[go: up one dir, main page]

JP7492846B2 - Reinforcement structure and method for underground cavity - Google Patents

Reinforcement structure and method for underground cavity Download PDF

Info

Publication number
JP7492846B2
JP7492846B2 JP2020070718A JP2020070718A JP7492846B2 JP 7492846 B2 JP7492846 B2 JP 7492846B2 JP 2020070718 A JP2020070718 A JP 2020070718A JP 2020070718 A JP2020070718 A JP 2020070718A JP 7492846 B2 JP7492846 B2 JP 7492846B2
Authority
JP
Japan
Prior art keywords
underground cavity
bag
soil
underground
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020070718A
Other languages
Japanese (ja)
Other versions
JP2021167517A (en
Inventor
達也 三ツ井
彰彦 和泉
Original Assignee
徳倉建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徳倉建設株式会社 filed Critical 徳倉建設株式会社
Priority to JP2020070718A priority Critical patent/JP7492846B2/en
Publication of JP2021167517A publication Critical patent/JP2021167517A/en
Application granted granted Critical
Publication of JP7492846B2 publication Critical patent/JP7492846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、地中空洞の補強構造及び補強方法に関するものである。 The present invention relates to a reinforcement structure and a reinforcement method for underground cavities.

港湾又は河川の保全構造物(護岸、岸壁、堤防)の老朽化に伴う地中空洞化が各地で発生している。この地中空洞を充填するため、従来は砕石等で埋戻しており、一部、流動化処理土が採用されている。 Cavities in the ground due to deterioration of port or river conservation structures (revetments, quays, embankments) are occurring in various places. In the past, these cavities were filled with crushed stone, etc., but in some cases, liquefied treated soil has been used.

しかし、砕石等で埋め戻した場合、締固めが難しいため再地中空洞化が懸念される。また、砕石等で埋め戻すには、地中空洞により脆弱化した地盤の上に大型の重機や車両を設置して行う必要があるため、安全面において問題がある。 However, if the hole is backfilled with crushed stone or other materials, compaction is difficult, raising concerns that the cavity may reoccur. In addition, backfilling with crushed stone or other materials requires the placement of large heavy machinery and vehicles on the ground that has been weakened by the underground cavity, raising safety concerns.

一方、流動化処理土による充填は、流出の可能性があるため地中空洞化の原因を特定した上で使用する必要がある。 On the other hand, filling with liquefied treated soil requires identifying the cause of the underground cavity before use, as there is a risk of leakage.

特許文献1には、廃坑、採掘跡、トンネル等の地下空間に、低流動性流動化処理土で一定距離を隔てて堤体を築造し、堤体間に高流動性流動化処理土を注入することを繰り返す、地下空間の埋戻方法が記載されている。
しかし、この方法では、堤体が小山状に広がって形成されるため、堤体が地下空間の天面に到達しにくく、堤体上部に生じた間隙に高い粘着力を有するコーキング材を注入して閉鎖する必要がある。
Patent Document 1 describes a method of backfilling underground spaces, such as abandoned mines, mining sites, and tunnels, in which embankments are constructed at a certain distance apart using low-fluidity liquefied treated soil, and high-fluidity liquefied treated soil is repeatedly injected between the embankments.
However, with this method, the embankment is formed in a hill-like shape, making it difficult for the embankment to reach the ceiling of the underground space, and the gap that occurs at the top of the embankment must be sealed by injecting a highly adhesive caulking material.

特許文献2には、坑道、鉱山地下採掘場などの地下空間の閉塞すべき箇所に、該箇所を閉塞可能な大きさに復元可能な袋体を折り畳み状態で配置し、袋体にエアを供給して膨張させ、袋体に2液混合タイプの発泡ウレタン等の発泡性充填材を供給し、エアと置換するように充填することにより、袋体が前記箇所の周囲に押し付けられたバルクヘッド(隔壁)を形成し、少なくとも2箇所のバルクヘッドで閉塞される領域に対してセメント等の中詰充填材を充填して地下空間を閉鎖する方法が記載されている。
しかし、この方法では、特に護岸、岸壁、道路等の動荷重が作用する重要構造物の直下で使用する場合に、袋体と発泡ウレタンとによるバルクヘッドの強度不足が懸念される。また、発泡ウレタンの発熱による袋体への影響も懸念される。さらに、同構造を更新する際に、発泡ウレタンは土としてリサイクルができない。
Patent Document 2 describes a method of closing an underground space by placing a folded bag body, which can be restored to a size sufficient to block the area, in a section to be blocked in an underground space such as a tunnel or an underground mining site, supplying air to the bag to expand it, and then supplying a foamable filler such as a two-part mixture type urethane foam into the bag and filling it to replace the air, thereby forming a bulkhead (partition wall) with the bag body pressed against the area, and filling the area blocked by at least two bulkheads with a filler such as cement, thereby closing the underground space.
However, with this method, there are concerns that the bulkhead made of the bag and urethane foam may not have sufficient strength, especially when used directly under important structures that are subject to dynamic loads, such as revetments, quays, and roads. There are also concerns about the effect of heat generated by the urethane foam on the bag. Furthermore, when the structure is to be renewed, the urethane foam cannot be recycled as soil.

特許文献3には、地下用水路、廃坑、防空壕、自然洞窟等の水のある地中空洞に、所定間隔で土砂、ソイルセメント及び急結剤からなる第一充填材を充填して隔壁を形成し、隔壁間に土砂及びソイルセメントからなる第二充填材を充填して地中空洞を充填する方法が記載されている。また、第一充填材を、可撓性素材から成る筒袋状体に収納した状態で充填することも記載されている。筒袋状体は、型枠代わりとして第一充填材の流動性を抑制するものであり、筒状(有底でも無底でも良い)の袋であり、樹脂材若しくは鋼材をメッシュ状に形成したものや、ゴム素材を風船状に形成したものなどを用いることができる、とされている。
しかし、この方法では、第一充填材の粘度が高いため、筒袋状体に第一充填材を収納するときに、筒袋状体がきれいに広がらないことが懸念される。また、第一充填材の発熱による袋体への影響も懸念される。さらに、同構造を更新する際に、掘削や除去が困難である。
Patent Document 3 describes a method of filling underground cavities containing water, such as underground waterways, abandoned mines, air raid shelters, and natural caves, by filling a first filler made of soil, soil cement, and an accelerator at a predetermined interval to form partitions, and filling the spaces between the partitions with a second filler made of soil and soil cement to fill the underground cavities. It also describes filling the first filler in a state in which it is stored in a cylindrical bag-shaped body made of a flexible material. The cylindrical bag-shaped body serves as a formwork to suppress the fluidity of the first filler, and is a cylindrical bag (which may or may not have a bottom), and it is said that a resin material or steel material formed into a mesh shape, or a rubber material formed into a balloon shape, can be used.
However, in this method, there is a concern that the tubular bag-shaped body may not be expanded properly when the first filler is stored in the tubular bag-shaped body because the viscosity of the first filler is high. There is also a concern that the heat generated by the first filler may affect the bag-shaped body. Furthermore, excavation and removal are difficult when updating the structure.

特開平9-125900号公報Japanese Patent Application Laid-Open No. 9-125900 特開2014-190135号公報JP 2014-190135 A 特開2008-13910号公報JP 2008-13910 A

そこで、本発明の目的は、袋体が流動化処理土によって傷みにくいため、流動化処理土が袋体から漏れず、流動化処理土が袋体をよく押し広げて、地中空洞を確実に補強することができ、さらに、補強構造を更新する際には容易に掘削や除去ができ、土としてリサイクルが可能である、地中空洞の補強構造及び補強方法を提供することにある。 The object of the present invention is to provide a reinforcement structure and method for underground cavities in which the bag body is not easily damaged by liquefied treated soil, the liquefied treated soil does not leak from the bag body, the liquefied treated soil easily expands the bag body, and the underground cavities can be reliably reinforced, and further, the reinforcement structure can be easily excavated and removed when updating the reinforcement structure, and can be recycled as soil.

