epoxy resin of the coating material of the present invention (converted into solid content) is preferably 50% by weight or more, more preferably 70 to 100% by weight, from the viewpoints of conformability to the substrate, adhesion, etc.

脂肪酸変性エポキシ樹脂は、脂肪族多塩基酸化合物をエポキシ樹脂に付加反応させて得られるものである。付加反応には、例えば、エステル化反応等が使用できる。ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、その他後述の硬質エポキシ樹脂等で例示するような各種エポキシ樹脂が使用できる。脂肪族多塩基酸化合物としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、シクロヘキサンジカルボン酸、コハク酸、マロン酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、1,12-ドカン2酸、ダイマー酸等が挙げられる。この中でも、ダイマー酸が好適である。 Fatty acid modified epoxy resins are obtained by subjecting an aliphatic polybasic acid compound to an addition reaction with an epoxy resin. For example, an esterification reaction can be used for the addition reaction. Examples of the epoxy resins used here include bisphenol A type epoxy resins, bisphenol F type epoxy resins, and various other epoxy resins such as those exemplified by the hard epoxy resins described below. Examples of the aliphatic polybasic acid compounds include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, cyclohexanedicarboxylic acid, succinic acid, malonic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, 1,12-docane diacid, and dimer acid. Among these, dimer acid is preferred.

ダイマー酸は、不飽和脂肪酸の二量体である。ダイマー酸を構成する不飽和脂肪酸としては、例えば、オレイン酸、エライジン酸、セトレイン酸、ソルビン酸、リノール酸、リノレイン酸、アラキドン酸、大豆油脂肪酸、トール油脂肪酸、亜麻仁油脂肪酸等が挙げられる。 Dimer acids are dimers of unsaturated fatty acids. Examples of unsaturated fatty acids that make up dimer acids include oleic acid, elaidic acid, cetoleic acid, sorbic acid, linoleic acid, linoleic acid, arachidonic acid, soybean oil fatty acids, tall oil fatty acids, and linseed oil fatty acids.

ダイマー酸をエポキシ樹脂に付加反応させて得られるダイマー酸変性エポキシ樹脂は、本発明被覆材のエポキシ樹脂として好適なものである。本発明被覆材のエポキシ樹脂中に占めるダイマー酸変性エポキシ樹脂の比率(固形分換算)は、下地への追従性、密着性等の観点から、好ましくは50重量%以上、より好ましくは70~100重量%である。 Dimer acid-modified epoxy resin obtained by addition reaction of dimer acid with epoxy resin is suitable as the epoxy resin of the coating material of the present invention. The ratio of dimer acid-modified epoxy resin in the epoxy resin of the coating material of the present invention (converted into solid content) is preferably 50% by weight or more, more preferably 70 to 100% by weight, from the viewpoints of conformability to the substrate, adhesion, etc.

硬質エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型ビスフェノールAエポキシ樹脂、フェノールノボラック型ビスフェノールFエポキシ樹脂等のフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、脂環式エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、グシシジルエーテル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロ型エポキシ樹脂、ナフタレン型エポキシ樹脂等が挙げられる。これらは、1種または2種以上で使用できる。 Examples of hard epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, phenol novolac type epoxy resins such as phenol novolac type bisphenol A epoxy resins and phenol novolac type bisphenol F epoxy resins, novolac type epoxy resins such as cresol novolac type epoxy resins and bisphenol A novolac type epoxy resins, alicyclic epoxy resins, hydrogenated bisphenol A type epoxy resins, glycidyl ether type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, dicyclo type epoxy resins, naphthalene type epoxy resins, etc. These can be used alone or in combination of two or more.

本発明で使用するエポキシ樹脂は、エポキシ当量(固形分当たり)が好ましくは300~3000g/eq、より好ましくは400~2000g/eq、さらに好ましくは450~1500g/eq、特に好ましくは500~1100g/eqである。エポキシ当量が上記下限以上であることにより、下地への追従性、密着性等の点で好適である。エポキシ当量が上記上限以下であることにより、耐膨れ性、密着性、上塗材適性等の点で好適である。なお、エポキシ当量とは、エポキシ樹脂の分子量をエポキシ基の数で除した値である。本発明において、「α~β」は「α以上β以下」と同義である。 The epoxy resin used in the present invention has an epoxy equivalent (per solid content) of preferably 300 to 3000 g/eq, more preferably 400 to 2000 g/eq, even more preferably 450 to 1500 g/eq, and particularly preferably 500 to 1100 g/eq. When the epoxy equivalent is equal to or greater than the lower limit, it is suitable in terms of conformability to the substrate, adhesion, etc. When the epoxy equivalent is equal to or less than the upper limit, it is suitable in terms of blister resistance, adhesion, suitability as a topcoat material, etc. The epoxy equivalent is the value obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups. In the present invention, "α to β" is synonymous with "α or more and β or less."

アミン硬化剤としては、例えば、脂肪族ポリアミン、脂環式ポリアミン、芳香族ポリアミン、複素環状ポリアミン、脂肪族ポリアミド、脂環式ポリアミド、芳香族ポリアミド、脂肪族ポリアミドアミン、脂環式ポリアミドアミン、芳香族ポリアミドアミン等のポリアミン化合物等が挙げられる。これらは、1種または2種以上で使用できる。本発明では、この中でも、脂肪族ポリアミン、脂肪族ポリアミド、脂肪族ポリアミドアミンから選ばれる1種以上の脂肪族アミン硬化剤を好適に使用することができる。 Examples of amine hardeners include polyamine compounds such as aliphatic polyamines, alicyclic polyamines, aromatic polyamines, heterocyclic polyamines, aliphatic polyamides, alicyclic polyamides, aromatic polyamides, aliphatic polyamidoamines, alicyclic polyamidoamines, and aromatic polyamidoamines. These can be used alone or in combination of two or more. In the present invention, among these, one or more aliphatic amine hardeners selected from aliphatic polyamines, aliphatic polyamides, and aliphatic polyamidoamines can be preferably used.

本発明で使用するアミン硬化剤は、活性水素当量(固形分当たり)が好ましくは40~200g/eq、より好ましくは50~120g/eq、さらに好ましくは60~95g/eqである。活性水素当量が上記範囲内であることにより、密着性等において十分な効果を得ることができる。なお、活性水素当量とは、アミン硬化剤の分子量をアミノ基の水素原子数で除した値である。 The amine curing agent used in the present invention preferably has an active hydrogen equivalent (per solid content) of 40 to 200 g/eq, more preferably 50 to 120 g/eq, and even more preferably 60 to 95 g/eq. By having the active hydrogen equivalent within the above range, sufficient effects can be obtained in terms of adhesion, etc. The active hydrogen equivalent is the value obtained by dividing the molecular weight of the amine curing agent by the number of hydrogen atoms in the amino group.

本発明では、このようなエポキシ樹脂とアミン硬化剤について、アミン硬化剤の活性水素当量とエポキシ樹脂のエポキシ当量が、[アミン硬化剤の活性水素当量/エポキシ樹脂のエポキシ当量]で、好ましくは0.4未満、より好ましくは0.01~0.3、さらに好ましくは0.03~0.25、特に好ましくは0.05~0.2の組み合わせになるように各材料を設定して使用することができる。エポキシ樹脂、アミン硬化剤として、このような条件を満たす材料を組み合わせて使用することにより、密着性等の点でより好ましい効果を得ることができる。 In the present invention, for such epoxy resin and amine curing agent, each material can be set and used so that the active hydrogen equivalent of the amine curing agent and the epoxy equivalent of the epoxy resin are preferably less than 0.4, more preferably 0.01 to 0.3, even more preferably 0.03 to 0.25, and particularly preferably 0.05 to 0.2, in terms of [active hydrogen equivalent of amine curing agent/epoxy equivalent of epoxy resin]. By using a combination of materials that satisfy these conditions as the epoxy resin and amine curing agent, more preferable effects can be obtained in terms of adhesion, etc.

