[go: up one dir, main page]

JP7488130B2 - Sewage treatment device and sewage treatment method - Google Patents

Sewage treatment device and sewage treatment method Download PDF

Info

Publication number
JP7488130B2
JP7488130B2 JP2020111271A JP2020111271A JP7488130B2 JP 7488130 B2 JP7488130 B2 JP 7488130B2 JP 2020111271 A JP2020111271 A JP 2020111271A JP 2020111271 A JP2020111271 A JP 2020111271A JP 7488130 B2 JP7488130 B2 JP 7488130B2
Authority
JP
Japan
Prior art keywords
wastewater
reaction tank
membrane separation
electron donor
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020111271A
Other languages
Japanese (ja)
Other versions
JP2022010607A (en
Inventor
太郎 三好
進 石田
亮 張
輝美 円谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2020111271A priority Critical patent/JP7488130B2/en
Publication of JP2022010607A publication Critical patent/JP2022010607A/en
Application granted granted Critical
Publication of JP7488130B2 publication Critical patent/JP7488130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は汚水処理装置及び汚水処理方法に関する。 The present invention relates to a wastewater treatment device and a wastewater treatment method.

従来より、汚水を生物処理するための反応槽と、反応槽に浸漬され且つ生物処理された汚水から固形物を除去するための膜分離装置と、膜分離装置の下部に設置され且つ膜分離装置に対して空気等の気体を供給する散気管とを備える汚水処理装置が知られ、反応槽における汚水の生物処理は、例えば、微生物を含む有機汚泥、すなわち、いわゆる活性汚泥によって汚水が処理される活性汚泥法に基づいて実行される。具体的に、活性汚泥法においては、酸素存在下(好気状態)でアンモニアを亜硝酸や硝酸に変換する硝化反応が行われ、無酸素状態で亜硝酸や硝酸を窒素に変換する脱窒反応が行われる。脱窒反応は硝化反応が行われる反応槽と異なる反応槽で行われてもよいが、汚水処理装置の省スペース化を実現するために、単一の反応槽内で硝化反応及び脱窒反応が行われる汚水処理装置が提案されている(例えば、特許文献1及び2参照)。 Conventionally, a sewage treatment apparatus is known that includes a reaction tank for biologically treating sewage, a membrane separation device immersed in the reaction tank for removing solids from the biologically treated sewage, and an aeration pipe installed below the membrane separation device for supplying gas such as air to the membrane separation device. The biological treatment of sewage in the reaction tank is carried out based on the activated sludge method in which sewage is treated with organic sludge containing microorganisms, i.e., activated sludge. Specifically, in the activated sludge method, a nitrification reaction is carried out in the presence of oxygen (aerobic state) to convert ammonia to nitrite and nitrate, and a denitrification reaction is carried out in an anoxic state to convert nitrite and nitrate to nitrogen. The denitrification reaction may be carried out in a reaction tank different from the reaction tank in which the nitrification reaction is carried out, but in order to realize space saving in the sewage treatment apparatus, a sewage treatment apparatus in which the nitrification reaction and the denitrification reaction are carried out in a single reaction tank has been proposed (see, for example, Patent Documents 1 and 2).

図3は従来の汚水処理装置を概略的に示す図である。図3の汚水処理装置は、好気状態での硝化反応及び無酸素状態での脱窒反応を行う反応槽1と、汚水を原水槽9から反応槽1に供給するための原水供給装置10とを備え、反応槽1は、反応槽1内を複数の区画に仕切るための仕切板7を有する。具体的に、反応槽1は、仕切板7で囲まれる汚水領域Aと、仕切板7及び反応槽1の内壁で囲まれる汚水領域Bとに仕切られ、汚水領域Aは膜分離装置2及び散気管4を有する。また、反応槽1は最低水位LWL(Low water level)と最高水位HWL(High water level)とを有し、仕切板7の上端部は最低水位LWLと最高水位HWLとの間に位置する。 Figure 3 is a schematic diagram of a conventional wastewater treatment device. The wastewater treatment device in Figure 3 includes a reaction tank 1 in which a nitrification reaction occurs under aerobic conditions and a denitrification reaction occurs under anaerobic conditions, and a raw water supply device 10 for supplying wastewater from a raw water tank 9 to the reaction tank 1. The reaction tank 1 has a partition plate 7 for dividing the reaction tank 1 into a plurality of compartments. Specifically, the reaction tank 1 is divided into a wastewater area A surrounded by the partition plate 7 and a wastewater area B surrounded by the partition plate 7 and the inner wall of the reaction tank 1, and the wastewater area A has a membrane separation device 2 and an aeration pipe 4. The reaction tank 1 has a minimum water level LWL (Low water level) and a maximum water level HWL (High water level), and the upper end of the partition plate 7 is located between the minimum water level LWL and the maximum water level HWL.

図3の汚水処理装置においては、反応槽1への汚水の供給と停止を制御することにより、反応槽1内の汚水の水位が変化するように構成されている。これにより、汚水の水位は仕切板7の上端部より高い位置(以下、「汚水越流位置」という。)と、仕切板7の上端部より低い位置(以下、「汚水非越流位置」という。)とを往来する。 The wastewater treatment device in Figure 3 is configured so that the wastewater level in the reaction tank 1 changes by controlling the supply and stop of wastewater to the reaction tank 1. As a result, the wastewater level moves between a position higher than the upper end of the partition plate 7 (hereinafter referred to as the "sewage overflow position") and a position lower than the upper end of the partition plate 7 (hereinafter referred to as the "sewage non-overflow position").

図4は、図3における反応槽1内の汚水の水位が汚水越流位置のときの汚水の流れを概略的に示す図である。 Figure 4 is a schematic diagram showing the flow of wastewater when the water level in the reaction tank 1 in Figure 3 is at the wastewater overflow position.

汚水の水位が汚水越流位置にあるとき、散気管4から膜分離装置2に対して供給される空気により、汚水が仕切板7の上端を越流し、仕切板7の周囲を循環する循環流が形成される。この循環流により、汚水領域Aの硝酸等は汚水領域Bに移行し、汚水領域Aの空気の大半は汚水領域Bに移行することなく反応槽1の外部に放出される。すなわち、循環流が形成されると、汚水領域Aでは酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、汚水領域Bでは循環流に乗って汚水領域Aから移動した亜硝酸や硝酸を無酸素状態下で窒素に変換する脱窒反応が進行する。 When the wastewater level is at the wastewater overflow position, the air supplied from the air diffuser 4 to the membrane separation device 2 causes the wastewater to overflow the upper end of the partition plate 7, forming a circulating flow around the partition plate 7. This circulating flow causes nitric acid and other substances in the wastewater area A to move to the wastewater area B, and most of the air in the wastewater area A is released outside the reaction tank 1 without moving to the wastewater area B. In other words, when the circulating flow is formed, a nitrification reaction takes place in the wastewater area A in which ammonia is converted into nitrite and nitrate in the presence of oxygen, and a denitrification reaction takes place in the wastewater area B in which the nitrite and nitrate that have moved from the wastewater area A on the circulating flow are converted into nitrogen in an anoxic state.

一方、汚水の水位が汚水非越流位置にあるとき、汚水領域Aと汚水領域Bとの間で汚水の流通が分断されるため、散気管4が膜分離装置2に空気を供給しても、仕切板7の周囲を循環する循環流は形成されない。すなわち、汚水領域Aでは酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、汚水領域Bでは汚水の流通が分断される前に汚水領域Aから移動した亜硝酸や硝酸を無酸素状態下で窒素に変換する脱窒反応が進行する。 On the other hand, when the wastewater level is at the wastewater non-overflow position, the flow of wastewater is interrupted between wastewater area A and wastewater area B, so even if the air diffuser 4 supplies air to the membrane separation device 2, no circulating flow is formed around the partition plate 7. That is, in wastewater area A, a nitrification reaction takes place in which ammonia is converted into nitrite and nitrate in the presence of oxygen, while in wastewater area B, a denitrification reaction takes place in which nitrite and nitrate that moved from wastewater area A before the flow of wastewater was interrupted are converted into nitrogen in anoxic conditions.

このような仕切板挿入型の汚水処理装置において、無酸素状態で進行する脱窒反応に必要な電子供与体を補う方法として、汚水の水位が汚水非越流位置であるときに、反応槽内の水位が仕切板の上端を越えない量の原水を仕切板の外部領域(無酸素領域)に供給する方法が提案されている(特許文献2参照)。 In this type of partition-insertion type wastewater treatment device, a method has been proposed for supplementing the electron donor required for the denitrification reaction that proceeds in an anaerobic state, in which when the wastewater level is at the non-overflow position, raw water is supplied to the area outside the partition (anaerobic area) in an amount that does not cause the water level in the reaction tank to exceed the upper end of the partition (see Patent Document 2).

特開2004-261711号公報JP 2004-261711 A 特開2018-103129号公報JP 2018-103129 A

しかしながら、汚水処理装置の反応槽に供給する原水中の有機物の量は原水の種類に応じて変動する。また、仕切板挿入型の汚水処理装置のように活性汚泥法と膜分離を組み合わせて汚水処理を行う場合には、膜分離の負荷を低減するため、予め有機物を低減した原水が反応槽に供給される場合が多い。そのため、無酸素状態が維持される領域に原水を供給した場合であっても、脱窒反応に必要な電子供与体を十分に供給することができず、窒素除去効率の高い汚水処理を安定して実行することができないという問題があった。 However, the amount of organic matter in the raw water supplied to the reaction tank of the sewage treatment device varies depending on the type of raw water. In addition, when sewage treatment is performed by combining the activated sludge process and membrane separation, as in the case of a partition-insertion type sewage treatment device, raw water in which the organic matter has been reduced in advance is often supplied to the reaction tank in order to reduce the load on the membrane separation. Therefore, even when raw water is supplied to an area where an anoxic state is maintained, it is not possible to supply a sufficient amount of electron donor required for the denitrification reaction, and there is a problem that sewage treatment with high nitrogen removal efficiency cannot be performed stably.

本発明は、脱窒反応に必要な電子供与体を十分に供給することができ、窒素除去効率の高い汚水処理を安定して実行することができる汚水処理装置及び汚水処理方法を提供することを目的とする。 The present invention aims to provide a wastewater treatment device and a wastewater treatment method that can provide a sufficient supply of electron donors required for the denitrification reaction and can stably perform wastewater treatment with high nitrogen removal efficiency.