[1]地中空洞の補強構造
[1-1]地中空洞の少なくとも一部に、不透水性の袋体に流動化処理土が充填し硬化してなる土入り袋体が、配置されていることを特徴とする地中空洞の補強構造。
[1-2]地中空洞の発生原因となった土砂流出部に、不透水性の袋体に流動化処理土が充填し硬化してなる土入り袋体が配置されており、地中空洞の残部に、充填材が充填されていることを特徴とする地中空洞の補強構造。
[1-3]地中空洞が、不透水性の袋体に、土粒子に水を加えた含水比80~300質量%かつ密度1.2~1.5g/cm 3 の調整泥水と固化材とを含む流動化処理土が充填し硬化してなる土入り袋体の1つ又は複数で、満たされていることを特徴とする地中空洞の補強構造。
[1-4]地中空洞が、不透水性の袋体に流動化処理土が充填し硬化してなる土入り袋体の横方向に相互間をおいた複数と、該相互間に充填された充填材とで満たされていることを特徴とする地中空洞の補強構造。
[1] Reinforcement structure for underground cavity [1-1] A reinforcement structure for an underground cavity, characterized in that a soil-filled bag body formed by filling an impermeable bag body with liquefied treated soil and hardening it is placed in at least a part of the underground cavity.
[1-2] A reinforcement structure for an underground cavity, characterized in that a soil-filled bag made by filling an impermeable bag with liquefied treated soil and hardening it is placed in the soil outflow area that caused the underground cavity to form, and the remaining part of the underground cavity is filled with filling material.
[1-3] A reinforcement structure for an underground cavity, characterized in that the underground cavity is filled with one or more soil-filled bags formed by filling and hardening a water- impermeable bag with liquefied treated soil containing a solidifying agent and adjusted mud water obtained by adding water to soil particles to have a moisture content of 80 to 300 mass % and a density of 1.2 to 1.5 g/cm3.
[1-4] A reinforcement structure for an underground cavity, characterized in that the underground cavity is filled with a plurality of laterally spaced soil-filled bags formed by filling impermeable bags with liquefied treated soil and hardening the bags, and with filler material filled between the bags.

[2]地中空洞の補強方法
地中空洞上の地盤表層部に地中空洞へ縦方向に通じる通孔を形成する通孔形成工程と、
ホースの下に接続した不透水性の袋体を折り畳んだ状態で通孔を通して地中空洞に配置する袋体配置工程と、
前記袋体にホースから送った流動化処理土を充填する土充填工程と、
前記流動化処理土を硬化させる土硬化工程とを含み、
地中空洞の少なくとも一部を、前記袋体に流動化処理土が充填し硬化してなる土入り袋体で、補強することを特徴とする地中空洞の補強方法。
[2] A method for reinforcing an underground cavity, comprising: a through-hole forming step of forming a through-hole in a surface layer of the ground above the underground cavity, the through-hole leading vertically to the underground cavity;
a bag placement step in which an impermeable bag connected to a lower portion of the hose is placed in a folded state in an underground cavity through the through hole;
A soil filling step of filling the bag with liquefied soil sent from a hose;
and a soil hardening step of hardening the liquefied treated soil,
A method for reinforcing an underground cavity, comprising reinforcing at least a portion of the underground cavity with a soil-filled bag formed by filling the bag with liquefied treated soil and hardening the soil.

ここで、土充填工程を、前記袋体にホースから送った、土粒子に水を加えた含水比80~300質量%かつ密度1.2~1.5g/cm 3 の調整泥水と固化材とを含む流動化処理土を充填する工程とし、地中空洞の全体を、土入り袋体の1つ又は複数で満たして、補強する態様を例示できる。 Here, the soil filling step is a step of filling the bag with fluidized treated soil containing a solidifying material and an adjusted muddy water obtained by adding water to soil particles to have a moisture content of 80 to 300 mass % and a density of 1.2 to 1.5 g/cm3, which is sent from a hose to the bag, and an example of a mode in which the entire underground cavity is filled with one or more soil-filled bags to reinforce it can be given.

また、地中空洞の複数箇所を、土入り袋体の横方向に相互間をおいた複数で補強し、該相互間を該相互間に充填された充填材で補強する態様を例示できる。 Another example is a form in which multiple locations in an underground cavity are reinforced with multiple soil-filled bags spaced apart horizontally, and the spaces between them are reinforced with filler material.

袋体配置工程よりも前に、カメラと計測器を通孔を通して地中空洞に配置して、カメラにより地中空洞の状況を調査し、計測器により地中空洞の大きさを計測する調査計測工程を含むことが好ましい。 It is preferable to include an investigation and measurement step prior to the bag placement step, in which a camera and measuring instrument are placed in the underground cavity through the through hole, and the condition of the underground cavity is investigated using the camera, and the size of the underground cavity is measured using the measuring instrument.

地中空洞の大きさとして、通孔真下の地中空洞高さを計測する態様を例示できる。 An example of the size of the underground cavity is to measure the height of the underground cavity directly below the hole.

地中空洞の大きさとして、通孔真下の地中空洞高さと横方向の地中空洞長さとを計測する態様を例示できる。 An example of the size of the underground cavity is to measure the height of the underground cavity directly below the through hole and the length of the underground cavity in the lateral direction.

袋体が膨らんだ時の中心部の高さは、前記地中空洞高さの1倍~1.3倍であることが好ましい。1倍未満であると、袋体が地中空洞の天面に当接しにくくなり、1.3倍を越えると、折り畳んだ袋体をきれいに膨らましにくくなる。 It is preferable that the height of the center of the bag when inflated is 1 to 1.3 times the height of the underground cavity. If it is less than 1 time, it will be difficult for the bag to abut against the ceiling of the underground cavity, and if it exceeds 1.3 times, it will be difficult to inflate the folded bag neatly.

袋体配置工程と土充填工程との間に、ホースから送ったエアで袋体を膨らませる袋体膨張工程を含ませることができる。エアで袋体を膨らませると、袋体は、重さがほとんど増加しないため地中空洞の底面を横方向にずれ動きやすく、地中空洞のほぼ全域にいきわたるように膨らみやすい。 Between the bag placement process and the soil filling process, a bag expansion process can be included in which the bag is inflated with air sent from a hose. When the bag is inflated with air, the bag's weight increases very little, so it tends to move sideways along the bottom of the underground cavity, and it tends to expand to fill almost the entire area of the underground cavity.

但し、地中空洞に溜水がある場合には、袋体膨張工程で袋体が溜水に浮いて地中空洞の底部にうまく広がらないことから、袋体膨張工程を省いて土充填工程を行い、水よりも重い流動化処理土で袋体を地中空洞の底部から広げていくことが好ましい。 However, if there is accumulated water in the underground cavity, the bag will float in the accumulated water during the bag expansion process and will not spread properly to the bottom of the underground cavity. Therefore, it is preferable to omit the bag expansion process and perform the soil filling process, and expand the bag from the bottom of the underground cavity with liquefied treated soil, which is heavier than water.

地盤表層部に、通孔とは別の、地中空洞へ縦方向に通じる充填確認孔を形成することが好ましい。 It is preferable to form a filling confirmation hole in the surface layer of the ground that leads vertically to the underground cavity, separate from the through hole.

[作用]
袋体の充填物には、次の性能が求められる。
・水よりも重いが、その充填物の重量により袋体にかかる負担を少なくできること
・袋体を押し広げて、最終的には地中空洞全体に広がる流動性があること
・硬化熱が小さく、袋体に与える影響が小さいこと
・管理者が要求する強度があり、なおかつ容易に掘削ができ、除去が可能であること
[Action]
The filling material for the bag is required to have the following properties:
・It is heavier than water, but the weight of the filling material can reduce the burden on the bag. ・It has the fluidity to push the bag open and ultimately fill the entire underground cavity. ・It generates little hardening heat and has little effect on the bag. ・It has the strength required by the administrator, and can be easily excavated and removed.

