以下に、図面を参照して、実施形態について説明する。図1は、作業機械の管理システムのシステム構成の一例を示す図である。以下の説明では、ショベル100を作業機械の一例として説明する。また、以下の説明では、作業機械の管理システムを、単に管理システムと表現する場合がある。
本実施形態の管理システムSYSは、ショベル100、ショベル100を管理する管理装置200、ショベル100の管理を支援する支援装置300、を含む。ショベル100と、管理装置200とは、ネットワーク等を介して通信が可能な状態に接続される。また、ショベル100と、管理装置200と、支援装置300とは、それぞれがネットワーク等を介して通信が可能な状態に接続される。
なお、図1の例では、管理システムSYSに、支援装置300が含まれるものとしたが、これに限定されない。管理システムSYSは、ショベル100と管理装置200とを含んでいれば良く、支援装置300は含まれなくても良い。
以下に、ショベル100について説明する。図1では、ショベル100の側面図を示している。
ショベル100は、下部走行体1、旋回機構2、上部旋回体3を有し、下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。
ブーム4、アーム5、バケット6は、アタッチメントの一例としての掘削アタッチメントを構成している。そして、ブーム4は、ブームシリンダ7により駆動され、アーム5は、アームシリンダ8により駆動され、バケット6は、バケットシリンダ9により駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。
ブーム角度センサS1はブーム4の回動角度を検出するように構成されている。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度(以下、「ブーム角度」とする。)を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。
アーム角度センサS2はアーム5の回動角度を検出するように構成されている。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度(以下、「アーム角度」とする。)を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。
バケット角度センサS3はバケット6の回動角度を検出するように構成されている。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度(以下、「バケット角度」とする。)を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。
ブーム角度センサS1、アーム角度センサS2、及び、バケット角度センサS3はそれぞれ、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ、ジャイロセンサ、又は、加速度センサとジャイロセンサの組み合わせ等であってもよい。
ブームシリンダ7にはブームロッド圧センサS7R及びブームボトム圧センサS7Bが取り付けられている。アームシリンダ8にはアームロッド圧センサS8R及びアームボトム圧センサS8Bが取り付けられている。バケットシリンダ9にはバケットロッド圧センサS9R及びバケットボトム圧センサS9Bが取り付けられている。
ブームロッド圧センサS7R、ブームボトム圧センサS7B、アームロッド圧センサS8R、アームボトム圧センサS8B、バケットロッド圧センサS9R及びバケットボトム圧センサS9Bは、集合的に「シリンダ圧センサ」とも称される。
ブームロッド圧センサS7Rはブームシリンダ7のロッド側油室の圧力(以下、「ブームロッド圧」とする。)を検出し、ブームボトム圧センサS7Bはブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出する。
アームロッド圧センサS8Rはアームシリンダ8のロッド側油室の圧力(以下、「アームロッド圧」とする。)を検出し、アームボトム圧センサS8Bはアームシリンダ8のボトム側油室の圧力(以下、「アームボトム圧」とする。)を検出する。
バケットロッド圧センサS9Rはバケットシリンダ9のロッド側油室の圧力(以下、「バケットロッド圧」とする。)を検出し、バケットボトム圧センサS9Bはバケットシリンダ9のボトム側油室の圧力(以下、「バケットボトム圧」とする。)を検出する。
上部旋回体3には運転室であるキャビン10が設けられ且つエンジン11等の動力源が搭載されている。また、上部旋回体3には、コントローラ30、表示装置40、入力装置42、音声出力装置43、記憶装置47、測位装置P1、機体傾斜センサS4、旋回角速度センサS5、撮像装置S6及び通信装置T1が取り付けられている。
上部旋回体3には、電力を供給する蓄電部、及び、エンジン11の回転駆動力を用いて発電する電動発電機等が搭載されていてもよい。蓄電部は、例えば、キャパシタ、又は、リチウムイオン電池等である。電動発電機は、電動機として機能して機械負荷を駆動してもよく、発電機として機能して電気負荷に電力を供給してもよい。
コントローラ30は、ショベル100の駆動制御を行う主制御部として機能する。本実施形態では、コントローラ30は、CPU、RAM及びROM等を含むコンピュータで構成されている。コントローラ30の各種機能は、例えば、ROMに格納されたプログラムをCPUが実行することで実現される。
各種機能は、例えば、オペレータ(操作者)によるショベル100の手動操作をガイド(案内)するマシンガイダンス機能、及び、操作者によるショベル100の手動操作を自動的に支援するマシンコントロール機能の少なくとも1つを含んでいてもよい。
表示装置40は、各種情報を表示するように構成されている。表示装置40は、CAN等の通信ネットワークを介してコントローラ30に接続されていてもよく、専用線を介してコントローラ30に接続されていてもよい。