エポキシ樹脂とアミン硬化剤の配合比は、[(アミン硬化剤の配合量/アミン硬化剤の活性水素当量)/(エポキシ樹脂の配合量/エポキシ樹脂のエポキシ当量)]で1.0以下となるように設定することが好ましく、より好ましくは0.3~1.0、さらに好ましくは0.5~0.98、特に好ましくは0.6~0.95、最も好ましくは0.7~0.9である。なお、アミン硬化剤の配合量及び活性水素当量、並びにエポキシ樹脂の配合量及びエポキシ当量は、いずれも固形分を基準とするものである。エポキシ樹脂とアミン硬化剤の配合比が上記上限以下であることにより、密着性、下地追従性、上塗材適性等の点で好適であり、上記下限以上であることにより、硬化性、密着性等の点で好適である。 The compounding ratio of epoxy resin to amine hardener is preferably set so that [(amount of amine hardener/active hydrogen equivalent of amine hardener)/(amount of epoxy resin/epoxy equivalent of epoxy resin)] is 1.0 or less, more preferably 0.3 to 1.0, even more preferably 0.5 to 0.98, particularly preferably 0.6 to 0.95, and most preferably 0.7 to 0.9. The amount and active hydrogen equivalent of the amine hardener, and the amount and epoxy equivalent of the epoxy resin are all based on the solid content. When the compounding ratio of epoxy resin to amine hardener is less than the above upper limit, it is suitable in terms of adhesion, base followability, suitability for topcoat materials, etc., and when it is more than the above lower limit, it is suitable in terms of curing property, adhesion, etc.

本発明において、顔料は、密着性等に寄与する成分である。顔料としては、例えば、着色顔料、体質顔料、防錆顔料等が使用できる。 In the present invention, the pigment is a component that contributes to adhesion, etc. Examples of pigments that can be used include color pigments, extender pigments, and rust-preventive pigments.

具体的に、着色顔料としては、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム、カーボンブラック、黒鉛、黒色酸化鉄、鉄-クロム複合酸化物、マンガン-ビスマス複合酸化物、マンガン-イットリウム複合酸化物、鉄-マンガン複合酸化物、鉄-銅-マンガン複合酸化物、鉄-クロム-コバルト複合酸化物、銅-クロム複合酸化物、銅-マンガン-クロム複合酸化物、べんがら、モリブデートオレンジ、パーマネントレッド、パーマネントカーミン、アントラキノンレッド、ペリレンレッド、キナクリドンレッド、黄色酸化鉄、チタンイエロー、ファーストイエロー、ベンツイミダゾロンイエロー、クロムグリーン、コバルトグリーン、フタロシアニングリーン、群青、紺青、コバルトブルー、フタロシアニンブルー、キナクリドンバイオレット、ジオキサジンバイオレット、アルミニウム顔料、パール顔料等が挙げられる。これらは、1種または2種以上で使用できる。 Specific examples of color pigments include titanium oxide, zinc oxide, aluminum oxide, carbon black, graphite, black iron oxide, iron-chromium composite oxide, manganese-bismuth composite oxide, manganese-yttrium composite oxide, iron-manganese composite oxide, iron-copper-manganese composite oxide, iron-chromium-cobalt composite oxide, copper-chromium composite oxide, copper-manganese-chromium composite oxide, red iron oxide, molybdate orange, permanent red, permanent carmine, anthraquinone red, perylene red, quinacridone red, yellow iron oxide, titanium yellow, fast yellow, benzimidazolone yellow, chrome green, cobalt green, phthalocyanine green, ultramarine blue, Prussian blue, cobalt blue, phthalocyanine blue, quinacridone violet, dioxazine violet, aluminum pigments, and pearl pigments. These can be used alone or in combination of two or more.

体質顔料としては、例えば、重質炭酸カルシウム、軽微性炭酸カルシウム、カオリン、クレー、陶土、チャイナクレー、珪藻土、含水微粉珪酸、タルク、バライト粉、硫酸バリウム、沈降性硫酸バリウム、炭酸バリウム、炭酸マグネシウム、シリカ粉、水酸化アルミニウム等が挙げられる。これらは1種または2種以上で使用できる。 Examples of extender pigments include heavy calcium carbonate, light calcium carbonate, kaolin, clay, china clay, diatomaceous earth, hydrous fine silica, talc, baryte powder, barium sulfate, precipitated barium sulfate, barium carbonate, magnesium carbonate, silica powder, aluminum hydroxide, etc. These can be used alone or in combination of two or more.

防錆顔料としては、例えば、リン酸亜鉛、リン酸鉄、リン酸アルミニウム、リン酸カルシウム、リン酸マグネシウム等のリン酸化合物;亜リン酸亜鉛、亜リン酸鉄、亜リン酸アルミニウム、亜リン酸カルシウム、亜リン酸マグネシウム等の亜リン酸化合物;ポリリン酸亜鉛、ポリリン酸鉄、ポリリン酸アルミニウム等のポリリン酸化合物;モリブデン酸亜鉛、モリンブデン酸アルミニウム、モリブデン酸カルシウム、モリブデン酸バリウム、リンモリブデン酸アルミニウム等のモリブデン酸化合物;酸化バナジウム等のバナジウム化合物;ホウ酸バリウム、メタホウ酸バリウム、ホウ酸カルシウム等のホウ酸化合物;シアナミド亜鉛、シアナミド亜鉛カルシウム等のシアナミド化合物等が挙げられ、これらの1種または2種以上を使用することができる。 Examples of anti-rust pigments include phosphate compounds such as zinc phosphate, iron phosphate, aluminum phosphate, calcium phosphate, and magnesium phosphate; phosphate compounds such as zinc phosphite, iron phosphite, aluminum phosphite, calcium phosphite, and magnesium phosphite; polyphosphate compounds such as zinc polyphosphate, iron polyphosphate, and aluminum polyphosphate; molybdic acid compounds such as zinc molybdate, aluminum molybdate, calcium molybdate, barium molybdate, and aluminum phosphomolybdate; vanadium compounds such as vanadium oxide; boric acid compounds such as barium borate, barium metaborate, and calcium borate; cyanamide compounds such as zinc cyanamide and zinc calcium cyanamide, and one or more of these can be used.

本発明被覆材の顔料体積濃度は1~30%であり、好ましくは3~25%、より好ましくは5~23%、特に好ましくは8~20%である。顔料体積濃度が上記範囲内であることにより、下地の形状を活かしつつ、密着性に優れた塗膜を形成することができる。例えば、下地が凹凸模様を有する場合は、その凹凸に沿って被覆材を満遍なく塗着でき、凹凸模様を活かしつつ、仕上り性、密着性等に優れた塗膜を形成することが可能となる。また、下地が平坦である場合は、平滑性を有する一様な塗膜が形成でき、密着性等においても優れた性能を発揮することができる。顔料体積濃度が上記値を満たさない場合は、上述の効果が得られ難くなる。 The pigment volume concentration of the coating material of the present invention is 1 to 30%, preferably 3 to 25%, more preferably 5 to 23%, and particularly preferably 8 to 20%. By having the pigment volume concentration within the above range, it is possible to form a coating film with excellent adhesion while making use of the shape of the base. For example, if the base has an uneven pattern, the coating material can be applied evenly along the unevenness, making it possible to form a coating film with excellent finish, adhesion, etc. while making use of the uneven pattern. Furthermore, if the base is flat, a uniform coating film with smoothness can be formed, and excellent performance can be demonstrated in terms of adhesion, etc. If the pigment volume concentration does not satisfy the above value, it will be difficult to obtain the above-mentioned effects.

顔料体積濃度は、乾燥塗膜中に含まれる顔料の体積百分率であり、被覆材を構成する樹脂成分(エポキシ樹脂及びアミン硬化剤)と顔料の重量部数及び比重から計算により求められる値である。なお、樹脂成分の比重は1とする。 The pigment volume concentration is the volume percentage of the pigment contained in the dry coating film, and is a value calculated from the weight parts and specific gravity of the resin components (epoxy resin and amine hardener) that make up the coating material and the pigment. The specific gravity of the resin components is assumed to be 1.

非水系溶剤としては、例えば、n-へプタン、n-ヘキサン、n-ペンタン、n-オクタン、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン等の脂肪族炭化水素溶剤、メチルシクロヘキサン、エチルシクロヘキサン等の脂環族炭化水素溶剤、ミネラルスピリット等の脂肪族炭化水素含有混合溶剤、石油エーテル、石油ナフサ、ソルベントナフサ、ケロシン等の石油系溶剤等の他、イソパラフィン系溶剤、アルコール系溶剤、エーテルアルコール系溶剤、エーテル系溶剤、エステル系溶剤、エーテルエステル系溶剤、ケトン系溶剤等が挙げられる。これらは、1種または2種以上で使用できる。 Examples of non-aqueous solvents include aliphatic hydrocarbon solvents such as n-heptane, n-hexane, n-pentane, n-octane, n-nonane, n-decane, n-undecane, and n-dodecane; alicyclic hydrocarbon solvents such as methylcyclohexane and ethylcyclohexane; aliphatic hydrocarbon-containing mixed solvents such as mineral spirits; petroleum-based solvents such as petroleum ether, petroleum naphtha, solvent naphtha, and kerosene; as well as isoparaffin-based solvents, alcohol-based solvents, ether-alcohol-based solvents, ether-based solvents, ester-based solvents, ether-ester-based solvents, and ketone-based solvents. These can be used alone or in combination of two or more.