そして、流動化処理土は、上記性能を満たし且つ次の理由(1)~(4)から、袋体の充填物としてベストである。
(1)流動化処理土は、地盤相当の単位重量であること
(参考)充填物候補材料の単位重量: 発泡ウレタン・エアモルタル・エアミルク<水(10kN/m)<流動化処理土(13~18kN/m)<モルタル・コンクリート(23kN/m
充填物が袋体に投入されると、袋体を押し広げて底部から広がってゆく。その後、側面に圧力を掛けながら袋体上部に充填されていく。側面に圧力が掛かると、ホースに下向きの張力が加わり、袋体が裂けて損傷する可能性がある。袋体は薄い素材でできており、コンパクトに折り畳むことから強い素材での補強が難しい。その観点より、袋体に充填する充填物は、コンクリートやモルタルなどの重い材料よりも軽い方がよい。
また、地中空洞に溜水がある場合、袋体を底部から広げていくために水よりも重い材料を充填する必要がある。
よって、コンクリートやモルタルよりも軽く、水よりも重く、地盤相当の単位重量である流動化処理土はベストである。
Fluidized treated soil satisfies the above-mentioned performance requirements and is the best choice as a filling material for bags for the following reasons (1) to (4).
(1) The unit weight of liquefied treated soil is equivalent to that of the ground. (Reference) Unit weight of candidate filling materials: Urethane foam, air mortar, air milk < water (10 kN/m 3 ) < liquefied treated soil (13-18 kN/m 3 ) < mortar, concrete (23 kN/m 3 )
When the filling material is poured into the bag, it spreads from the bottom, pushing the bag apart. It is then filled into the top of the bag while applying pressure to the sides. When pressure is applied to the sides, downward tension is applied to the hose, which may cause the bag to tear and become damaged. The bag is made of a thin material and is folded compactly, making it difficult to reinforce it with a strong material. From this perspective, it is better for the filling material to be lighter than heavy materials such as concrete or mortar.
Also, if there is standing water in the underground cavity, it is necessary to fill the bag with a material that is heavier than water in order to expand the bag from the bottom.
Therefore, liquefied treated soil is the best option as it is lighter than concrete or mortar, heavier than water, and has a unit weight equivalent to that of ground.

(2)流動化処理土は締固めを必要としないで、流動性、充填性が高いこと
袋体の中に充填物を充填し、地中空洞全体に押し広げていく必要がある。コンクリートやモルタルは、バイブレーター等を使用して充填する必要があるが、バイブレーターを掛けられるスペースがない。流動化処理土は、流動性に富んだ材料で締固めを必要としないし、(袋体不使用での)地中空洞の充填の実績も多数ある。
よって、地中空洞全体に袋体を押し広げるための充填物として、流動化処理土はベストである。
(2) Fluidized treated soil has high fluidity and filling properties, and does not require compaction. The filling material must be placed inside the bag and then spread throughout the entire underground cavity. Concrete and mortar require the use of a vibrator or other device to fill them, but there is no space to attach a vibrator. Fluidized treated soil is a highly fluid material that does not require compaction, and there is a long track record of filling underground cavities (without using bags).
Therefore, liquefied treated soil is the best filler for expanding the bag throughout the entire underground cavity.

(3)流動化処理土の硬化熱が低いこと
(参考)充填物候補材料の硬化熱: 流動化処理土(外気温+5℃程度)<エアミルク・エアモルタル・モルタル・コンクリート(熱断熱状態で40℃~80℃程度)<発泡ウレタン(80度以上に上がる場合がある)
薄い素材でできている袋体の多くは耐熱性が低い。充填物の硬化熱が低い方が、袋体に与える影響も小さい。
よって、流動化処理土は、硬化熱の観点からもベストである。
(3) The hardening heat of liquefied soil is low. (Reference) Hardening heat of filler candidate materials: liquefied soil (outside temperature + 5°C) < aerated milk, aerated mortar, mortar, concrete (thermally insulated, 40°C to 80°C) < foamed urethane (may rise to 80°C or higher)
Many bags made of thin materials have low heat resistance. The lower the hardening heat of the filling, the smaller the impact on the bag.
Therefore, liquefied treated soil is also the best in terms of hardening heat.

(4)流動化処理土は強度コントロールが可能で、リサイクルもできる。
充填物は、施工後には要求する強度を発現して地中空洞を補強でき、当該補強構造を更新する際に容易に掘削や除去ができる必要がある。
コンクリートやモルタルは高強度であるが、除去することが困難である。エアモルタルやエアミルク、発泡ウレタンは、物理的に除去は可能であるが、建設副産物もしくは廃棄処分になる。
よって、強度コントロールが可能で、なおかつ土としてリサイクルが可能である流動化処理土はベストである。
(4) The strength of liquefied treated soil can be controlled and it can also be recycled.
After construction, the filler must be able to exhibit the required strength to reinforce the underground cavity, and must be able to be easily excavated and removed when the reinforcing structure is to be renewed.
Concrete and mortar are strong but difficult to remove. Air mortar, air milk, and foamed urethane can be physically removed, but they become construction by-products or are disposed of as waste.
Therefore, liquefied treated soil, which allows for strength control and can also be recycled as soil, is the best option.

流動化処理土は、重量が適度なため袋体を損傷させにくく、流動性が高いため袋体への充填性に優れ、硬化熱が低いため袋体に与える影響が小さく、強度コントロールが可能で、リサイクルもできる。よって、本発明によれば、袋体が流動化処理土によって傷みにくいため、流動化処理土が袋体から漏れず、流動化処理土が袋体をよく押し広げて、地中空洞を確実に補強することができ、さらに、補強構造を更新する際には容易に掘削や除去ができ、土としてリサイクルが可能である。 Fluidized treated soil is moderate in weight and therefore unlikely to damage the bag body, has high fluidity and therefore excellent filling ability into the bag body, has low hardening heat and therefore little impact on the bag body, strength can be controlled, and it can be recycled. Therefore, according to the present invention, the bag body is unlikely to be damaged by the fluidized treated soil, so the fluidized treated soil does not leak from the bag body and can effectively expand the bag body, reliably reinforcing underground cavities, and furthermore, when renewing the reinforcing structure, it can be easily excavated and removed, and can be recycled as soil.

図1は実施例1の地中空洞の補強方法を示し、(a)は通孔形成工程と調査計測工程の一部を示す断面図、(b)は調査計測工程の他部を示す断面図である。FIG. 1 shows a method for reinforcing an underground cavity according to a first embodiment, in which (a) is a cross-sectional view showing a through-hole forming step and a part of an investigation and measurement step, and (b) is a cross-sectional view showing another part of the investigation and measurement step. 図2は同じく通孔及び充填確認孔と地中空洞の大きさ・形状を示す平面図である。FIG. 2 is a plan view showing the size and shape of the through hole, filling confirmation hole, and underground cavity. 図3は同じく(a)は袋体配置工程で選択した袋体の斜視図、(b)は該袋体を折り畳んでパイプに挿入するときの正面図、(c)は同挿入後の正面図である。3A is a perspective view of a bag selected in the bag arrangement step, FIG. 3B is a front view of the bag folded and inserted into a pipe, and FIG. 3C is a front view of the bag after insertion. 図4は同じく(a)は袋体配置工程で袋体を通孔に挿入するときの断面図、(b)は袋体を地中空洞に配置したときの断面図である。FIG. 4A is a cross-sectional view of the bag when it is inserted into the through-hole in the bag placement step, and FIG. 4B is a cross-sectional view of the bag when it is placed in the underground cavity. 図5は同じく(a)は袋体膨張工程で袋体を膨らませ始めたときの断面図、(b)は膨らんだときの断面図である。FIG. 5A is a cross-sectional view of the bag when it starts to be inflated in the bag inflation step, and FIG. 5B is a cross-sectional view of the bag when it is inflated. 図6は同じく(a)は土充填工程で袋体に流動化処理土を注入し始めたときの断面図、(b)は充填したときの断面図である。FIG. 6A is a cross-sectional view of the bag when the liquefied treated soil begins to be injected into the bag during the soil filling process, and FIG. 6B is a cross-sectional view of the bag when it is filled. 図7は同じく(a)は通孔及び充填確認孔を塞ぎ、流動化処理土を硬化させて完成した地中空洞の補強構造の断面図である。FIG. 7(a) is a cross-sectional view of a reinforcement structure for an underground cavity that has been completed by sealing the through holes and filling confirmation holes and hardening the liquefied treated soil. 図8は実施例2の地中空洞の補強構造及び補強方法を示す断面図である。FIG. 8 is a cross-sectional view showing a reinforcement structure and a reinforcement method for an underground cavity according to a second embodiment. 図9は同じく完成した地中空洞の補強構造の断面図である。FIG. 9 is a cross-sectional view of the completed reinforcement structure for an underground cavity. 図10は実施例3の地中空洞の補強構造及び補強方法を示し、(a)は袋体に流動化処理土を注入し始めたときの断面図、(b)は注入が進んだときの断面図である。FIG. 10 shows the reinforcement structure and reinforcement method for an underground cavity of Example 3, where (a) is a cross-sectional view when injection of liquefied treated soil into the bag body begins, and (b) is a cross-sectional view after injection has progressed. 図11は実施例4の地中空洞の補強構造及び補強方法を示し、(a)は袋体に流動化処理土を注入し始めたときの断面図、(b)は完成した地中空洞の補強構造の断面図である。Figure 11 shows the reinforcement structure and reinforcement method for an underground cavity of Example 4, where (a) is a cross-sectional view when injection of liquefied treated soil into the bag body begins, and (b) is a cross-sectional view of the completed reinforcement structure for an underground cavity. 図12は実施例5の地中空洞の補強方法の袋体配置工程を示す断面図である。FIG. 12 is a cross-sectional view showing a bag arrangement step of the underground cavity reinforcing method of the fifth embodiment. 図13は同じく完成した地中空洞の補強構造の、(a)は断面図、(b)は平面図である。FIG. 13 shows the completed reinforcement structure for an underground cavity, (a) being a cross-sectional view and (b) being a plan view.

