JP7481250B2 - Machine Tools - Google Patents
Machine Tools Download PDFInfo
- Publication number
- JP7481250B2 JP7481250B2 JP2020213157A JP2020213157A JP7481250B2 JP 7481250 B2 JP7481250 B2 JP 7481250B2 JP 2020213157 A JP2020213157 A JP 2020213157A JP 2020213157 A JP2020213157 A JP 2020213157A JP 7481250 B2 JP7481250 B2 JP 7481250B2
- Authority
- JP
- Japan
- Prior art keywords
- spindle
- tool
- workpiece
- cutting
- axial direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims description 109
- 238000005520 cutting process Methods 0.000 claims description 82
- 238000003754 machining Methods 0.000 claims description 39
- 230000033001 locomotion Effects 0.000 claims description 36
- 238000005553 drilling Methods 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 24
- 230000002093 peripheral effect Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 18
- 230000010355 oscillation Effects 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000012886 linear function Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
Landscapes
- Auxiliary Devices For Machine Tools (AREA)
- Drilling And Boring (AREA)
- Turning (AREA)
Description
本発明は、工作機械に関する。 The present invention relates to a machine tool.
例えば、特許文献1に記載のドリルの切粉除去方法は、ドリルにより被加工物に穴を開けた後、ドリルを逆回転させるとともにドリルを穴から引き抜き、ドリルの近傍に配置された切粉除去手段によりドリル表面をドリルの先端に向ってしごくことにより、ドリルに巻付いた切粉を除去する。 For example, the method of removing chips from a drill described in Patent Document 1 involves drilling a hole in a workpiece with the drill, then rotating the drill in the reverse direction and pulling it out of the hole, and using a chip removal means disposed near the drill to squeeze the surface of the drill toward the tip of the drill, thereby removing the chips wrapped around the drill.
上記特許文献1に記載のドリルの切粉除去方法を利用して加工中にドリルへの切粉の絡まりを除去する場合には、ドリルを加工穴から抜き出して切粉除去手段に近づける必要があり、加工時間が長くなるおそれがある。 When using the drill chip removal method described in Patent Document 1 to remove chips that have become entangled in the drill during machining, it is necessary to remove the drill from the machined hole and bring it closer to the chip removal means, which may lengthen the machining time.
本発明は、上記実状に鑑みてなされたものであり、切粉を分断しつつ加工時間を短くすることができる工作機械を提供することを目的とする。 The present invention was made in consideration of the above situation, and aims to provide a machine tool that can shorten the machining time while breaking up the chips.
上記目的を達成するため、本発明に係る工作機械は、ワークを把持しつつ軸回転する主軸と、前記主軸により把持された前記ワークに穴加工を行う回転工具を回転させる工具回転機構と、前記主軸を、前記主軸の回転軸が延びる軸線方向に移動させる主軸移動機構と、前記軸線方向に前記回転工具を前記主軸に対して相対的に移動させる第1移動機構と、前記ワークの外周面の切削加工を行う切削工具を、前記軸線方向に前記主軸に対して相対的に移動させる第2移動機構と、前記工具回転機構、前記主軸移動機構、前記第1移動機構及び前記第2移動機構の動作を制御する制御部と、を備え、前記切削工具による切削加工と前記回転工具による穴加工を同時に行う際、前記制御部は、前記主軸を前記主軸移動機構を介して前記ワークとともに前記軸線方向に揺動させつつ移動させ、前記回転工具を前記第1移動機構を介して前記軸線方向に揺動させずに直線的に移動させるか移動させずにとどめ、前記切削工具を前記軸線方向に移動させずにとどめる。 In order to achieve the above-mentioned object, a machine tool according to the present invention includes a spindle that rotates around its axis while gripping a workpiece, a tool rotation mechanism that rotates a rotating tool that performs hole machining on the workpiece gripped by the spindle, a spindle moving mechanism that moves the spindle in an axial direction along which the rotation axis of the spindle extends, a first moving mechanism that moves the rotating tool in the axial direction relative to the spindle, a second moving mechanism that moves a cutting tool that performs cutting on the outer peripheral surface of the workpiece in the axial direction relative to the spindle, and a control unit that controls operations of the tool rotation mechanism, the spindle moving mechanism, the first moving mechanism, and the second moving mechanism, and when cutting with the cutting tool and hole machining with the rotating tool are performed simultaneously, the control unit moves the spindle together with the workpiece via the spindle moving mechanism while swinging it in the axial direction, moves the rotating tool linearly without swinging it in the axial direction via the first moving mechanism, or keeps it still, and keeps the cutting tool still without moving in the axial direction .
本発明によれば、工作機械において、切粉を分断しつつ加工時間を短くすることができる。 According to the present invention, machining time can be shortened while breaking up chips in machine tools.
本発明の一実施形態に係る工作機械について図面を参照して説明する。
図1及び図2に示すように、工作機械1は、ワークWを加工するNC(Numerical Control)旋盤である。詳しくは、工作機械1は、ベッドSと、主軸14を有する主軸ユニット10と、主軸移動機構13と、第1工具移動機構30と、第2工具移動機構50と、工具回転機構37と、制御部300と、を備える。なお、以下の説明では、Z軸方向は主軸14の回転軸に沿う方向に規定され、Y軸方向は高さ方向に規定され、X軸方向はY軸方向及びZ軸方向に直交する方向に規定される。
A machine tool according to an embodiment of the present invention will be described with reference to the drawings.
1 and 2, the machine tool 1 is an NC (Numerical Control) lathe that machines a workpiece W. In detail, the machine tool 1 includes a bed S, a spindle unit 10 having a spindle 14, a spindle moving mechanism 13, a first tool moving mechanism 30, a second tool moving mechanism 50, a tool rotation mechanism 37, and a control unit 300. In the following description, the Z-axis direction is defined as a direction along the rotation axis of the spindle 14, the Y-axis direction is defined as a height direction, and the X-axis direction is defined as a direction perpendicular to the Y-axis and Z-axis directions.
ベッドSは、工作機械1全体の台である。ベッドSの上面には、主軸ユニット10、主軸移動機構13、第1工具移動機構30及び第2工具移動機構50が設置される。
主軸ユニット10は、ワークWを把持しつつ軸回転させる。主軸ユニット10は、主軸台11と、ワークWを把持しつつ軸回転可能に主軸台11に支持される主軸14と、を備える。主軸台11には、主軸14をワークWとともに軸方向に回転させる図示しないワーク回転用モータが内蔵されている。
主軸移動機構13は、Z軸方向(Z1軸方向)に主軸ユニット10を移動させる。
The bed S is a platform for the entire machine tool 1. On the upper surface of the bed S, a spindle unit 10, a spindle moving mechanism 13, a first tool moving mechanism 30, and a second tool moving mechanism 50 are installed.
The spindle unit 10 rotates the workpiece W about its axis while gripping it. The spindle unit 10 includes a headstock 11 and a spindle 14 supported by the headstock 11 so as to be rotatable about its axis while gripping the workpiece W. The headstock 11 includes a workpiece rotating motor (not shown) built in for rotating the spindle 14 together with the workpiece W in the axial direction.
The spindle moving mechanism 13 moves the spindle unit 10 in the Z-axis direction (Z1-axis direction).