上記目的を達成するために、本発明の汚水処理装置は、汚水の好気性処理および無酸素処理を行う反応槽の内部に、膜分離装置と、散気管と、前記反応槽の内部を複数の区画に仕切る仕切板とを備え、前記処理される汚水を反応槽に供給する手段と、反応槽内の水位を仕切板上端よりも高い状態と低い状態とに切り換えるための水位制御手段を備える汚水処理装置であって、前記複数の区画のうちの少なくとも一つの区画を膜分離装置および散気管が配置された好気区画とし、その他の区画で無酸素処理を行う汚水処理装置において、前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給する手段を設け、前記処理される汚水が嫌気処理を施した汚水であり、前記電子供与体含有液が嫌気処理を施さない汚水であることを特徴とする。
また、上記目的を達成するために、本発明の汚水処理装置は、汚水の好気性処理および無酸素処理を行う反応槽の内部に、膜分離装置と、散気管と、前記反応槽の内部を複数の区画に仕切る仕切板とを備え、前記処理される汚水を反応槽に供給する手段と、反応槽内の水位を仕切板上端よりも高い状態と低い状態とに切り換えるための水位制御手段を備える汚水処理装置であって、前記複数の区画のうちの少なくとも一つの区画を膜分離装置および散気管が配置された好気区画とし、その他の区画で無酸素処理を行う汚水処理装置において、前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給する手段を設け、前記電子供与体含有液の供給量が、反応槽内の水位が仕切板の上端を越えない量であることを特徴とする。
In order to achieve the above object, the sewage treatment device of the present invention is provided with a membrane separation device, an aeration pipe, and a partition plate that divides the inside of the reaction tank into a plurality of compartments inside the reaction tank for aerobic and anaerobic treatment of sewage, a means for supplying the sewage to be treated to the reaction tank, and a water level control means for switching the water level in the reaction tank between a state higher than the upper end of the partition plate and a state lower than the upper end of the partition plate, wherein at least one of the plurality of compartments is an aerobic compartment in which a membrane separation device and an aeration pipe are arranged, and anaerobic treatment is performed in the other compartments, and the sewage treatment device is characterized in that when the water level in the reaction tank is lower than the upper end of the partition plate, a means is provided for supplying an electron donor-containing liquid different from the sewage to be treated to the other compartments in the reaction tank , and the sewage to be treated is sewage that has been subjected to anaerobic treatment, and the electron donor-containing liquid is sewage that has not been subjected to anaerobic treatment .
In order to achieve the above-mentioned object, the sewage treatment device of the present invention is provided with a membrane separation device, an aeration pipe, and a partition plate that divides the inside of the reaction tank into a plurality of compartments inside the reaction tank for performing aerobic and anaerobic treatment of sewage, a means for supplying the sewage to be treated to the reaction tank, and a water level control means for switching the water level in the reaction tank between a state higher than the upper end of the partition plate and a state lower than the upper end of the partition plate, and is characterized in that at least one of the plurality of compartments is an aerobic compartment in which a membrane separation device and an aeration pipe are arranged, and anaerobic treatment is performed in the other compartments, and the sewage treatment device is provided with a means for supplying an electron donor-containing liquid different from the sewage to be treated to the other compartments in the reaction tank when the water level in the reaction tank is lower than the upper end of the partition plate, and the amount of the electron donor-containing liquid supplied is an amount that does not cause the water level in the reaction tank to exceed the upper end of the partition plate.

上記目的を達成するために、本発明の汚水処理方法は、膜分離装置と散気管とを配置した反応槽内で汚水の好気性処理および無酸素処理を行う汚水処理方法であって、膜分離装置の周囲を仕切板で区画し、膜分離装置の下方から散気管により曝気を行うとともに、反応槽内の水位を調節することにより、膜分離装置および散気管が配置された区画内を好気状態に維持しつつ、その他の区画で無酸素処理を行う汚水処理方法において、前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給し、前記処理される汚水が嫌気処理を施した汚水であり、前記電子供与体含有液が嫌気処理を施さない汚水であることを特徴とする。
また、上記目的を達成するために、本発明の汚水処理方法は、膜分離装置と散気管とを配置した反応槽内で汚水の好気性処理および無酸素処理を行う汚水処理方法であって、膜分離装置の周囲を仕切板で区画し、膜分離装置の下方から散気管により曝気を行うとともに、反応槽内の水位を調節することにより、膜分離装置および散気管が配置された区画内を好気状態に維持しつつ、その他の区画で無酸素処理を行う汚水処理方法において、前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給し、前記電子供与体含有液の供給量が、反応槽内の水位が仕切板の上端を越えない量であることを特徴とする
In order to achieve the above-mentioned object, the wastewater treatment method of the present invention is a method for performing aerobic and anaerobic treatment of wastewater in a reaction tank in which a membrane separation device and an aeration pipe are arranged, the periphery of the membrane separation device is partitioned with a partition plate, and aeration is performed with an aeration pipe from below the membrane separation device, while the water level in the reaction tank is adjusted to maintain an aerobic state in the compartment in which the membrane separation device and the aeration pipe are arranged while performing anaerobic treatment in the other compartments, characterized in that when the water level in the reaction tank is lower than the upper end of the partition plate, an electron donor-containing liquid different from the wastewater to be treated is supplied to the other compartments in the reaction tank , and the wastewater to be treated is wastewater that has been subjected to anaerobically treated wastewater, and the electron donor-containing liquid is wastewater that has not been subjected to anaerobically treated wastewater .
In addition, in order to achieve the above-mentioned object, the sewage treatment method of the present invention is a sewage treatment method for performing aerobic treatment and anaerobic treatment of sewage in a reaction tank in which a membrane separation device and an aeration pipe are arranged, the periphery of the membrane separation device is partitioned with a partition plate, aeration is performed with an aeration pipe from below the membrane separation device, and the water level in the reaction tank is adjusted to maintain an aerobic state in the compartment in which the membrane separation device and the aeration pipe are arranged while performing anaerobic treatment in the other compartments, characterized in that when the water level in the reaction tank is lower than the upper end of the partition plate, an electron donor-containing liquid different from the sewage to be treated is supplied to the other compartments in the reaction tank, and the amount of the electron donor-containing liquid supplied is an amount that does not cause the water level in the reaction tank to exceed the upper end of the partition plate .

本発明によれば、脱窒反応に必要な電子供与体を十分に供給することができ、窒素除去効率の高い汚水処理を安定して実行することができる。 According to the present invention, it is possible to supply a sufficient amount of electron donor required for the denitrification reaction, and it is possible to stably carry out wastewater treatment with high nitrogen removal efficiency.

本発明の第1の実施の形態に係る汚水処理装置を概略的に示す図である。1 is a diagram illustrating a schematic diagram of a wastewater treatment device according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る汚水処理装置を概略的に示す図である。FIG. 13 is a schematic diagram showing a wastewater treatment device according to a second embodiment of the present invention. 従来の汚水処理装置を概略的に示す図である。FIG. 1 is a schematic diagram of a conventional wastewater treatment device. 図3における反応槽内の汚水の流れを概略的に示す側面図である。FIG. 4 is a side view showing a schematic diagram of the flow of wastewater in the reaction tank in FIG. 3 .

以下、本発明の実施の形態について図面を参照しながら詳述する。 The following describes in detail the embodiments of the present invention with reference to the drawings.

図1は、本発明の第1の実施の形態に係る汚水処理装置を概略的に示す図である。 Figure 1 is a schematic diagram of a wastewater treatment device according to a first embodiment of the present invention.

図1の汚水処理装置は、汚水を収容する原水槽9と、汚水を処理するための単槽式の反応槽1と、反応槽1に供給する汚水を予め嫌気処理するための嫌気処理装置20と、嫌気処理されていない汚水を反応槽1に供給するためのバイパス管21とを備える。
本発明において「原水」とは、嫌気処理を含む汚水処理を行う前の水を意味し、代表的には下水又はし尿などの汚水である。
The sewage treatment system in FIG. 1 comprises a raw water tank 9 for storing sewage, a single-tank reaction tank 1 for treating the sewage, an anaerobic treatment device 20 for anaerobically treating the sewage to be supplied to the reaction tank 1 in advance, and a bypass pipe 21 for supplying sewage that has not been anaerobically treated to the reaction tank 1.
In the present invention, the term "raw water" refers to water prior to wastewater treatment, including anaerobic treatment, and is typically wastewater such as sewage or human waste.

反応槽1は、汚水に含まれる汚染物質を分離する膜分離装置2と、膜分離装置2に気泡状の空気を供給する散気管4と、反応槽1の内部を複数の領域に仕切る仕切板7とを有する。仕切板7は底部が反応槽1の底面から離間して設けられている。仕切板7は、膜分離装置2の横方向の全周囲を囲包しており、反応槽1の内部を、膜分離装置2及び散気管4が配置される内部領域11(好気区画)と、内部領域11以外の外部領域12とに仕切っている。膜分離装置2は反応槽1の外部の吸引ポンプ3に接続されている。吸引ポンプ3が駆動すると、生物処理された汚水は膜分離装置2によってろ過され、ろ過された水は反応槽1の槽外に取り出される。 The reaction tank 1 has a membrane separation device 2 that separates pollutants contained in the wastewater, an aeration pipe 4 that supplies air bubbles to the membrane separation device 2, and a partition plate 7 that divides the inside of the reaction tank 1 into multiple areas. The bottom of the partition plate 7 is provided away from the bottom surface of the reaction tank 1. The partition plate 7 surrounds the entire lateral periphery of the membrane separation device 2 and divides the inside of the reaction tank 1 into an inner area 11 (aerobic section) where the membrane separation device 2 and the aeration pipe 4 are arranged, and an outer area 12 other than the inner area 11. The membrane separation device 2 is connected to a suction pump 3 outside the reaction tank 1. When the suction pump 3 is driven, the biologically treated wastewater is filtered by the membrane separation device 2, and the filtered water is taken out of the reaction tank 1.

散気管4は、膜分離装置2の下部に設置されるとともに、反応槽1の外部のブロワ5に接続され、ブロワ5は散気管4に空気を供給している。膜分離装置2は汚水をろ過するため、膜分離装置2の膜面には汚水中の汚泥物質等が付着し、膜分離装置2の膜面に付着した汚水中の汚泥物質等を放置すると、膜分離装置2が目詰まりして適切に汚水をろ過することができなくなる。したがって、散気管4が空気を膜分離装置2の膜面に供給し、汚泥物質等が膜分離装置2の膜面に付着するのを防止している。 The aeration pipe 4 is installed at the bottom of the membrane separation device 2 and is connected to a blower 5 outside the reaction tank 1, and the blower 5 supplies air to the aeration pipe 4. Since the membrane separation device 2 filters wastewater, sludge substances in the wastewater adhere to the membrane surface of the membrane separation device 2. If the sludge substances in the wastewater adhering to the membrane surface of the membrane separation device 2 are left as they are, the membrane separation device 2 will become clogged and will no longer be able to properly filter the wastewater. Therefore, the aeration pipe 4 supplies air to the membrane surface of the membrane separation device 2, preventing sludge substances from adhering to the membrane surface of the membrane separation device 2.