1.地中空洞
地中空洞としては、特に限定されないが、港湾又は河川の保全構造物(護岸、岸壁、堤防)の老朽化に伴ってその近辺に生じた地下空洞や、道路面下の地下空洞、廃坑、鉱物採掘跡、地下ピット、休止埋設管等を例示できる。
地中空洞上に地盤表層部がある場合、その地盤表層部としては、特に限定されないが、コンクリート盤、アスファルト舗装層、土層等を例示できる。
1. Underground Cavities There are no particular limitations on underground cavities, but examples include underground cavities that have developed near port or river conservation structures (revetments, quays, embankments) due to deterioration, underground cavities below road surfaces, abandoned mines, mineral mining sites, underground pits, and unused buried pipes.
When there is a surface layer of ground above an underground cavity, the surface layer of ground is not particularly limited, but examples thereof include a concrete plate, an asphalt pavement layer, and a soil layer.

2.不透水性の袋体
不透水性の袋体の材料としては、特に限定されないが、樹脂、繊維強化樹脂、布等を例示できる。布としては、表面コーティングや糸間含浸等により不透水性にしたものを例示できる。通孔を通せる細さに折り畳むことができるような柔軟な材料が好ましい。また、なるべく強い材料が好ましいことは言うまでもない。袋体の厚さは、強度を確保しつつ、通孔を通せる細さに折り畳むことができるような厚さを適宜選択する。
2. Impermeable bag The material of the impermeable bag is not particularly limited, but examples thereof include resin, fiber-reinforced resin, cloth, etc. Examples of cloth include those made impermeable by surface coating, inter-thread impregnation, etc. Flexible materials that can be folded to a size that can pass through the through holes are preferable. Needless to say, materials that are as strong as possible are also preferable. The thickness of the bag is appropriately selected so that it can be folded to a size that can pass through the through holes while maintaining strength.

袋体の使用数は、地中空洞の大きさや形状に応じて、例えば次のように、適宜決めることができる。
(ア)地中空洞長さの平均が4m未満の場合には一つの袋体を用い、同平均が4m以上の場合には複数の袋体を用いる。
(イ)地中空洞長さの最長部と最短部との比が2未満(すなわち平面地中空洞形状が円に近い)の場合には一つの袋体を用い、同比が2以上の場合には複数の袋体を用いる。
The number of bags used can be determined appropriately depending on the size and shape of the underground cavity, for example as follows.
(a) If the average length of the underground cavity is less than 4 m, one bag shall be used, and if the average is 4 m or more, multiple bags shall be used.
(i) When the ratio of the longest to shortest lengths of the underground cavity is less than 2 (i.e., the planar shape of the underground cavity is close to a circle), one bag body is used, and when the ratio is 2 or more, multiple bags are used.

3.流動化処理土
流動化処理土は、泥水(土粒子に水を加えた調整泥水)と固化材とを含むものであり、その配合は特に限定されない。
土粒子の粒度構成は、特に限定されないが、粘土及びシルトが10~100質量%であるものが好ましい。
泥水の含水比は、特に限定されないが、80~300質量%が好ましい。
泥水の密度は、特に限定されないが、1.2~1.5g/cm3 が好ましい。
固化材として、特に限定されないが、セメント、セメント系固化材、石灰系固化材、鉄鋼スラグとアルカリ刺激剤、等を例示できる。
3. Fluidized treated soil Fluidized treated soil contains mud (adjusted mud made by adding water to soil particles) and a solidifying material, and the mixture is not particularly limited.
The particle size composition of the soil particles is not particularly limited, but it is preferable that the clay and silt content is 10 to 100 mass %.
The water content of the muddy water is not particularly limited, but is preferably 80 to 300 mass %.
The density of the muddy water is not particularly limited, but is preferably 1.2 to 1.5 g/cm 3 .
The solidification material is not particularly limited, but examples thereof include cement, cement-based solidification material, lime-based solidification material, steel slag and alkaline irritant, etc.

4.通孔
通孔の数は、1つでも複数でもよく、地中空洞の大きさ、形状等に応じて決めることができる。
通孔は、袋体を通すための孔と、カメラ及び計測器を通すための孔とを、兼ねたものでもよいし、それぞれ専用のものでもよい。
通孔の形成方法としては、特に限定されないが、ボーリング、コア削孔等を例示できる。
通孔の直径は、特に限定されないが、100~200mmが好ましい。地中空洞の直上に大きな孔は安全上開けられないこと、施工機械選定やコストの点からも大きい孔は難しいことによる。
4. Through holes The number of through holes may be one or more and can be determined depending on the size, shape, etc. of the underground cavity.
The through hole may serve both as a hole for passing the bag body and as a hole for passing the camera and measuring instrument, or may be dedicated to each purpose.
The method for forming the through holes is not particularly limited, but examples thereof include boring and core drilling.
The diameter of the through hole is not particularly limited, but is preferably 100 to 200 mm. This is because a large hole cannot be drilled directly above the underground cavity for safety reasons, and drilling a large hole is also difficult from the viewpoints of the selection of construction machinery and costs.

5.調査計測
カメラはデジタルカメラが好ましく、撮影した画像データを地上に送り、動画でモニタリング及び記録したり、静止画として記録したりできる。
計測器としては、特に限定されないが、レーザー距離計、レーザースキャナー等を例示できる。地中空洞高さの計測器計は、メジャーでもよい。
5. Survey and Measurement It is preferable to use a digital camera, and the captured image data can be sent to the ground and monitored and recorded as video or as still images.
The measuring instrument is not particularly limited, but examples thereof include a laser range finder, a laser scanner, etc. The measuring instrument for measuring the height of the underground cavity may be a tape measure.

[実施例1]
本発明を具体化した実施例1の地中空洞5の補強方法について、図1~図7を参照して説明する。
本実施例で補強対象とした地中空洞5は、護岸構造物に生じたものである。
地中空洞化前の護岸構造物は、海に面した縦壁状のコンクリート壁1と、コンクリート壁1にせき止められている土砂2と、土砂2の上に敷設された地盤表層部3としてのコンクリート盤とからなるものである。土砂2中には陸から海に向けてヒューム管4が埋設され、ヒューム管4の先端部はコンクリート壁1を貫通して海に開口している。
そして、地中空洞化後の護岸構造物は、コンクリート壁1付近の土砂2が流出して、図1に示すように、地中空洞5が生じている。
[Example 1]
A method for reinforcing an underground cavity 5 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 7. FIG.
The underground cavity 5 to be reinforced in this embodiment occurs in a revetment structure.
The revetment structure before the underground cavity is created consists of a vertical concrete wall 1 facing the sea, soil 2 held back by the concrete wall 1, and a concrete slab as the ground surface layer 3 laid on top of the soil 2. A Hume pipe 4 is buried in the soil 2 from the land toward the sea, and the tip of the Hume pipe 4 penetrates the concrete wall 1 and opens into the sea.
After the underground cavity is formed, soil 2 near the concrete wall 1 of the revetment structure flows out, creating an underground cavity 5 as shown in FIG.