図2に示すように、第1工具移動機構30は、第1工具ユニット35と、第1工具ユニット35が装着された第1スライド台41と、第1スライド台41をX軸方向(X3軸方向)、Y軸方向(Y3軸方向)及びZ軸方向(Z3軸方向)に移動させる第1スライド台移動機構32と、を備える。第1スライド台移動機構32は、第1スライド台41をX軸方向に移動させるX移動機構32Xと、第1スライド台41をY軸方向に移動させるY移動機構32Yと、第1スライド台41をZ軸方向に移動させるZ移動機構32Zと、を備える。 2, the first tool movement mechanism 30 includes a first tool unit 35, a first slide table 41 to which the first tool unit 35 is attached, and a first slide table movement mechanism 32 that moves the first slide table 41 in the X-axis direction (X3-axis direction), the Y-axis direction (Y3-axis direction), and the Z-axis direction (Z3-axis direction). The first slide table movement mechanism 32 includes an X-movement mechanism 32X that moves the first slide table 41 in the X-axis direction, a Y-movement mechanism 32Y that moves the first slide table 41 in the Y-axis direction, and a Z-movement mechanism 32Z that moves the first slide table 41 in the Z-axis direction.
図1に示すように、第1工具ユニット35は、回転工具35a及び工具35b,35cと、回転工具35a及び工具35b,35cを支持する工具支持部36と、を備える。
回転工具35aは、例えば、Z軸方向に沿って延び、ワークWの先端面に穴開け加工するための回転ドリルである。工具35bは、例えば、Z軸方向に沿って延び、ワークWの先端面に穴開け加工するための固定ドリルである。工具35cは、例えば、X軸方向に沿って延び、ワークWの外周面を切削加工するためのバイトである。工具支持部36は、回転工具35aを軸回転可能に支持し、工具35b,35cを固定的に支持する。
As shown in FIG. 1, the first tool unit 35 includes a rotating tool 35a, tools 35b, 35c, and a tool support portion 36 that supports the rotating tool 35a and the tools 35b, 35c.
The rotating tool 35a is, for example, a rotary drill that extends along the Z-axis direction and is used to drill holes in the tip surface of the workpiece W. The tool 35b is, for example, a fixed drill that extends along the Z-axis direction and is used to drill holes in the tip surface of the workpiece W. The tool 35c is, for example, a cutting tool that extends along the X-axis direction and is used to cut the outer circumferential surface of the workpiece W. The tool support portion 36 supports the rotating tool 35a so that it can rotate about its axis, and fixedly supports the tools 35b and 35c.
図2に示すように、工具回転機構37は、回転工具35aを軸回転させる。工具回転機構37は、モータ37aと、モータ37aからの駆動力を回転工具35aに伝達する複数の歯車からなる伝達機構37bと、を備える。 As shown in FIG. 2, the tool rotation mechanism 37 rotates the rotating tool 35a about its axis. The tool rotation mechanism 37 includes a motor 37a and a transmission mechanism 37b, which is made up of multiple gears and transmits the driving force from the motor 37a to the rotating tool 35a.
図2及び図3に示すように、第2工具移動機構50は、第2工具ユニット58と、第2工具ユニット58が装着された第2スライド台51と、第2スライド台51をX軸方向(X2軸方向)及びY軸方向(Y2軸方向)に移動させる第2スライド台移動機構52と、を備える。第2スライド台移動機構52は、第2スライド台51をX軸方向に移動させるX移動機構52Xと、第2スライド台51をY軸方向に移動させるY移動機構52Yと、を備える。 2 and 3, the second tool movement mechanism 50 includes a second tool unit 58, a second slide table 51 to which the second tool unit 58 is attached, and a second slide table movement mechanism 52 that moves the second slide table 51 in the X-axis direction (X2-axis direction) and the Y-axis direction (Y2-axis direction). The second slide table movement mechanism 52 includes an X-movement mechanism 52X that moves the second slide table 51 in the X-axis direction, and a Y-movement mechanism 52Y that moves the second slide table 51 in the Y-axis direction.
図3に示すように、第2工具ユニット58は、切削工具58a及び工具58bと、切削工具58a及び工具58bを支持する工具支持部56と、を備える。
工具支持部56は第2スライド台51に固定される。切削工具58a及び工具58bはX軸方向に沿って延びる。切削工具58aは、例えば、ワークWの外周面を切削加工するバイトである。工具58bは、例えば、ワークWの外周面に穴開けする回転ドリルである。
As shown in FIG. 3, the second tool unit 58 includes a cutting tool 58a and a tool 58b, and a tool support portion 56 that supports the cutting tool 58a and the tool 58b.
The tool support portion 56 is fixed to the second slide table 51. The cutting tool 58a and the tool 58b extend along the X-axis direction. The cutting tool 58a is, for example, a cutting tool for cutting the outer peripheral surface of the workpiece W. The tool 58b is, for example, a rotary drill for drilling holes in the outer peripheral surface of the workpiece W.
主軸移動機構13、X移動機構32X、Y移動機構32Y、Z移動機構32Z、X移動機構52X及びY移動機構52Yは、それぞれ、モータ、ボールねじ及びナットを有し、モータの回転力をボールねじ及びナットにより直線運動に変換することにより、対応する主軸台11、第1スライド台41及び第2スライド台51を直線的に移動可能な構成からなる。 The spindle movement mechanism 13, the X movement mechanism 32X, the Y movement mechanism 32Y, the Z movement mechanism 32Z, the X movement mechanism 52X, and the Y movement mechanism 52Y each have a motor, a ball screw, and a nut, and are configured to linearly move the corresponding spindle table 11, the first slide table 41, and the second slide table 51 by converting the rotational force of the motor into linear motion using the ball screw and the nut.
制御部300は、工作機械1の各部の動作を制御することによりワークWの加工を行う。制御部300は、例えば、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備える。制御部300は、入力されたNCプログラムに従って、主軸14を軸回転させ、主軸移動機構13を介して主軸ユニット10をZ軸方向に移動させ、第1スライド台移動機構32を介して第1スライド台41をX軸方向、Y軸方向及びZ軸方向に移動させ、第2スライド台移動機構52を介して第2スライド台51をX軸方向及びY軸方向に移動させる。 The control unit 300 processes the workpiece W by controlling the operation of each part of the machine tool 1. The control unit 300 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), which are not shown. In accordance with the input NC program, the control unit 300 rotates the spindle 14, moves the spindle unit 10 in the Z-axis direction via the spindle movement mechanism 13, moves the first slide table 41 in the X-axis direction, Y-axis direction, and Z-axis direction via the first slide table movement mechanism 32, and moves the second slide table 51 in the X-axis direction and Y-axis direction via the second slide table movement mechanism 52.
制御部300は、NCプログラムの一部として、回転工具35aによる穴開け加工のみを行う単独穴加工処理、切削工具58aによるワークWの外周面の切削加工のみを行う単独切削加工処理、及び回転工具35aによる穴開け加工と切削工具58aによるワークWの切削加工を同時に行う重畳加工処理を実行する。 As part of the NC program, the control unit 300 executes a single hole machining process in which only hole drilling is performed using the rotating tool 35a, a single cutting process in which only cutting is performed on the outer peripheral surface of the workpiece W using the cutting tool 58a, and a superimposed machining process in which hole drilling is performed using the rotating tool 35a and cutting is performed on the workpiece W using the cutting tool 58a at the same time.
まず、単独穴加工処理について説明する。
単独穴加工処理においては、まず、制御部300は、主軸14及び工具回転機構37を介して回転工具35aの回転方向と主軸14により把持されるワークWの回転方向を互いに逆方向となるように異ならせる。これにより、ワークWと回転工具35aの周速差が上がり、加工速度が上がる。
そして、制御部300は、第1スライド台移動機構32を介して、回転工具35aをZ軸方向に揺動させつつ回転工具35aを送り方向S1(図2参照)に送る。送り方向S1は、Z軸方向に沿い、かつ主軸14に向かう方向である。この際、主軸移動機構13は主軸14をZ軸方向に揺動させない。
First, the single hole drilling process will be described.