反応槽1には、微生物を含む有機汚泥、すなわち、いわゆる活性汚泥が収容されており、この微生物が有機物を分解し生物処理を行う。この微生物には、汚水の処理を実行するために、内部領域11で硝化反応を行うための硝化菌と、外部領域12で脱窒反応を行うための脱窒菌とが含まれる。これらの微生物を含有する汚泥自体はこの分野において周知である。 The reaction tank 1 contains organic sludge containing microorganisms, i.e., activated sludge, which decomposes organic matter and performs biological treatment. The microorganisms include nitrifying bacteria for carrying out a nitrification reaction in the inner region 11 and denitrifying bacteria for carrying out a denitrification reaction in the outer region 12 in order to treat the wastewater. The sludge itself containing these microorganisms is well known in this field.

膜分離装置2には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などを用いることができ、膜の形状は平膜、中空糸膜などが用いられる。本発明で用いられる膜分離装置自体はこの分野において周知である。 For the membrane separation device 2, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, etc. can be used, and the shape of the membrane can be a flat membrane, a hollow fiber membrane, etc. The membrane separation device used in the present invention is itself well known in this field.

嫌気処理装置20は、反応槽1内の膜分離装置2の負荷を低減するため、原水槽9から供給された汚水の嫌気処理を行う。嫌気処理は、無酸素条件下において、汚水中の高分子状有機物を嫌気性微生物によりアンモニア、メタンガス及び二酸化炭素などに変換する処理である。具体的に、汚水中の高分子状有機物は嫌気性微生物により加水分解され、可溶性のアミノ酸、糖類、高級脂肪酸になる。次いで、微生物の細胞内に取り込まれたアミノ酸、糖類、高級脂肪酸は代謝分解され、酢酸、水素、二酸化炭素、アンモニア及び硫化水素に変換される。酢酸、水素、二酸化炭素は、最終的にバイオエネルギーとして利用可能なメタンガスに変換される。この嫌気処理において生成したアンモニアを含む汚水は、反応槽1に供給され好気性処理(硝化反応)及び無酸素処理(脱窒反応)に供される。 The anaerobic treatment device 20 performs anaerobic treatment of wastewater supplied from the raw water tank 9 in order to reduce the load on the membrane separation device 2 in the reaction tank 1. Anaerobic treatment is a process in which polymeric organic matter in wastewater is converted into ammonia, methane gas, carbon dioxide, etc. by anaerobic microorganisms under anoxic conditions. Specifically, polymeric organic matter in wastewater is hydrolyzed by anaerobic microorganisms to become soluble amino acids, sugars, and higher fatty acids. Next, the amino acids, sugars, and higher fatty acids taken into the cells of the microorganisms are metabolically decomposed and converted into acetic acid, hydrogen, carbon dioxide, ammonia, and hydrogen sulfide. The acetic acid, hydrogen, and carbon dioxide are finally converted into methane gas that can be used as bioenergy. The wastewater containing ammonia produced in this anaerobic treatment is supplied to the reaction tank 1 and subjected to aerobic treatment (nitrification reaction) and anaerobic treatment (denitrification reaction).

本実施の態様において、嫌気処理には、汚水の性状に応じて様々な処理方法が適用できる。固形物を多く含む高濃度の汚水には、機械撹拌装置やガス撹拌装置を備えた完全混合型メタン発酵槽の適用が一般的である。また、固形物が少なく比較的低濃度の汚水では、ろ材を充填した嫌気性濾床法、担体を充填した嫌気性流動床法、上昇流嫌気性スラッジブランケット(Upflow Anaerobic Sludge Blanket)法(以下、UASB法という。)、嫌気性膜分離(Anaerobic membrane bioreactor)法(以下、AnMBR法という。)等を用いることができる。UASB法は、嫌気性微生物群の凝集及び集塊機能を利用して沈降性の優れたグラニュール状汚泥を形成させることにより、反応槽内に高濃度の微生物を保持し、高速処理を可能とする嫌気処理法である。UASB装置の反応器は、底部の原水導入部、反応部(スラッジベッド及びスラッジブランケット部)、及び上部の気液固分離部から構成される。具体的に、反応器底部の原水導入部から汚水が均一に流入し、流入した汚水が反応部を上昇流として通過するとともにグラニュール状汚泥と接触して嫌気処理され、反応器上部の気液固分離部においてガス-汚泥-液の三相が分離される。UASB法は、このようなシンプルな構成により建設コストや維持コストが安く、高速処理が可能なため発酵槽のコンパクト化が可能であり、他の嫌気性処理技術と比較して経済性に優れるという利点がある。 In this embodiment, various treatment methods can be applied to the anaerobic treatment depending on the properties of the wastewater. For high-concentration wastewater containing a large amount of solids, a complete mixing type methane fermentation tank equipped with a mechanical stirring device or a gas stirring device is generally applied. For relatively low-concentration wastewater containing few solids, an anaerobic filter bed method filled with filter media, an anaerobic fluidized bed method filled with carriers, an upflow anaerobic sludge blanket method (hereinafter referred to as the UASB method), an anaerobic membrane bioreactor method (hereinafter referred to as the AnMBR method), etc. can be used. The UASB method is an anaerobic treatment method that retains a high concentration of microorganisms in a reaction tank and enables high-speed treatment by forming granular sludge with excellent settling properties by utilizing the coagulation and agglomeration functions of anaerobic microbial groups. The reactor of the UASB system is composed of a raw water inlet at the bottom, a reaction section (sludge bed and sludge blanket section), and a gas-liquid-solid separation section at the top. Specifically, wastewater flows in uniformly from the raw water inlet at the bottom of the reactor, passes through the reaction section as an upward flow, and is anaerobically treated in contact with granular sludge, and the three phases of gas, sludge, and liquid are separated in the gas-liquid-solid separation section at the top of the reactor. The UASB method has the advantage of being more economical than other anaerobic treatment technologies, as construction and maintenance costs are low due to its simple configuration, and high-speed treatment allows the fermentation tank to be made compact.

AnMBR法は、嫌気性処理と膜分離技術(以下、MBR技術という。)を組み合わせた方法である。MBR技術は微生物より小さい孔径を有する精密ろ過膜などの分離膜を用いることにより、反応槽外への微生物の流出を防止することができる。すなわち、AnMBR法は、嫌気処理を行う反応槽内に膜分離装置を設置することにより、ろ過膜により汚水中の汚染物質を分離するとともに、反応槽内に保持した嫌気性微生物により有機物を分解することができる。このような構成により、AnMBR法は反応槽内に嫌気性微生物を高濃度に保持することができ、膜分離により清浄化された処理水を得ることができるという利点がある。 The AnMBR method combines anaerobic treatment with membrane separation technology (hereinafter referred to as MBR technology). MBR technology uses a separation membrane such as a microfiltration membrane with pores smaller than the microorganisms, which can prevent the outflow of microorganisms outside the reaction tank. In other words, the AnMBR method installs a membrane separation device in the reaction tank where anaerobic treatment is performed, and can separate pollutants in the wastewater using the filtration membrane and decompose organic matter using anaerobic microorganisms held in the reaction tank. With this configuration, the AnMBR method has the advantage of being able to hold a high concentration of anaerobic microorganisms in the reaction tank and obtain purified treated water through membrane separation.

嫌気処理装置20で嫌気処理された汚水は、例えば、BOD(生物化学的酸素要求量)が200~3000mg/L、好ましくは100~1000mg/Lであり、T-N(総窒素濃度)は100~2000mg/Lである。したがって、BOD/T-Nは1以下となることが少なくない。このため、嫌気処理された汚水のみを反応槽1に供給する場合には、反応槽1において脱窒に必要な電子供与体が不足する場合が多い。なお、BODは下水道試験法に記載されている手法に準拠して測定される。 The wastewater anaerobically treated in the anaerobic treatment device 20 has, for example, a BOD (biochemical oxygen demand) of 200 to 3000 mg/L, preferably 100 to 1000 mg/L, and a T-N (total nitrogen concentration) of 100 to 2000 mg/L. Therefore, the BOD/T-N ratio is often 1 or less. For this reason, when only anaerobically treated wastewater is supplied to the reaction tank 1, there is often a shortage of electron donors required for denitrification in the reaction tank 1. The BOD is measured in accordance with the method described in the Sewerage Testing Method.

嫌気処理装置20で嫌気処理された汚水は、ポンプ15を介して反応槽1に供給される。図1において、嫌気処理された汚水は仕切板7の外部領域12に供給されているが、内部領域11に供給されていてもよい。 The wastewater anaerobically treated in the anaerobic treatment device 20 is supplied to the reaction tank 1 via the pump 15. In FIG. 1, the anaerobically treated wastewater is supplied to the outer region 12 of the partition plate 7, but it may also be supplied to the inner region 11.

本実施の形態では、反応槽1内の水位を調節し、反応槽内の水位を仕切板上端よりも高い状態と低い状態とに切り換えるための水位制御手段(不図示)を有する。水位制御手段としては、例えば、反応槽1内の水位、すなわち、液表面の位置を調べる液面センサーがある。液面センサーが汚水の水位を検出し、検出された水位に基づいてポンプ15が汚水の反応槽1への供給と停止を制御することにより、汚水の水位を汚水越流位置と汚水非越流位置とに切り換えることができる。 In this embodiment, a water level control means (not shown) is provided for adjusting the water level in the reaction tank 1 and switching the water level in the reaction tank between a state higher than the upper end of the partition plate and a state lower than the upper end of the partition plate. An example of the water level control means is a liquid level sensor that detects the water level in the reaction tank 1, i.e., the position of the liquid surface. The liquid level sensor detects the wastewater level, and the pump 15 controls the supply and stop of the wastewater to the reaction tank 1 based on the detected water level, so that the wastewater level can be switched between a wastewater overflow position and a wastewater non-overflow position.

汚水の水位が汚水越流位置にあるとき、散気管4から膜分離装置2に対して供給される空気により、汚水が仕切板7の上端を越流し、仕切板7の周囲を循環する循環流が形成される。この循環流により、内部領域11の硝酸等は外部領域12に移行し、内部領域11の空気の大半は外部領域12に移行することなく反応槽1の外部に放出される。すなわち、循環流が形成されると、内部領域11では硝化菌により酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、外部領域12では循環流に乗って汚水領域から移動した亜硝酸や硝酸を脱窒菌により無酸素状態下で窒素に変換する脱窒反応が進行する。 When the wastewater level is at the wastewater overflow position, the air supplied from the air diffuser 4 to the membrane separation device 2 causes the wastewater to overflow the upper end of the partition plate 7, forming a circulation flow that circulates around the partition plate 7. This circulation flow causes nitric acid and the like in the internal region 11 to migrate to the external region 12, and most of the air in the internal region 11 is released to the outside of the reaction tank 1 without migrating to the external region 12. In other words, when the circulation flow is formed, a nitrification reaction proceeds in the internal region 11, in which nitrifying bacteria convert ammonia to nitrite and nitrate in the presence of oxygen, and a denitrification reaction proceeds in the external region 12, in which denitrifying bacteria convert the nitrite and nitrate that have migrated from the wastewater region on the circulation flow into nitrogen in anoxic conditions.