(1)通孔形成工程
通孔形成工程の前に、地盤表層部3の下に潜む地中空洞5を非破壊検査で検知した(非破壊検査工程)。詳しくは、レーダ-式地中空洞探査装置(図示略)を用いて、地盤表層部3の上方から電磁波を照射し、その反射波により、地中空洞5を検知した。
そして、図1及び図2に示すように、地盤表層部3における地中空洞5の中心部付近の上方に、地上から地中空洞5に通じる通孔6を形成した。
さらに、地盤表層部3における地中空洞5の端付近の上方に、地上から地中空洞5に通じる充填確認孔7を形成した。なお、充填確認孔7は、地中空洞5の中心部から最も遠い端付近上、すなわち図2で上方の端付近上に形成することが好ましいが、他の断面図に示す都合上、図2で右方の端付近上に形成したことにする。
(1) Through-hole forming process Before the through-hole forming process, the underground cavity 5 hidden under the ground surface layer 3 was detected by non-destructive testing (non-destructive testing process). In detail, a radar-type underground cavity exploration device (not shown) was used to irradiate electromagnetic waves from above the ground surface layer 3, and the underground cavity 5 was detected by the reflected waves.
Then, as shown in Figs. 1 and 2, a through hole 6 leading from above ground to the underground cavity 5 was formed above the vicinity of the center of the underground cavity 5 in the ground surface layer 3.
Furthermore, a filling confirmation hole 7 was formed above near the end of the underground cavity 5 in the ground surface layer 3, leading from above ground to the underground cavity 5. It is preferable to form the filling confirmation hole 7 near the end farthest from the center of the underground cavity 5, i.e., near the upper end in Fig. 2, but for convenience of showing it in other cross-sectional views, it is assumed that it is formed near the right end in Fig. 2.

(2)調査計測工程
ロッド8の下端部にデジタル式のカメラ9と計測器10としてのレーザー距離計とを取り付けてなる装置を、通孔6を通して地中空洞5に配置した。
図1(a)に示すように、通孔6の下端に位置したときの計測器10により、通孔6真下の地中空洞高さを計測したところ、0.63mであった。
図1(b)に示すように、地中空洞5の底より下(0.1m)・中(0.3m)・上(0.5m)の各高さに位置したときの計測器10をロッド8と共に回転させながら、横方向の地中空洞長さを計測して平均した。その結果、図2に示すように、海-陸方向は1.36m(=0.51m+0.85m)、その直交方向は2.18m(=1.10m+1.08m)であった。
これらの結果より、地中空洞5の形状はいびつな略楕円形であることが分かり、地中空洞5の体積は約1.4mと算出された。
(2) Survey and Measurement Process An apparatus comprising a digital camera 9 and a laser range finder as a measuring instrument 10 attached to the lower end of a rod 8 was placed in the underground cavity 5 through the through hole 6 .
As shown in FIG. 1(a), when the measuring device 10 was positioned at the lower end of the through hole 6, the height of the underground cavity directly below the through hole 6 was measured to be 0.63 m.
As shown in Figure 1(b), the horizontal length of the underground cavity was measured and averaged while rotating the measuring device 10 together with the rod 8 when it was positioned at a height below (0.1 m), in the middle (0.3 m), and above (0.5 m) the bottom of the underground cavity 5. As a result, as shown in Figure 2, the length in the sea-land direction was 1.36 m (= 0.51 m + 0.85 m), and the length in the perpendicular direction was 2.18 m (= 1.10 m + 1.08 m).
From these results, it was found that the shape of the underground cavity 5 was an irregular, roughly elliptical shape, and the volume of the underground cavity 5 was calculated to be approximately 1.4 m3 .

図1(b)に示すように、地中空洞5の底より0.3mの高さに位置したときのカメラ9をロッド8と共に回転させながら、護岸構造物の老朽化状況を観察調査した。その結果、図2に示すように、地中空洞5の中心部にヒューム管4が位置することが確認でき、さらに、図1(b)に丸で囲んで示す箇所に明かり部が認められた。この明かり部は、ヒューム管4の破損部(あるいは緩くなったつなぎ目)であり、地中空洞の発生原因となった土砂流出部Rであると考えられる。すなわち、地中空洞化のメカニズムは、元々詰まっていた土砂2の一部が、土砂流出部Rからヒューム管4に通じ、潮の満ち引き等により出入りする海水により吸い出された、というものであると考えられる。 As shown in Figure 1(b), the deterioration of the revetment structure was observed while rotating the camera 9 together with the rod 8 when it was positioned 0.3 m above the bottom of the underground cavity 5. As a result, as shown in Figure 2, it was confirmed that the Hume pipe 4 was located in the center of the underground cavity 5, and a bright area was observed in the area circled in Figure 1(b). This bright area is thought to be the damaged area (or loose joint) of the Hume pipe 4, and the soil outflow area R that caused the underground cavity to form. In other words, the mechanism by which the underground cavity formed is thought to be that some of the soil 2 that was originally clogged connected from the soil outflow area R to the Hume pipe 4, and was sucked out by seawater that flows in and out due to the tides, etc.

(3)袋体配置工程
図3(a)に示すように、不透水性かつ耐引っ掻き性の樹脂製の袋体11であって、膨らんだ時の大きさが地中空洞5の大きさに対応する袋体11を選択した。袋体11がいっぱいに膨らんだ時の中心部の高さは、通孔6真下の地中空洞高さよりやや高い0.8mとし、袋体11の形状は直径にして2mの八角形とした。袋体は、柔軟な樹脂よりなるホース12の下に接続され、ホースに接続した箇所以外は閉鎖されている。
図3(b)(c)に示すように、袋体11を、細く折り畳んでパイプ13(例えば塩ビパイプ)に挿入した。袋体11の折り畳みは、パイプ13に収まり、かつ、地中空洞内で広がりやすいように行った。
(3) Bag placement process As shown in Fig. 3(a), a bag 11 made of impermeable and scratch-resistant resin was selected, the size of which when inflated corresponds to the size of the underground cavity 5. The height of the center of the bag 11 when fully inflated is 0.8 m, which is slightly higher than the height of the underground cavity directly below the through hole 6, and the shape of the bag 11 is an octagon with a diameter of 2 m. The bag is connected to the bottom of a hose 12 made of flexible resin, and is closed except for the part connected to the hose.
3(b) and (c), the bag body 11 was folded thinly and inserted into a pipe 13 (e.g., a PVC pipe). The bag body 11 was folded so that it could be accommodated in the pipe 13 and could easily be expanded in the underground cavity.

図4(a)に示すように、袋体11をパイプ13と共に通孔6に挿入してから、図4(b)に示すように、袋体11をパイプ13から突出させて地中空洞5に配置した。
そして、前記調査計測装置を、充填確認孔7を通して地中空洞5に配置し、カメラ9によりこのとき袋体11の状態を確認したところ、やや緩みが見られたが、ほぼ折り畳まれた状態であった。
As shown in FIG. 4(a), the bag body 11 was inserted into the through hole 6 together with the pipe 13, and then, as shown in FIG. 4(b), the bag body 11 was placed in the underground cavity 5 with the bag body 11 protruding from the pipe 13.
The survey and measurement device was then placed in the underground cavity 5 through the filling confirmation hole 7, and the state of the bag body 11 was checked with the camera 9. It was found to be slightly loose, but was mostly folded.

(4)袋体膨張工程
図5(a)に示すように、エアコンプレッサー(図示略)を使用し、ホース12から送ったエアで袋体11を膨らませ始めた。カメラ9により、このとき袋体11の状態を確認したところ、袋体11はどの方向にも膨らみ始めた。
図5(b)に示すように、さらにエアで袋体11を膨らませていくと、袋体11は、地中空洞5のどこかの側面に当接した後、(充填物がないため)横方向にずれ動きやすいので、地中空洞5のほぼ全域にいきわたるように膨らんだ。そして、袋体11をいっぱいに膨らませてから、エアの流入を解除したところ、袋体11は自然なエア抜けによってややしぼみ、結局、図5(b)に示すような中間的な膨らみ状態となった。
(4) Bag Inflation Process As shown in Fig. 5(a), an air compressor (not shown) was used to start inflating the bag 11 with air sent from a hose 12. When the state of the bag 11 at this time was checked with a camera 9, the bag 11 started to inflate in all directions.
As shown in Fig. 5(b), when the bag 11 is further inflated with air, the bag 11 tends to shift sideways after coming into contact with any side surface of the underground cavity 5 (because there is no filling material), and so the bag 11 inflates to fill almost the entire area of the underground cavity 5. Then, when the inflow of air is stopped after the bag 11 is fully inflated, the bag 11 deflates slightly due to natural air escape, and eventually reaches an intermediate inflated state as shown in Fig. 5(b).