In the single hole machining process, first, the control unit 300 causes the rotation direction of the rotating tool 35a and the rotation direction of the workpiece W gripped by the spindle 14 to be opposite to each other via the spindle 14 and the tool rotation mechanism 37. This increases the difference in peripheral speed between the workpiece W and the rotating tool 35a, thereby increasing the machining speed.
Then, the control unit 300 feeds the rotating tool 35a in a feed direction S1 (see FIG. 2) while swinging the rotating tool 35a in the Z-axis direction via the first slide table moving mechanism 32. The feed direction S1 is a direction along the Z-axis direction toward the spindle 14. At this time, the spindle moving mechanism 13 does not swing the spindle 14 in the Z-axis direction.
図4に示すように、単独穴加工処理における回転工具35aは、波形SCに沿って揺動しつつワークWへの切り込み量を多くなるように移動する。波形SCは、一次関数で示される直線状の送り成分Lに正弦波状の揺動成分が重畳されてなる。これにより、波形SCは、時間の経過とともに極大点が大きくなる正弦波状に形成される。
時刻t1において、回転工具35aの位置は、極大点Paに達して回転工具35aにより形成される穴の深さは深さD1となる。時刻t1から時刻t2までの時間にわたって、回転工具35aは穴の底面から離れる方向に退避する。これにより、回転工具35aに付着した切粉が分断される。時刻t2において波形SCの極小点Maに達する。時刻t2から時刻t3までの時間にわたって、回転工具35aは穴の底面に近づく方向に移動し、時刻t3において回転工具35aの先端が穴の底面に到達する。時刻t3から時刻t4までの時間にわたって、回転工具35aの位置が波形SCの極大点Pbに向かうことで、回転工具35aにより穴が深くなるように切り込まれ、極大点Pbに到達すると、穴の深さは深さD2となる。このように、波形SCに従って、回転工具35aの切り込みと退避を繰り返しつつ穴が深くなるように回転工具35aが揺動する。NCプログラムでは、主軸14及び回転工具35aそれぞれの回転方向と回転速度、回転工具35aの送り速度、回転工具35aの揺動量(揺動成分の振幅)からなる穴開け加工条件が設定されている。回転工具35aの揺動成分の振幅は、切粉が分断される程度に大きく、かつ、加工途中の穴内から外出しない程度に小さく設定されている。
As shown in Fig. 4, the rotary tool 35a in the single hole drilling process moves so as to increase the amount of cutting into the workpiece W while oscillating along a waveform SC. The waveform SC is formed by superimposing a sine wave-like oscillation component on a linear feed component L represented by a linear function. As a result, the waveform SC is formed into a sine wave whose maximum point becomes larger with the passage of time.
At time t1, the position of the rotating tool 35a reaches the maximum point Pa, and the depth of the hole formed by the rotating tool 35a becomes depth D1. From time t1 to time t2, the rotating tool 35a retreats in a direction away from the bottom surface of the hole. This causes the cutting chips attached to the rotating tool 35a to be broken. At time t2, the rotating tool 35a reaches the minimum point Ma of the waveform SC. From time t2 to time t3, the rotating tool 35a moves in a direction approaching the bottom surface of the hole, and at time t3, the tip of the rotating tool 35a reaches the bottom surface of the hole. From time t3 to time t4, the position of the rotating tool 35a moves toward the maximum point Pb of the waveform SC, so that the rotating tool 35a cuts the hole so as to deepen it, and when the maximum point Pb is reached, the depth of the hole becomes depth D2. In this way, the rotating tool 35a oscillates so as to deepen the hole while repeatedly cutting and retreating according to the waveform SC. In the NC program, the hole drilling conditions are set, which include the rotation directions and rotation speeds of the spindle 14 and the rotating tool 35a, the feed speed of the rotating tool 35a, and the amount of oscillation (amplitude of the oscillation component) of the rotating tool 35a. The amplitude of the oscillation component of the rotating tool 35a is set to be large enough to break up the chips, but small enough to prevent them from going outside the hole during machining.
次に、単独切削加工処理について説明する。
図2に示すように、制御部300は、単独切削加工処理においては、主軸14を介してワークWを軸回転させる。そして、制御部300は、第2スライド台移動機構52を介してワークWの外周面に切削工具58aの刃先を接触させつつ、主軸移動機構13を介して主軸14をワークWとともにZ軸方向に揺動させつつ送り方向S2に送る。送り方向S2は、Z軸方向に沿い、かつ送り方向S1に対向する方向である。この際の主軸14のZ軸方向の移動を示す波形は、上述した図4に示す波形SCと同様となる。これにより、切削加工においても切粉が分断される。
Next, the single cutting process will be described.
As shown in Fig. 2, in the single cutting process, the control unit 300 rotates the workpiece W via the spindle 14. Then, the control unit 300 contacts the cutting edge of the cutting tool 58a with the outer peripheral surface of the workpiece W via the second slide table moving mechanism 52, and feeds the spindle 14 together with the workpiece W in the feed direction S2 while swinging it in the Z-axis direction via the spindle moving mechanism 13. The feed direction S2 is along the Z-axis direction and opposite to the feed direction S1. The waveform showing the movement of the spindle 14 in the Z-axis direction at this time is the same as the waveform SC shown in Fig. 4 described above. As a result, chips are broken up even in the cutting process.
次に、切削工具58aによる切削加工と回転工具35aによる穴開け加工を同時に行う重畳加工処理について説明する。
図2及び図5に示すように、制御部300は、この重畳加工処理を実行するとき、切削加工に伴って生じる切粉と穴開け加工に伴って生じる切粉の両方の切粉が分断される加工条件で、第1スライド台移動機構32を介して回転工具35aを送り方向S1に揺動させずに直線的に送り、かつ、主軸移動機構13を介して主軸14及びワークWを送り方向S2に揺動させながら送る。
図6には、重畳加工処理における、主軸14の回転角度に対する、主軸14のZ軸方向(送り方向S2)の位置を示す波形SW及び回転工具35aのZ軸方向(送り方向S1)の位置を示す直線SDが示されている。主軸14とともにワークWは揺動させつつ送り方向S2に送られる。このため、波形SWは、一次関数の直線状に形成されるワークWの送り量を指令する直線SAに、正弦波状の揺動成分が重ねられてなる。一方、回転工具35aは直線的に送り方向S1に送られる。このため、直線SDは一次関数の直線状に形成される。
このように、回転工具35aが直線的に送られるものの、回転工具35aの加工対象であるワークWは揺動しているため、送り方向S1におけるワークWに対する相対的な回転工具35aの位置は、直線SDに上記揺動成分が重ねられた波形SBとなる。
Next, a superimposed machining process in which cutting by the cutting tool 58a and drilling by the rotary tool 35a are performed simultaneously will be described.
As shown in Figures 2 and 5, when the control unit 300 performs this overlapping processing, under processing conditions in which both chips generated by the cutting process and chips generated by the drilling process are separated, the control unit 300 feeds the rotating tool 35a linearly without swinging it in the feed direction S1 via the first slide table moving mechanism 32, and feeds the spindle 14 and the workpiece W while swinging them in the feed direction S2 via the spindle moving mechanism 13.
6 shows a waveform SW indicating the position of the spindle 14 in the Z-axis direction (feed direction S2) and a straight line SD indicating the position of the rotating tool 35a in the Z-axis direction (feed direction S1) relative to the rotation angle of the spindle 14 in the overlapping machining process. The workpiece W is fed in the feed direction S2 together with the spindle 14 while being oscillated. For this reason, the waveform SW is formed by superimposing a sine wave-shaped oscillation component on a straight line SA that commands the feed amount of the workpiece W, which is formed in the shape of a linear function. On the other hand, the rotating tool 35a is fed linearly in the feed direction S1. For this reason, the straight line SD is formed in the shape of a linear function.