一方、汚水の水位が汚水非越流位置にあるとき、内部領域11と外部領域12との間で汚水の流通が分断されるため、散気管4が膜分離装置2に空気を供給しても、仕切板7の周囲を循環する循環流は形成されない。すなわち、内部領域11では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、外部領域12では汚水の流通が分断される前に内部領域11から移動した亜硝酸や硝酸を無酸素状態下で窒素に変換する脱窒反応が進行する。 On the other hand, when the wastewater level is at the wastewater non-overflow position, the flow of wastewater is interrupted between the inner region 11 and the outer region 12, so even if the air diffuser 4 supplies air to the membrane separation device 2, no circulation flow is formed around the partition plate 7. That is, in the inner region 11, a nitrification reaction takes place in which ammonia is converted into nitrite and nitrate in the presence of oxygen, while in the outer region 12, a denitrification reaction takes place in which nitrite and nitrate that moved from the inner region 11 before the flow of wastewater was interrupted are converted into nitrogen in anoxic conditions.

外部領域12で進行する脱窒反応は、亜硝酸や硝酸が無酸素状態下で窒素に還元される反応であり、電子受容体である亜硝酸や硝酸を還元するのに十分な電子供与体が必要である。しかし、上記のように嫌気処理を施した汚水は電子供与体の濃度が低いため、脱窒反応に必要な電子供与体が不足する場合がある。 The denitrification reaction that takes place in the external region 12 is a reaction in which nitrite and nitrate are reduced to nitrogen under anoxic conditions, and requires a sufficient amount of electron donor to reduce the electron acceptors, nitrite and nitrate. However, as described above, the concentration of electron donors in wastewater that has been anaerobically treated is low, and there are cases in which the electron donors required for the denitrification reaction are insufficient.

本実施の形態では、このような電子供与体の不足を補うため、原水槽9から供給される汚水の一部が、嫌気処理装置20を経由せずに迂回するバイパス管21を介して反応槽1の外部領域12に供給される。バイパス管21を経て反応槽1に供給される汚水は嫌気処理を施されていないため、原水槽9に収容されていた汚水そのものであり、嫌気処理装置20を経由して供給される汚水よりも高濃度の電子供与体を含んでいる。すなわち、バイパス管21を介して原水槽9の汚水を反応槽1に供給することにより、より高濃度の電子供与体を含む汚水を脱窒反応が進行する外部領域12に供給することができる。 In this embodiment, to compensate for this lack of electron donors, a portion of the wastewater supplied from the raw water tank 9 is supplied to the external region 12 of the reaction tank 1 via a bypass pipe 21 that bypasses the anaerobic treatment device 20. The wastewater supplied to the reaction tank 1 via the bypass pipe 21 has not been subjected to anaerobic treatment, and is therefore the same wastewater that was contained in the raw water tank 9, and contains a higher concentration of electron donors than the wastewater supplied via the anaerobic treatment device 20. In other words, by supplying the wastewater from the raw water tank 9 to the reaction tank 1 via the bypass pipe 21, wastewater containing a higher concentration of electron donors can be supplied to the external region 12 where the denitrification reaction proceeds.

汚水の水位が汚水越流位置にあるときにバイパス管21を介した汚水を外部領域12に供給すると、仕切板7の周囲を循環する循環流により、汚水に含まれる電子供与体が仕切板7の下部を経て好気区画である汚水領域11に移行する。その結果、外部領域12において電子供与体を効率的に脱窒反応に利用することができない。また、内部領域11では、外部領域12から移行した電子供与体が酸素を消費するため、酸素供給を補うために散気管4からの曝気量が増大し、その結果、曝気に要する消費電力量が増大する。 When wastewater is supplied to the external area 12 through the bypass pipe 21 while the wastewater level is at the wastewater overflow position, the electron donors contained in the wastewater migrate through the lower part of the partition plate 7 to the wastewater area 11, which is an aerobic compartment, due to the circulation flow circulating around the partition plate 7. As a result, the electron donors cannot be efficiently used for the denitrification reaction in the external area 12. In addition, in the internal area 11, the electron donors migrated from the external area 12 consume oxygen, so the amount of aeration from the air diffuser 4 increases to compensate for the oxygen supply, and as a result, the amount of power consumed for aeration increases.

したがって、バイパス管21を介した汚水の供給は、汚水の水位が汚水非越流位置にあるとき、すなわち、反応槽1内の水位が仕切板7の上端よりも低い状態であるときに供給する必要がある。汚水の水位が汚水非越流位置にあるときには、仕切板7の周囲を循環する循環流が形成されない。そのため、外部領域12に供給された汚水に含まれる電子供与体は内部領域11にほとんど移行することなく脱窒反応に利用される。また、内部領域11における曝気量の増大を抑え、曝気に要する消費電力量の増大を抑えることができる。したがって、バイパス管21を経由する汚水の供給量は、反応槽1内の水位が仕切板の上端を越えず分断状態を維持できる量であるのが好ましい。 Therefore, the supply of wastewater through the bypass pipe 21 must be performed when the wastewater level is in the wastewater non-overflow position, i.e., when the water level in the reaction tank 1 is lower than the upper end of the partition plate 7. When the wastewater level is in the wastewater non-overflow position, no circulating flow is formed around the partition plate 7. Therefore, the electron donor contained in the wastewater supplied to the outer region 12 is used for the denitrification reaction without almost migrating to the inner region 11. In addition, the increase in the aeration amount in the inner region 11 can be suppressed, and the increase in the power consumption required for aeration can be suppressed. Therefore, the amount of wastewater supplied through the bypass pipe 21 is preferably an amount that allows the water level in the reaction tank 1 to maintain a divided state without exceeding the upper end of the partition plate.

バイパス管21により反応槽1に供給される汚水は、嫌気処理が施されていないため原水槽9に収容されていた汚水そのものであり、例えば、BODが500~15000mg/L、好ましくは500~5000mg/Lであり、T-N(総窒素濃度)が100~2000、好ましくは100~500であり、BOD/T-Nが1~50、好ましくは5~50である。 The wastewater supplied to the reaction tank 1 through the bypass pipe 21 is the same wastewater contained in the raw water tank 9 as it has not been subjected to anaerobic treatment, and has, for example, a BOD of 500 to 15,000 mg/L, preferably 500 to 5,000 mg/L, a T-N (total nitrogen concentration) of 100 to 2,000, preferably 100 to 500, and a BOD/T-N of 1 to 50, preferably 5 to 50.

嫌気処理された汚水は、好気性処理および無酸素処理されること、及び、反応槽1内の水位を制御して仕切板上端よりも高い状態と低い状態とに切り換えることを目的として反応槽1に供給される汚水である。また、バイパス管21を経由する汚水は、脱窒反応に必要な十分な電子供与体を汚水領域12に供給すことを目的として反応槽1に供給される汚水である。 The anaerobically treated wastewater is supplied to the reaction tank 1 for the purpose of aerobically and anaerobicly treating the wastewater and for the purpose of controlling the water level in the reaction tank 1 to switch between a state higher than the upper end of the partition plate and a state lower than the upper end of the partition plate. The wastewater that passes through the bypass pipe 21 is supplied to the reaction tank 1 for the purpose of supplying sufficient electron donors required for the denitrification reaction to the wastewater area 12.

本実施の形態では、嫌気処理装置20を経由する汚水(嫌気処理された汚水)の流量とバイパス管21を経由する汚水(嫌気処理されていない汚水)の流量は、バイパスポンプの流量やバイパスラインに設けられたバルブの開度を調節することにより制御することができる。また、嫌気処理され反応槽1に供給される汚水の流量と、嫌気処理されずにバイパス管21を経由して反応槽1に供給される汚水の流量は、例えば、反応槽1に供給される混合液のBOD/T-Nが2~5、好ましくは3となるようにバイパス流量を設定して供給することができる。 In this embodiment, the flow rate of wastewater (anaerobically treated wastewater) passing through the anaerobic treatment device 20 and the flow rate of wastewater (not anaerobically treated wastewater) passing through the bypass pipe 21 can be controlled by adjusting the flow rate of the bypass pump and the opening of the valve installed in the bypass line. In addition, the flow rate of wastewater that is anaerobically treated and supplied to the reaction tank 1 and the flow rate of wastewater that is not anaerobically treated and supplied to the reaction tank 1 through the bypass pipe 21 can be supplied by setting the bypass flow rate so that the BOD/T-N of the mixed liquid supplied to the reaction tank 1 is 2 to 5, preferably 3.

さらに、図1の装置は、膜分離装置2による膜分離後に得られたろ過水中の硝酸性窒素濃度を測定する硝酸性窒素濃度計17を備える。ろ過水中の硝酸性窒素濃度については、予め窒素除去効率とエネルギー効率を最適にするための目標値が設定される。硝酸性窒素濃度計17により測定された硝酸性窒素濃度が予め設定した目標値となるよう、バイパス管21から反応槽1に供給される汚水の供給量が制御される。 The apparatus in FIG. 1 further includes a nitrate nitrogen concentration meter 17 that measures the nitrate nitrogen concentration in the filtered water obtained after membrane separation by the membrane separation device 2. A target value for the nitrate nitrogen concentration in the filtered water is set in advance to optimize the nitrogen removal efficiency and energy efficiency. The amount of wastewater supplied from the bypass pipe 21 to the reaction tank 1 is controlled so that the nitrate nitrogen concentration measured by the nitrate nitrogen concentration meter 17 reaches the preset target value.