(5)土充填工程
次の表1に材料土である泥水の分析結果を示し、表2に該泥水に固化材を配合した配合土である流動化処理土の配合及び特性を示す。流動化処理土の配合は、流動性と充填性に富んだ充填用の配合とした。固化材としては高炉セメントB種を使用した。
(5) Soil filling process Table 1 below shows the analysis results of the muddy water, which is the soil material, and Table 2 shows the mix proportions and properties of the liquefied treated soil, which is a soil mixture made by mixing the muddy water with a solidifying agent. The mix proportions of the liquefied treated soil were made for filling, with excellent fluidity and packing properties. Blast-furnace cement type B was used as the solidifying agent.

Figure 0007492846000001
Figure 0007492846000001

Figure 0007492846000002
Figure 0007492846000002

図6(a)に示すように、モルタルポンプ(図示略)を使用し、ホース12から送った流動化処理土14を前記のとおり中間的に膨らんだ袋体11に注入し始めた。ホース12には圧力計(図示略)を設置し、充填中の圧力の監視を行った。カメラ9により、このとき袋体11と流動化処理土14の状態を確認した。流動化処理土14は、エアと置換するように注入され、袋体11内にきれいに広がった。
図6(b)に示すように、袋体11に流動化処理土14を充填すると、袋体11はいっぱいに膨らみ、地中空洞5の側面のほぼ全周に当接するとともに、地中空洞5の底面及び天面に当接した。この充填直前に、カメラ9を抜いた。
充填確認孔7より、天面に当接した袋体11を視認したことにより、流動化処理土14が充填されたことを確認し、充填を終了した。なお、このように充填確認孔7で最終的な充填確認はできるが、膨張中及び充填中の状態・変化が視認でき、異常等があれば直ちに把握できる点で、膨張中及び充填中のカメラ確認が有効であることが分かった。
充填後、30分間静止し、流動化処理土14と袋体11の沈下等の挙動がないことを確認した。
As shown in Figure 6(a), a mortar pump (not shown) was used to start injecting liquefied treated soil 14 sent from a hose 12 into the bag 11 that had been partially inflated as described above. A pressure gauge (not shown) was attached to the hose 12 to monitor the pressure during filling. The state of the bag 11 and liquefied treated soil 14 at this time was confirmed by a camera 9. The liquefied treated soil 14 was injected to replace the air, and spread neatly inside the bag 11.
6(b), when the bag 11 was filled with the liquefied treated soil 14, the bag 11 expanded to its full extent and came into contact with almost the entire circumference of the side surface of the underground cavity 5 as well as the bottom and top surfaces of the underground cavity 5. The camera 9 was removed immediately before this filling.
By visually checking the bag 11 abutting the top surface through the filling confirmation hole 7, it was confirmed that the liquefied treated soil 14 had been filled, and filling was then terminated. Although the final filling check can be made through the filling confirmation hole 7 in this way, it was found that checking with a camera during expansion and filling is effective in that the state and changes during expansion and filling can be visually confirmed and any abnormalities can be immediately detected.
After filling, the bag was left to stand for 30 minutes to confirm that the liquefied treated soil 14 and the bag 11 did not sink or otherwise move.

(6)土硬化工程
図7に示すように、通孔6及び充填確認孔7を無収縮モルタル16で閉塞してから、流動化処理土14を硬化させた。こうして、地中空洞5に、袋体11に流動化処理土14が充填し硬化してなる土入り袋体15の1つが満たされてなる、地中空洞5の補強構造が完成した。
(6) Soil hardening process As shown in Fig. 7, the through hole 6 and the filling confirmation hole 7 were blocked with non-shrink mortar 16, and then the liquefied treated soil 14 was hardened. In this way, the underground cavity 5 was filled with one of the soil-filled bags 15 formed by filling the bag 11 with liquefied treated soil 14 and hardening it, completing a reinforcement structure for the underground cavity 5.

以上の方法により完成した地中空洞5の補強構造によれば、次の作用効果が得られる。
(ア)流動化処理土14は、重量が適度なため袋体11を損傷させにくく、流動性が高いため袋体11への充填性に優れ、硬化熱が低いため袋体11に与える影響が小さく、強度コントロールが可能で、リサイクルもできる。よって、袋体11が流動化処理土14によって傷みにくいため、流動化処理土14が袋体11から漏れず、流動化処理土14が袋体11をよく押し広げる。もって、土入り袋体15により地中空洞5を確実に補強することができ、さらに、補強構造を更新する際には容易に掘削や除去ができ、土としてリサイクルが可能である。
The reinforcement structure for the underground cavity 5 completed by the above-mentioned method has the following advantages.
(A) The liquefied treated soil 14 is moderate in weight and therefore unlikely to damage the bag body 11, has high fluidity and therefore excellent filling ability into the bag body 11, has low hardening heat and therefore has little effect on the bag body 11, strength control is possible, and it can be recycled. Therefore, the bag body 11 is unlikely to be damaged by the liquefied treated soil 14, so the liquefied treated soil 14 does not leak from the bag body 11 and expands the bag body 11 well. Thus, the underground cavity 5 can be reliably reinforced by the soil-filled bag body 15, and furthermore, it can be easily excavated and removed when updating the reinforcing structure, and can be recycled as soil.

(イ)地盤表層部3には、通孔6等を形成すれば済み、大規模な工事は不要である。
(ウ)通孔6を通したカメラ9で地中空洞5の状況を調査することにより、地中空洞化メカニズムの理解や、本補強方法適用の有効性の判断に役立つ情報を得ることができる。
(エ)通孔6を通した計測器10で地中空洞5の大きさを計測することにより、同大きさに対応する1つ又は複数の袋体11を選択することができ、袋体11が過大な場合の膨らみにくさや、袋体11が過小な場合の補強不足を回避することができる。
(オ)袋体配置工程と土充填工程との間に、エアで袋体11を膨らませる袋体膨張工程があるため、前述のとおり、袋体11は地中空洞5のほぼ全域にいきわたるようにきれいに膨らみやすい。
(i) It is sufficient to form through holes 6 etc. in the surface layer 3 of the ground, and no large-scale construction work is required.
(c) By investigating the condition of the underground cavity 5 with a camera 9 inserted through the through hole 6, it is possible to obtain information that is useful for understanding the mechanism of underground hollowing and for determining the effectiveness of applying this reinforcement method.
(e) By measuring the size of the underground cavity 5 with a measuring instrument 10 passed through the through hole 6, one or more bag bodies 11 corresponding to the same size can be selected, thereby avoiding the difficulty in expanding the bag body 11 if it is too large, and the lack of reinforcement if the bag body 11 is too small.
(O) Since there is a bag expansion process in which the bag 11 is inflated with air between the bag placement process and the soil filling process, as described above, the bag 11 tends to inflate nicely so as to fill almost the entire underground cavity 5.

実施例1において、調査計測工程を省くこともできる。前述した非破壊検査工程などで地中空洞5の大きさを検知できる場合もあるからである。 In Example 1, the survey and measurement process can be omitted. This is because the size of the underground cavity 5 can be detected in some cases using the non-destructive testing process described above.

[実施例2]
実施例2の地中空洞の補強方法及び補強構造は、図8及び図9に示すように、
・調査計測工程で、計測した地中空洞5の大きさが、実施例1よりも大きかった(例えば地中空洞長さの平均が4~10m)ことにより、
・袋体配置工程で、複数の袋体の膨らんだ時の全大きさが地中空洞5の大きさに対応する複数の袋体11を選択し、各袋体11を折り畳んだ状態で、調査計測に用いた通孔6とは別の位置に形成した通孔6を通して地中空洞5に配置させたこと(後者の通孔6は、計測した地中空洞5の大きさと袋体11の数により袋体配置計画を行い、該袋体配置計画に基づいて決定した地盤表層部の位置に形成した。)
において実施例1と相違し、その他は実施例1と共通である。
[Example 2]
The reinforcement method and structure for an underground cavity according to the second embodiment are as shown in FIGS. 8 and 9.
In the investigation and measurement process, the size of the underground cavity 5 measured was larger than that in Example 1 (for example, the average length of the underground cavity was 4 to 10 m).
In the bag placement process, a plurality of bags 11 were selected such that the total size of the plurality of bags when inflated corresponds to the size of the underground cavity 5, and each bag 11 was placed in the underground cavity 5 in a folded state through a through hole 6 formed in a position different from the through hole 6 used for the investigation and measurement (the latter through hole 6 was formed in a position of the ground surface layer determined based on a bag placement plan based on the measured size of the underground cavity 5 and the number of bags 11).
The second embodiment is different from the first embodiment in the above point, and the rest is common to the first embodiment.