本発明被覆材は、非水系溶剤として、アニリン点12~70℃の非水系溶剤を含む。このような非水系溶剤は、下地に浸透する作用、既存塗膜を若干膨潤ないし溶解する作用等により、密着性向上に寄与するものである。アニリン点12~70℃の非水系溶剤としては、例えば、ミネラルスピリット等の脂肪族炭化水素含有混合溶剤、石油エーテル、石油ナフサ、ソルベントナフサ、ケロシン等の石油系溶剤等から選ばれる1種以上が好適である。なお、アニリン点は、JIS K2256の方法で測定される値である。 The coating material of the present invention contains a non-aqueous solvent with an aniline point of 12 to 70°C. Such a non-aqueous solvent contributes to improving adhesion by penetrating the substrate and slightly swelling or dissolving the existing coating film. Suitable non-aqueous solvents with an aniline point of 12 to 70°C include, for example, one or more selected from aliphatic hydrocarbon-containing mixed solvents such as mineral spirits, and petroleum-based solvents such as petroleum ether, petroleum naphtha, solvent naphtha, and kerosene. The aniline point is a value measured by the method of JIS K2256.

本発明の被覆材は、上記成分に加え、シラン化合物を含むことができる。本発明では、シラン化合物の配合により、密着性等をいっそう高めることができる。 The coating material of the present invention may contain a silane compound in addition to the above components. In the present invention, the incorporation of a silane compound can further improve adhesion, etc.

シラン化合物としては、例えば、テトラエトキシシラン、テトラメトキシシラン、テトラブトキシシラン等の4官能アルコキシシラン化合物;
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリブトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリブトキシシラン等の3官能アルコキシシラン化合物;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジブトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン等の2官能アルコキシシラン化合物;
テトラクロロシラン、メチルトリクロロシラン、エチルトリクロロシラン、プロピルトリクロロシラン、フェニルトリクロロシラン、ビニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシラン、ジフェニルジクロロシラン、メチルフェニルジクロロシラン等のクロロシラン化合物;
テトラアセトキシシラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン等のアセトキシシラン化合物;
γ-グリシドキシプロピルトリメキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリイソプロペニルオキシシラン、γ-グリシドキシプロピルトリイミノオキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-イソシアネートプロピルトリイソプロペニルオキシシランとグリシドールとの付加物等のエポキシ基を含有するシラン化合物;
N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のアミノ基を含有するシラン化合物;
γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシ基を含有するシラン化合物;等が挙げられる。これらは、1種または2種以上で使用できる。
Examples of the silane compound include tetrafunctional alkoxysilane compounds such as tetraethoxysilane, tetramethoxysilane, and tetrabutoxysilane;
trifunctional alkoxysilane compounds such as methyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltributoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltributoxysilane;
bifunctional alkoxysilane compounds such as dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldibutoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dibutyldimethoxysilane, dibutyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldibutoxysilane, methylphenyldimethoxysilane, and methylphenyldiethoxysilane;
Chlorosilane compounds such as tetrachlorosilane, methyltrichlorosilane, ethyltrichlorosilane, propyltrichlorosilane, phenyltrichlorosilane, vinyltrichlorosilane, dimethyldichlorosilane, diethyldichlorosilane, diphenyldichlorosilane, and methylphenyldichlorosilane;
Acetoxysilane compounds such as tetraacetoxysilane, methyltriacetoxysilane, phenyltriacetoxysilane, dimethyldiacetoxysilane, and diphenyldiacetoxysilane;
silane compounds containing an epoxy group, such as γ-glycidoxypropyl trimexysilane, γ-glycidoxypropyl triethoxysilane, γ-glycidoxypropyl methyl dimethoxysilane, γ-glycidoxypropyl methyl diethoxysilane, γ-glycidoxypropyl triisopropenyloxysilane, γ-glycidoxypropyl triiminoxysilane, β-(3,4-epoxycyclohexyl)ethylmethyl dimethoxysilane, and an adduct of γ-isocyanatopropyl triisopropenyloxysilane and glycidol;
Silane compounds containing an amino group, such as N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ-aminopropyltriethoxysilane;
Silane compounds containing a (meth)acryloxy group, such as γ-(meth)acryloxypropylmethyldimethoxysilane, γ-(meth)acryloxypropylmethyldiethoxysilane, γ-(meth)acryloxypropyltrimethoxysilane, and γ-(meth)acryloxypropyltriethoxysilane, can be used alone or in combination of two or more.

本発明では、特に、エポキシ基を含有するシラン化合物、アミノ基を含有するシラン化合物から選ばれる1種以上を好適に使用することができる。 In the present invention, one or more compounds selected from the group consisting of silane compounds containing an epoxy group and silane compounds containing an amino group can be preferably used.

シラン化合物の混合比率は、樹脂成分(エポキシ樹脂及びアミン硬化剤)の固形分100重量部に対し、好ましくは3重量%以下、より好ましくは0.1~2.8重量部、さらに好ましくは0.2~2.5重量部である。シラン化合物の混合比率がこのような範囲内であることにより、密着性をいっそう高めることができるとともに、エポキシ樹脂、アミン硬化剤の混合直後に塗装する場合だけでなく、混合して時間経過した後に塗装する場合でも、優れた密着性を示すことができる。シラン化合物の使用は、無機質塗膜、有機無機複合塗膜、フッ素樹脂塗膜等の既存塗膜に対する密着性向上化等の点でも好適である。 The mixing ratio of the silane compound is preferably 3% by weight or less, more preferably 0.1 to 2.8 parts by weight, and even more preferably 0.2 to 2.5 parts by weight, based on 100 parts by weight of the solid content of the resin components (epoxy resin and amine hardener). By using a mixing ratio of the silane compound within this range, adhesion can be further improved, and excellent adhesion can be exhibited not only when the epoxy resin and amine hardener are applied immediately after mixing, but also when the epoxy resin and amine hardener are applied after mixing and a certain amount of time has passed. The use of silane compounds is also suitable in terms of improving adhesion to existing coatings such as inorganic coatings, organic-inorganic composite coatings, and fluororesin coatings.

本発明被覆材においては、上述の成分の他、必要に応じ、例えば、可塑剤、防腐剤、防黴剤、防藻剤、消泡剤、レベリング剤、顔料分散剤、界面活性剤、増粘剤、沈降防止剤、たれ防止剤、艶消し剤、触媒、硬化促進剤、紫外線吸収剤、光安定剤、酸化防止剤等を、本発明の効果が著しく阻害されない範囲内で混合することができる。 In addition to the above-mentioned components, the coating material of the present invention may contain, as necessary, for example, plasticizers, preservatives, antifungal agents, anti-algae agents, defoamers, leveling agents, pigment dispersants, surfactants, thickeners, anti-settling agents, anti-sagging agents, matting agents, catalysts, curing accelerators, UV absorbers, light stabilizers, antioxidants, etc., within the range in which the effects of the present invention are not significantly impaired.

本発明被覆材は、以上のような各成分を常法により均一に撹拌・混合して製造することができる。被覆材の形態は、流通時には、エポキシ樹脂を含む主剤とアミン硬化剤を含む硬化剤とからなる2液型の形態としておき、これらを塗装時に混合して使用することが望ましい。 The coating material of the present invention can be manufactured by uniformly stirring and mixing the above-mentioned components by conventional methods. When distributed, the coating material is preferably in the form of a two-part type consisting of a base agent containing an epoxy resin and a hardener containing an amine hardener, and these are mixed together when applied.

本発明被覆材は、円筒形マンドレル法による耐屈曲性試験においてマンドレル直径5mm以下(好ましくは4mm以下、より好ましくは3mm以下)の耐屈曲性を示す。このような特性によって、広範な下地に対する密着性、追従性等の適性が高まり、例えば、シーリング目地部を含む下地に対しても十分な性能を示すことができる。 In a bending resistance test using a cylindrical mandrel method, the coating material of the present invention exhibits bending resistance with a mandrel diameter of 5 mm or less (preferably 4 mm or less, more preferably 3 mm or less). These characteristics improve the suitability for adhesion and conformability to a wide range of substrates, and can demonstrate sufficient performance even on substrates that include sealing joints, for example.