具体的に、膜分離後のろ過水中の硝酸性窒素濃度が予め設定した目標値よりも高い場合には、外部領域12で進行する脱窒反応が不十分であるため、バイパス管21により供給される汚水の供給量を多くして、脱窒反応に必要な電子供与体の供給量を増やすよう制御することができる。また、ろ過水中の硝酸性窒素濃度が予め設定した目標値よりも低い場合には、脱窒反応は十分に進行しているが、過剰量の電子供与体が供給されている。過剰量の電子供与体が供給されると、汚水の水位が汚水非越流位置にある場合であっても、外部領域12から内部領域11に電子供与体が移行する。内部領域11に移行した電子供与体は酸素を消費するため、酸素供給を補うために散気管4からの曝気量が増加し、その結果、曝気に要する消費電力量が増大する。したがって、ろ過水中の硝酸性窒素濃度が予め設定した目標値よりも低い場合には、バイパス管21により供給される汚水の供給量を減らすよう制御することができる。 Specifically, when the nitrate nitrogen concentration in the filtered water after membrane separation is higher than a preset target value, the denitrification reaction proceeding in the outer region 12 is insufficient, so the amount of wastewater supplied through the bypass pipe 21 can be increased to increase the amount of electron donor required for the denitrification reaction. Also, when the nitrate nitrogen concentration in the filtered water is lower than a preset target value, the denitrification reaction proceeds sufficiently, but an excessive amount of electron donor is supplied. When an excessive amount of electron donor is supplied, the electron donor migrates from the outer region 12 to the inner region 11 even when the wastewater level is at the non-overflow position. The electron donor that migrates to the inner region 11 consumes oxygen, so the amount of aeration from the aeration pipe 4 is increased to compensate for the oxygen supply, and as a result, the amount of power consumed for aeration increases. Therefore, when the nitrate nitrogen concentration in the filtered water is lower than a preset target value, the amount of wastewater supplied through the bypass pipe 21 can be controlled to be reduced.

なお、膜分離後のろ過水中の硝酸性窒素濃度を測定する硝酸性窒素濃度計17の代わりに、ろ過水中の硝酸性窒素残存量を評価できるpHセンサーを用いてもよい。この場合、pHセンサーにより測定されたろ過水のpHの目標値が最適な範囲となるよう、バイパス管21から汚水領域12に供給される汚水の供給量が制御される。 In addition, instead of the nitrate nitrogen concentration meter 17 that measures the nitrate nitrogen concentration in the filtered water after membrane separation, a pH sensor that can evaluate the amount of nitrate nitrogen remaining in the filtered water may be used. In this case, the amount of wastewater supplied from the bypass pipe 21 to the wastewater area 12 is controlled so that the target value of the pH of the filtered water measured by the pH sensor is in the optimal range.

具体的に、ろ過水のpHが予め設定した目標値よりも低い場合には、外部領域12で進行する脱窒反応が不十分であるため、バイパス管21により供給される汚水の供給量を多くして、脱窒反応に必要な電子供与体の供給量を増やすことができる。また、ろ過水のpHが予め設定した目標値よりも高い場合には、散気管4からの曝気量の増加を抑えるため、過剰量の電子供与体が供給されないようバイパス管21により供給される汚水の供給量を減らすことができる。 Specifically, when the pH of the filtered water is lower than a preset target value, the denitrification reaction proceeding in the external region 12 is insufficient, so the amount of wastewater supplied through the bypass pipe 21 can be increased to increase the amount of electron donor required for the denitrification reaction. Also, when the pH of the filtered water is higher than a preset target value, the amount of wastewater supplied through the bypass pipe 21 can be reduced to prevent an excessive amount of electron donor from being supplied in order to suppress an increase in the amount of aeration from the aeration pipe 4.

以上説明した通り、本発明の第1の実施の形態に係る汚水処理装置(図1)は、好気性処理および無酸素処理するための汚水を嫌気処理装置20から反応槽1に供給する手段と、より高濃度の電子供与体を含み、前記好気性処理および無酸素処理される汚水とは異なる汚水をバイパス管21を介して供給する手段、の両方の手段を備える。このような構成により、汚水の種類により有機物の量が変動する場合でも、脱窒反応に必要な最適量の電子供与体含有液を外部領域12に供給することができる。 As described above, the wastewater treatment device according to the first embodiment of the present invention (FIG. 1) includes both a means for supplying wastewater to be treated aerobically and anaerobically from the anaerobic treatment device 20 to the reaction tank 1, and a means for supplying wastewater containing a higher concentration of electron donor and different from the wastewater to be treated aerobically and anaerobically via the bypass pipe 21. With this configuration, even if the amount of organic matter varies depending on the type of wastewater, the optimal amount of electron donor-containing liquid required for the denitrification reaction can be supplied to the external region 12.

また、本実施の形態において、仕切板7は膜分離装置2の全周囲を囲包しているが、膜分離装置2の周囲を実質的に取り囲むものであればよく、仕切板7と反応槽1の槽壁とによって膜分離装置2の周囲を取り囲んでいてもよい。具体的に、反応槽1の対向する2つの槽壁と2枚の矩形状の仕切板7によって膜分離装置2を囲包し、又は反応槽1の3つの槽壁と1枚の矩形状の仕切板7によって膜分離装置2を囲包してもよい。また、反応槽1が大型の場合には、単位時間当たりの処理量を大きくするために、散気管4を配置する内部領域11を複数設けてもよい。 In addition, in this embodiment, the partition plate 7 surrounds the entire periphery of the membrane separation device 2, but it is sufficient that it substantially surrounds the periphery of the membrane separation device 2, and the membrane separation device 2 may be surrounded by the partition plate 7 and the tank wall of the reaction tank 1. Specifically, the membrane separation device 2 may be surrounded by two opposing tank walls of the reaction tank 1 and two rectangular partition plates 7, or the membrane separation device 2 may be surrounded by three tank walls of the reaction tank 1 and one rectangular partition plate 7. In addition, when the reaction tank 1 is large, multiple internal areas 11 in which the aeration pipes 4 are arranged may be provided in order to increase the processing volume per unit time.

次に、第1の実施の形態に係る汚水処理装置(図1)によって実行される汚水処理方法について説明する。 Next, we will explain the wastewater treatment method performed by the wastewater treatment device (Figure 1) according to the first embodiment.

上述したように、本実施の形態の汚水処理装置(図1)は、原水槽9と、反応槽1と、嫌気処理装置20と、バイパス管21とを備える。また、反応槽1は、膜分離装置2と、散気管4と、仕切板7とを有し、好気性処理および無酸素処理される汚水と、微生物を含む有機汚泥が収容される。反応槽1の内部は仕切板7により複数の区画に仕切られている。散気管4は膜分離装置2の下方から曝気を行い、膜分離装置2および散気管4が配置された区画内が好気状態に維持される。 As described above, the wastewater treatment device of this embodiment (FIG. 1) includes a raw water tank 9, a reaction tank 1, an anaerobic treatment device 20, and a bypass pipe 21. The reaction tank 1 also includes a membrane separation device 2, an aeration pipe 4, and a partition plate 7, and contains wastewater to be aerobically and anaerobicly treated, and organic sludge containing microorganisms. The interior of the reaction tank 1 is divided into multiple compartments by the partition plate 7. The aeration pipe 4 aerates from below the membrane separation device 2, and the compartment in which the membrane separation device 2 and the aeration pipe 4 are located is maintained in an aerobic state.

原水槽9に収容された汚水は嫌気処理装置20に供給され、反応槽1内の膜分離装置2の負荷を低減するために嫌気処理に供される。この嫌気処理により、汚水中の高分子状有機物の一部がアンモニア、メタンガス、二酸化炭素などに変換される。嫌気処理され有機物の含有量が低下した汚水は、ポンプ15を介して反応槽1に供給され、反応槽1において好気性処理および無酸素処理に供される。また、水位制御手段(不図示)とポンプ15を用いて嫌気処理された汚水の反応槽1への供給と停止を制御することにより、反応槽内の水位を調節することができ、反応槽1内の水位を汚水越流位置と汚水非越流位置とに切り換えることができる。 The wastewater contained in the raw water tank 9 is supplied to the anaerobic treatment device 20 and subjected to anaerobic treatment to reduce the load on the membrane separation device 2 in the reaction tank 1. This anaerobic treatment converts some of the polymeric organic matter in the wastewater into ammonia, methane gas, carbon dioxide, etc. The anaerobically treated wastewater with a reduced organic matter content is supplied to the reaction tank 1 via the pump 15, where it is subjected to aerobic treatment and anaerobic treatment. In addition, the water level in the reaction tank can be adjusted by controlling the supply and stop of the anaerobically treated wastewater to the reaction tank 1 using a water level control means (not shown) and the pump 15, and the water level in the reaction tank 1 can be switched between a wastewater overflow position and a wastewater non-overflow position.

汚水の水位が汚水越流位置にあるとき、及び、汚水非越流位置にあるときのいずれの場合でも、内部領域11では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応(好気性処理)が進行し、外部領域12では亜硝酸や硝酸を無酸素状態下で窒素に変換する脱窒反応(無酸素処理)が進行する。 When the wastewater level is in the wastewater overflow position or in the wastewater non-overflow position, the nitrification reaction (aerobic treatment) that converts ammonia to nitrite and nitrate in the presence of oxygen proceeds in the inner area 11, while the denitrification reaction (anaerobic treatment) that converts nitrite and nitrate to nitrogen in the absence of oxygen proceeds in the outer area 12.

汚水領域12で進行する脱窒反応には亜硝酸や硝酸を還元するのに十分な電子供与体が必要である。しかし、上記のように嫌気処理を施した汚水は電子供与体の濃度が低いため、脱窒反応に必要な電子供与体が不足する場合がある。 The denitrification reaction that takes place in the wastewater area 12 requires sufficient electron donors to reduce nitrite and nitrate. However, as described above, wastewater that has been anaerobically treated has a low concentration of electron donors, and so there may be a shortage of electron donors required for the denitrification reaction.

この電子供与体の不足を補うために、原水槽9に収容された汚水の一部が、バイパス管21を介して反応槽1の外部領域12に供給される。バイパス管21を介して供給される汚水は嫌気処理されておらず、より高濃度の電子供与体を含有する。したがって、バイパス管21を介して汚水を供給することにより、脱窒反応に必要な量の電子供与体を反応槽1の外部領域12に供給することができる。これにより、窒素除去効率の高い汚水処理を安定して実行することができる。 To make up for this shortage of electron donors, a portion of the wastewater contained in the raw water tank 9 is supplied to the external region 12 of the reaction tank 1 via the bypass pipe 21. The wastewater supplied via the bypass pipe 21 has not been anaerobically treated and contains a higher concentration of electron donors. Therefore, by supplying wastewater via the bypass pipe 21, the amount of electron donor required for the denitrification reaction can be supplied to the external region 12 of the reaction tank 1. This allows for stable wastewater treatment with high nitrogen removal efficiency.

また、吸引ポンプ3が駆動すると、生物処理された汚水は膜分離装置2によってろ過され、ろ過水が吸引ポンプ3により吸引されて反応槽1の外部に取り出される。 When the suction pump 3 is driven, the biologically treated wastewater is filtered by the membrane separation device 2, and the filtered water is sucked up by the suction pump 3 and removed from the reaction tank 1.