本実施例によれば、図9に示すように、地中空洞5に土入り袋体15の複数が満たされてなる地中空洞5の補強構造が完成し、実施例1と同様の作用効果(ア)~(オ)が得られる。 According to this embodiment, as shown in FIG. 9, a reinforcement structure for the underground cavity 5 is completed by filling the underground cavity 5 with multiple soil-filled bags 15, and the same effects (A) to (E) as those of the first embodiment are obtained.

[実施例3]
実施例3の地中空洞の補強方法及び補強構造は、図10に示すように、
・調査計測工程で、地中空洞5に溜水18があることが確認できたことにより、
・袋体配置工程の後、袋体膨張工程を省いて土充填工程を行ったこと、すなわち、袋体11に流動化処理土14を充填するとともに袋体11を膨らませたこと
において実施例と相違し、その他は実施例1と共通である。
[Example 3]
The reinforcement method and structure of the underground cavity of the third embodiment are as shown in FIG.
During the investigation and measurement process, it was confirmed that there was water 18 in the underground cavity 5.
- After the bag placement process, the bag expansion process was omitted and the soil filling process was performed, i.e., the bag 11 was filled with liquefied treated soil 14 and the bag 11 was inflated, which is different from the embodiment, but the rest is the same as embodiment 1.

本実施例によれば、水よりも重い流動化処理土14によって、袋体11を地中空洞5の底部から広げていくことができる。
そして、本実施例によっても、最終的には実施例1の図6(b)と同様の地中空洞5の補強構造が完成し、実施例1と同様の作用効果(ア)~(エ)が得られる。
According to this embodiment, the bag 11 can be expanded from the bottom of the underground cavity 5 using the liquefied treated soil 14, which is heavier than water.
In this embodiment as well, a reinforcement structure for an underground cavity 5 similar to that shown in FIG. 6(b) of the first embodiment is finally completed, and the same effects (a) to (d) as those of the first embodiment are obtained.

[実施例4]
実施例4の地中空洞の補強方法及び補強構造は、図11に示すように、
・袋体配置工程で、地中空洞5の発生原因となった土砂流出部Rに、(膨らんだ時の中心部の高さが地中空洞高さより低い例えば0.3mで、直径が横方向の地中空洞長さよりも短い例えば0.7mの)袋体11を、当てるように置いたこと、また、袋体膨張工程を省いて袋体11に流動化処理土14を充填したこと、
・その後、地中空洞5の残部に、通孔6から充填材17としての流動化処理土を充填したこと、
・その後、土硬化工程を行ったこと
において実施例と相違し、その他は実施例1と共通である。
[Example 4]
The reinforcement method and structure of the underground cavity of the fourth embodiment are as shown in FIG.
In the bag placement process, the bag 11 (having a height at the center when inflated of, for example, 0.3 m, which is lower than the height of the underground cavity, and a diameter of, for example, 0.7 m, which is shorter than the horizontal length of the underground cavity) was placed against the soil outflow portion R that caused the underground cavity 5 to occur, and the bag expansion process was omitted and the bag 11 was filled with liquefied treated soil 14.
- After that, the remaining part of the underground cavity 5 was filled with liquefied treated soil as a filler 17 through the through hole 6;
This embodiment differs from the embodiment in that a hardening process was then carried out, but the rest is the same as embodiment 1.

本実施例によれば、図11(b)に示すように、土砂流出部Rに土入り袋体15が配置され、地中空洞5の残部に充填材17が充填されてなる地中空洞5の補強構造が完成し、実施例1と同様の作用効果(ア)~(ウ)が得られる。 According to this embodiment, as shown in FIG. 11(b), a soil-filled bag 15 is placed in the soil-flow area R, and the remaining part of the underground cavity 5 is filled with a filler material 17 to complete the reinforcement structure of the underground cavity 5, and the same effects (a) to (c) as those of the first embodiment are obtained.

[実施例5]
実施例5の地中空洞の補強方法及び補強構造は、図12及び図13に示すように、
・調査計測工程で、計測した地中空洞5の大きさが、実施例1よりも海-陸方向に大きく(例えば5~10m)、その直交方向は実施例1と同程度であったことにより、
・袋体配置工程で、2つの袋体11を折り畳んだ状態で、調査計測に用いた通孔6とは別の海付近と陸付近の二位置に形成した通孔6を通して地中空洞5に配置させたこと、
・土充填工程の後、形成された2つの土入り袋体(15)の相互間に、通孔6から充填材17としての流動化処理土を充填したこと、
・その後、土硬化工程を行ったこと
において実施例と相違し、その他は実施例1と共通である。
[Example 5]
The reinforcement method and structure of the underground cavity of the fifth embodiment are as shown in Figs. 12 and 13 .
In the investigation and measurement process, the size of the underground cavity 5 measured was larger in the sea-land direction than in Example 1 (for example, 5 to 10 m), but the perpendicular direction was about the same as in Example 1.
In the bag placement process, the two bags 11 were placed in the underground cavity 5 in a folded state through the through holes 6 formed in two positions near the sea and near the land, different from the through holes 6 used for the investigation and measurement.
After the soil filling step, the space between the two soil-filled bags (15) is filled with liquefied soil as a filler 17 through the through hole 6.
This embodiment differs from the embodiment in that a hardening process was then carried out, but the rest is the same as embodiment 1.

本実施例によれば、図13に示すように、地中空洞5が、土入り袋体15の横方向に相互間をおいた複数と、該相互間に充填された充填材17とで満たされてなる地中空洞5の補強構造が完成し、実施例1と同様の作用効果(ア)~(ウ)が得られる。 According to this embodiment, as shown in FIG. 13, the underground cavity 5 is filled with a plurality of soil-filled bags 15 spaced apart in the lateral direction and with filler material 17 filled between the bags, completing a reinforcement structure for the underground cavity 5, and providing the same effects (A) to (C) as in embodiment 1.

なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することができる。 The present invention is not limited to the above examples, and can be modified as appropriate without departing from the spirit of the invention.

1 コンクリート壁
2 土砂
3 地盤表層部
4 ヒューム管
5 地中空洞
6 通孔
7 充填確認孔
8 ロッド
9 カメラ
10 計測器
11 袋体
12 ホース
13 パイプ
14 流動化処理土
15 土入り袋体
16 無収縮モルタル
17 充填材
18 溜水
R 土砂流出部
REFERENCE SIGNS LIST 1 Concrete wall 2 Soil 3 Ground surface 4 Hume pipe 5 Underground cavity 6 Through hole 7 Filling confirmation hole 8 Rod 9 Camera 10 Measuring instrument 11 Bag 12 Hose 13 Pipe 14 Fluidized treated soil 15 Bag containing soil 16 Non-shrink mortar 17 Filling material 18 Pooled water R Soil runoff area

Claims (8)

地中空洞(5)が、不透水性の袋体(11)に、土粒子に水を加えた含水比80~300質量%かつ密度1.2~1.5g/cm 3 の調整泥水と固化材とを含む流動化処理土(14)が充填し硬化してなる土入り袋体(15)の1つ又は複数で、満たされていることを特徴とする地中空洞の補強構造。 The reinforcement structure for an underground cavity is characterized in that the underground cavity (5) is filled with one or more soil-filled bags (15) formed by filling and hardening a water-impermeable bag (11) with liquefied treated soil (14) containing adjusted mud water obtained by adding water to soil particles and having a moisture content of 80 to 300 mass % and a density of 1.2 to 1.5 g/cm 3, and a solidifying agent. 地中空洞(5)上の地盤表層部(3)に地中空洞(5)へ縦方向に通じる通孔(6)を形成する通孔形成工程と、
ホース(12)の下に接続した不透水性の袋体(11)を折り畳んだ状態で通孔(6)を通して地中空洞(5)に配置する袋体配置工程と、
前記袋体(11)にホース(12)から送った、土粒子に水を加えた含水比80~300質量%かつ密度1.2~1.5g/cm 3 の調整泥水と固化材とを含む流動化処理土(14)を充填する土充填工程と、
前記流動化処理土(14)を硬化させる土硬化工程とを含み、
地中空洞の全体を、前記袋体(11)に流動化処理土(14)が充填し硬化してなる土入り袋体(15)の1つ又は複数で満たして、補強することを特徴とする地中空洞の補強方法。
a through-hole forming step of forming a through-hole (6) in the ground surface layer (3) above the underground cavity (5) so as to vertically communicate with the underground cavity (5);
a bag placement step of placing the water-impermeable bag (11) connected below the hose (12) in a folded state in the underground cavity (5) through the through hole (6);
a soil filling step of filling the bag (11) with liquefied treated soil (14) containing a solidification material and adjusted mud water having a moisture content of 80 to 300 mass % and a density of 1.2 to 1.5 g/cm 3, which is obtained by adding water to soil particles, sent from a hose (12);
and a soil hardening step of hardening the liquefied treated soil (14),
This method for reinforcing an underground cavity is characterized in that the entire underground cavity is filled with one or more soil-filled bags (15) formed by filling the bags (11) with liquefied treated soil (14) and hardening the bags to reinforce the cavity.
袋体配置工程よりも前に、カメラ(9)と計測器(10)を通孔(6)を通して地中空洞(5)に配置して、カメラ(9)により地中空洞(5)の状況を調査し、計測器(10)により地中空洞(5)の大きさを計測する調査計測工程を含む請求項記載の地中空洞の補強方法。 A method for reinforcing an underground cavity as described in claim 2, which includes an investigation and measurement step of placing a camera (9) and a measuring instrument (10) in the underground cavity (5) through the through hole (6) prior to the bag placement step, investigating the condition of the underground cavity (5) with the camera (9) and measuring the size of the underground cavity (5) with the measuring instrument ( 10 ). 地中空洞(5)の大きさとして、通孔(6)真下の地中空洞高さを計測する請求項記載の地中空洞の補強方法。 4. The method for reinforcing an underground cavity according to claim 3 , wherein the size of the underground cavity (5) is determined by measuring the height of the underground cavity directly below the through hole (6). 地中空洞(5)の大きさとして、通孔(6)真下の地中空洞高さと横方向の地中空洞長さとを計測する請求項記載の地中空洞の補強方法。 4. The method for reinforcing an underground cavity according to claim 3 , wherein the size of the underground cavity (5) is determined by measuring the height of the underground cavity directly below the through hole (6) and the lateral length of the underground cavity. 袋体(11)が膨らんだ時の中心部の高さは、前記地中空洞高さの1倍~1.3倍である請求項4又は5記載の地中空洞の補強方法。 6. The method for reinforcing an underground cavity according to claim 4 or 5 , wherein the height of the center part of the bag body (11) when inflated is 1 to 1.3 times the height of the underground cavity. 袋体配置工程と土充填工程との間に、ホース(12)から送ったエアで袋体(11)を膨らませる袋体膨張工程を含む請求項2~6のいずれか一項に記載の地中空洞の補強方法。 A method for reinforcing an underground cavity according to any one of claims 2 to 6 , comprising a bag expansion step of inflating the bag (11) with air sent from a hose (12) between the bag placement step and the soil filling step. 地盤表層部(3)に、通孔(6)とは別の、地中空洞(5)へ縦方向に通じる充填確認孔(7)を形成する請求項2~7のいずれか一項に記載の地中空洞の補強方法。 A method for reinforcing an underground cavity according to any one of claims 2 to 7, comprising forming a filling confirmation hole (7) in the ground surface layer (3) separate from the through hole (6) and leading vertically to the underground cavity (5).
JP2020070718A 2020-04-10 2020-04-10 Reinforcement structure and method for underground cavity Active JP7492846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020070718A JP7492846B2 (en) 2020-04-10 2020-04-10 Reinforcement structure and method for underground cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020070718A JP7492846B2 (en) 2020-04-10 2020-04-10 Reinforcement structure and method for underground cavity

Publications (2)

Publication Number Publication Date
JP2021167517A JP2021167517A (en) 2021-10-21
JP7492846B2 true JP7492846B2 (en) 2024-05-30

Family

ID=78079643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020070718A Active JP7492846B2 (en) 2020-04-10 2020-04-10 Reinforcement structure and method for underground cavity

Country Status (1)

Country Link
JP (1) JP7492846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116397619A (en) * 2023-04-06 2023-07-07 广东建咨工程管理有限公司 A kind of cave filling construction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061166A (en) 2000-08-21 2002-02-28 Tsutomu Ichinose Underground cavity filling method and filling bag
JP2002348849A (en) 2001-05-29 2002-12-04 Nikko Kensetsu Kk Filling method for cavity in ground
JP2004346692A (en) 2003-05-26 2004-12-09 Japan Found Eng Co Ltd Packer and ground reinforcement method using it
JP2008013910A (en) 2006-06-30 2008-01-24 Fukuda Corp Bulkhead forming method and underground cavity filling method
JP2012012878A (en) 2010-07-02 2012-01-19 Fudo Tetra Corp Improving method of ground having underground cavity
JP2014190135A (en) 2013-03-28 2014-10-06 Kajima Corp Method and device for forming bulkhead

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061166A (en) 2000-08-21 2002-02-28 Tsutomu Ichinose Underground cavity filling method and filling bag
JP2002348849A (en) 2001-05-29 2002-12-04 Nikko Kensetsu Kk Filling method for cavity in ground
JP2004346692A (en) 2003-05-26 2004-12-09 Japan Found Eng Co Ltd Packer and ground reinforcement method using it
JP2008013910A (en) 2006-06-30 2008-01-24 Fukuda Corp Bulkhead forming method and underground cavity filling method
JP2012012878A (en) 2010-07-02 2012-01-19 Fudo Tetra Corp Improving method of ground having underground cavity
JP2014190135A (en) 2013-03-28 2014-10-06 Kajima Corp Method and device for forming bulkhead

Also Published As

Publication number Publication date
JP2021167517A (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Cheng et al. Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: a review
Rowe et al. A theoretical examination of the settlements induced by tunnelling: four case histories
Mair Tunnelling and geotechnics: new horizons
EP1375754B1 (en) A packing apparatus and method for soil nailing
Berthoz et al. TBM soft ground interaction: Experimental study on a 1 g reduced-scale EPBS model
TWI410552B (en) Method and construction settings for improving land and/or lifting structures
Shen et al. A new approach to improve soft ground in a railway station applying air-boosted vacuum preloading
US7645097B2 (en) Method for saturating cavities present in a mass of soil or in a body in general
Tacim et al. Importance of grouting for tunneling in karstic and complex environment (a case study from Türkiye)
KR20180096030A (en) Soft Soil Improvement Method Using High-Density Polyurethane
JP7492846B2 (en) Reinforcement structure and method for underground cavity
CN205776282U (en) A kind of immersed tube tunnel rebuilds cofferdam structure
JP3681902B2 (en) Seismic ground reinforcement method
JP5409302B2 (en) Water flow structure to prevent groundwater flow obstruction, method to prevent groundwater flow obstruction
KR100565866B1 (en) Internal cavity filling system for waste structure and filling method using same
JP4066340B2 (en) Ground improvement method
JP3037929B2 (en) How to fill underground cavities
Solodyankin et al. Protection of objects from the influence of long-term dynamic loads
KR200332284Y1 (en) Inside hollow of abandoned structure filling structure
KR100652187B1 (en) Grouting and Installation Method of Culvert Installation Site in Sanbokdo Road
Soliman et al. Effects of intergranular strains of hypoplasticity models on sinkhole-induced ground deformations
Reznik Evaluation of allowable pressure under foundations
Konstantinidis An Overview of Tunnel Design and a Comprehensive Study of Tunnel Face Stability
KR100385998B1 (en) Method for prevention leaking by using packing of a construction joint part
JPH0650466A (en) Method of constructing underground culvert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520

R150 Certificate of patent or registration of utility model

Ref document number: 7492846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150