In this way, although the rotating tool 35a is fed linearly, the workpiece W that is the object of machining by the rotating tool 35a is oscillating, and therefore the position of the rotating tool 35a relative to the workpiece W in the feed direction S1 becomes a waveform SB in which the above-mentioned oscillating component is superimposed on the straight line SD.
重畳加工において、加工条件によっては、穴開け加工に伴って生じる切粉は分断されない場合がある。例えば、図5に示すように、回転工具35aの送り方向S1への送り速度が主軸14の送り方向S2への送り速度よりも速い場合には、主軸14の揺動によっても回転工具35aの刃先はワークWから離れずに穴開け加工に伴って生じる切粉は分断されないおそれがある。重畳加工において、穴開け加工に伴って生じる切粉が分断されない比較例として、図7には、直線SDの傾きである回転工具35aの送り速度が直線SAの傾きである主軸14の送り速度よりも速い、直線SDの傾きが直線SAの傾きよりも大きい場合が示されている。この場合、波形SBの極大点PHは、極大点PHの1.5周期後の極小点PLよりも小さくなり、回転工具35aの空振り領域が形成されずに、切粉が分断されない。図7の比較例では、主軸14の送り速度は0.018mm/revに設定され、回転工具35aの送り速度は0.03mm/revに設定され、主軸14の1回転あたりの揺動周期は1.5に設定されている。 In overlapping machining, depending on the machining conditions, chips generated during hole drilling may not be broken up. For example, as shown in FIG. 5, when the feed speed of the rotary tool 35a in the feed direction S1 is faster than the feed speed of the spindle 14 in the feed direction S2, the cutting edge of the rotary tool 35a may not separate from the workpiece W even when the spindle 14 oscillates, and chips generated during hole drilling may not be broken up. As a comparative example in which chips generated during hole drilling are not broken up in overlapping machining, FIG. 7 shows a case in which the feed speed of the rotary tool 35a, which is the inclination of the straight line SD, is faster than the feed speed of the spindle 14, which is the inclination of the straight line SA, and the inclination of the straight line SD is greater than the inclination of the straight line SA. In this case, the maximum point PH of the waveform SB becomes smaller than the minimum point PL 1.5 cycles after the maximum point PH, and the idling area of the rotary tool 35a is not formed, and the chips are not broken up. In the comparative example of FIG. 7, the feed rate of the spindle 14 is set to 0.018 mm/rev, the feed rate of the rotating tool 35a is set to 0.03 mm/rev, and the oscillation period per rotation of the spindle 14 is set to 1.5.
本実施形態の重畳加工においては、回転工具35aの送り方向S1への送り速度が主軸14の送り方向S2への送り速度以下に設定される。この場合には、主軸14の揺動によって回転工具35aの刃先はワークWから離れるため穴開け加工に伴って生じる切粉は分断される。この穴開け加工に伴って生じる切粉は分断される例として、図6には、直線SDの傾きである回転工具35aの送り速度が直線SAの傾きである主軸14の送り速度以下、すなわち、直線SDの傾きが直線SAの傾き以下の場合が示されている。この場合に、波形SBの極大点PHは、極大点PHの1.5周期後の極小点PLよりも大きくなり、空振り領域Kが形成されて、切粉が分断される。なお、この場合であっても、主軸14の揺動量(揺動振幅)が極端に小さければ空振り領域Kが形成されないことになる。この点を加味して、主軸14の揺動量は空振り領域Kが形成される値に設定される。図6の例では、主軸14の送り速度は0.018mm/revに設定され、回転工具35aの送り速度は0.01mm/revに設定され、主軸14の1回転あたりの揺動周期は1.5に設定され、揺動振幅倍率は上記図6の例と同じ値に設定されている。 In the overlapping process of this embodiment, the feed speed of the rotary tool 35a in the feed direction S1 is set to be equal to or lower than the feed speed of the spindle 14 in the feed direction S2. In this case, the blade tip of the rotary tool 35a is separated from the workpiece W by the oscillation of the spindle 14, so that the chips generated during the hole drilling process are broken up. As an example of the chips generated during the hole drilling process being broken up, FIG. 6 shows a case in which the feed speed of the rotary tool 35a, which is the inclination of the straight line SD, is equal to or lower than the feed speed of the spindle 14, which is the inclination of the straight line SA, that is, the inclination of the straight line SD is equal to or lower than the inclination of the straight line SA. In this case, the maximum point PH of the waveform SB becomes larger than the minimum point PL 1.5 cycles after the maximum point PH, and an idling region K is formed, and the chips are broken up. Even in this case, if the oscillation amount (oscillation amplitude) of the spindle 14 is extremely small, the idling region K will not be formed. Taking this into consideration, the amount of oscillation of the spindle 14 is set to a value that creates an idling region K. In the example of FIG. 6, the feed rate of the spindle 14 is set to 0.018 mm/rev, the feed rate of the rotating tool 35a is set to 0.01 mm/rev, the oscillation period per rotation of the spindle 14 is set to 1.5, and the oscillation amplitude magnification is set to the same value as in the example of FIG. 6 above.
例えば、重畳加工処理において、ワークWの材質に応じて、回転工具35aとワークWの回転方向の関係が変えられる。例えば、制御部300は、ワークWがアルミニウム系の材質(第1の材質)からなる場合、ワークW(主軸14)の回転方向と回転工具35aの回転方向を逆方向に異ならせる。一方、制御部300は、ワークWが鉄系の材質(第2の材質)からなる場合、ワークW(主軸14)の回転方向と回転工具35aの回転方向を同方向とする。ワークWと回転工具35aの回転方向が逆であると、ワークWと回転工具35aの周速差が大きくなり、加工の高速化が図られるというメリットがあるものの、切削熱に伴いワークWの温度が上昇しやすいというデメリットがある。ここで、アルミニウム系の材質は、鉄系の材質よりも切削熱に伴い温度が上昇しづらい性質を有する。よって、このデメリットは、ワークWがアルミニウム系の材質である場合には許容できる。一方、ワークWが鉄系の材質である場合には切削熱に伴いワークWの温度が上昇しやすいため、ワークWと回転工具35aの回転方向を同方向としてワークWと回転工具35aの周速差を小さくして切削熱に伴うワークWの温度上昇を抑制することが好ましい。
例えば、ワークWの材質に係る情報は、例えば、NCプログラムに含まれる。制御部300は、実行するNCプログラムに含まれるワークWの材質に係る情報に基づき、ワークWの材質がアルミニウム系であるか鉄系であるかを判別して、重畳加工時の回転工具35aとワークWの回転方向を決定する。
以上で、重畳加工処理の説明を終了する。
For example, in the overlapping processing, the relationship between the rotational direction of the rotating tool 35a and the workpiece W is changed according to the material of the workpiece W. For example, when the workpiece W is made of an aluminum-based material (first material), the control unit 300 makes the rotational direction of the workpiece W (spindle 14) and the rotational direction of the rotating tool 35a different from each other in the opposite directions. On the other hand, when the workpiece W is made of an iron-based material (second material), the control unit 300 makes the rotational direction of the workpiece W (spindle 14) and the rotational direction of the rotating tool 35a the same direction. When the rotational directions of the workpiece W and the rotating tool 35a are opposite, the difference in peripheral speed between the workpiece W and the rotating tool 35a becomes large, and there is an advantage that the processing speed is increased, but there is a disadvantage that the temperature of the workpiece W is easily increased due to cutting heat. Here, the aluminum-based material has a property that the temperature is less likely to increase due to cutting heat than the iron-based material. Therefore, this disadvantage is acceptable when the workpiece W is made of an aluminum-based material. On the other hand, when the workpiece W is made of an iron-based material, the temperature of the workpiece W is likely to rise due to cutting heat, so it is preferable to rotate the workpiece W and the rotating tool 35a in the same direction and reduce the difference in peripheral speed between the workpiece W and the rotating tool 35a to suppress the temperature rise of the workpiece W due to cutting heat.