膜分離装置2による膜分離後に得られたろ過水は、硝酸性窒素濃度計17により硝酸性窒素濃度が測定される。ろ過水中の硝酸性窒素濃度については予め目標値が設定される。
膜分離後のろ過水中の硝酸性窒素濃度が予め設定した目標値よりも高い場合には、外部領域12で進行する脱窒反応が不十分であるため、バイパス管21により供給される汚水の供給量を多くして、脱窒反応に必要な電子供与体の供給量を増やすよう制御することができる。また、ろ過水中の硝酸性窒素濃度が予め設定した目標値よりも低い場合には、散気管4からの曝気量の増加を抑えるために、バイパス管21により供給される汚水の供給量を少なくするよう制御することができる。
The nitrate nitrogen concentration of the filtered water obtained after membrane separation by the membrane separation device 2 is measured by the nitrate nitrogen concentration meter 17. A target value for the nitrate nitrogen concentration in the filtered water is set in advance.
When the nitrate nitrogen concentration in the filtrate after membrane separation is higher than a preset target value, the denitrification reaction proceeding in the external region 12 is insufficient, so that the supply amount of wastewater supplied through the bypass pipe 21 can be increased to increase the supply amount of the electron donor required for the denitrification reaction. When the nitrate nitrogen concentration in the filtrate is lower than a preset target value, the supply amount of wastewater supplied through the bypass pipe 21 can be controlled to be reduced in order to suppress an increase in the aeration amount from the aeration pipe 4.

このように、膜分離後のろ過水中の硝酸性窒素濃度が最適な範囲となるよう、バイパス管21により外部領域12に供給される汚水の供給量を制御することにより、脱窒反応に必要な電子供与体を供給して窒素除去効率を向上させつつ、散気管4からの曝気量の増加を抑え、曝気に要する消費電力量の増大を防ぐことができる。 In this way, by controlling the amount of wastewater supplied to the external area 12 via the bypass pipe 21 so that the nitrate nitrogen concentration in the filtered water after membrane separation is in the optimal range, it is possible to supply the electron donor necessary for the denitrification reaction to improve the nitrogen removal efficiency, while suppressing an increase in the amount of aeration from the aeration pipe 4 and preventing an increase in the amount of power consumed for aeration.

図2は、本発明の第2の実施の形態に係る汚水処理装置を概略的に示す図である。 Figure 2 is a schematic diagram of a wastewater treatment device according to a second embodiment of the present invention.

図2における反応槽1、膜分離装置2、散気管4、原水槽9は、その構成、作用が図1における反応槽1、膜分離装置2、散気管4、原水槽9と基本的に同じである。図2の汚水処理装置は、原水槽9に収容された汚水が反応槽1に直接供給されるとともに、嫌気処理装置20及びバイパス管21を用いることなく、電子供与体含有液槽22から電子供与体含有液が反応槽1の汚水領域12に供給される点で図1の汚水処理装置と異なる。以下、重複した構成、作用については説明を省略し、異なる構成、作用についての説明を行う。 The reaction tank 1, membrane separation device 2, aeration pipe 4, and raw water tank 9 in FIG. 2 are basically the same in configuration and function as the reaction tank 1, membrane separation device 2, aeration pipe 4, and raw water tank 9 in FIG. 1. The wastewater treatment device in FIG. 2 differs from the wastewater treatment device in FIG. 1 in that wastewater contained in the raw water tank 9 is directly supplied to the reaction tank 1, and electron donor-containing liquid is supplied from the electron donor-containing liquid tank 22 to the wastewater area 12 of the reaction tank 1 without using the anaerobic treatment device 20 and bypass pipe 21. Below, explanations of the overlapping configurations and functions will be omitted, and different configurations and functions will be explained.

反応槽1は原水ポンプ8を介して原水槽9に接続され、原水ポンプ8が駆動すると原水槽9から汚水が反応槽1に供給される。反応槽1において汚水は好気性処理および無酸素処理される。また、反応槽1はポンプ16を介して電子供与体含有液を収容する電子供与体含有液槽22に接続され、ポンプ16が駆動すると、電子供与体含有液槽22から電子供与体含有液が反応槽1の外部領域12に供給される。 The reaction tank 1 is connected to the raw water tank 9 via the raw water pump 8, and when the raw water pump 8 is driven, wastewater is supplied from the raw water tank 9 to the reaction tank 1. In the reaction tank 1, the wastewater is treated aerobicly and anoxically. The reaction tank 1 is also connected to the electron donor-containing liquid tank 22, which contains the electron donor-containing liquid, via the pump 16, and when the pump 16 is driven, the electron donor-containing liquid is supplied from the electron donor-containing liquid tank 22 to the external region 12 of the reaction tank 1.

図2において、原水槽9に収容された汚水はそのまま反応槽1に供給されるが、汚水の種類によっては含有する有機物の量が変動する。そのため、外部領域12において脱窒反応に必要な電子供与体が不足し、安定した脱窒反応を実行できない場合がある。このような電子供与体の不足を補うため、電子供与体含有液槽22から電子供与体含有液が反応槽1の外部領域12に供給される。 In FIG. 2, the wastewater contained in the raw water tank 9 is supplied directly to the reaction tank 1, but the amount of organic matter contained varies depending on the type of wastewater. As a result, there may be a shortage of electron donors required for the denitrification reaction in the external region 12, making it impossible to carry out a stable denitrification reaction. To compensate for this shortage of electron donors, an electron donor-containing liquid is supplied from the electron donor-containing liquid tank 22 to the external region 12 of the reaction tank 1.

電子供与体含有液が含有する電子供与体は、電子供与体として利用可能な有機物及び無機物であれば特に限定されない。電子供与体としては、具体的にメタノールやエタノール等のアルコール類、酢酸等の有機酸、硫黄及び水素からなる群から選択される少なくとも1種が挙げられる。電子供与体含有液は電子供与体を水などの溶媒に溶解させるか、又は、固形物を粉末スラリー状にして添加するか、更には、ガス体で散気させることにより調製される。電子供与体は電子供与体含有液に高濃度で含まれるため、電子供与体含有液を供給することにより電子供与体を効率的に補うことができる。電子供与体含有液中の電子供与体の濃度は、安全性や経済性を考慮して定めることができる。通常は可能な限り高濃度が有利であり、原液をそのまま使用することが好ましい。 The electron donor contained in the electron donor-containing liquid is not particularly limited as long as it is an organic or inorganic substance that can be used as an electron donor. Specific examples of electron donors include at least one selected from the group consisting of alcohols such as methanol and ethanol, organic acids such as acetic acid, sulfur, and hydrogen. The electron donor-containing liquid is prepared by dissolving the electron donor in a solvent such as water, or by adding a solid in the form of a powder slurry, or by sparging with a gas. Since the electron donor is contained in the electron donor-containing liquid at a high concentration, the electron donor can be efficiently replenished by supplying the electron donor-containing liquid. The concentration of the electron donor in the electron donor-containing liquid can be determined taking safety and economical efficiency into consideration. Usually, a concentration as high as possible is advantageous, and it is preferable to use the original liquid as it is.

下水や有機性固形物を含む食品工場などの排水の処理の場合には、原水槽9に導入される汚水に対し、予めスクリーンや沈殿池等による前処理を施すことができる。このような前処理により汚水から除去されたスクリーン滓や沈殿汚泥等の固形性有機物には、高濃度の有機物が含まれることから、嫌気処理(メタン発酵)を行ってエネルギーを回収することができる。このとき、余剰汚泥(反応槽1内で増殖し余剰となった活性汚泥)も合わせて嫌気処理を行うことができる。このような固形性有機物の嫌気処理においては、順次、加水分解工程(可溶化工程)、酸発酵工程及びメタン発酵工程を経て、固形性有機物が最終的にメタンガスに変換される。加水分解工程や酸発酵工程で得られる排液には脱窒に有用な電子供与体が多く含まれることから、この排液を電子供与体含有液槽22に導入して利用することができる。 When treating wastewater from food factories and the like that contains sewage or organic solids, the wastewater introduced into the raw water tank 9 can be pretreated in advance using a screen or a sedimentation tank. Solid organic matter such as screen residue and sedimented sludge removed from the wastewater by such pretreatment contains a high concentration of organic matter, so energy can be recovered by performing anaerobic treatment (methane fermentation). At this time, excess sludge (activated sludge that has grown in the reaction tank 1 and become excess) can also be subjected to anaerobic treatment. In such anaerobic treatment of solid organic matter, the solid organic matter is finally converted into methane gas through the hydrolysis process (solubilization process), acid fermentation process, and methane fermentation process in sequence. Since the effluent obtained from the hydrolysis process and acid fermentation process contains a large amount of electron donors that are useful for denitrification, this effluent can be introduced into the electron donor-containing liquid tank 22 for use.

すなわち、図2の装置では、好気性処理および無酸素処理される汚水とは異なる電子供与体含有液が電子供与体含有液槽22から反応槽1の汚水領域12に供給される。そのため、汚水の種類によって脱窒反応に必要な電子供与体が不足する場合でも、不足する電子供与体を効率的に外部領域12に供給することができる。したがって、反応槽1内の外部領域12において、安定した脱窒反応を実行することができる。 In other words, in the apparatus of FIG. 2, an electron donor-containing liquid different from the wastewater to be aerobically and anaerobicly treated is supplied from the electron donor-containing liquid tank 22 to the wastewater region 12 of the reaction tank 1. Therefore, even if the electron donor required for the denitrification reaction is insufficient due to the type of wastewater, the missing electron donor can be efficiently supplied to the external region 12. Therefore, a stable denitrification reaction can be carried out in the external region 12 of the reaction tank 1.

また、図2の装置は、膜分離装置2による膜分離後に得られたろ過水中の硝酸性窒素濃度を測定する硝酸性窒素濃度計17を備える。ろ過水中の硝酸性窒素濃度については、予め窒素除去効率とエネルギー効率を最適にするための目標値が設定される。硝酸性窒素濃度計17により測定された硝酸性窒素濃度が予め設定した目標値となるよう、電子供与体含有液槽22から反応槽1に供給される電子供与体含有液の供給量が制御される。 The apparatus in FIG. 2 also includes a nitrate nitrogen concentration meter 17 that measures the nitrate nitrogen concentration in the filtered water obtained after membrane separation by the membrane separation device 2. A target value for the nitrate nitrogen concentration in the filtered water is set in advance to optimize the nitrogen removal efficiency and energy efficiency. The amount of electron donor-containing liquid supplied from the electron donor-containing liquid tank 22 to the reaction tank 1 is controlled so that the nitrate nitrogen concentration measured by the nitrate nitrogen concentration meter 17 becomes the preset target value.