円筒形マンドレル法は、JIS K5600-5-1:1999「塗料一般試験方法-第5部:塗膜の機械的性質-第1節:耐屈曲性(円筒形マンドレル法)」に規定される方法で測定される。試験板としては、厚さ0.3mmの磨き鋼板(SPCC-SB)に、乾燥膜厚が35μmとなるように被覆材を刷毛塗りし、標準状態(気温23℃・相対湿度50%)で7日間乾燥したものを使用する。試験は、標準状態において、タイプ1の試験装置を用いて行い、塗膜の割れ及び素地からの塗膜はがれを目視にて検分する。「マンドレル直径ammの耐屈曲性を示す」とは、直径amm以上のマンドレルを用いて試験を行った場合に、塗膜の割れ及び素地からの塗膜はがれが認められないことを言う。 The cylindrical mandrel method is measured according to the method specified in JIS K5600-5-1:1999 "General Test Methods for Paints - Part 5: Mechanical Properties of Coatings - Section 1: Flex Resistance (Cylindrical Mandrel Method)". The test plate is a polished steel plate (SPCC-SB) with a thickness of 0.3 mm, brushed with a coating material so that the dry film thickness is 35 μm, and dried for 7 days under standard conditions (air temperature 23°C, relative humidity 50%). The test is performed under standard conditions using a type 1 test device, and the coating is visually inspected for cracks and peeling from the substrate. "Showing flex resistance with a mandrel diameter of a mm" means that when the test is performed using a mandrel with a diameter of a mm or more, no cracks or peeling from the substrate are observed.

耐屈曲性は、例えば、使用するエポキシ樹脂の種類やエポキシ当量、アミン硬化剤の種類や活性水素当量、エポキシ樹脂とアミン硬化剤との配合比、顔料体積濃度等により設定することができる。 Flex resistance can be set, for example, by the type and epoxy equivalent of the epoxy resin used, the type and active hydrogen equivalent of the amine curing agent, the compounding ratio of the epoxy resin to the amine curing agent, the pigment volume concentration, etc.

本発明被覆材の不揮発分は、好ましくは30~90重量%であり、より好ましくは40~80重量%、さらに好ましくは45~75重量%である。被覆材の不揮発分がこのような範囲内であることにより、下地に対し、被覆材を満遍なく一様に塗着させやすくなり、密着性向上化の点で好適である。特に、下地が凹凸模様を有する場合は、その凹凸に沿って、下塗材を満遍なく塗着することができ、凹凸模様を活かしつつ、仕上り性、密着性等に優れた塗膜を形成することが可能となる。なお、不揮発分は、JIS K5601-1-2の方法にて測定される値であり、加熱温度は105℃、加熱時間は60分である。 The non-volatile content of the coating material of the present invention is preferably 30 to 90% by weight, more preferably 40 to 80% by weight, and even more preferably 45 to 75% by weight. When the non-volatile content of the coating material is within such a range, the coating material can be applied evenly and uniformly to the base, which is preferable in terms of improving adhesion. In particular, when the base has an uneven pattern, the undercoat material can be applied evenly along the unevenness, making it possible to form a coating film that has excellent finish and adhesion while making use of the uneven pattern. The non-volatile content is a value measured by the method of JIS K5601-1-2, and the heating temperature is 105°C and the heating time is 60 minutes.

本発明被覆材において、被覆材の不揮発分中に占める樹脂固形分(エポキシ樹脂とアミン硬化剤との合計固形分)の比率は、好ましくは20~85重量%、より好ましくは30~80重量%、さらに好ましくは40~75重量%である。被覆材の不揮発分中に占める顔料の比率は、好ましくは15~80重量%、より好ましくは20~70重量%、さらに好ましくは25~60重量%である。不揮発分中の樹脂固形分や顔料の比率が上記範囲内であることにより、下地の形状を活かしつつ、密着性に優れた塗膜を形成する効果を高めることができる。 In the coating material of the present invention, the ratio of resin solids (total solids of epoxy resin and amine curing agent) in the non-volatile content of the coating material is preferably 20 to 85% by weight, more preferably 30 to 80% by weight, and even more preferably 40 to 75% by weight. The ratio of pigment in the non-volatile content of the coating material is preferably 15 to 80% by weight, more preferably 20 to 70% by weight, and even more preferably 25 to 60% by weight. By having the ratio of resin solids and pigment in the non-volatile content within the above ranges, it is possible to enhance the effect of forming a coating film with excellent adhesion while making use of the shape of the base.

本発明被覆材は、例えば、建築物や土木構造物の壁面(内壁面、外壁面等)、床面、天井面等への塗装における下塗材として好適に用いられる。具体的には、例えば、モルタル、コンクリート、窯業系サイディングボード、セラミック系サイディングボード、金属系サイディングボード、押出成形板、スレート板、ケイ酸カルシウム板、ALC板、金属、木材、ガラス、陶磁器、合成樹脂等の基材、あるいはこのような基材上(基材の表面)に形成された多種多様な既存塗膜等の下地に適用する下塗材として好適に用いられる。このような下地(基材や既存塗膜)の形状としては、例えば、平坦なもの、各種凹凸模様(例えば石材調、レンガ・タイル調、木目調、ボーダー調、塗り壁調、吹付け調等)を有するもの等が挙げられる。 The coating material of the present invention is preferably used as an undercoat material for painting the walls (inner wall surfaces, outer wall surfaces, etc.), floor surfaces, ceiling surfaces, etc. of buildings and civil engineering structures. Specifically, it is preferably used as an undercoat material applied to substrates such as mortar, concrete, ceramic siding boards, ceramic siding boards, metal siding boards, extrusion molding boards, slate boards, calcium silicate boards, ALC boards, metals, wood, glass, ceramics, synthetic resins, etc., or a wide variety of existing coating films formed on such substrates (substrate surfaces). The shapes of such substrates (substrates and existing coating films) include, for example, flat ones and ones with various uneven patterns (for example, stone-like, brick/tile-like, wood-grain-like, border-like, plastered wall-like, sprayed-on, etc.).

本発明被覆材は、シーリング目地部を含む下地に対して適用することもできる。シーリング目地部を構成するシーリング材としては、例えば、シリコーン系シーリング材、変性シリコーン系シーリング材、ポリサルファイド系シーリング材、変性ポリサルファイド系シーリング材、アクリルウレタン系シーリング材、ポリウレタン系シーリング材、SBR系シーリング材、ブチルゴム系シーリング材等が挙げられる。シーリング目地部は、弾性を有する乾式目地材等によって構成されたものであってもよい。 The coating material of the present invention can also be applied to a base that includes a sealing joint. Examples of the sealant that constitutes the sealing joint include silicone-based sealants, modified silicone-based sealants, polysulfide-based sealants, modified polysulfide-based sealants, acrylic urethane-based sealants, polyurethane-based sealants, SBR-based sealants, and butyl rubber-based sealants. The sealing joint may be made of an elastic dry joint material, etc.

本発明被覆材は、経年劣化した既存塗膜面の改修(塗り替え)に好ましく適用できる。すなわち、本発明被覆材は、既存塗膜を有する下地の改修用下塗材として好適であり、例えば、既存塗膜が設けられたサイディングボード等の改修時の下塗材として使用できる。既存塗膜面の経年劣化の程度は、特に限定されるものではないが、塗膜形成後概ね5年以上(さらには8年以上)使用されたものは、塗装対象とすることができる。 The coating material of the present invention is preferably applicable to repairing (repainting) existing coating surfaces that have deteriorated over time. In other words, the coating material of the present invention is suitable as an undercoat material for repairing substrates with existing coatings, and can be used, for example, as an undercoat material when repairing siding boards with existing coatings. There are no particular limitations on the degree of deterioration of the existing coating surface over time, but any surface that has been used for approximately five years or more (even eight years or more) since the coating was formed can be used for painting.

塗装対象となる既存塗膜面がシーリング目地部を含む場合は、既存のシーリング材をそのまま残しておいてもよいし、本発明被覆材の塗装前に新たなシーリング材を打設することもできる。 If the existing coating surface to be painted includes a sealing joint, the existing sealant can be left as is, or new sealant can be applied before painting the coating material of the present invention.