For example, the NC program includes information on the material of the workpiece W. The control unit 300 determines whether the material of the workpiece W is aluminum-based or iron-based based on the information on the material of the workpiece W included in the NC program to be executed, and determines the rotation directions of the rotating tool 35a and the workpiece W during overlap machining.
This is the end of the description of the superimposition processing.
制御部300は、上述した穴開け加工を行う際、主軸14の回転速度を一定速度に保ち、回転工具35aの回転方向と回転速度により、主軸14により把持されたワークWに対する相対的な回転工具35aの回転速度を調整する。これにより、例えば、単独切削加工から単独穴加工又は重畳加工に移行する際に、主軸14の回転速度を変化させる必要がなくなり、加工時間を短縮することができる。例えば、ワークWと回転工具35aの周速差を大きくしたい場合には、主軸14の回転方向と回転工具35aの回転方向を逆方向とする。さらに周速差を大きくしたい場合には回転工具35aの回転速度を上げる。一方、ワークWと回転工具35aの周速差を小さくしたい場合には、主軸14の回転方向と回転工具35aの回転方向を同方向とする。さらに周速差を小さくしたい場合には回転工具35aの回転速度を主軸14の回転速度に近づける。 When performing the above-mentioned hole drilling process, the control unit 300 maintains the rotation speed of the spindle 14 at a constant speed, and adjusts the rotation speed of the rotating tool 35a relative to the workpiece W gripped by the spindle 14 according to the rotation direction and rotation speed of the rotating tool 35a. As a result, for example, when switching from single cutting processing to single hole processing or overlapping processing, it is not necessary to change the rotation speed of the spindle 14, and the processing time can be shortened. For example, if it is desired to increase the peripheral speed difference between the workpiece W and the rotating tool 35a, the rotation direction of the spindle 14 and the rotation direction of the rotating tool 35a are made to be opposite to each other. If it is desired to further increase the peripheral speed difference, the rotation speed of the rotating tool 35a is increased. On the other hand, if it is desired to reduce the peripheral speed difference between the workpiece W and the rotating tool 35a, the rotation direction of the spindle 14 and the rotation direction of the rotating tool 35a are made to be the same. If it is desired to further reduce the peripheral speed difference, the rotation speed of the rotating tool 35a is made to be closer to the rotation speed of the spindle 14.
(効果)
以上、説明した一実施形態によれば、以下の効果を奏する。
(1)工作機械1は、ワークWを把持しつつ軸回転する主軸14と、主軸14により把持されたワークWに穴加工の一例である穴開け加工を行う回転工具35aを回転させる工具回転機構37と、主軸14の回転軸に沿う軸線方向(Z軸方向)に回転工具35aを主軸14に対して相対的に移動させる第1移動機構の一例である第1工具移動機構30と、主軸14及び工具回転機構37を介してワークWと回転工具35aの両方を回転させた状態において、第1工具移動機構30を介してZ軸方向に回転工具35aを主軸14に対して相対的に揺動させつつ回転工具35aによりワークWに穴開け加工を行う制御部300と、を備える。
この構成によれば、穴開け加工中に、回転工具35aを主軸14に対して相対的に揺動させることにより、穴開け加工に伴い発生する切粉が分断される。よって、この穴開け加工中において、切粉を分断するために回転工具35aの刃先を加工中のワークWの穴内から外出させる必要がないため、切粉を分断しつつ加工時間を短くすることができる。また、切粉が分断されるため、切粉が回転工具35aに絡まることを抑制でき、ひいては、切粉が絡まることで回転工具35aが折れることを抑制できる。特に、ワークWの回転方向と回転工具35aの回転方向が逆である場合には、ワークWと回転工具35aの周速差が大きくなりやすく、切粉が回転工具35aに絡まりやすいため、切粉を分断することは有益である。
例えば、図8(a)~(d)に示す比較例では、回転工具35aを加工中の穴から完全に外に出しながら穴開け加工を行うステップ加工又はインチング加工が行われている。例えば、図8(a)に示すように、回転工具35aをワークWに切り込むことで穴を形成し、図8(b)に示すように、回転工具35aを加工中の穴から完全に外に出す。これにより、切粉が分断される。次に、図8(c)に示すように、回転工具35aをより深くワークWに切り込むことで穴を深くし、再び、図8(d)に示すように、切粉が分断されるように、回転工具35aを加工中の穴から完全に外に出す。このように、ステップ加工又はインチング加工では、回転工具35aを加工中の穴から完全に外に出す必要があり、加工時間が長かった。この点、上記実施形態においては、回転工具35aを揺動させるため、加工中の穴から完全に外に出す必要がなく、切粉を分断しつつ加工時間を短くすることができる。
(effect)
According to the embodiment described above, the following effects are achieved.
(1) The machine tool 1 includes a spindle 14 that rotates around its axis while gripping a workpiece W, a tool rotation mechanism 37 that rotates a rotating tool 35a that performs hole drilling, an example of hole processing, on the workpiece W gripped by the spindle 14, a first tool moving mechanism 30 that is an example of a first moving mechanism that moves the rotating tool 35a relative to the spindle 14 in the axial direction (Z-axis direction) along the rotation axis of the spindle 14, and a control unit 300 that, in a state in which both the workpiece W and the rotating tool 35a are rotated via the spindle 14 and the tool rotation mechanism 37, oscillates the rotating tool 35a relative to the spindle 14 in the Z-axis direction via the first tool moving mechanism 30, and performs hole drilling on the workpiece W using the rotating tool 35a.
According to this configuration, by swinging the rotating tool 35a relative to the spindle 14 during the hole drilling process, the chips generated during the hole drilling process are broken up. Therefore, during the hole drilling process, it is not necessary to move the cutting edge of the rotating tool 35a out of the hole of the workpiece W being machined in order to break up the chips, so that the machining time can be shortened while breaking up the chips. In addition, since the chips are broken up, it is possible to prevent the chips from becoming entangled with the rotating tool 35a, and thus to prevent the rotating tool 35a from breaking due to the chips becoming entangled. In particular, when the rotation direction of the workpiece W and the rotation direction of the rotating tool 35a are opposite, the difference in peripheral speed between the workpiece W and the rotating tool 35a is likely to be large, and the chips are likely to become entangled with the rotating tool 35a, so it is beneficial to break up the chips.
For example, in the comparative example shown in Figs. 8(a) to (d), step machining or inching machining is performed to perform hole drilling while completely removing the rotary tool 35a from the hole being machined. For example, as shown in Fig. 8(a), the rotary tool 35a is cut into the workpiece W to form a hole, and as shown in Fig. 8(b), the rotary tool 35a is completely removed from the hole being machined. This breaks up the chips. Next, as shown in Fig. 8(c), the rotary tool 35a is cut deeper into the workpiece W to make the hole deeper, and again, as shown in Fig. 8(d), the rotary tool 35a is completely removed from the hole being machined so that the chips are broken up. In this way, in the step machining or inching machining, it is necessary to completely remove the rotary tool 35a from the hole being machined, and the machining time is long. In this respect, in the above embodiment, since the rotary tool 35a is oscillated, it is not necessary to completely remove it from the hole being machined, and the machining time can be shortened while breaking up the chips.