具体的に、膜分離後のろ過水中の硝酸性窒素濃度が予め設定した目標値よりも高い場合には、外部領域12で進行する脱窒反応が不十分であるため、電子供与体含有液槽22から反応槽1に供給される電子供与体含有液の供給量を多くして、脱窒反応に必要な電子供与体の供給量を増やすよう制御することができる。また、ろ過水中の硝酸性窒素濃度が予め設定した目標値よりも低い場合には、散気管4からの曝気量の増加を抑えるために、電子供与体含有液槽22から反応槽1に供給される電子供与体含有液の供給量を少なくするよう制御することができる。 Specifically, when the nitrate nitrogen concentration in the filtered water after membrane separation is higher than a preset target value, the denitrification reaction proceeding in the external region 12 is insufficient, so the supply amount of electron donor-containing liquid supplied from the electron donor-containing liquid tank 22 to the reaction tank 1 can be increased to increase the supply amount of electron donor required for the denitrification reaction. Also, when the nitrate nitrogen concentration in the filtered water is lower than a preset target value, the supply amount of electron donor-containing liquid supplied from the electron donor-containing liquid tank 22 to the reaction tank 1 can be controlled to be reduced in order to suppress an increase in the aeration amount from the aeration tube 4.

なお、第1の実施の形態と同様に、膜分離後のろ過水中の硝酸性窒素濃度を測定する硝酸性窒素濃度計17の代わりに、ろ過水中の硝酸性窒素残存量を評価できるpHセンサーを用いてもよい。 As in the first embodiment, instead of the nitrate nitrogen concentration meter 17 that measures the nitrate nitrogen concentration in the filtered water after membrane separation, a pH sensor that can evaluate the amount of nitrate nitrogen remaining in the filtered water may be used.

以上説明した通り、本発明の第2の実施の形態に係る汚水処理装置(図2)は、原水槽9から好気性処理および無酸素処理するための汚水を反応槽1に供給する手段と、より高濃度の電子供与体を含み、前記好気性処理および無酸素処理される汚水とは異なる電子供与体含有液を供給する手段、の両方の手段を備える。このような構成により、汚水の種類により有機物の量が変動する場合でも、脱窒反応に必要な最適量の電子供与体含有液を外部領域12に供給することができる。 As described above, the wastewater treatment device according to the second embodiment of the present invention (Figure 2) includes both a means for supplying wastewater to be aerobically and anaerobically treated from the raw water tank 9 to the reaction tank 1, and a means for supplying an electron donor-containing liquid that contains a higher concentration of electron donor and is different from the wastewater to be aerobically and anaerobically treated. With this configuration, even if the amount of organic matter varies depending on the type of wastewater, the optimal amount of electron donor-containing liquid required for the denitrification reaction can be supplied to the external region 12.

次に、第2の実施の形態に係る汚水処理装置(図2)によって実行される汚水処理方法について説明する。 Next, we will explain the wastewater treatment method performed by the wastewater treatment device (Figure 2) according to the second embodiment.

原水槽9に収容された汚水は原水ポンプ8を介して反応槽1に供給され、反応槽1において好気性処理および無酸素処理に供される。また、原水ポンプ8により汚水の反応槽1への供給と停止を制御することにより、反応槽内の水位を調節することができ、反応槽1内の水位を汚水越流位置と汚水非越流位置とに切り換えることができる。 The wastewater contained in the raw water tank 9 is supplied to the reaction tank 1 via the raw water pump 8, where it is subjected to aerobic and anaerobic treatment. In addition, by controlling the supply and stop of wastewater to the reaction tank 1 using the raw water pump 8, the water level in the reaction tank can be adjusted, and the water level in the reaction tank 1 can be switched between a wastewater overflow position and a wastewater non-overflow position.

汚水の水位が汚水越流位置にあるとき、及び、汚水非越流位置にあるときのいずれの場合でも、汚水領域11では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応(好気性処理)が進行し、汚水領域12では亜硝酸や硝酸を無酸素状態下で窒素に変換する脱窒反応(無酸素処理)が進行する。 When the wastewater level is in the wastewater overflow position or in the wastewater non-overflow position, the nitrification reaction (aerobic treatment) that converts ammonia to nitrite and nitrate in the presence of oxygen proceeds in the wastewater area 11, while the denitrification reaction (anaerobic treatment) that converts nitrite and nitrate to nitrogen in the absence of oxygen proceeds in the wastewater area 12.

汚水領域12で進行する脱窒反応には亜硝酸や硝酸を還元するのに十分な電子供与体が必要である。しかし、原水槽9から原水ポンプ8を介して供給される汚水は、汚水の種類によって含有する有機物の量が変動し、脱窒反応に必要な電子供与体が不足する場合がある。 The denitrification reaction that takes place in the wastewater area 12 requires sufficient electron donors to reduce nitrite and nitrate. However, the amount of organic matter contained in the wastewater supplied from the raw water tank 9 via the raw water pump 8 varies depending on the type of wastewater, and there may be a shortage of electron donors required for the denitrification reaction.

本実施の形態では、電子供与体含有液槽22から電子供与体含有液が反応槽1の外部領域12に供給される。電子供与体含有液槽22から供給される電子供与体含有液は高濃度の電子供与体を含有する。したがって、電子供与体含有液を反応槽1に供給することにより、脱窒反応に必要な量の電子供与体を反応槽1の外部領域12に効率的に供給することができる。これにより、窒素除去効率の高い汚水処理を安定して実行することができる。 In this embodiment, the electron donor-containing liquid is supplied from the electron donor-containing liquid tank 22 to the outer region 12 of the reaction tank 1. The electron donor-containing liquid supplied from the electron donor-containing liquid tank 22 contains a high concentration of electron donor. Therefore, by supplying the electron donor-containing liquid to the reaction tank 1, the amount of electron donor required for the denitrification reaction can be efficiently supplied to the outer region 12 of the reaction tank 1. This allows for stable wastewater treatment with high nitrogen removal efficiency.

また、吸引ポンプ3が駆動すると、生物処理された汚水は膜分離装置2によってろ過され、ろ過水が吸引ポンプ3により吸引されて反応槽1の外部に取り出される。 When the suction pump 3 is driven, the biologically treated wastewater is filtered by the membrane separation device 2, and the filtered water is sucked up by the suction pump 3 and removed from the reaction tank 1.

膜分離装置2による膜分離後に得られたろ過水は、硝酸性窒素濃度計17により硝酸性窒素濃度が測定される。膜分離後のろ過水中の硝酸性窒素濃度が予め設定した目標値よりも高い場合には、外部領域12で進行する脱窒反応が不十分であるため、電子供与体含有液の供給量を多くするよう制御することができる。また、ろ過水中の硝酸性窒素濃度が予め設定した目標値よりも低い場合には、散気管4からの曝気量の増加を抑えるために、電子供与体含有液の供給量を少なくするよう制御することができる。 The nitrate nitrogen concentration of the filtered water obtained after membrane separation by the membrane separation device 2 is measured by the nitrate nitrogen concentration meter 17. If the nitrate nitrogen concentration in the filtered water after membrane separation is higher than a preset target value, the denitrification reaction proceeding in the external region 12 is insufficient, so the supply amount of the electron donor-containing liquid can be controlled to be increased. Also, if the nitrate nitrogen concentration in the filtered water is lower than a preset target value, the supply amount of the electron donor-containing liquid can be controlled to be reduced in order to suppress an increase in the aeration amount from the aeration tube 4.

このように、膜分離後のろ過水中の硝酸性窒素濃度が最適な範囲となるよう電子供与体含有液の供給量を制御することにより、脱窒反応に必要な電子供与体を供給して窒素除去効率を向上させつつ、散気管4からの曝気量の増加を抑え、曝気に要する消費電力量の増大を防ぐことができる。 In this way, by controlling the supply amount of the electron donor-containing liquid so that the nitrate nitrogen concentration in the filtered water after membrane separation is in the optimal range, it is possible to supply the electron donor necessary for the denitrification reaction and improve the nitrogen removal efficiency, while suppressing an increase in the aeration volume from the aeration tube 4 and preventing an increase in the amount of power required for aeration.

以上、本発明について、上述した実施の形態を用いて説明したが、本発明は上述した実施の形態に限定されるものではない。 The present invention has been described above using the above-mentioned embodiment, but the present invention is not limited to the above-mentioned embodiment.

本発明は、汚水処理を安定して実行することができる汚水処理装置及び方法を提供することができる。 The present invention provides a wastewater treatment device and method that can stably perform wastewater treatment.

1 反応槽
2 膜分離装置
4 散気管
7 仕切板
9 原水槽
10 原水供給装置
11 仕切板の外部領域
12 仕切板の内部領域
17 硝酸性窒素濃度計
20 嫌気処理装置
21 バイパス管
22 電子供与体含有液槽
REFERENCE SIGNS LIST 1 Reaction tank 2 Membrane separation device 4 Aeration pipe 7 Partition plate 9 Raw water tank 10 Raw water supply device 11 Outer area of partition plate 12 Inner area of partition plate 17 Nitrate nitrogen concentration meter 20 Anaerobic treatment device 21 Bypass pipe 22 Electron donor-containing liquid tank

Claims (12)