既存塗膜は、上記基材上に、現場塗装、あるいは工場塗装(ライン塗装)等により既に塗装されている種々の塗膜であり、例えば、有機質塗膜、無機質塗膜、有機無機複合塗膜等から選ばれる少なくとも1種の塗膜が挙げられる。また、既存塗膜としては、着色塗膜(エナメル系塗膜、印刷塗膜等)、クリヤー塗膜、あるいはこれらの積層塗膜等が挙げられ、各種コーティング材を基材に塗装して形成された塗膜である。このようなコーティング材は、例えば、常温乾燥型、常温硬化型、焼付け硬化型、紫外線(UV)硬化型、電子線硬化型等のいずれであってもよい。 The existing coating film is a coating film that has already been applied on the substrate by on-site painting or factory painting (line painting), and examples thereof include at least one type of coating film selected from organic coating films, inorganic coating films, and organic-inorganic composite coating films. Examples of the existing coating film include colored coating films (enamel coating films, printed coating films, etc.), clear coating films, and laminated coating films thereof, and are coating films formed by applying various coating materials to the substrate. Such coating materials may be, for example, any of room temperature drying type, room temperature curing type, bake curing type, ultraviolet (UV) curing type, and electron beam curing type.

このようなコーティング材の結合材としては、例えば、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アルキド樹脂、ポリエステル樹脂等の有機質結合材、あるいはシリコン樹脂、アルコキシシラン、コロイダルシリカ、ケイ酸塩等の無機質結合材、アクリルシリコン樹脂等の有機無機複合結合材等が挙げられる。 Examples of binders for such coating materials include organic binders such as acrylic resin, polyurethane resin, epoxy resin, fluororesin, alkyd resin, and polyester resin, inorganic binders such as silicone resin, alkoxysilane, colloidal silica, and silicate, and organic-inorganic composite binders such as acrylic silicone resin.

本発明は、既存塗膜が、無機質塗膜(上記無機質結合材を含む塗膜)、有機無機複合塗膜(上記有機無機複合結合材を含む塗膜)、フッ素樹脂塗膜(上記フッ素樹脂を含む塗膜)等から選ばれる1種以上である場合にも適用できる。このような既存塗膜は、光触媒酸化チタン等を含むものであってもよい。 The present invention can also be applied when the existing coating film is one or more selected from inorganic coating films (coating films containing the above-mentioned inorganic binder), organic-inorganic composite coating films (coating films containing the above-mentioned organic-inorganic composite binder), fluororesin coating films (coating films containing the above-mentioned fluororesin), etc. Such existing coating films may contain photocatalytic titanium oxide, etc.

本発明被覆材の塗装においては、例えば、刷毛塗装、ローラー塗装、スプレー塗装等の種々の方法を採用することができる。また、工場内で塗装する場合は、上記以外にもロールコーター、フローコーター等を用いて塗装することもできる。 When applying the coating material of the present invention, various methods can be used, such as brush coating, roller coating, spray coating, etc. Furthermore, when applying the coating in a factory, a roll coater, flow coater, etc. can also be used in addition to the above.

被覆材の塗付け量は、好ましくは0.03~0.5kg/m(より好ましくは0.05~0.3kg/m)程度である。被覆材の塗回数は、下地の状態によって適宜設定すればよいが、好ましくは1~2回である。被覆材の乾燥温度は、好ましくは-10~50℃、より好ましくは-5℃~40℃である。本発明被覆材は、常温硬化型として好ましいものである。被覆材塗装後の乾燥時間は、好ましくは1時間以上、より好ましくは2時間以上14日以内である。 The coating material is preferably applied in an amount of about 0.03 to 0.5 kg/m 2 (more preferably 0.05 to 0.3 kg/m 2 ). The number of coats of the coating material may be appropriately determined depending on the condition of the substrate, but is preferably 1 to 2 coats. The drying temperature of the coating material is preferably -10 to 50°C, more preferably -5°C to 40°C. The coating material of the present invention is preferably of the room temperature curing type. The drying time after application of the coating material is preferably 1 hour or more, more preferably 2 hours or more and up to 14 days.

本発明では、上記被覆材の塗膜面の上に、上塗材を塗装することができる。上塗材の塗装によって、仕上げ表面の保護、あるいは、美観性の向上等を図ることができる。上塗材は、1種または2種以上使用できる。 In the present invention, a topcoat material can be applied on the coating surface of the above-mentioned coating material. By applying the topcoat material, it is possible to protect the finished surface or improve the aesthetics. One or more types of topcoat materials can be used.

本発明被覆材により形成された塗膜は、多種多様な上塗材に対し優れた密着性を発揮することができる。上塗材としては、一般的に建築物等の塗装に使用されるものであれば特に限定されるものではなく、その結合材としては、例えば、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アルキド樹脂、ポリエステル樹脂等の有機質結合材、あるいはシリコン樹脂、アルコキシシラン、コロイダルシリカ、ケイ酸塩等の無機質結合材、アクリルシリコン樹脂等の有機無機複合結合材等が挙げられる。 The coating film formed by the coating material of the present invention can exhibit excellent adhesion to a wide variety of topcoat materials. The topcoat material is not particularly limited as long as it is one that is generally used for painting buildings, etc., and examples of the binder include organic binders such as acrylic resin, polyurethane resin, epoxy resin, fluororesin, alkyd resin, and polyester resin, inorganic binders such as silicon resin, alkoxysilane, colloidal silica, and silicate, and organic-inorganic composite binders such as acrylic silicon resin.

上塗材の構成成分としては、上記結合材の他に、例えば、着色顔料、体質顔料、増粘剤、造膜助剤、レベリング剤、湿潤剤、可塑剤、凍結防止剤、pH調整剤、防腐剤、防黴剤、防藻剤、抗菌剤、分散剤、消泡剤、吸着剤、カップリング剤、繊維、架橋剤、紫外線吸収剤、光安定剤、酸化防止剤、触媒、溶剤、水等が挙げられる。 In addition to the binders mentioned above, the components of the topcoat material include, for example, color pigments, extender pigments, thickeners, film-forming agents, leveling agents, wetting agents, plasticizers, antifreeze agents, pH adjusters, preservatives, antifungal agents, anti-algae agents, antibacterial agents, dispersants, defoamers, adsorbents, coupling agents, fibers, crosslinking agents, UV absorbers, light stabilizers, antioxidants, catalysts, solvents, water, etc.

具体的に、上塗材としては、例えば、建築用耐候性上塗り塗料(JIS K5658:2010)、鋼構造物用耐候性塗料(JIS K5659:2008)、つや有合成樹脂エマルションペイント(JIS K5660:2008)、建築用防火塗料(JIS K5661:1970)、合成樹脂エマルションペイント(JIS K5663:2008)、路面標示用塗料(JIS K5665:2011)、多彩模様塗料(JIS K5667:2003)、合成樹脂エマルション模様塗料(JIS K5668:2010)、アクリル樹脂系非水分散形塗料(JIS K5670:2008)、鉛・クロムフリーさび止めペイント(JIS K5674:2008)、屋根用高日射反射率塗料(JIS K5675:2011)、建物用床塗料(JIS K5970:2008)、建築用塗膜防水材(JIS A6021:2011)、建築用仕上塗材(JIS A6909:2014)、等が挙げられる。 Specific examples of topcoat materials include weather-resistant topcoat paints for architecture (JIS K5658:2010), weather-resistant paints for steel structures (JIS K5659:2008), glossy synthetic resin emulsion paints (JIS K5660:2008), fireproof paints for architecture (JIS K5661:1970), synthetic resin emulsion paints (JIS K5663:2008), road marking paints (JIS K5665:2011), multicolored pattern paints (JIS K5667:2003), synthetic resin emulsion pattern paints (JIS K5668:2010), acrylic resin-based non-aqueous dispersion paints (JIS K5670:2008), lead- and chromium-free rust-preventive paints (JIS K5674:2008), high solar reflectance paints for roofs (JIS K5675:2011), building floor paints (JIS K5970:2008), architectural waterproof coating materials (JIS A6021:2011), architectural finishing coating materials (JIS A6909:2014), etc.

上塗材は公知の方法で塗装することができ、例えば、刷毛塗り、スプレー塗装、ローラー塗装、ロールコーター、フローコーター等種々の方法により塗装することができる。 The topcoat can be applied by known methods, such as brush painting, spray painting, roller painting, roll coating, flow coating, etc.

以下に実施例及び比較例を示して、本発明の特徴をより明確にする。 The following examples and comparative examples will clarify the features of the present invention.