(2)工作機械1は、主軸14とともに軸回転するワークWの外周面の切削加工を行う切削工具58aをZ軸方向に主軸14に対して相対的に移動させる第2移動機構の一例である主軸移動機構13を備える。制御部300は、回転工具35aによりワークWに穴開け加工を行う際には第1工具移動機構30を介して回転工具35aを主軸14に対して相対的にZ軸方向に揺動させ、ワークWの外周面を切削工具58aにより切削加工を行う際には主軸移動機構13を介して切削工具58aを主軸14に対して相対的にZ軸方向に揺動させる。
この構成によれば、穴開け加工を行う際には回転工具35aがワークWに対して相対的にZ軸方向に揺動され、切削加工を行う際には切削工具58aがワークWに対して相対的にZ軸方向に揺動される。これにより、穴開け加工及び切削加工の何れかが単独で行われる場合に確実に切粉が分断される。
(2) The machine tool 1 includes the spindle moving mechanism 13, which is an example of a second moving mechanism that moves the cutting tool 58a, which cuts the outer peripheral surface of the workpiece W that rotates together with the spindle 14, in the Z-axis direction relative to the spindle 14. When drilling a hole in the workpiece W with the rotating tool 35a, the control unit 300 oscillates the rotating tool 35a in the Z-axis direction relative to the spindle 14 via the first tool moving mechanism 30, and when cutting the outer peripheral surface of the workpiece W with the cutting tool 58a, the control unit 300 oscillates the cutting tool 58a in the Z-axis direction relative to the spindle 14 via the spindle moving mechanism 13.
According to this configuration, when performing a hole drilling process, the rotating tool 35a is swung in the Z-axis direction relative to the workpiece W, and when performing a cutting process, the cutting tool 58a is swung in the Z-axis direction relative to the workpiece W. This ensures that chips are broken up when either the hole drilling process or the cutting process is performed alone.
(3)工作機械1は、主軸14をZ軸方向に移動させる主軸移動機構13を備える。制御部300は、切削加工と穴開け加工を同時に行う重畳加工の際には、切削加工に伴って生じる切粉と穴開け加工に伴って生じる切粉の両方が分断されるように、主軸移動機構13を介して主軸14をワークWとともにZ軸方向に揺動させる。
この構成によれば、重畳加工の際に、切削加工に伴って生じる切粉と穴開け加工に伴って生じる切粉の両方が分断される。これにより、切粉を分断しつつ加工時間を短くすることができる。
(3) The machine tool 1 includes a spindle moving mechanism 13 that moves the spindle 14 in the Z-axis direction. During overlapping machining in which cutting and drilling are performed simultaneously, the control unit 300 oscillates the spindle 14 together with the workpiece W in the Z-axis direction via the spindle moving mechanism 13 so that both chips generated by the cutting and chips generated by the drilling are separated.
According to this configuration, during overlapping processing, both chips generated during cutting and chips generated during drilling are separated, thereby making it possible to shorten the processing time while separating the chips.
(4)制御部300は、第1の材質からなるワークWについて切削加工と穴開け加工を同時に行う際には、主軸14及び工具回転機構37を介して回転工具35aの回転方向と主軸14の回転方向を異ならせる。制御部300は、第1の材質よりも切削熱に伴い温度が上昇しやすい第2の材質からなるワークWについて切削加工と穴開け加工を同時に行う際には、主軸14及び工具回転機構37を介して回転工具35aの回転方向と主軸14の回転方向を同方向とする。
この構成によれば、第1の材質よりも切削熱に伴い温度が上昇しやすい第2の材質からなるワークWについては、回転工具35aの回転方向と主軸14の回転方向を同方向とすることにより、回転工具35aとワークWの周速差を小さくでき、切削熱に伴うワークWの温度上昇を抑制できる。一方、第2の材質よりも切削熱に伴い温度が上昇しづらい第1の材質からなるワークWについては、回転工具35aの回転方向と主軸14の回転方向を異ならせることにより、回転工具35aとワークWの周速差を大きくでき、加工時間を短縮することができる。
(4) When cutting and drilling a workpiece W made of a first material are performed simultaneously, the control unit 300 causes the rotation direction of the rotating tool 35a to differ from the rotation direction of the spindle 14 via the spindle 14 and the tool rotation mechanism 37. When cutting and drilling a workpiece W made of a second material whose temperature is more likely to rise due to cutting heat than the first material is performed simultaneously, the control unit 300 causes the rotation direction of the rotating tool 35a to be the same as the rotation direction of the spindle 14 via the spindle 14 and the tool rotation mechanism 37.
According to this configuration, for a workpiece W made of a second material whose temperature rises more easily due to cutting heat than the first material, the rotation direction of the rotating tool 35a and the rotation direction of the spindle 14 are made the same, thereby making it possible to reduce the difference in peripheral speed between the rotating tool 35a and the workpiece W and suppress the temperature rise of the workpiece W due to cutting heat. On the other hand, for a workpiece W made of a first material whose temperature rises less easily due to cutting heat than the second material, the rotation direction of the rotating tool 35a and the rotation direction of the spindle 14 are made different from each other, thereby making it possible to increase the difference in peripheral speed between the rotating tool 35a and the workpiece W and shorten the processing time.
なお、本発明は以上の実施形態及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、適宜、変更(構成要素の削除も含む)を加えることが可能である。以下に、変形の一例を説明する。 The present invention is not limited to the above-described embodiment and drawings. Modifications (including the deletion of components) can be made as appropriate without departing from the spirit of the present invention. An example of a modification is described below.
(変形例)
上記実施形態においては、回転工具35a又は切削工具58aはZ軸方向のみに揺動されていたが、Z軸方向に加えて、X軸方向及びY軸方向の少なくとも何れかの方向にも揺動されてもよい。
また、上記実施形態においては、回転工具35aは、ワークWの端面に穴開け加工を行うドリルであったが、ドリルに限らず回転工具であれば何でもよく、例えば、エンドミルであってもよい。
また、上記実施形態における第1工具移動機構30は、Z軸方向に主軸14に対向する位置に設けられていてもよい。
また、第2工具移動機構50は省略されてもよい。
(Modification)
In the above embodiment, the rotating tool 35a or the cutting tool 58a is swung only in the Z-axis direction, but it may be swung in at least one of the X-axis direction and the Y-axis direction in addition to the Z-axis direction.
In the above embodiment, the rotating tool 35a is a drill for drilling holes in the end surface of the workpiece W, but is not limited to a drill and may be any rotating tool, such as an end mill.
Furthermore, the first tool moving mechanism 30 in the above embodiment may be provided at a position facing the spindle 14 in the Z-axis direction.
In addition, the second tool moving mechanism 50 may be omitted.
上記実施形態においては、単独穴加工時に、回転工具35aをZ軸方向に揺動させつつ送っていたが、これに限らず、主軸移動機構13を介してワークW(主軸14)をZ軸方向に揺動させつつ送ってもよい。この場合、主軸移動機構13が第1移動機構に相当する。
また、単独穴加工時に、回転工具35aとワークW(主軸14)の一方をZ軸方向に送って、回転工具35aとワークW(主軸14)の他方を揺動させてもよい。
In the above embodiment, the rotating tool 35a is moved while being swung in the Z-axis direction during single hole machining, but this is not limiting, and the workpiece W (spindle 14) may be moved while being swung in the Z-axis direction via the spindle moving mechanism 13. In this case, the spindle moving mechanism 13 corresponds to the first moving mechanism.
Also, when machining a single hole, one of the rotating tool 35a and the workpiece W (spindle 14) may be fed in the Z-axis direction, while the other of the rotating tool 35a and the workpiece W (spindle 14) may be oscillated.