入力装置42は、操作者が各種情報をコントローラ30に入力できるように構成されている。入力装置42は、キャビン10内に設置されたタッチパネル、ノブスイッチ及びメンブレンスイッチ等の少なくとも1つを含む。
音声出力装置43は、音声を出力するように構成されている。音声出力装置43は、例えば、コントローラ30に接続される車載スピーカであってもよく、ブザー等の警報器であってもよい。本実施形態では、音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力するように構成されている。
記憶装置47は、各種情報を記憶するように構成されている。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。記憶装置47は、ショベル100の動作中に各種機器が出力する情報を記憶してもよく、ショベル100の動作が開始される前に各種機器を介して取得する情報を記憶してもよい。また、記憶装置47は、コントローラ30の機能によって生成された操作特徴情報を記憶しても良い。操作特徴情報の詳細は後述する。
記憶装置47は、例えば、通信装置T1等を介して取得される目標施工面に関するデータを記憶していてもよい。目標施工面は、ショベル100の操作者が設定したものであってもよく、施工管理者等が設定したものであってもよい。
測位装置P1は、上部旋回体3の位置を測定するように構成されている。測位装置P1は、上部旋回体3の向きを測定できるように構成されていてもよい。本実施形態では、測位装置P1は、例えばGNSSコンパスであり、上部旋回体3の位置及び向きを検出し、検出値をコントローラ30に対して出力する。そのため、測位装置P1は、上部旋回体3の向きを検出する向き検出装置としても機能し得る。向き検出装置は、上部旋回体3に取り付けられた方位センサであってもよい。
機体傾斜センサS4は上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は仮想水平面に対する上部旋回体3の前後軸回りの前後傾斜角及び左右軸回りの左右傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、ショベル100の旋回軸上の一点であるショベル中心点で互いに直交する。
旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。旋回角速度センサS5は、上部旋回体3の旋回角度を検出或いは算出するように構成されていてもよい。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ、ロータリエンコーダ等であってもよい。
撮像装置S6は、空間認識装置の一例であり、ショベル100の周辺の画像を取得するように構成されている。本実施形態では、撮像装置S6は、ショベル100の前方の空間を撮像する前カメラS6F、ショベル100の左方の空間を撮像する左カメラS6L、ショベル100の右方の空間を撮像する右カメラS6R、及び、ショベル100の後方の空間を撮像する後カメラS6Bを含む。
撮像装置S6は、例えば、CCD又はCMOS等の撮像素子を有する単眼カメラであり、撮像した画像を表示装置40に出力する。撮像装置S6は、ステレオカメラ、距離画像カメラ等であってもよい。また、撮像装置S6は、3次元距離画像センサ、超音波センサ、ミリ波レーダ、LIDAR又は赤外線センサ等の他の空間認識装置で置き換えられてもよく、他の空間認識装置とカメラとの組み合わせで置き換えられてもよい。
前カメラS6Fは、例えば、キャビン10の天井、すなわちキャビン10の内部に取り付けられている。但し、前カメラ6Fは、キャビン10の屋根、ブーム4の側面等、キャビン10の外部に取り付けられていてもよい。左カメラS6Lは、上部旋回体3の上面左端に取り付けられ、右カメラS6Rは、上部旋回体3の上面右端に取り付けられ、後カメラS6Bは、上部旋回体3の上面後端に取り付けられている。
通信装置T1は、ショベル100の外部にある外部機器との通信を制御するように構成されている。本実施形態では、通信装置T1は、衛星通信網、携帯電話通信網又はインターネット網等を介した外部機器との通信を制御する。
外部機器は、例えば、外部施設に設置されたサーバ等の管理装置200であってもよく、ショベル100の周囲の作業者が携帯しているスマートフォン等の支援装置300であってもよい。
外部機器は、例えば、1又は複数のショベル100に関する稼働情報を管理できるように構成されている。稼働情報は、例えば、ショベル100の稼動時間、燃費及び作業量、
作業内容、ショベル100を操作していたオペレータ等の少なくとも1つに関する情報を含み、ショベル100の稼働状態を示す情報である。作業量は、例えば、掘削した土砂の量、及び、ダンプトラックの荷台に積み込んだ土砂の量等である。
ショベル100は、通信装置T1を介し、所定の時間間隔でショベル100に関する稼働情報を外部機器に送信するように構成されていてもよい。この構成により、ショベル100の外部にいる作業者又は管理者等は、管理装置200又は支援装置300に接続されているモニタ等の表示装置を通じて稼働情報を含む各種情報を視認できる。
外部機器は、積載重量測定装置を備えたダンプトラックに搭載されている通信装置であってもよく、ダンプトラックの重量を測定する台貫に接続された通信装置であってもよい。この場合、ショベル100は、ダンプトラック又は台貫からの情報に基づき、ダンプトラックの荷台に積載された土砂等の重量を取得できる。
図2は、ショベルの駆動系の構成例を示すブロック図である。図2では、機械的動力系、作動油ライン、パイロットライン及び電気制御系をそれぞれ二重線、実線、破線及び点線で示している。
ショベル100の駆動系は、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、吐出圧センサ28、操作圧センサ29、コントローラ30、燃料タンク55及びエンジンコントローラユニット(ECU74)等を含む。
エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。また、エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15のそれぞれの入力軸に連結されている。
メインポンプ14は、作動油ラインを介して作動油をコントロールバルブ17に供給するように構成されている。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。
レギュレータ13は、メインポンプ14の吐出量を制御するように構成されている。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。例えば、コントローラ30は、操作圧センサ29等の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。
パイロットポンプ15は、パイロットラインを介して操作装置26を含む各種油圧制御機器に作動油を供給する。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロットポンプ15は、省略されてもよい。
この場合、パイロットポンプ15が担っていた機能は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、コントロールバルブ17に作動油を供給する機能とは別に、絞り等により作動油の供給圧力を低下させた後で操作装置26等に作動油を供給する機能を備えていてもよい。
コントロールバルブ17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブ17は、制御弁171~176を含む。コントロールバルブ17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できる。
制御弁171~176は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御するように構成されている。
油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左側走行用油圧モータ1L、右側走行用油圧モータ1R及び旋回用油圧モータ2Aを含む。旋回用油圧モータ2Aは、電動アクチュエータとしての旋回用電動発電機であってもよい。この場合、旋回用電動発電機は、蓄電部又は電動発電機から電力の供給を受けてもよい。
操作装置26は、操作者がアクチュエータの操作のために用いる装置である。アクチュエータは、油圧アクチュエータ及び電動アクチュエータの少なくとも一方を含む。本実施形態では、操作装置26は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を、コントロールバルブ17内の対応する制御弁のパイロットポートに供給する。
パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、原則として、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量に応じた圧力である。操作装置26のうちの少なくとも1つは、パイロットラインを介して、パイロットポンプ15が吐出する作動油を、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できるように構成されている。
吐出圧センサ28は、メインポンプ14の吐出圧を検出するように構成されている。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。
操作圧センサ29は、操作装置26を用いた操作者の操作内容を検出するように構成されている。本実施形態では、操作圧センサ29は、アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作内容は、操作圧センサ以外の他のセンサを用いて検出されてもよい。
燃料タンク55は、燃料を収容する容器である。燃料タンク55に収容されている燃料の残量状態は、燃料残量センサ55aによって検出される。燃料残量センサ55aは、燃料の残量状態に関する情報をコントローラ30に対して出力する。
ECU74は、エンジン11を制御するように構成されている。本実施形態では、ECU74は、エンジン11における燃料噴射量、燃料噴射タイミング及びブースト圧等を制御する。また、ECU74は、エンジン11に関する情報をコントローラ30に対して出力する。
次に、コントローラ30が有する機能要素について説明する。コントローラ30は、作業量算出部35、表示制御部36、燃料消費量算出部37、操作特徴情報生成部38を有する。
本実施形態の作業量算出部35は、ショベル100の作業量を算出する。具体的には、作業量算出部35は、情報取得装置が取得する情報に基づいて作業量を算出する。情報取得装置が取得する情報は、ブーム角度、アーム角度、バケット角度、前後傾斜角、左右傾斜角、旋回角速度、旋回角度、ブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧、撮像装置S6が撮像した画像、メインポンプ14の吐出圧、及び、操作装置26のそれぞれに関する操作圧等のうちの少なくとも1つを含む。
情報取得装置は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回角速度センサS5、撮像装置S6、ブームロッド圧センサS7R、ブームボトム圧センサS7B、アームロッド圧センサS8R、アームボトム圧センサS8B、バケットロッド圧センサS9R、バケットボトム圧センサS9B、吐出圧センサ28及び操作圧センサ29等のうちの少なくとも1つを含む。
例えば、作業量算出部35は、撮像装置S6としての3次元距離画像センサが撮像したショベル100の前方の空間に関する距離画像に基づき、掘削アタッチメントによって掘削された土砂等の掘削物の量を作業量として算出する。3次元距離画像センサは、例えば、レーザで地形を計測する3次元レーザスキャナである。3次元距離画像センサはステレオカメラ等の他の空間認識装置であってもよい。
具体的には、作業量算出部35は、掘削動作が始まったときに撮像された距離画像と、掘削動作が完了したときに撮像された距離画像とに基づき、その1回の掘削動作で掘削された掘削物の体積(推定値)を作業量として算出する。このように、掘削前の地形と掘削後の地形を比較し、その変化に基づいて1回の作業量を算出する。
本実施形態では、作業量算出部35は、情報取得装置が取得する情報に基づき、盛土動作、積込動作及び掘削動作等の作業内容の種別を判定できるように構成されている。盛土動作は、所定位置に土を盛る動作であり、積込動作は、ダンプトラックに土砂等を積み込む動作である。
また、掘削動作は、バケット6内に掘削物を取り込む動作であり、例えば、掘削物を取り込んでいないバケット6が地面に接触したときに始まったとされ、掘削物を取り込んだバケット6が地面から離れたときに完了したとされる。但し、掘削動作が始まったと判定するための条件、及び、掘削動作が完了したと判定する為の条件は、任意に設定され得る。盛土動作及び搬出動作等の他の作業内容についても同様である。掘削作業に含まれる動作の詳細は後述する。
また、作業量算出部35は、例えば、操作圧センサ29及びシリンダ圧センサ等の出力に基づき、掘削動作が始まったか否か、及び、掘削動作が完了したか否かを判定する。作業量算出部35は、掘削アタッチメントの姿勢を検出する姿勢センサの出力に基づき、掘削動作が始まったか否か、及び、掘削動作が完了したか否かを判定してもよい。姿勢センサは、例えば、ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3を含む。姿勢センサは、ストロークセンサの組み合わせであってもよい。
この構成により、コントローラ30は、所定時間内に行われた1回又は複数回の掘削動作のそれぞれに関する掘削物の体積(推定値)の積算値を所定時間における作業量として算出できる。
表示制御部36は、表示装置40に表示される内容を制御するように構成されている。本実施形態では、表示制御部36は、情報取得装置が取得する情報に基づいて各種情報を表示装置40に表示させる。
燃料消費量算出部37は、燃料消費量を算出するように構成されている。本実施形態では、燃料消費量算出部37は、燃料残量センサ55aの出力に基づいて燃料消費量を算出する。燃料消費量算出部37は、例えば、所定時間毎に燃料消費量を算出してもよい。
操作特徴情報生成部38は、オペレータ毎の操作の特徴を示す操作特徴情報を生成する。具体的には、操作特徴情報生成部38は、例えば、情報取得装置が取得した、ブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧の分布を示す情報を操作特徴情報としても良い。
ブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧は、ショベル100の稼働情報に含まれる作業量の算出に使用されるため、稼働情報の一部と言える。したがって、本実施形態の操作特徴情報は、ショベル100の稼働の状態を示す稼働情報の一部を用いて生成される情報と言える。
本実施形態の操作特徴情報生成部38は、例えば、ショベル100によって行われる作業毎に、操作特徴情報を生成しても良い。
なお、操作特徴情報生成部38は、コントローラ30に設けられるものとしたが、これに限定されない。操作特徴情報生成部38は、管理装置200側に設けられても良い。
以下に、図3と図4を参照して、操作特徴情報の一例として、ショベル100が掘削作業を行った際に生成される操作特徴情報について説明する。はじめに、ショベル100の掘削作業について説明する。
図3は、掘削作業について説明する図である。掘削作業では、図3(a)に示すように、上部旋回体3を旋回してバケット6が掘削位置の上方に位置している状態で、且つ、アーム5が開きバケット6も開いた状態で、オペレータはブーム4を下げ、バケット6の先端が目標の掘削深さDとなるようにバケット6を下降させる。通常、旋回及びブーム下げは、オペレータが操作し、目視でバケット6の位置を確認する。また、上部旋回体3の旋回と、ブーム4の下げは同時に行なうことが一般的である。以上の動作をブーム下げ旋回動作と称し、この動作区間をブーム下げ旋回動作区間と称する。
オペレータがバケット6の先端が目標の掘削深さDに到達したと判断したら、次に、図3(b)に示すように水平引き動作に移る。水平引き動作では、バケット6の先端がほぼ水平に移動するように、アーム5が地面に対して垂直になるまでアーム5を閉じる。この水平引き動作により、所定の深さの土が掘削されバケット6でかき寄せられる。
水平引き動作が完了したら、次に、図3(c)に示すように、アーム5に対して90度になるまでバケット6を閉じる。すなわち、バケット6の上縁が水平となるまでバケット6を閉じ、かき集めた土をバケット6内に収容する。以上の動作を掘削動作と称し、この動作区間を掘削動作区間と称する。
オペレータは、バケット6が90度になるまで閉じたと判断したら、次に、図3(d)に示すように、バケット6を閉じたままバケット6の底部が所定の高さHとなるまでブーム4を上げる。これに続いて、あるいは同時に、上部旋回体3を旋回して排土する位置までバケット6を旋回移動する。以上の動作をブーム上げ旋回動作と称し、この動作区間をブーム上げ旋回動作区間と称する。
なお、バケット6の底部が所定の高さHとなるまでブーム4を上げるのは、例えば、ダンプカーの荷台に排土する際にはバケット6を荷台の高さより高く持ち上げないとバケット6が荷台にぶつかってしまうためである。
例えば熟練、していないオペレータが操縦していた場合、バケット6を所定の高さHまで持ち上げないまま旋回するおそれがある。そのような場合には、バケット6をダンプカーの荷台にぶつけてしまうおそれがある。
オペレータは、ブーム上げ旋回動作が完了したと判断したら、次に、図3(e)に示すようにアーム5及びバケット6を開いて、バケット6内の土を排出する。この動作をダンプ動作と称し、この動作区間をダンプ動作区間と称する。ダンプ動作では、バケット6のみを開いて排土してもよい。
オペレータは、ダンプ動作が完了したと判断したら、次に、図3(f)に示すように、上部旋回体3を旋回してバケット6を掘削位置の真上に移動させる。このとき、旋回と同時にブーム4を下げてバケット6を掘削開始位置まで下降させる。この動作は図3(a)にて説明したブーム下げ旋回動作の一部である。オペレータは、図3(a)に示すようにバケット6を掘削開始位置から目標の掘削深さDまで下降させ、再び図3(b)に示す掘削動作を行なう。
以上のように、掘削作業では、「ブーム下げ旋回動作」、「掘削動作」、「ブーム上げ旋回動作」、「ダンプ動作」、「ブーム下げ旋回動作」を一サイクルとしてこのサイクルが繰り返し行われる。
図4は、操作特徴情報の一例を示す図である。図4では、オペレータA、B、C、Dがショベル100を操作して掘削作業を行った場合の操作特徴情報を示す。
図4の例では、操作特徴情報生成部38は、掘削作業が行われている間に情報取得装置が取得した、ブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧のそれぞれの値の平均値を算出し、各平均値を棒グラフ状に示した情報を、操作特徴情報としている。
尚、本実施形態では、操作特徴情報を各圧力の平均値で示すものとしたが、これに限定されない。操作特徴情報は、例えば、各圧力の累積値や、最大値等で示されても良い。
図4において、操作特徴情報81は、例えば、オペレータAが掘削作業を行ったときに、情報取得装置が取得したブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧の値を用いて生成された操作特徴情報である。また、操作特徴情報82は、オペレータBが掘削作業を行ったときに、情報取得装置が取得したブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧の値を用いて生成された操作特徴情報である。操作特徴情報83は、オペレータCが掘削作業を行ったときに、情報取得装置が取得したブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧の値を用いて生成された操作特徴情報を示す。操作特徴情報84は、オペレータDが掘削作業を行ったときに、情報取得装置が取得したブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧の値を用いて生成された操作特徴情報を示す。
操作特徴情報81では、ブームロッド圧の平均値が最も小さく、ブームボトム圧の平均値が最も大きい。つまり、操作特徴情報81では、ブームロッド圧の平均値と、ブームボトム圧の平均値との差が最も大きい。また、操作特徴情報81では、ブームボトム圧の平均値の次に大きい値は、アームボトム圧の平均値であり、その次に大きい値は、バケットボトム圧の平均値である。
操作特徴情報82では、アームロッド圧の平均値が最も小さく、ブームボトム圧の平均値が最も大きい。また、操作特徴情報82では、アームボトム圧の平均値とアームロッド圧の平均値との差が最も大きい。さらに、操作特徴情報82では、ブームボトム圧の平均値の次に大きい値は、アームボトム圧の平均値であり、その次に大きい値は、ブームロッド圧の平均値である。
このように、操作特徴情報81と操作特徴情報82では、各値の大小関係が異なっており、各圧力の分布が異なる。このため、操作特徴情報81が取得されたときの掘削作業と、操作特徴情報82が取得されたときの掘削作業とは、それぞれが異なるオペレータによって行われたと言える。言い換えれば、オペレータAとオペレータBとは別人であると言える。
また、操作特徴情報83では、操作特徴情報82と同様に、アームロッド圧の平均値が最も小さく、ブームボトム圧の平均値が最も大きい。また、操作特徴情報83では、アームボトム圧の平均値とアームロッド圧の平均値との差が最も大きい。さらに、操作特徴情報82では、ブームボトム圧の平均値の次に大きい値は、アームボトム圧の平均値であり、その次に大きい値は、ブームロッド圧の平均値である。
このように、操作特徴情報83と操作特徴情報82とでは、各圧力の分布が類似している。したがって、操作特徴情報83が取得されたときに掘削作業を行っていたオペレータは、操作特徴情報82が取得されたときに掘削作業を行っていたオペレータと、同一人物である可能性があると言える。言い換えれば、オペレータAとオペレータDとは、同一人物である可能性があると言える。
本実施形態のショベル100は、このように、ショベル100を操作するオペレータの操作の特徴を示す操作特徴情報を取得し、この操作特徴情報を管理装置200へ送信する。
なお、ショベル100は、一連の動作が繰り返される作業が終了するごとに、その作業における操作特徴情報を生成し、管理装置200に送信しても良い。
また、ショベル100は、一定時間毎に操作特徴情報を生成し、定期的に操作特徴情報を管理装置200に送信しても良い。
本実施形態の管理装置200は、ショベル100から操作特徴情報を受信すると過去に取得した操作特徴情報から生成された操作特徴パターンと、オペレータの識別情報とを対応付けた対応付けテーブルを参照し、ショベル100を操作していたオペレータを特定する。対応付けテーブルの詳細は後述する。
以下に、本実施形態の管理装置200について説明する。図5は、管理装置のハードウェア構成の一例を示す図である。
本実施形態の管理装置200は、それぞれバスBで相互に接続されている入力装置201、出力装置202、ドライブ装置203、補助記憶装置204、メモリ装置205、演算処理装置206及びインターフェース装置207を含むコンピュータである。
入力装置201は、各種の情報の入力を行うための装置であり、例えばキーボードやポインティングデバイス等により実現される。出力装置202は、各種の情報の出力を行うためものであり、例えばディスプレイ等により実現される。インターフェース装置207は、LANカード等を含み、ネットワークに接続する為に用いられる。
オペレータを特定する特定プログラムは、管理装置200を制御する各種プログラムの少なくとも一部である。特定プログラムは、例えば、記憶媒体208の配布やネットワークからのダウンロード等によって提供される。特定プログラムを記録した記憶媒体208は、CD-ROM、フレキシブルディスク、光磁気ディスク等の様に情報を光学的、電気的或いは磁気的に記録する記憶媒体、ROM、フラッシュメモリ等の様に情報を電気的に記録する半導体メモリ等、様々なタイプの記憶媒体を用いることができる。
また、特定プログラムは、特定プログラムを記録した記憶媒体208がドライブ装置203にセットされると、記憶媒体208からドライブ装置203を介して補助記憶装置204にインストールされる。ネットワークからダウンロードされた特定プログラムは、インターフェース装置207を介して補助記憶装置204にインストールされる。
補助記憶装置204は、管理装置200の有する各記憶部等を実現するものであり、管理装置200にインストールされた特定プログラムを格納すると共に、管理装置200による各種の必要なファイル、データ等を格納する。メモリ装置205は、管理装置200の起動時に補助記憶装置204から分析対象特定プログラムを読み出して格納する。そして、演算処理装置206はメモリ装置205に格納された特定プログラムに従って、後述するような各種処理を実現している。
次に、図6を参照して、管理装置200の機能について説明する。図6は、管理装置の機能構成を説明する図である。
本実施形態の管理装置200は、入力受付部210、操作特徴情報取得部220、パターン生成部230、対応付けテーブル記憶部240、オペレータ特定部250、パターン更新部260、表示制御部270を有する。
入力受付部210は、管理装置200に対する各種の入力を受け付ける。具体的には、入力受付部210は、ショベル100を管理する管理者等による操作を受け付ける
操作特徴情報取得部220は、ショベル100から操作特徴情報を取得(受信)する。パターン生成部230は、操作特徴情報取得部220が取得した操作特徴情報に基づき、操作特徴パターンを生成する。操作特徴パターンとは、具体的には、ショベル100から取得されて蓄積されたオペレータ毎の操作特徴情報を用いて生成した、オペレータ毎の操作パターンである。
パターン生成部230により生成された操作特徴パターンは、例えば、ショベル100の管理者等によって入力されたオペレータの識別情報や、仮に入力された新たな識別情報等と対応付けられて、対応付けテーブル241に格納される。
具体的には、パターン生成部230は、例えば、操作特徴情報に含まれるブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧の平均値を集計した結果を示す情報を、操作特徴パターンとして生成する。
対応付けテーブル記憶部240は、オペレータを特定する識別情報と、操作特徴パターンとを対応付けた対応付けテーブル241を格納する。以下の説明では、操作特徴パターンと、オペレータを特定する識別情報とを対応付けた情報を、対応付け情報と呼ぶ場合がある。つまり、対応付けテーブル記憶部240は、オペレータの識別情報と、操作特徴パターンとを対応付けた対応付け情報を格納する記憶部の一例である。
本実施形態の対応付けテーブル241は、管理装置200の事前処理として、予め作成されていても良い。
対応付けテーブル241において、オペレータを特定する識別情報とは、例えば、オペレータの氏名や社員番号等である。また、操作特徴パターンは、パターン生成部230によって、過去に収集した操作特徴情報を集計して生成した情報である。
具体的には、操作特徴パターンは、オペレータ毎の操作特徴情報に含まれるブームロッド圧、ブームボトム圧、アームロッド圧、アームボトム圧、バケットロッド圧、バケットボトム圧のそれぞれの平均値を集計し、統計処理を施して生成した各圧力の分布を示すパターンであっても良い。
本実施形態の管理装置200では、予め、オペレータの識別情報と対応付いた操作特徴情報を用いて操作特徴パターンを生成し、この識別情報と操作特徴パターンとを対応付ける処理を行って対応付けテーブル241を作成する。
なお、本実施形態では、対応付け情報を、対応付けテーブル241(テーブル形式)として保持するものとしたが、対応付け情報の形式は、テーブル形式でなくても良い。対応付け情報は、オペレータを特定する識別情報と、操作特徴パターンとが対応付けられた情報であれば、どのような形式で保持されても良い。
オペレータ特定部250は、対応付けテーブル241を参照し、操作特徴情報取得部220が取得した操作特徴情報と対応付けるオペレータを特定する。つまり、オペレータ特定部250は、記憶部に格納された対応付け情報を参照して、操作特徴情報が取得さたれときにショベル100を操作していたオペレータを特定する特定部の一例である。
具体的には、オペレータ特定部250は、操作特徴情報取得部220が操作特徴情報を受信すると、対応付けテーブル241に格納された操作特徴パターンと比較し、受信した操作特徴情報と類似する操作特徴パターンが存在するか否かを判定する。
そして、オペレータ特定部250は、例えば、対応付けテーブル241において、受信した操作特徴情報との類似度が所定の閾値以上となる操作特徴パターンが存在する場合に、この操作特徴パターンと対応する識別情報を取得する。なお、操作特徴情報と操作特徴パターンとの類似度とは、分布の類似の度合いを示す。
本実施形態では、この識別情報によって特定されるオペレータを、操作特徴情報取得部220が受信した操作特徴情報が取得された際に、ショベル100を操作していたオペレータに特定する。なお、所定の閾値は、ショベル100の管理者等によって予め設定されていても良い。
パターン更新部260は、対応付けテーブル241を更新する。具体的には、パターン更新部260は、対応付けテーブル241に格納された操作特徴パターンのうち、何れとも類似しない操作特徴情報を受信した場合、この操作特徴情報を新たな操作特徴パターンとして、対応付けテーブル241に格納する。
また、パターン更新部260は、受信した操作特徴情報と類似する操作特徴パターンが対応付けテーブル241に存在する場合、新たに取得した操作特徴情報を用いて、既存の操作特徴パターンを更新(学習)する。
表示制御部270は、例えば、ショベル100の管理者等によって、オペレータを特定した結果の表示指示が入力されると、オペレータを特定した結果をディスプレイ等の出力装置202に表示させる。
以下に、図7を参照して、本実施形態の管理装置200の動作について説明する。図7は、管理装置の動作を説明するフローチャートである。
なお、図7の処理は、例えば、ショベル100の管理者等によって、ショベル100を操作したオペレータの特定結果の表示指示を受け付けた場合に、実行されても良い。また、図7の処理は、例えば、毎日決められた時間等に実行されても良い。
本実施形態の管理装置200は、操作特徴情報取得部220により、ショベル100から操作特徴情報を受信する(ステップS701)。
続いて、管理装置200は、オペレータ特定部250により、対応付けテーブル241を参照する(ステップS702)。具体的には、オペレータ特定部250は、操作特徴情報と、対応付けテーブル241に格納されている操作特徴パターンとを照合している。
続いて、管理装置200は、オペレータ特定部250により、オペレータが特定されたか否かを判定する(ステップS703)。具体的には、オペレータ特定部250は、対応付けテーブル241に、操作特徴情報との類似度が所定の閾値以上となる操作特徴パターンが格納されているか否かを判定している。
ステップS703において、オペレータが特定されない場合、パターン更新部260は、この操作特徴情報を新たな操作特徴パターンとして、対応付けテーブル241に格納し(ステップS704)、後述するステップS705へ進む。このとき、オペレータ特定部250は、オペレータの特定結果を「不明」とする。
オペレータが特定されない場合とは、対応付けテーブル241に、操作特徴情報との類似度が所定の閾値以上となる操作特徴パターンが存在しない場合を示す。このときパターン更新部260は、操作特徴パターンに仮の識別情報を対応付けて対応付けテーブル241に格納しても良い。
ステップS703において、オペレータが特定された場合、表示制御部270は、オペレータの特定結果を含む情報と、ショベル100が受信した稼働情報とを出力装置202等へ表示させる(ステップS705)。
オペレータが特定された場合とは、対応付けテーブル241に、操作特徴情報との類似度が所定の閾値以上となる操作特徴パターンが存在する場合を示す。パターン更新部260は、対応付けテーブル241において、該当する操作特徴パターンと対応付けられたオペレータの識別情報を、特定結果とする。
また、表示制御部270は、オペレータを特定した結果を表示させる先を、管理装置200が有する出力装置202以外の表示装置としても良い。
本実施形態では、例えば、ある時間帯にショベル100を操作したオペレータの特定結果の表示指示を受け付けると、ショベル100から指定された時間帯の操作特徴情報と、稼働情報とを取得しても良い。そして、表示制御部270は、操作特徴情報に基づき特定されたオペレータの識別情報と、稼働情報とを対応付けた情報を含む画像データを生成し、出力装置202等に表示させても良い。
続いて、管理装置200は、入力受付部210により、表示内容に対する承認を指示する操作を受け付けたか否かを判定する(ステップS706)。ステップS706において、該当する操作を受け付けない場合、管理装置200は、そのまま処理を終了する。
ステップS706において、該当する操作を受け付けると、管理装置200は、パターン更新部260により、承認された内容に基づき、操作特徴パターンを更新し、対応付けテーブル241を更新して(ステップS707)、処理を終了する。
具体的には、パターン更新部260は、表示された特定結果に対して修正が行われた場合には、修正された内容を含む操作特徴パターンを生成し、対応付けテーブル241に反映させる。また、パターン更新部260は、表示された特定結果に対して、修正が行われずに承認された場合には、ステップS701で受信した新たな操作特徴情報を含めた操作特徴パターンを生成し、対応付けテーブル241に反映させる。
以下に、図8及び図9を参照して、オペレータの特定結果を含む情報の表示例について説明する。図8は、オペレータの特定結果を含む情報の表示例を示す第一の図である。
図8に示す画面41wでは、推定土量の時間毎の推移を棒グラフで表示し、作業量(推定土量)の実績と予定の時間毎の推移を折れ線グラフで表示している。折れ線グラフのうち、実線は、目標値を表し、破線は、実績に基づく値を表している。
その上で、画面41wは、棒グラフ及び折れ線グラフと対応して、作業時間、各日の天気、合計作業時間、オペレータ、作業内容の種別、及び、回転数モードを表形式で表示している。つまり、画面41wは、作業時間毎に、ショベル100の稼働情報と、ショベル100を操作したオペレータとを対応付けた管理画面の一例と言える。
この表形式のうち、表示領域61は、これまでの実績に基づく情報が表示されており、表示領域62は、今後の予定に基づく情報が表示されている。また、画面41wには、表示領域63、64、65と、操作ボタン66とが表示される。
具体的には、画面41wの表示領域61において、例えば、8:00から9:00までの作業に関しては、天気が「晴れ」、合計作業時間が「40分」、この時間に取得された操作特徴情報から特定されたオペレータの識別情報が「A」、作業内容の種別が「積込(動作)」、回転数モードが「SP」であったこと、並びに、40分の作業量がW2[t]であったことを示している。
また、画面41wは、例えば、11:00から12:00の作業に関しては、天気が「晴れ」、合計作業時間が「11分」、この時間に取得された操作特徴情報と対応するオペレータは「不明」、作業内容の種別が「積込(動作)」、回転数モードが「SP」であること、並びに、11分の作業量がW3[t]であったことを示している。
ここで、本実施形態では、表示領域61において、オペレータの識別情報が「不明」とされた場合には、この表示欄の表示態様を他の表示欄と異ならせても良い。具体的には、オペレータの識別情報が「不明」とされた場合には、この表示欄を強調表示させる。
図8の例では、表示欄61aにおいて、オペレータの識別情報が「不明」となっているため、表示欄61aは、強調表示される。
また、表示領域62における表示欄62aには、例えば、管理装置200が外部サーバから取得した気象情報に基づく天気予報が表示される。表示欄62bには、14:00から作業を行う予定となっているオペレータの識別情報と、このオペレータが行う予定の作業内容とが表示される。
表示領域63には、管理装置200によって、14:00までに行われた作業について、操作特徴情報に基づきオペレータが特定されたことを示すメッセージと、管理装置200による特定の結果の確認を促すメッセージとが表示される。
表示領域64には、オペレータによって操作されたショベル100を特定するための機番が表示される。表示領域64から、管理装置200は、表示領域64に表示された機番で特定されるショベル100から受信した操作特徴情報に基づき、このショベル100を操作したオペレータを特定したことがわかる。
表示領域65には、例えば、操作特徴情報を受信した日時が表示される。言い換えれば、表示領域65に表示された日時は、例えば、管理装置200が、画面41wの表示指示を受け付けた日時であっても良い。
操作ボタン66は、表示領域61に表示されたオペレータの特定結果を承認するための操作ボタンである。言い換えれば、操作ボタン66は、表示領域61に表示されたオペレータの識別情報と、稼働情報との対応付けの確定を指示するための操作ボタンである。
本実施形態では、操作ボタン66が操作されると、表示領域61に表示されたオペレータの特定結果に基づき、対応付けテーブル241が更新される。
具体的には、図8において、操作ボタン66が操作されて、表示内容が承認された場合、11:00から12:00の間に取得された操作特徴情報は、対応するオペレータが「不明」である。したがって、パターン更新部260は、この時間帯に取得された操作特徴情報を新たな操作特徴パターンとし、仮の識別情報と対応付けて対応付けテーブル241に格納しても良い。
また、8:00から11:00の間に取得された操作特徴情報は、対応するオペレータの識別情報が「A」である。したがって、パターン更新部260は、この時間帯に取得された操作特徴情報と、対応付けテーブル241において識別情報「A」と対応付けられた操作特徴パターンとを集計し、操作特徴パターンを更新し、対応付けテーブル241に反映させる。
このように、本実施形態では、ショベル100から新たに操作特徴情報を取得する度に、操作特徴情報を用いてオペレータ毎の操作特徴パターンを更新する。
したがって、本実施形態によれば、取得する操作特徴情報の情報量が多いほど、操作特徴パターンが示す操作の特徴が、実際のオペレータの操作の特徴に近づいていく。また、本実施形態では、操作特徴情報の取得に応じて、操作特徴パターンを更新するため、例えば、オペレータの操作技術の向上等を、操作特徴パターンに反映させることができる。
したがって、本実施形態によれば、操作特徴情報の情報量が多いほど、操作特徴パターンに基づくオペレータの特定結果の精度を向上させることができる。
図9は、オペレータの特定結果を含む情報の表示例を示す第二の図である。図9に示す画面41wでは、ショベル100の管理者等によって、表示欄61aに、オペレータの識別情報が入力された状態を示している。
本実施形態では、このように、画面41wの表示領域61に対する情報の入力を受け付ける。したがって、本実施形態では、例えば、オペレータの特定結果が「不明」である場合や、オペレータの特定結果が誤っていた場合等には、ショベル100の管理者が画面41wに情報を入力することができる。
図9に示す画面41wの状態で、操作ボタン66が操作されると、パターン更新部260は、8:00から12:00の間の作業に関して取得された操作特徴情報と、対応付けテーブル241において識別情報「A」と対応付けられた操作特徴パターンとを集計し、操作特徴パターンを更新する。そして、パターン更新部260は、更新後の操作特徴パターンを識別情報「A」と対応付けることで、対応付けテーブル241を更新する。
尚、図8及び図9に示す画面41wは、例えば、支援装置300のディスプレイや、ショベル100の表示装置40に表示されても良い。
また、図8、9の例では、作業時間帯毎に、1人のオペレータの識別情報を表示する事例を示したが、同一の作業時間帯に複数人のオペレータがショベル100を操作していた場合には、複数のオペレータの識別情報を表示してもよい。オペレータの識別情報は、オペレータの名前であっても良い。
以上のように、本実施形態によれば、ショベル100の操作特徴情報に基づき、ショベル100を操作していたオペレータ(操作者)を自動で特定することができる。また、本実施形態では、操作特徴情報を取得した時間帯のショベル100の稼働情報と、特定したオペレータとを対応付けた情報を画面41wに表示させることができる。
このため、本実施形態によれば、例えば、ショベル100のオペレータが、自身の識別情報が格納された端末等を用いて管理装置200に識別情報を送信するといった手間が削減でき、通信にかかる負荷を低減できる。
また、本実施形態では、識別情報で特定されるオペレータ以外の人物に端末が使用されることによるオペレータの誤認識が発生しない。さらに、本実施形態では、操作特徴情報に基づき管理装置200がオペレータを特定するため、第三者によるなりすましを抑制することができる。
なお、上述した実施形態では、ショベル100を作業機械の一例としたが、作業機械は、ショベルに限定されない。作業機械は、例えば、クレーン等であっても良い。
また、本実施の形態は、オペレータが所持する携帯端末からオペレータを特定する識別情報をショベル100が受信する識別方法と組み合わせて用いてもよい。更に、本実施の形態は、キャビン10内にカメラを配置し、オペレータを識別する識別方法と組み合わせて用いてもよい。このように、本実施の形態を、複数の識別方法と組み合わせることにより、より正確にオペレータを特定することができる。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。