汚水の好気性処理および無酸素処理を行う反応槽の内部に、膜分離装置と、散気管と、前記反応槽の内部を複数の区画に仕切る仕切板とを備え、前記処理される汚水を反応槽に供給する手段と、反応槽内の水位を仕切板上端よりも高い状態と低い状態とに切り換えるための水位制御手段を備える汚水処理装置であって、前記複数の区画のうちの少なくとも一つの区画を膜分離装置および散気管が配置された好気区画とし、その他の区画で無酸素処理を行う汚水処理装置において、
前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給する手段を設け
前記処理される汚水が嫌気処理を施した汚水であり、前記電子供与体含有液が嫌気処理を施さない汚水であることを特徴とする汚水処理装置。
A wastewater treatment device is provided with a membrane separation device, an aeration pipe, and a partition plate that divides the inside of the reaction tank into a plurality of compartments, inside the reaction tank for performing aerobic and anaerobic treatment of wastewater, a means for supplying the wastewater to be treated to the reaction tank, and a water level control means for switching the water level in the reaction tank between a state higher than the upper end of the partition plate and a state lower than the upper end of the partition plate, wherein at least one of the plurality of compartments is an aerobic compartment in which the membrane separation device and the aeration pipe are disposed, and anaerobic treatment is performed in the remaining compartments,
providing a means for supplying an electron donor-containing liquid different from the wastewater to be treated to the other compartment in the reaction tank when the water level in the reaction tank is lower than the upper end of the partition plate ;
1. A wastewater treatment apparatus comprising : said wastewater to be treated is wastewater that has been subjected to anaerobically treated water; and said electron donor-containing liquid is wastewater that has not been subjected to anaerobically treated water .
前記嫌気処理を施さない汚水のBODが500~15000mg/Lである、請求項記載の汚水処理装置。 The wastewater treatment device according to claim 1 , wherein the BOD of the wastewater not subjected to anaerobic treatment is 500 to 15,000 mg/L. 前記電子供与体含有液に含まれる電子供与体が、アルコール類、有機酸、硫黄及び水素からなる群から選択される少なくとも1種である、請求項1記載の汚水処理装置。 The wastewater treatment device according to claim 1, wherein the electron donor contained in the electron donor-containing liquid is at least one selected from the group consisting of alcohols, organic acids, sulfur, and hydrogen. 前記電子供与体含有液が、前記汚水から予め除去されたスクリーン滓及び/又は沈殿汚泥を嫌気処理することにより得られた排液である、請求項1記載の汚水処理装置。 The wastewater treatment device according to claim 1, wherein the electron donor-containing liquid is a wastewater obtained by anaerobic treatment of screen residue and/or precipitated sludge that has been previously removed from the wastewater. 前記膜分離装置による膜分離後に得られたろ過水中の硝酸性窒素濃度を測定する硝酸性窒素濃度計を設け、該濃度計により測定した硝酸性窒素濃度が予め設定した目標値となるよう、前記電子供与体含有液の供給量を制御する手段を設けた、請求項1~のいずれか1項に記載の汚水処理装置。 The wastewater treatment device according to any one of claims 1 to 4, further comprising a nitrate nitrogen concentration meter for measuring the nitrate nitrogen concentration in the filtrate obtained after the membrane separation by the membrane separation device, and a means for controlling the supply amount of the electron donor-containing liquid so that the nitrate nitrogen concentration measured by the concentration meter becomes a preset target value. 汚水の好気性処理および無酸素処理を行う反応槽の内部に、膜分離装置と、散気管と、前記反応槽の内部を複数の区画に仕切る仕切板とを備え、前記処理される汚水を反応槽に供給する手段と、反応槽内の水位を仕切板上端よりも高い状態と低い状態とに切り換えるための水位制御手段を備える汚水処理装置であって、前記複数の区画のうちの少なくとも一つの区画を膜分離装置および散気管が配置された好気区画とし、その他の区画で無酸素処理を行う汚水処理装置において、
前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給する手段を設け、
前記電子供与体含有液の供給量が、反応槽内の水位が仕切板の上端を越えない量であることを特徴とする汚水処理装置。
A wastewater treatment device is provided with a membrane separation device, an aeration pipe, and a partition plate that divides the inside of the reaction tank into a plurality of compartments, inside the reaction tank for performing aerobic and anaerobic treatment of wastewater, a means for supplying the wastewater to be treated to the reaction tank, and a water level control means for switching the water level in the reaction tank between a state higher than the upper end of the partition plate and a state lower than the upper end of the partition plate, wherein at least one of the plurality of compartments is an aerobic compartment in which the membrane separation device and the aeration pipe are disposed, and anaerobic treatment is performed in the remaining compartments,
providing a means for supplying an electron donor-containing liquid different from the wastewater to be treated to the other compartment in the reaction tank when the water level in the reaction tank is lower than the upper end of the partition plate;
1. A wastewater treatment device comprising: a reactor for treating wastewater containing a liquid; and a separator for separating the liquid from the reactor;
膜分離装置と散気管とを配置した反応槽内で汚水の好気性処理および無酸素処理を行う汚水処理方法であって、膜分離装置の周囲を仕切板で区画し、膜分離装置の下方から散気管により曝気を行うとともに、反応槽内の水位を調節することにより、膜分離装置および散気管が配置された区画内を好気状態に維持しつつ、その他の区画で無酸素処理を行う汚水処理方法において、
前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給し、
前記処理される汚水が嫌気処理を施した汚水であり、前記電子供与体含有液が嫌気処理を施さない汚水であることを特徴とする汚水処理方法。
A wastewater treatment method for performing aerobic and anaerobic treatment of wastewater in a reaction tank in which a membrane separation device and an aeration pipe are disposed, the membrane separation device is partitioned off from the periphery thereof with a partition plate, and aeration is performed from below the membrane separation device with an aeration pipe, and the water level in the reaction tank is adjusted to maintain an aerobic state in the compartment in which the membrane separation device and the aeration pipe are disposed while performing anaerobic treatment in the other compartments.
When the water level in the reaction tank is lower than the upper end of the partition plate, an electron donor-containing liquid different from the wastewater to be treated is supplied to the other compartment in the reaction tank ;
A wastewater treatment method, characterized in that the wastewater to be treated is wastewater that has been subjected to anaerobically treated water, and the electron donor-containing liquid is wastewater that has not been subjected to anaerobically treated water .
前記嫌気処理を施さない汚水のBODが500~15000mg/Lである、請求項記載の汚水処理方法。 The wastewater treatment method according to claim 7 , wherein the BOD of the wastewater not subjected to anaerobic treatment is 500 to 15,000 mg/L. 前記電子供与体含有液に含まれる電子供与体が、アルコール類、有機酸、硫黄及び水素からなる群から選択される少なくとも1種である、請求項記載の汚水処理方法。 The wastewater treatment method according to claim 7 , wherein the electron donor contained in the electron donor-containing liquid is at least one selected from the group consisting of alcohols, organic acids, sulfur, and hydrogen. 前記電子供与体含有液が、前記汚水から予め除去されたスクリーン滓及び/又は沈殿汚泥を嫌気処理することにより得られた排液である、請求項記載の汚水処理方法。 8. The wastewater treatment method according to claim 7 , wherein the electron donor-containing liquid is an effluent obtained by anaerobic treatment of screen residue and/or precipitated sludge previously removed from the wastewater. 前記膜分離装置による膜分離後に得られたろ過水中の硝酸性窒素濃度を測定し、測定した硝酸性窒素濃度が予め設定した目標値となるよう、前記電子供与体含有液の供給量を制御する、請求項7~10のいずれか1項に記載の汚水処理方法。 The wastewater treatment method according to any one of claims 7 to 10, wherein the nitrate nitrogen concentration in the filtrate obtained after the membrane separation by the membrane separation device is measured, and the supply amount of the electron donor - containing liquid is controlled so that the measured nitrate nitrogen concentration becomes a preset target value. 膜分離装置と散気管とを配置した反応槽内で汚水の好気性処理および無酸素処理を行う汚水処理方法であって、膜分離装置の周囲を仕切板で区画し、膜分離装置の下方から散気管により曝気を行うとともに、反応槽内の水位を調節することにより、膜分離装置および散気管が配置された区画内を好気状態に維持しつつ、その他の区画で無酸素処理を行う汚水処理方法において、
前記反応槽内の水位が前記仕切板の上端よりも低い状態であるときに、前記処理される汚水とは異なる電子供与体含有液を反応槽内の前記その他の区画に供給し、
前記電子供与体含有液の供給量が、反応槽内の水位が仕切板の上端を越えない量であることを特徴とする汚水処理方法。
A wastewater treatment method for performing aerobic and anaerobic treatment of wastewater in a reaction tank in which a membrane separation device and an aeration pipe are disposed, the membrane separation device is partitioned off from the periphery thereof with a partition plate, and aeration is performed from below the membrane separation device with an aeration pipe, and the water level in the reaction tank is adjusted to maintain an aerobic state in the compartment in which the membrane separation device and the aeration pipe are disposed while performing anaerobic treatment in the other compartments.
When the water level in the reaction tank is lower than the upper end of the partition plate, an electron donor-containing liquid different from the wastewater to be treated is supplied to the other compartment in the reaction tank;
A wastewater treatment method, characterized in that the amount of the electron donor-containing liquid supplied is an amount such that the water level in the reaction tank does not exceed the upper end of the partition plate.
JP2020111271A 2020-06-29 2020-06-29 Sewage treatment device and sewage treatment method Active JP7488130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020111271A JP7488130B2 (en) 2020-06-29 2020-06-29 Sewage treatment device and sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111271A JP7488130B2 (en) 2020-06-29 2020-06-29 Sewage treatment device and sewage treatment method

Publications (2)

Publication Number Publication Date
JP2022010607A JP2022010607A (en) 2022-01-17
JP7488130B2 true JP7488130B2 (en) 2024-05-21

Family

ID=80147708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111271A Active JP7488130B2 (en) 2020-06-29 2020-06-29 Sewage treatment device and sewage treatment method

Country Status (1)

Country Link
JP (1) JP7488130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023180565A (en) * 2022-06-09 2023-12-21 オルガノ株式会社 Raw water treatment method and raw water treatment equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195831A (en) 2008-02-21 2009-09-03 Central Res Inst Of Electric Power Ind Method and system for treating drain water
JP2018103129A (en) 2016-12-27 2018-07-05 国立大学法人北海道大学 Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method, and raw water supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195831A (en) 2008-02-21 2009-09-03 Central Res Inst Of Electric Power Ind Method and system for treating drain water
JP2018103129A (en) 2016-12-27 2018-07-05 国立大学法人北海道大学 Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method, and raw water supply device

Also Published As

Publication number Publication date
JP2022010607A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
US6743362B1 (en) Sewage treatment process
CA2867626C (en) Process comprising anammox bacteria on biofilm carriers for removing ammonium from a wastewater stream
KR100767724B1 (en) Biological sewage treatment method and apparatus through sludge flotation
US20160002081A1 (en) Wastewater treatment with membrane aerated biofilm and anaerobic digester
JP2005279447A (en) Water treatment method and apparatus
KR101472421B1 (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process
US9975796B2 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
CN114269695B (en) System and method for removing ammonium from a wastewater stream
CN111908618A (en) A kind of high ammonia nitrogen wastewater treatment system
KR102108870B1 (en) Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus
JP7488130B2 (en) Sewage treatment device and sewage treatment method
KR100419888B1 (en) Activated sludge process with high biomass concentration using a downflow sludge blanket filtration
JP2018187539A (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
US7976703B2 (en) Treating unit for simultaneous removal of carbon and nitrogen from wastewater and treating apparatus having the same
JP6533676B2 (en) Water treatment apparatus and water treatment method
JP2001212593A (en) Post-treatment method for ascending current anaerobic treatment apparatus
KR100413839B1 (en) Sewage treatment method useing of non conveyance and continuous denitrification process
KR100823691B1 (en) Advanced treatment method to remove nitrogen and phosphorus and to reduce the amount of sludge produced
KR20140140528A (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process
KR100297178B1 (en) Fluidized Media Biofilm Reactor with Clarifier
RU2749273C1 (en) Method for deep biological wastewater treatment with anammox process with biocenosis, immobilized on brush loading
Siriweera et al. Development of MBR, MABR and AnMBR Systems for Wastewater Treatment
WO2011118747A1 (en) Wastewater treatment device and wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240509

R150 Certificate of patent or registration of utility model

Ref document number: 7488130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150