上記実施形態においては、制御部300は、ワークWの材質に応じて、ワークW(主軸14)の回転方向と回転工具35aの回転方向を逆方向と同方向の何れかとしていたが、ワークWの材質に関わらず、ワークW(主軸14)の回転方向と回転工具35aの回転方向を逆方向と同方向の何れか一方としてもよい。 In the above embodiment, the control unit 300 set the rotation direction of the workpiece W (spindle 14) and the rotation direction of the rotating tool 35a to either the opposite direction or the same direction depending on the material of the workpiece W. However, regardless of the material of the workpiece W, the rotation direction of the workpiece W (spindle 14) and the rotation direction of the rotating tool 35a may be either the opposite direction or the same direction.
上記実施形態においては、制御部300は、重畳加工時に、主軸移動機構13を介して主軸14及びワークWを送り方向S1に揺動させつつ送っていたが、これに限らず、主軸14及びワークWを揺動させずに送り方向S1に送り、第1スライド台移動機構32を介して回転工具35aを揺動させつつ送り方向S2に送ってもよい。これにより、穴開け加工に伴い発生する切粉を確実に分断することができる。また、例えば、制御部300は、回転工具35a及び切削工具58aの切り込み量及び送り速度に基づき、重畳加工において穴開け加工に伴い発生する切粉と切削加工に伴い発生する切粉の何れかが絡まりやすいかを予測し、穴開け加工に伴い発生する切粉が回転工具35aに絡まりやすいと予測すると回転工具35aを揺動させ、切削加工に伴い発生する切粉が切削工具58aに絡まりやすいと予測すると主軸14を揺動させてもよい。また、制御部300は、重畳加工において回転工具35aと主軸14の何れを揺動させるかを作業者に選択させ、この選択結果に応じて回転工具35a又は主軸14を揺動させてもよい。
また、上記実施形態において、制御部300は、重畳加工処理を行わなくてもよい。
In the above embodiment, the control unit 300 sends the spindle 14 and the workpiece W while swinging them in the feed direction S1 via the spindle moving mechanism 13 during the overlapping process, but the present invention is not limited to this. The spindle 14 and the workpiece W may be sent in the feed direction S1 without swinging them, and the rotating tool 35a may be sent in the feed direction S2 via the first slide table moving mechanism 32 while swinging it. This allows chips generated during the hole drilling process to be reliably separated. In addition, for example, the control unit 300 may predict which of the chips generated during the hole drilling process and the chips generated during the cutting process are likely to be entangled in the overlapping process based on the cutting depth and feed speed of the rotating tool 35a and the cutting tool 58a, and may swing the rotating tool 35a when it predicts that the chips generated during the hole drilling process are likely to be entangled in the rotating tool 35a, and may swing the spindle 14 when it predicts that the chips generated during the cutting process are likely to be entangled in the cutting tool 58a. In addition, the control unit 300 may allow the operator to select whether to oscillate the rotating tool 35a or the spindle 14 during overlap machining, and oscillate either the rotating tool 35a or the spindle 14 depending on the result of this selection.
In the above embodiment, the control unit 300 does not need to perform the superimposition processing.
上記実施形態においては、第2工具移動機構50は、第2スライド台51をZ軸方向に移動不可能な構成であったが、これに限らず、図9及び図10に示すように、第2スライド台51をZ軸方向(Z2軸方向)に移動させるZ移動機構52Zを備えていてもよい。Z移動機構52Zは、X移動機構52X等と同様に、モータ、ボールねじ及びナットを有する。
図9に示すように、工作機械1から主軸移動機構13が省略されて、主軸14がZ軸方向に移動不可能な構成であってもよいし、図10に示すように、工作機械1は、主軸14をZ軸方向に移動させる主軸移動機構13を備えていてもよい。
図9及び図10の変形例においては、Z移動機構52Zが第2移動機構に相当してもよい。この場合、制御部300は、単独切削加工時に、Z移動機構52Zを介して切削工具58aを主軸14に対してZ軸方向に揺動させつつ送り方向S2に送る。特に、図10の変形例では、単独切削加工時に、切削工具58aとワークW(主軸14)の一方をZ軸方向に送って、切削工具58aとワークW(主軸14)の他方を揺動させてもよい。
In the above embodiment, the second tool moving mechanism 50 is configured to be unable to move the second slide table 51 in the Z-axis direction, but this is not limiting, and the second tool moving mechanism 50 may be provided with a Z movement mechanism 52Z that moves the second slide table 51 in the Z-axis direction (Z2-axis direction) as shown in Figures 9 and 10. The Z movement mechanism 52Z has a motor, a ball screw, and a nut, similar to the X movement mechanism 52X and the like.
As shown in Figure 9, the spindle moving mechanism 13 may be omitted from the machine tool 1, and the spindle 14 may be configured to be unable to move in the Z-axis direction, or as shown in Figure 10, the machine tool 1 may be provided with a spindle moving mechanism 13 that moves the spindle 14 in the Z-axis direction.
9 and 10, the Z movement mechanism 52Z may correspond to the second movement mechanism. In this case, the control unit 300, during the single cutting process, feeds the cutting tool 58a in the feed direction S2 while swinging it in the Z-axis direction relative to the spindle 14 via the Z movement mechanism 52Z. In particular, in the modification of FIG. 10, during the single cutting process, one of the cutting tool 58a and the workpiece W (spindle 14) may be fed in the Z-axis direction and the other of the cutting tool 58a and the workpiece W (spindle 14) may be swung.
1…工作機械、10…主軸ユニット、11…主軸台、13…主軸移動機構、14…主軸、30…第1工具移動機構、32…第1スライド台移動機構、32X,52X…X移動機構、32Y,52Y…Y移動機構、32Z,52Z…Z移動機構、35…第1工具ユニット、35a…回転工具、35b,35c,58b…工具、36,56…工具支持部、37…工具回転機構、37a…モータ、37b…伝達機構、41…第1スライド台、50…第2工具移動機構、51…第2スライド台、52…第2スライド台移動機構、58…第2工具ユニット、58a…切削工具、300…制御部、K…空振り領域、L…送り成分、S…ベッド、SC,SB,SW…波形、S1,S2…送り方向、W…ワーク、SA,SD…直線、PH,Pa,Pb…極大点、PL,Ma…極小点、t1,t2,t3,t4…時刻 1...machine tool, 10...spindle unit, 11...spindle stock, 13...spindle movement mechanism, 14...spindle, 30...first tool movement mechanism, 32...first slide table movement mechanism, 32X, 52X...X movement mechanism, 32Y, 52Y...Y movement mechanism, 32Z, 52Z...Z movement mechanism, 35...first tool unit, 35a...rotating tool, 35b, 35c, 58b...tool, 36, 56...tool support, 37...tool rotation mechanism, 37a...motor, 37b... Transmission mechanism, 41...first slide table, 50...second tool movement mechanism, 51...second slide table, 52...second slide table movement mechanism, 58...second tool unit, 58a...cutting tool, 300...control unit, K...idling area, L...feed component, S...bed, SC, SB, SW...waveform, S1, S2...feed direction, W...work, SA, SD...straight line, PH, Pa, Pb...maximum point, PL, Ma...minimum point, t1, t2, t3, t4...time
Claims (4)
前記主軸により把持された前記ワークに穴加工を行う回転工具を回転させる工具回転機構と、
前記主軸を、前記主軸の回転軸が延びる軸線方向に移動させる主軸移動機構と、
前記軸線方向に前記回転工具を前記主軸に対して相対的に移動させる第1移動機構と、
前記ワークの外周面の切削加工を行う切削工具を、前記軸線方向に前記主軸に対して相対的に移動させる第2移動機構と、
前記工具回転機構、前記主軸移動機構、前記第1移動機構及び前記第2移動機構の動作を制御する制御部と、を備え、
前記切削工具による切削加工と前記回転工具による穴加工を同時に行う際、前記制御部は、前記主軸を前記主軸移動機構を介して前記ワークとともに前記軸線方向に揺動させつつ移動させ、前記回転工具を前記第1移動機構を介して前記軸線方向に揺動させずに直線的に移動させるか移動させずにとどめ、前記切削工具を前記軸線方向に移動させずにとどめる、
工作機械。 A spindle that rotates while gripping a workpiece;
a tool rotation mechanism that rotates a rotary tool that performs hole machining on the workpiece gripped by the spindle;
a spindle moving mechanism that moves the spindle in an axial direction along which a rotation axis of the spindle extends;
a first moving mechanism that moves the rotary tool relative to the spindle in the axial direction;
a second moving mechanism that moves a cutting tool that cuts an outer peripheral surface of the workpiece in the axial direction relative to the spindle;
a control unit that controls operations of the tool rotation mechanism, the spindle movement mechanism, the first movement mechanism, and the second movement mechanism ,
When performing cutting processing by the cutting tool and hole machining by the rotating tool simultaneously, the control unit moves the spindle together with the workpiece in the axial direction while swinging it via the spindle moving mechanism, moves the rotating tool linearly without swinging it in the axial direction via the first moving mechanism or keeps it still, and keeps the cutting tool without moving in the axial direction.