○主剤の製造
(主剤1)
エポキシ樹脂a{ダイマー酸変性エポキシ樹脂溶液、固形分:60重量%、エポキシ当量(固形分当たり):780g/eq、媒体:ミネラルスピリット(アニリン点42℃)及びソルベントナフサ(アニリン点13℃)}75重量部、酸化チタン(比重:4.2)15重量部、タルク(比重2.7)2重量部、ソルベントナフサ(同上)4重量部、添加剤(分散剤、増粘剤、及び消泡剤)4重量部を常法にて均一に混合し、主剤1を製造した。
○ Preparation of base agent (base agent 1)
75 parts by weight of epoxy resin a {dimer acid modified epoxy resin solution, solid content: 60% by weight, epoxy equivalent (per solid content): 780 g/eq, medium: mineral spirits (aniline point 42° C.) and solvent naphtha (aniline point 13° C.)}, 15 parts by weight of titanium oxide (specific gravity: 4.2), 2 parts by weight of talc (specific gravity 2.7), 4 parts by weight of solvent naphtha (same as above), and 4 parts by weight of additives (dispersant, thickener, and defoamer) were uniformly mixed in a conventional manner to produce main agent 1.

(主剤2)
エポキシ樹脂a(同上)67重量部、酸化チタン(同上)15重量部、重質炭酸カルシウム(比重2.7)5重量部、タルク(同上)5重量部、ソルベントナフサ(同上)4重量部、添加剤(分散剤、増粘剤、及び消泡剤)4重量部を常法にて均一に混合し、主剤2を製造した。
(Main agent 2)
67 parts by weight of epoxy resin a (same as above), 15 parts by weight of titanium oxide (same as above), 5 parts by weight of heavy calcium carbonate (specific gravity 2.7), 5 parts by weight of talc (same as above), 4 parts by weight of solvent naphtha (same as above), and 4 parts by weight of additives (dispersant, thickener, and defoamer) were uniformly mixed in a conventional manner to produce main agent 2.

(主剤3)
エポキシ樹脂a(同上)61重量部、酸化チタン(同上)15重量部、重質炭酸カルシウム(同上)8重量部、タルク(同上)8重量部、ソルベントナフサ(同上)4重量部、添加剤(分散剤、増粘剤、及び消泡剤)4重量部を常法にて均一に混合し、主剤3を製造した。
(Main agent 3)
61 parts by weight of epoxy resin a (same as above), 15 parts by weight of titanium oxide (same as above), 8 parts by weight of heavy calcium carbonate (same as above), 8 parts by weight of talc (same as above), 4 parts by weight of solvent naphtha (same as above), and 4 parts by weight of additives (dispersant, thickener, and defoamer) were uniformly mixed in a conventional manner to produce main agent 3.

(主剤4)
エポキシ樹脂a(同上)65重量部、ソルベントナフサ(同上)29重量部、添加剤(増粘剤、及び消泡剤)6重量部を常法にて均一に混合し、主剤4を製造した。
(Main agent 4)
Base component 4 was prepared by uniformly mixing 65 parts by weight of epoxy resin a (same as above), 29 parts by weight of solvent naphtha (same as above), and 6 parts by weight of additives (thickener and antifoaming agent) in a conventional manner.

(主剤5)
エポキシ樹脂b{フェノールノボラック型ビスフェノールAエポキシ樹脂溶液、固形分:60重量%、エポキシ当量(固形分当たり):600g/eq、媒体:ミネラルスピリット(アニリン点42℃)及びソルベントナフサ(アニリン点13℃)}67重量部、酸化チタン(同上)15重量部、重質炭酸カルシウム(同上)5重量部、タルク(同上)5重量部、ソルベントナフサ(同上)4重量部、添加剤(分散剤、増粘剤、及び消泡剤)4重量部を常法にて均一に混合し、主剤5を製造した。
(Main agent 5)
67 parts by weight of epoxy resin b {phenol novolac type bisphenol A epoxy resin solution, solid content: 60% by weight, epoxy equivalent (per solid content): 600 g/eq, medium: mineral spirits (aniline point 42° C.) and solvent naphtha (aniline point 13° C.)}, 15 parts by weight of titanium oxide (same as above), 5 parts by weight of heavy calcium carbonate (same as above), 5 parts by weight of talc (same as above), 4 parts by weight of solvent naphtha (same as above), and 4 parts by weight of additives (dispersant, thickener, and defoamer) were uniformly mixed in a conventional manner to produce base agent 5.

(主剤6)
エポキシ樹脂a(同上)38重量部、酸化チタン(同上)15重量部、重質炭酸カルシウム(同上)15重量部、タルク(同上)15重量部、ソルベントナフサ(同上)12重量部、添加剤(分散剤、増粘剤、及び消泡剤)5重量部を常法にて均一に混合し、主剤6を製造した。
(Main agent 6)
38 parts by weight of epoxy resin a (same as above), 15 parts by weight of titanium oxide (same as above), 15 parts by weight of heavy calcium carbonate (same as above), 15 parts by weight of talc (same as above), 12 parts by weight of solvent naphtha (same as above), and 5 parts by weight of additives (dispersant, thickener, and defoamer) were uniformly mixed in a conventional manner to produce main agent 6.

○硬化剤の製造
(硬化剤1)
アミン硬化剤a{脂肪族ポリアミドアミン、固形分100重量%、活性水素当量(固形分)80g/eq}15重量部、シラン化合物{N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン}4重量部、アルコール系溶剤16重量部、ソルベントナフサ(同上)65重量部を常法にて均一に混合し、硬化剤1を製造した。
○ Preparation of hardener (hardener 1)
Curing agent 1 was produced by uniformly mixing 15 parts by weight of an amine curing agent a {aliphatic polyamide amine, solid content 100% by weight, active hydrogen equivalent (solid content) 80 g/eq}, 4 parts by weight of a silane compound {N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane}, 16 parts by weight of an alcohol-based solvent, and 65 parts by weight of solvent naphtha (same as above) in a conventional manner.

(硬化剤2)
アミン硬化剤a(同上)15重量部、アルコール系溶剤16重量部、ソルベントナフサ(同上)69重量部を常法にて均一に混合し、硬化剤2を製造した。
(Curing agent 2)
Curing agent 2 was produced by uniformly mixing 15 parts by weight of amine curing agent a (same as above), 16 parts by weight of alcohol-based solvent, and 69 parts by weight of solvent naphtha (same as above) in a conventional manner.

(硬化剤3)
アミン硬化剤b{脂肪族ポリアミドアミン、固形分100重量%、活性水素当量(固形分)180g/eq}25重量部、シラン化合物(同上)4重量部、アルコール系溶剤11重量部、ソルベントナフサ(同上)60重量部を常法にて均一に混合し、硬化剤3を製造した。
(Hardening agent 3)
25 parts by weight of amine curing agent b {aliphatic polyamide amine, solid content 100% by weight, active hydrogen equivalent (solid content) 180 g/eq}, 4 parts by weight of silane compound (same as above), 11 parts by weight of alcohol-based solvent, and 60 parts by weight of solvent naphtha (same as above) were uniformly mixed in a conventional manner to produce curing agent 3.

(硬化剤4)
アミン硬化剤b(同上)38重量部、アルコール系溶剤6重量部、ソルベントナフサ(同上)56重量部を常法にて均一に混合し、硬化剤4を製造した。
(Hardening agent 4)
Curing agent 4 was produced by uniformly mixing 38 parts by weight of amine curing agent b (same as above), 6 parts by weight of alcohol-based solvent, and 56 parts by weight of solvent naphtha (same as above) in a conventional manner.

(実施例1)
上記主剤1(100重量部)と上記硬化剤1(25重量部)とを均一に混合して、実施例1の被覆材を作製した。この被覆材の各特性値は表1に示す通りであり、エポキシ樹脂とアミン硬化剤の配合比[(アミン硬化剤の配合量/アミン硬化剤の活性水素当量)/(エポキシ樹脂の配合量/エポキシ樹脂のエポキシ当量)](表1では「配合比」と表記)が0.81、顔料体積濃度が8%、被覆材の不揮発分(表1では「不揮発分」と表記)が54重量%、被覆材の不揮発分中に占める樹脂固形分の比率(表1では「樹脂比率」と表記)が72重量%、被覆材の不揮発分中に占める顔料の比率(表1では「顔料比率」と表記)が25重量%であり、円筒形マンドレル法による耐屈曲性試験(表1では「耐屈曲性」と表記)においてマンドレル直径2mm以下の耐屈曲性を示すものである。
Example 1
The above-mentioned base agent 1 (100 parts by weight) and the above-mentioned curing agent 1 (25 parts by weight) were uniformly mixed to prepare a coating material of Example 1. The respective property values of this coating material are as shown in Table 1, and the compounding ratio of the epoxy resin and the amine curing agent [(amount of the amine curing agent/active hydrogen equivalent of the amine curing agent)/(amount of the epoxy resin/epoxy equivalent of the epoxy resin)] (represented as "compounding ratio" in Table 1) is 0.81, the pigment volume concentration is 8%, the non-volatile content of the coating material (represented as "non-volatile content" in Table 1) is 54% by weight, the ratio of the resin solid content in the non-volatile content of the coating material (represented as "resin ratio" in Table 1) is 72% by weight, and the ratio of the pigment in the non-volatile content of the coating material (represented as "pigment ratio" in Table 1) is 25% by weight, and the bending resistance is exhibited with a mandrel diameter of 2 mm or less in a bending resistance test by a cylindrical mandrel method (represented as "bending resistance" in Table 1).

(実施例2)
上記主剤2(100重量部)と上記硬化剤1(20重量部)とを均一に混合して、実施例2の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
Example 2
The base agent 2 (100 parts by weight) and the hardener 1 (20 parts by weight) were uniformly mixed to prepare a coating material of Example 2. The properties of this coating material are shown in Table 1.

(実施例3)
上記主剤3(100重量部)と上記硬化剤1(22重量部)とを均一に混合して、実施例3の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
Example 3
The base material 3 (100 parts by weight) and the hardener 1 (22 parts by weight) were uniformly mixed to prepare a coating material of Example 3. The properties of this coating material are shown in Table 1.

(実施例4)
上記主剤2(100重量部)と上記硬化剤1(23重量部)とを均一に混合して、実施例4の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
Example 4
The base material 2 (100 parts by weight) and the hardener 1 (23 parts by weight) were uniformly mixed to prepare a coating material of Example 4. The properties of this coating material are shown in Table 1.

(実施例5)
上記主剤2(100重量部)と上記硬化剤1(30重量部)とを均一に混合して、実施例5の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
Example 5
The base agent 2 (100 parts by weight) and the hardener 1 (30 parts by weight) were uniformly mixed to prepare a coating material of Example 5. The properties of this coating material are shown in Table 1.

(実施例6)
上記主剤2(100重量部)と上記硬化剤2(20重量部)とを均一に混合して、実施例6の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
Example 6
The base agent 2 (100 parts by weight) and the hardener 2 (20 parts by weight) were uniformly mixed to prepare a coating material of Example 6. The properties of this coating material are shown in Table 1.

(実施例7)
上記主剤2(100重量部)と上記硬化剤3(28重量部)とを均一に混合して、実施例7の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
(Example 7)
The base material 2 (100 parts by weight) and the hardener 3 (28 parts by weight) were uniformly mixed to prepare a coating material of Example 7. The properties of this coating material are shown in Table 1.

(比較例1)
上記主剤4(100重量部)と上記硬化剤3(28重量部)とを均一に混合して、比較例1の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
(Comparative Example 1)
The base agent 4 (100 parts by weight) and the hardener 3 (28 parts by weight) were uniformly mixed to prepare a coating material of Comparative Example 1. The properties of this coating material are shown in Table 1.

(比較例2)
上記主剤5(100重量部)と上記硬化剤4(24重量部)とを均一に混合して、比較例2の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
(Comparative Example 2)
The base material 5 (100 parts by weight) and the hardener 4 (24 parts by weight) were uniformly mixed to prepare a coating material of Comparative Example 2. The properties of this coating material are shown in Table 1.

(比較例3)
上記主剤6(100重量部)と上記硬化剤4(12重量部)とを均一に混合して、比較例3の被覆材を作製した。この被覆材の各特性値は、表1に示す通りである。
(Comparative Example 3)
The base material 6 (100 parts by weight) and the hardener 4 (12 parts by weight) were uniformly mixed to prepare a coating material of Comparative Example 3. The properties of this coating material are shown in Table 1.

以上の方法で得られた各被覆材について、次の試験を行った。 The following tests were carried out on each coating material obtained using the above methods.

○試験1
既存塗膜面として、屋外曝露により劣化した窯業系サイディングボート(表面にタイル目地調の凸部と凹部(目地)、凸部にはさらに不定形の凹凸模様を有し、最表層塗膜として無機質クリヤー被膜を有するもの)を用意した。この既存塗膜面を鉛直方向に設置し、その全面に対し、上記被覆材を塗付け量0.1kg/mにてスプレー塗装し、3時間乾燥後、上塗材(淡褐色アクリルシリコン樹脂塗料)を塗付け量0.2kg/mにてスプレー塗装し、7日間乾燥養生することにより、試験体を作製した。なお、塗装ないし養生の工程は、すべて標準状態(気温23℃、相対湿度50%)下で行った。
Test 1
As the existing coating surface, a ceramic siding boat deteriorated by outdoor exposure (having tile-like convex and concave portions (joints) on the surface, an amorphous uneven pattern on the convex portions, and an inorganic clear coating as the outermost coating film) was prepared. This existing coating surface was placed vertically, and the above-mentioned coating material was spray-painted on the entire surface at a coating amount of 0.1 kg/ m2 , dried for 3 hours, and then spray-painted with a topcoat material (light brown acrylic silicone resin paint) at a coating amount of 0.2 kg/ m2 , and dried and cured for 7 days to prepare a test specimen. All painting and curing processes were carried out under standard conditions (temperature 23°C, relative humidity 50%).

上記方法で作製した試験体について、水中に7日間浸漬した後、凹凸模様の各部位の被膜にカッターナイフでクロスカットを入れ、このクロスカット部分にテープを貼り付けて剥ぐことにより密着性を評価した。評価は、どの部位でも剥れが認められなかったものを「A」、剥れが多く認められたものを「D」とする4段階(優:A>B>C>D:劣)で行った。 The test specimens prepared by the above method were immersed in water for 7 days, after which cross-cuts were made in the coating at each location of the uneven pattern with a utility knife, and tape was applied to the cross-cut areas and then peeled off to evaluate adhesion. The evaluation was done on a four-point scale (A>B>C>D: poor), with "A" being a rating for no peeling at any location and "D" being a rating for significant peeling.

○試験2
既存塗膜面として、屋外曝露により劣化した窯業系サイディングボート(表面にタイル目地調の凸部と凹部(目地)、凸部にはさらに不定形の凹凸模様を有し、最表層塗膜としてフッ素樹脂クリヤー被膜を有するもの)を用意した。この既存塗膜面を用いて、試験1と同様の方法で試験体を作製し、密着性を評価した。
Test 2
As the existing coating surface, a ceramic siding board deteriorated by outdoor exposure (having tile-like convex and concave portions (joints) on the surface, with an irregular uneven pattern on the convex portions, and a fluororesin clear coating as the outermost coating layer) was prepared. Using this existing coating surface, a test specimen was prepared in the same manner as in Test 1, and the adhesion was evaluated.

○試験3
既存塗膜面として、屋外曝露により劣化した窯業系サイディングボート(表面にタイル目地調の凸部と凹部(目地)、凸部にはさらに不定形の凹凸模様を有し、最表層塗膜としてアクリル樹脂被膜を有するもの)を用意した。この既存塗膜面を用いて、試験1と同様の方法で試験体を作製し、密着性を評価した。
Test 3
As an existing coating surface, a ceramic siding boat deteriorated by outdoor exposure (having tile-like convex and concave portions (joints) on the surface, with an irregular uneven pattern on the convex portions, and an acrylic resin coating as the outermost coating film) was prepared. Using this existing coating surface, a test specimen was prepared in the same manner as in Test 1, and the adhesion was evaluated.

○試験4
試験基材として、スレート板上にポリウレタン系シーリング材が厚さ5mmで打設されたものを用意した。この試験基材に対し、上記被覆材を塗付け量0.1kg/mにて刷毛塗り、3時間乾燥後、上塗材(淡褐色アクリルシリコン樹脂塗料)を塗付け量0.2kg/mにてスプレー塗装し、7日間乾燥養生することにより、試験体を作製した。なお、塗装ないし養生の工程は、すべて標準状態下で行った。
Test 4
A test substrate was prepared by applying a polyurethane sealant to a thickness of 5 mm on a slate board. The coating material was applied to the test substrate with a brush at a coating amount of 0.1 kg/ m2 , dried for 3 hours, and then spray-painted with a topcoat material (light brown acrylic silicone resin paint) at a coating amount of 0.2 kg/ m2 , and dried and cured for 7 days to prepare a test specimen. All painting and curing processes were performed under standard conditions.

上記方法で作製した試験体の塗膜にカッターナイフでクロスカットを入れ、このクロスカット部分にテープを貼り付けて剥ぐことにより密着性を評価した。評価は、剥れが認められなかったものを「A」、剥れが多く認められたものを「D」とする4段階(優:A>B>C>D:劣)で行った。 Cross-cuts were made with a cutter knife into the coating of the test specimens prepared by the above method, and tape was applied to the cross-cut areas and then peeled off to evaluate adhesion. The evaluation was done on a four-point scale (A>B>C>D: poor), with "A" being for no peeling and "D" being for significant peeling.

○試験5
上記試験4と同様の方法で作製した試験体について、水浸漬18時間・-20℃3時間放置・50℃3時間放置を1サイクルとする温冷繰返し試験を合計10サイクル行った後、塗膜外観を確認し、不具合(膨れ、剥れ、割れ等)の発生の状態を評価した。評価は、不具合発生が認められなかったものを「A」、明らかに不具合発生が認められたものを「D」とする4段階(優:A>B>C>D:劣)で行った。
Test 5
Test specimens prepared in the same manner as in Test 4 above were subjected to a total of 10 cycles of hot and cold cycling tests, each cycle consisting of immersion in water for 18 hours, leaving at -20°C for 3 hours, and leaving at 50°C for 3 hours. The appearance of the coating was then checked and the occurrence of defects (blistering, peeling, cracks, etc.) was evaluated. The evaluation was done on a four-level scale (excellent: A>B>C>D: poor), with "A" indicating no defects and "D" indicating obvious defects.

試験結果を表2に示す。実施例1~7の被覆材、とりわけ実施例1~4の被覆材については、比較例1~3に比べ総じて良好な結果が得られた。 The test results are shown in Table 2. The coating materials of Examples 1 to 7, and especially those of Examples 1 to 4, generally gave better results than those of Comparative Examples 1 to 3.

Figure 0007506509000001
Figure 0007506509000001

Figure 0007506509000002
Figure 0007506509000002

Claims (2)

エポキシ樹脂、アミン硬化剤、顔料、及び非水系溶剤を含有する被覆材であって、
前記エポキシ樹脂が、ダイマー酸変性エポキシ樹脂を固形分換算で70~100重量%含み、
前記アミン硬化剤は、活性水素当量(固形分当たり)40~120g/eqであり、
前記エポキシ樹脂と前記アミン硬化剤との配合比が、[(アミン硬化剤の配合量/アミン硬化剤の活性水素当量)/(エポキシ樹脂の配合量/エポキシ樹脂のエポキシ当量)]で、0.3~1.0であり、
前記非水系溶剤が、アニリン点12~70℃の非水系溶剤を含み、当該非水系溶剤は、ミネラルスピリット、石油エーテル、石油ナフサ、ソルベントナフサ、ケロシンから選ばれる1種以上であり、
顔料体積濃度が1~19%であり、
円筒形マンドレル法による耐屈曲性試験においてマンドレル直径5mm以下の耐屈曲性を示す
ことを特徴とする被覆材。
A coating material comprising an epoxy resin, an amine curing agent, a pigment, and a non-aqueous solvent,
The epoxy resin contains a dimer acid-modified epoxy resin in an amount of 70 to 100% by weight in terms of solid content,
The amine curing agent has an active hydrogen equivalent (based on solid content) of 40 to 120 g/eq.
a compounding ratio of the epoxy resin to the amine curing agent, expressed as [(amount of the amine curing agent/active hydrogen equivalent of the amine curing agent)/(amount of the epoxy resin/epoxy equivalent of the epoxy resin)], is 0.3 to 1.0;
The non-aqueous solvent includes a non-aqueous solvent having an aniline point of 12 to 70° C., and the non-aqueous solvent is at least one selected from mineral spirits, petroleum ether, petroleum naphtha, solvent naphtha, and kerosene;
The pigment volume concentration is 1 to 19%,
A coating material characterized by exhibiting bending resistance in a bending resistance test using a cylindrical mandrel having a mandrel diameter of 5 mm or less.
不揮発分が30~90重量%であることを特徴とする請求項1記載の被覆材。
2. The coating material according to claim 1, characterized in that the non-volatile content is 30 to 90% by weight.
JP2020062518A 2020-03-31 2020-03-31 Covering material Active JP7506509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020062518A JP7506509B2 (en) 2020-03-31 2020-03-31 Covering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020062518A JP7506509B2 (en) 2020-03-31 2020-03-31 Covering material

Publications (2)

Publication Number Publication Date
JP2021161184A JP2021161184A (en) 2021-10-11
JP7506509B2 true JP7506509B2 (en) 2024-06-26

Family

ID=78002577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020062518A Active JP7506509B2 (en) 2020-03-31 2020-03-31 Covering material

Country Status (1)

Country Link
JP (1) JP7506509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102598699B1 (en) * 2023-03-14 2023-11-07 (주)세스세라믹 Eco-friendly functional nonflammable paint composition, manufacturing method thereof, and eco-friendly functional nonflammable paint compring the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016625A1 (en) 2004-08-10 2006-02-16 Chugoku Marine Paints, Ltd. High-solid anticorrosive coating composition, high-solid rapidly-curable anticorrosive coating composition, method of coating ship or the like, high-solid anticorrosive film and rapidly cured high-solid anticorrosive film obtained, and coated ship and underwater structure coated with these coating films
JP2008222908A (en) 2007-03-14 2008-09-25 Dic Corp Epoxy resin composition, cured product thereof, coating composition, and novel epoxy resin
JP2015063600A (en) 2013-09-25 2015-04-09 大日本塗料株式会社 Epoxy resin coating material composition and coated body using the same
JP2017185437A (en) 2016-04-04 2017-10-12 ベック株式会社 Coat forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813533B2 (en) * 1993-08-23 1998-10-22 エスケー化研株式会社 Thick film coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016625A1 (en) 2004-08-10 2006-02-16 Chugoku Marine Paints, Ltd. High-solid anticorrosive coating composition, high-solid rapidly-curable anticorrosive coating composition, method of coating ship or the like, high-solid anticorrosive film and rapidly cured high-solid anticorrosive film obtained, and coated ship and underwater structure coated with these coating films
JP2008222908A (en) 2007-03-14 2008-09-25 Dic Corp Epoxy resin composition, cured product thereof, coating composition, and novel epoxy resin
JP2015063600A (en) 2013-09-25 2015-04-09 大日本塗料株式会社 Epoxy resin coating material composition and coated body using the same
JP2017185437A (en) 2016-04-04 2017-10-12 ベック株式会社 Coat forming method

Also Published As

Publication number Publication date
JP2021161184A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
KR101715825B1 (en) Non-solvent high-anticorrosive paint and silane containing high-anticorrosive paint and painting method of double-coated ultraweatheralbility steel structure using the high-anticorrosive paint
JP5178136B2 (en) Paint composition
JP6654496B2 (en) Coating method
JP7506509B2 (en) Covering material
KR20250020542A (en) Solvent-free Coating Composition
JP5246977B1 (en) Water-based anticorrosion coating method and coated body
JP4937597B2 (en) Method for painting decorative surface and decorative laminate
JP2024133371A (en) Two-component water-based coating material
JP7574011B2 (en) Cosmetic finishing method
JP7428572B2 (en) makeup method
JP7618074B2 (en) How to apply makeup
JP2022011306A (en) Makeup finishing method
JP2024050902A (en) How to apply makeup
JP4637703B2 (en) Method for painting decorative surface and decorative laminate
JP6706595B2 (en) Film forming method
JPH0762292A (en) Thick film coating composition
JP7161386B2 (en) Makeup method
JP6931381B2 (en) Film forming material
KR102666162B1 (en) Epoxy resin-based waterproof eco-friendly paint composition for water-treatment structures using high solid containing non-solvent epoxy and seaweed extract protein, and a water-treatment structure waterproof construction method using the same
JP7603477B2 (en) Coating Method
JP7281322B2 (en) Coating method
JP2024031888A (en) Curing agent, and aqueous coating material
JP2022132170A (en) water-based coating
JP2013010964A (en) Coating material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240614