Machine Tools.
請求項1に記載の工作機械。 When performing cutting by the cutting tool and hole drilling by the rotating tool simultaneously, a moving speed of the rotating tool in an axial direction is set to be equal to or lower than a moving speed of the spindle in the axial direction.
2. The machine tool according to claim 1.
請求項1または2に記載の工作機械。 When performing cutting processing by the cutting tool alone and when performing hole processing by the rotary tool alone, the control unit swings the spindle together with the workpiece in the axial direction via the spindle moving mechanism.
3. The machine tool according to claim 1 or 2 .
前記主軸により把持された前記ワークに穴加工を行う回転工具を回転させる工具回転機構と、
前記主軸の回転軸が延びる軸線方向に前記回転工具を前記主軸に対して相対的に移動させる第1移動機構と、
前記主軸により把持された前記ワークの外周面の切削加工を行う切削工具を、前記軸線方向に前記主軸に対して相対的に移動させる第2移動機構と、
前記主軸、前記工具回転機構、前記第1移動機構及び前記第2移動機構の動作を制御する制御部と、を備え、
前記制御部は、前記回転工具によって前記ワークに前記穴加工を行う際には前記第1移動機構を介して前記軸線方向に前記回転工具を前記主軸に対して相対的に揺動させ、前記切削工具によって前記ワークに前記切削加工を行う際には前記第2移動機構を介して前記軸線方向に前記切削工具を前記主軸に対して相対的に揺動させ、
前記制御部は、第1の材質からなる前記ワークについて前記切削加工と前記穴加工を同時に行う際には、前記主軸及び前記工具回転機構を介して前記回転工具の回転方向と前記主軸の回転方向を異ならせ、前記第1の材質よりも切削熱に伴い温度が上昇しやすい第2の材質からなる前記ワークについて前記切削加工と前記穴加工を同時に行う際には、前記主軸及び前記工具回転機構を介して前記回転工具の回転方向と前記主軸の回転方向を同方向とする、
工作機械。 A spindle that rotates while gripping a workpiece;
a tool rotation mechanism that rotates a rotary tool that performs hole machining on the workpiece gripped by the spindle;
a first moving mechanism that moves the rotary tool relative to the spindle in an axial direction along which a rotation axis of the spindle extends;
a second moving mechanism that moves a cutting tool that performs cutting processing on an outer peripheral surface of the workpiece gripped by the spindle in the axial direction relative to the spindle;
a control unit that controls operations of the spindle, the tool rotation mechanism, the first movement mechanism, and the second movement mechanism,
the control unit, when performing the hole machining on the workpiece with the rotating tool, swings the rotating tool relative to the spindle in the axial direction via the first moving mechanism, and when performing the cutting process on the workpiece with the cutting tool, swings the cutting tool relative to the spindle in the axial direction via the second moving mechanism;
The control unit, when performing the cutting process and the hole machining simultaneously on the workpiece made of a first material, makes the rotation direction of the rotating tool and the rotation direction of the spindle different via the spindle and the tool rotation mechanism, and when performing the cutting process and the hole machining simultaneously on the workpiece made of a second material whose temperature is more likely to rise due to cutting heat than the first material, makes the rotation direction of the rotating tool and the rotation direction of the spindle the same direction via the spindle and the tool rotation mechanism.
Machine Tools.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020213157A JP7481250B2 (en) | 2020-12-23 | 2020-12-23 | Machine Tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020213157A JP7481250B2 (en) | 2020-12-23 | 2020-12-23 | Machine Tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022099409A JP2022099409A (en) | 2022-07-05 |
JP7481250B2 true JP7481250B2 (en) | 2024-05-10 |
Family
ID=82269530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020213157A Active JP7481250B2 (en) | 2020-12-23 | 2020-12-23 | Machine Tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7481250B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116037982B (en) * | 2022-12-14 | 2024-11-29 | 厦门市联锋电器有限公司 | Metal product processing device and processing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069476A1 (en) | 2011-11-10 | 2013-05-16 | ハリキ精工株式会社 | Machine tool |
JP2015052927A (en) | 2013-09-06 | 2015-03-19 | 株式会社牧野フライス製作所 | Hole processing method and numerical control apparatus |
-
2020
- 2020-12-23 JP JP2020213157A patent/JP7481250B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069476A1 (en) | 2011-11-10 | 2013-05-16 | ハリキ精工株式会社 | Machine tool |
JP2015052927A (en) | 2013-09-06 | 2015-03-19 | 株式会社牧野フライス製作所 | Hole processing method and numerical control apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2022099409A (en) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7450780B2 (en) | Machine tool and control device for this machine tool | |
JP4563809B2 (en) | Tool holder | |
JP7214568B2 (en) | Machine tools and controllers for these machine tools | |
JP6684549B2 (en) | Numerical control device for machine tool, machine tool, machine tool control method and program | |
JP6794051B2 (en) | Deburring method, deburring device control device, control program for deburring device | |
US11347196B2 (en) | Controller of machine tool | |
JP7036786B2 (en) | Numerical control device, program and control method | |
JP7481250B2 (en) | Machine Tools | |
JP2021065942A (en) | Machine tool and threading machining method using the same | |
US11106194B2 (en) | Numerical controller for continuous cutting control | |
JPS61293704A (en) | Numerical controller for automatic lathe | |
WO2022009797A1 (en) | Numerical control device and control method | |
WO2022264260A1 (en) | Information processing device, device for controlling machine tool, and computer program | |
CN117440869A (en) | Vibration cutting condition setting device for machine tool | |
WO2022269751A1 (en) | Machine tool control device | |
JP2020124793A (en) | Machine tool | |
CN114945876A (en) | Numerical control device, chip removal system, chip removal method | |
JPH11151606A (en) | Profile machining method and machining machinery | |
JP4037087B2 (en) | Thread cutting control method and control device for numerically controlled machine tool and numerically controlled machine tool incorporating the same | |
CN107065782A (en) | Numerical control device with the incision control function rotated based on turntable | |
JP7459160B2 (en) | Machine Tools | |
WO2022249272A1 (en) | Numerical control device and machining method | |
JP2024011835A (en) | Composite processing machine | |
CN118489092A (en) | Information processing device, control device for machine tool, and computer program | |
JP6124637B2 (en) | Machining method for machine tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7481250 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |